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Abstract

We prove sufficient and essentially necessary conditions in terms of the
minimum degree for a graph to contain planar subgraphs with many edges.
For example, for all positive γ every sufficiently large graph G with min-
imum degree at least (2/3 + γ)|G| contains a triangulation as a spanning
subgraph, whereas this need not be the case when the minimum degree is
less than 2|G|/3.

1 Introduction

1.1 Results

In this paper we study the following extremal question: Given a function m =
m(n), how large does the minimum degree of a graph G of order n have to be
in order to guarantee a planar subgraph with at least m(n) edges?

If m ≤ n, the answer is easy. Indeed, suppose that the minimum degree
of G is at least one. Then every component C of G has a spanning tree with
|C| − 1 ≥ |C|/2 edges. So G has a (planar) spanning forest with at least n/2
edges, which is best possible if G consists of independent edges. Similarly, it
is easy to see that if G has minimum degree at least two, then G contains a
planar subgraph with n edges, which is best possible if G is a cycle.

On the other hand, if G is bipartite, then the facial cycles of any planar
subgraph have length at least four and so Euler’s formula implies that no planar
subgraph of G has more than 2n − 4 edges. So as long as the minimum degree
is at most n/2, we cannot hope for a planar subgraph with more than 2n − 4
edges. Our first theorem shows that a much smaller minimum degree already
guarantees a planar subgraph with roughly 2n edges.

Theorem 1 For every 0 < ε < 1 there exists n0 = n0(ε) such that every graph
G of order n ≥ n0 and minimum degree δ ≥ 1500

√
n/ε2 contains a planar

subgraph with at least (2 − ε)n edges.

This is essentially best possible in two ways. Firstly, there are graphs with
minimum degree

√
n/2 and girth at least 6 ([6], see also [3]). Hence Euler’s

formula shows that any planar subgraph of such a graph can have at most
3
2(n − 2) edges (as all of its facial cycles have length at least 6). Secondly, for
δ ≤ n/2 consider the graph consisting of n/2δ disjoint copies of the complete
bipartite graph Kδ,δ. It obviously has minimum degree δ, but again by Euler’s
formula it cannot contain a planar subgraph with more than (2 · 2δ − 4)n/2δ =
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2n−2n/δ edges. This shows that as long as the minimum degree δ of G is o(n),
we cannot ask for a planar subgraph of G with 2n−C edges, where C does not
depend on n. So if we want at least 2n − C edges in a planar subgraph, then
a necessary condition is that δ ≥ 2n/C, i.e. δ must be linear in n. Our second
theorem shows that the linearity of δ is also sufficient.

Theorem 2 For every γ > 0 there exists C = C(γ) such that every graph G
of order n and minimum degree at least γn contains a planar subgraph with at
least 2n − C edges.

As we have already seen, this is best possible up to the value of the constant
C as long as the minimum degree is at most n/2. If however the minimum
degree is a little larger than this, we can already guarantee a planar subgraph
which is a triangulation apart from a constant number of missing edges:

Theorem 3 For every γ > 0 there exists C = C(γ) such that every graph G
of order n and minimum degree at least (1/2 + γ)n contains a planar subgraph
with at least 3n − C edges.

Again, this is best possible in the sense that the constant C has to depend
on γ and the additional term γn in the bound on the minimum degree cannot
be replaced by a sublinear one (see Proposition 14).

Finally, we seek a spanning triangulation, i.e. a planar subgraph with 3n−6
edges. As pointed out to us by Bollobás, the following 3-partite graph G shows
that a minimum degree of 2n/3 is necessary for this. G is obtained from two
disjoint cliques C1 and C2 of order n/3 by adding an independent set X of n/3
new vertices and joining each of them to all the vertices in the two cliques. So
G has minimum degree 2n/3 − 1. Observe that any spanning triangulation in
G would have two facial triangles T1 and T2 which share an edge and are such
that Ti contains a vertex of Ci (i = 1, 2). But this is impossible since every
triangle of G containing a vertex of Ci can have at most one vertex outside Ci,
namely in X. However, to guarantee a triangulation, it suffices to increase the
minimum degree by a small amount:

Theorem 4 For every γ > 0 there exists an integer n0 = n0(γ) such that every
graph G of order n ≥ n0 and minimum degree at least (2/3 + γ)n contains a
triangulation as a spanning subgraph.

In [19] the first two authors show that for sufficiently large graphs a minimum
degree of 2n/3 suffices. However, the proof of this is rather more involved than
that of Theorem 4.

We also obtain an analogue of Theorem 4 for quadrangulations, i.e. plane
subgraphs with 2n − 4 edges in which every face is bounded by a 4-cycle.

Theorem 5 For every γ > 0 there exists an integer n0 = n0(γ) such that every
graph G of order n ≥ n0 and minimum degree at least (1/2 + γ)n contains a
quadrangulation as a spanning subgraph.

The disjoint union of two cliques of order n/2 shows that apart from the
error term γn, the minimum degree in Theorem 5 cannot be reduced.
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1.2 Open questions and related results

There is a conjecture of Bollobás and Komlós [12] which would immediately
imply Theorems 4 and 5. It asserts that for every γ > 0 and all r,∆ ∈ N there
are α > 0 and n0 ∈ N such that every graph G of order n ≥ n0 and minimum
degree at least (1− 1

r + γ)n contains a copy of every graph H of order n whose
chromatic number is at most r, whose maximum degree is at most ∆ and whose
band-width is at most αn. (The band-width of a graph H is the smallest integer
k for which there exists an enumeration v1, . . . , v|H| of the vertices of H such
that every edge vivj ∈ H satisfies |i− j| ≤ k.) Indeed, to derive e.g. Theorem 4
from this conjecture it suffices to find for all n ∈ N a 3-partite triangulation of
order n which has both bounded maximum degree and bounded band-width. It
is easy to see that such triangulations exist (e.g. modify the graph H1 in Fig. 3
below).

Theorems 1–5 give a fairly accurate picture of the maximum size of a planar
subgraph when we consider graphs whose minimum degree δ is much larger
than

√
n. However, we are not aware of any nontrivial lower bounds when δ

lies between 2 and
√

n. An easy upper bound is obtained as follows. For ℓ ≥ 3
let δ2ℓ = δ2ℓ(n) be the largest integer such that there are graphs G of order n,
minimum degree at least δ2ℓ and girth at least 2ℓ. (The order of magnitude
of δ2ℓ is only known for ℓ = 3, 4 and 6, see e.g. [2, 6].) So all facial cycles in
a planar subgraph of such a graph G have length at least 2ℓ and thus Euler’s
formula gives us an upper bound on the size of a planar subgraph of G. We
believe that in general this upper bound is close to the truth (except maybe
when the minimum degree is only a little larger than δ2ℓ+2).

The problem of finding a large planar subgraph in a random graph was
investigated by Schlatter [20], the case of triangulations was already considered
earlier by Bollobás and Frieze [5].

1.3 Algorithmic aspects

Our proofs immediately show that the planar subgraphs guaranteed by The-
orems 1–5 can be found in polynomial time. For graphs with high minimum
degree we therefore obtain improved approximation algorithms for the max-
imum planar subgraph problem which in a given graph G asks for a planar
subgraph with the maximum number of edges. Cǎlinescu et al. [7] showed that
this problem is Max SNP-hard: there is a constant ε such that there cannot ex-
ist a polynomial time approximation algorithm with approximation ratio better
than 1 − ε, unless P = NP . Recently, Faria, Figueiredo and Mendonça [11]
proved that it is Max SNP-hard even for cubic graphs. The best known ap-
proximation algorithm for arbibrary input graphs has an approximation ratio
of 4/9 [7]. (Note that a ratio of 1/3 is already achieved by producing spanning
trees for all connected components.) On the other hand, our proof of Theorem 4
implies that for any γ > 0 the maximum planar subgraph problem can be solved
in polynomial time for graphs with minimum degree at least (2/3 + γ)n. Our
remaining results give improved approximation algorithms for graphs whose
minimum degree is sufficiently large for the respective results to apply.
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The paper is organized as follows. In Section 2 we give a brief sketch of
the proofs of Theorems 1–5. In Section 3 we collect some notation and all the
information about the Regularity lemma and the Blow-up lemma we need for
the proofs of Theorems 2–5. The proofs themselves are then given in the final
section.

2 Sketch of proofs

The proof of Theorem 1 is rather different from those of the other results.
In particular, it relies neither on the Regularity lemma nor on the Blow-up
lemma. The strategy is to repeatedly find a suitable greedy covering of part
of the vertices of the original graph G with disjoint complete bipartite graphs
K2,s, where s is large. (Note that if s is large then the planar graph H := K2,s

has roughly 2|H| edges.) These partial coverings (which will overlap a little)
are then combined into a single planar graph of the required size.

We now give a sketch of the proofs of Theorems 2–5. The structure of these
proofs is similar: we first apply the Regularity lemma (Lemma 7) to obtain
a partition of the vertices of G into a large but constant number of clusters.
Since G has large minimum degree, this is also true for the ‘reduced graph’
R (whose vertices are the clusters and whose edges correspond to the pairs of
clusters which are regular and have sufficient density). We will use this to cover
almost all vertices of R by suitable disjoint graphs H of bounded size. Then
we apply the Blow-up lemma (Lemma 10) to find spanning planar graphs P
of the required density within the subgraphs H ′ of G corresponding to these
graphs H. However, we also have to ensure that the exceptional vertices of G
(i.e. the small proportion of those vertices of G which do not belong to some
such H ′) can be incorporated into these planar graphs P without reducing their
density. This also follows from the Blow-up lemma provided that we can assign
each exceptional vertex v to some H which contains enough clusters with many
neighbours of v in such a way that to each H we assign only a small number of
exceptional vertices.

In the proof of Theorem 2 the graphs H will be stars of bounded size and the
planar graphs P we seek within the graphs H ′ will be quadrangulations. For
Theorem 3 we want the planar graphs P to be triangulations, which means that
the graphs H can no longer be bipartite. Thus an obvious choice for H would
be a triangle, but we cannot hope to cover almost all vertices of the reduced
graph R by disjoint triangles since its minimum degree may be only a little
larger than |R|/2. However, a recent result of Komlós (Theorem 13) implies
that we can take H to be the complete 3-partite graph Ka,a,1 (where a is large)
as it is in some sense close to being bipartite.

In the proof of Theorem 4 the minimum degree of the reduced graph R ex-
ceeds 2|R|/3 and hence the Theorem of Corrádi and Hajnal [8] implies that
R can be covered by disjoint triangles. However, this is not sufficient for our
purposes as this time we seek a single triangulation containing all vertices of G
(instead of a disjoint union of boundedly many triangulations as in the proof
of Theorem 3). So we have to ‘glue together’ the different triangulations cor-
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responding to the triangles covering R. For this we use suitable edges of R
joining these triangles (as well as some additional vertices of G). Thus instead
of merely covering R by disjoint triangles, we will start with the second power
of a Hamilton path of R. The latter is guaranteed by a result of Fan and
Kierstead [10].

The proof of Theorem 5 is similar to that of Theorem 4 but the gluing process
is somewhat simpler. Instead of the second power, this time it suffices to work
with an ‘ordinary’ Hamilton path.

3 Notation and tools

Throughout this paper we omit floors and ceilings whenever this does not affect
the argument. We write e(G) for the number of edges of a graph G, |G| for its
order, δ(G) for its minimum degree, ∆(G) for its maximum degree and χ(G)
for its chromatic number. If this is not ambiguous, we also write n for the order
of a graph G. We denote the degree of a vertex x ∈ G by dG(x) and the set of
its neighbours by NG(x). Given disjoint A,B ⊆ V (G), an A–B edge is an edge
of G with one endvertex in A and the other in B, the number of these edges
is denoted by eG(A,B) or e(A,B) if this is unambiguous. We write (A,B)G
for the bipartite subgraph of G whose vertex classes are A and B and whose
edges are all A–B edges in G. More generally, we write (A,B) for a bipartite
graph with vertex classes A and B. Given a plane graph G, a facial cycle of G
is a cycle in G which is the boundary of a face. G is a triangulation if all its
faces are bounded by triangles and a quadrangulation if all faces are bounded
by 4-cycles. So by Euler’s formula a triangulation has 3n − 6 edges whereas a
quadrangulation has 2n − 4 edges.

In the remainder of this section we collect all the information we need about
the Regularity lemma and the Blow-up lemma. See [18] and [12] for surveys
about these. Let us start with some more notation. The density of a bipartite
graph G = (A,B) is defined to be

d(A,B) :=
e(A,B)

|A||B| .

Given ε > 0, we say that G is ε-regular if for all sets X ⊆ A and Y ⊆ B with
|X| ≥ ε|A| and |Y | ≥ ε|B| we have |d(A,B)−d(X,Y )| < ε. Given d ∈ [0, 1], we
say that G is (ε, d)-super-regular if all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A|
and |Y | ≥ ε|B| satisfy d(X,Y ) > d and, furthermore, if dG(a) > d|B| for all
a ∈ A and dG(b) > d|A| for all b ∈ B.

We will often use the following simple fact.

Proposition 6 Given an ε-regular bipartite graph (A,B) of density > d and a
set X ⊆ A with |X| ≥ ε|A|, there are less than ε|B| vertices in B which have
at most (d − ε)|X| neighbours in X.

We will use the following degree form of Szemerédi’s Regularity lemma which
can be easily derived from the classical version. Proofs of the latter are for
example included in [4] and [9].
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Lemma 7 (Regularity lemma) For all ε > 0 and all integers k0 there is an
N = N(ε, k0) such that for every number d ∈ [0, 1] and for every graph G there
exist a partition of V (G) into V0, V1, . . . , Vk and a spanning subgraph G′ of G
such that the following holds:

• k0 ≤ k ≤ N ,

• |V0| ≤ ε|G|,
• |V1| = · · · = |Vk| =: L,

• dG′(x) > dG(x) − (d + ε)|G| for all vertices x ∈ G,

• for all i ≥ 1 the graph G′[Vi] is empty,

• for all 1 ≤ i < j ≤ k the graph (Vi, Vj)G′ is ε-regular and has density
either 0 or > d.

The sets Vi (i ≥ 1) are called clusters, V0 is called the exceptional set. Given
clusters and G′ as in Lemma 7, the reduced graph R is the graph whose vertices
are V1, . . . , Vk and in which Vi is joined to Vj whenever (Vi, Vj)G′ is ε-regular
and has density > d. Thus ViVj is an edge of R if and only if G′ has an edge
between Vi and Vj .

Proposition 8 Let H be a subgraph of the reduced graph R with ∆(H) ≤ ∆.
Then each vertex Vi of H contains a subset V ′

i of size (1 − ε∆)L such that for
every edge ViVj of H the graph (V ′

i , V ′
j )G′ is (ε/(1 − ε∆), d − (1 + ∆)ε)-super-

regular.

Proof. Consider an edge ViVj of H. By Proposition 6, there are less than
εL vertices in Vi which have at most (d − ε)L neighbours in Vj (in the graph
G′). So for every vertex Vi of H we can choose a set V ′

i ⊆ Vi of size (1 − ε∆)L
such that for each neighbour Vj of Vi in H all vertices x ∈ V ′

i have more than
(d − ε)L neighbours in Vj . It can be easily checked that for every edge ViVj of
H the graph (V ′

i , V ′
j )G′ is (ε/(1 − ε∆), d − (1 + ∆)ε)-super-regular. �

We will often use the following well-known and simple fact. Its proof is the
only place in this paper where the degree form of the Regularity lemma is more
convenient than the classical form.

Proposition 9 For every γ > 0 there exist ε0 = ε0(γ) and d0 = d0(γ) such
that for all ε ≤ ε0, d ≤ d0 and every c ≥ 0 an application of Lemma 7 to a graph
G of minimum degree at least (c + γ)|G| yields a reduced graph R of minimum
degree at least (c + γ/2)|R|.
Proof. Suppose that there is a vertex Vi ∈ R whose degree in R is less than
(c + γ/2)k. Let W denote the union of all those clusters Vj (j 6= i) for which
(Vi, Vj)G′ has density 0. Let u be any vertex in Vi. Then

dG′(u) ≤ |NG′(u) ∩ W | + dR(Vi) · L + |NG′(u) ∩ V0| < 0 + (c + γ/2)kL + εn

≤ (c + γ/2 + ε)n.

But on the other hand, Lemma 7 states that dG′(u) > dG(u) − (d + ε)n ≥
(c + γ − d − ε)n, a contradiction, provided that γ ≥ 2d + 4ε. �
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We will also use the Blow-up lemma of Komlós, Sárközy and Szemerédi [14].
It implies that dense regular pairs behave like complete bipartite graphs with
respect to containing bounded degree graphs as subgraphs.

Lemma 10 (Blow-up lemma) Given a graph R on {1, . . . , r} and numbers
d, c,∆ > 0, there are positive numbers ε0 = ε0(d,∆, r, c) and α = α(d,∆, r, c) ≤
1/2 such that the following holds. Given L ∈ N and ε ≤ ε0, let R(L) be the
graph obtained from R by replacing each vertex i ∈ R with a set Vi of L new
vertices and joining all vertices in Vi to all vertices in Vj whenever ij is an edge
of R. Let G be a spanning subgraph of R(L) such that for every edge ij ∈ R
the graph (Vi, Vj)G is (ε, d)-super-regular. Then G contains a copy of every
subgraph H of R(L) with ∆(H) ≤ ∆. Furthermore, we can additionally require
that for vertices x ∈ H ⊆ R(L) lying in Vi their images in the copy of H in G
are contained in (arbitrary) given sets Cx ⊆ Vi provided that |Cx| ≥ cL for each
such x and provided that in each Vi there are at most αL such vertices x.

We say that the vertices x in Lemma 10 are image restricted to Cx.

4 Proofs

4.1 Planar subgraphs of size 2n − εn

In our proof of Theorem 1 we will use the following well-known upper bound
on the number of edges of K2,s-free graphs (see e.g. [3, Ch. VI, Thm. 2.2 and
2.3]).

Theorem 11 Let s ≥ 2 be an integer. Then every graph G with e(G) ≥ √
sn3/2

contains a copy of K2,s. Moreover, every bipartite graph G = (A,B) with
e(G) ≥ √

s|A||B|1/2 + |B| contains a copy of K2,s with 2 vertices in A and s
vertices in B.

Proof of Theorem 1. Throughout the proof we assume that n is sufficiently
large for our estimates to hold. For all k ≥ 1 set sk := 2k2+2/εk. We first
greedily choose as many disjoint copies of K2,s1

in G as possible. Let P1 be the
union of all these K2,s1

’s, X1 := V (P1) and let Y1 := V (G) \X1. Thus G[Y1] is
K2,s1

-free and so Theorem 11 implies that e(G[Y1]) ≤
√

s1|Y1|3/2. Let Y ′
1 be the

set of all those vertices in Y1 which have at most δ/2 neighbours in X1. Then

δ|Y ′
1 |/2 ≤ 2e(G[Y1]) ≤ 2

√
s1n

3/2,

and thus

|Y ′
1 | ≤

4
√

s1n
3/2

δ
. (1)

Let Y ∗
1 := Y1 \Y ′

1 . Next we greedily choose (as often as possible) disjoint copies
of K2,s2

in (X1, Y
∗
1 )G having 2 vertices in X1 and s2 vertices in Y ∗

1 . Let P2 be
the union of all these K2,s2

’s, X2 := V (P2) ∩X1 and Y2 := V (P2) ∩ Y ∗
1 . Let Y ′

2

be the set of all those vertices in Y ∗
1 \ Y2 which have at most δ/22 neighbours

in X2. Thus each vertex in Y ′
2 has at least δ/22 neighbours in X1 \ X2 and so

e(X1 \ X2, Y
′
2) ≥ δ|Y ′

2 |/22.
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On the other hand, (X1 \ X2, Y
′
2)G does not contain a K2,s2

with 2 vertices in
X1 \ X2 and s2 vertices in Y ′

2 . Thus Theorem 11 implies

e(X1 \ X2, Y
′
2) ≤ √

s2 · |X1 \ X2| · |Y ′
2 |1/2 + |Y ′

2 | ≤
√

s2n
3/2 + |Y ′

2 |
and therefore

|Y ′
2 | ≤

√
s2n

3/2

δ/22 − 1
≤ 5

√
s2n

3/2

δ
. (2)

Let Y ∗
2 := Y ∗

1 \(Y2∪Y ′
2) and greedily choose (again as often as possible) disjoint

copies of K2,s3
in (X2, Y

∗
2 )G having 2 vertices in X2 and s3 vertices in Y ∗

2 . Let
P3 be the union of all these K2,s3

’s, X3 := V (P3)∩X2 and Y3 := V (P3)∩Y ∗
2 . Let

Y ′
3 be the set of all those vertices in Y ∗

2 \Y3 which have at most δ/23 neighbours
in X3. Let Y ∗

3 := Y ∗
2 \ (Y3 ∪ Y ′

3) and continue in this fashion until Pi = ∅ (and
thus Xi = Yi = ∅ and Y ′

i = Y ∗
i−1). Let i be the smallest index such that Pi = ∅.

Thus i ≤ √
log n since s√log n > n.

Using that |Xk−1 \ Xk| ≤ |Xk−1| ≤ 2n/sk−1 for all 3 ≤ k ≤ i, a calculation
similar to the case k = 2 shows that

|Y ′
k| ≤

5 · 2k−1√skn
3/2

δsk−1
. (3)

Moreover, since Y ′
i = Y ∗

i−1,

|X1| +
i−1
∑

k=2

|Yk| +
i

∑

k=1

|Y ′
k| = n. (4)

Set
P := (P1 − X2) ∪ (P2 − X3) ∪ · · · ∪ (Pi−2 − Xi−1) ∪ Pi−1.

Clearly P is a planar subgraph of G. Notice that when removing Xk from Pk−1,
we destroy at most sk−1|Xk| of its edges, but this is negligible compared to
e(Pk) = 2|Yk|, as sk grows rather rapidly with k. Also, recall that |Xk| ≤ 2n/sk

for k ≥ 2. Hence

e(P ) ≥
i−1
∑

k=1

e(Pk) −
i−1
∑

k=2

sk−1|Xk|

≥ 2s1|X1|
s1 + 2

+

i−1
∑

k=2

2|Yk| −
i−1
∑

k=2

2sk−1n

sk

(4)
= 2(n −

i
∑

k=1

|Y ′
k|) −

4|X1|
s1 + 2

−
i−1
∑

k=2

εn

22k−2

(1,2,3)

≥ 2n − 32n3/2

δ
√

ε
− 80n3/2

δε
−

i
∑

k=3

5 · 2k√skn
3/2

δsk−1
− 4n

s1
− εn

3

≥ 2n − εn

9
−

i
∑

k=3

5εk/2−1n3/2

2k2/2−3k+2δ
− εn

2
− εn

3

≥ 2n − 80n3/2

δ
− 17εn

18
≥ (2 − ε)n,
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as required. �

We remark that the proof of Theorem 1 shows that we can let ε be any
function of n with ε(n) ≤ 1. Note that it does not make sense to take ε(n) ≤
n−1/4.

4.2 Planar subgraphs of size 2n − C

For the proof of Theorem 2 we need the following simple proposition.

Proposition 12 Given 0 < γ ≤ 1/2 and a graph G of minimum degree at least
γn, there exists a set S of disjoint substars of G such that every vertex of G
lies in some S ∈ S and such that each such S satisfies 1 ≤ ∆(S) ≤ 1/γ.

Proof. Construct the stars in S greedily as follows. Suppose that we have
already covered a set X ⊆ V (G) with a set S ′ of disjoint substars of G such
that 1 ≤ ∆(S) ≤ 1/γ for every S ∈ S ′. Choose x ∈ V (G) \ X. If x has a
neighbour y outside X, we may add the star consisting of the edge xy to S ′. So
suppose that all neighbours of x lie in X. If x is joined to a leaf y of some star
S ∈ S ′ then, if |S| ≥ 3, we can replace S by S − y and add the new star xy to
S ′ or, if |S| = 2, we can replace S by S ∪ xy. If x is only joined to midpoints
of stars in S ′, then one such star must have at most 1/γ − 1 leaves and so we
can add x to this star. �

Proof of Theorem 2. Clearly, we may assume that γ ≤ 1/2. Let ε0(γ) and
d0(γ) =: d be as given in Proposition 9. Let ε0(d/2, 8/γ, 1+2/γ, γ/4) =: ε∗ and
α(d/2, 8/γ, 1+2/γ, γ/4) =: α be as defined in the Blow-up lemma (Lemma 10).
Put

ε := min

{

ε0(γ),
ε∗

2
,
γ3α

72
,
γd

6

}

.

Clearly, it suffices to show that every graph G whose order n is sufficiently large
compared with γ contains a planar subgraph with at least 2n−4N(ε, 2) vertices,
where N(ε, 2) is given by the Regularity lemma (Lemma 7). So throughout the
proof we assume that n is sufficiently large.

We first apply the Regularity lemma to G to obtain an exceptional set V0

and clusters V1, . . . , Vk where 2 ≤ k ≤ N(ε, 2). Let L and G′ be as defined in
the Regularity lemma and let R denote the reduced graph. Thus Proposition 9
implies that δ(R) ≥ γk/2. So by Proposition 12 there exists a set S of disjoint
substars of R such that every vertex of R lies in some star from S and such
that 1 ≤ ∆(S) ≤ 2/γ for each S ∈ S.

Next we apply Proposition 8 to obtain sets V ′
i ⊆ Vi of size (1− 2ε/γ)L =: L′

such that for all the edges ViVj of R lying in some star from S the graph
(V ′

i , V ′
j )G′ is (2ε, d − (1 + 2/γ)ε)-super-regular. Henceforth we will think of R

and of the stars in S as graphs whose vertices are the new sets V ′
i . Add all

vertices of G which do not lie in some V ′
i to the exceptional set V0. By adding

further vertices to V0 if necessary, we may assume that L′ is even. We still denote
the enlarged exceptional set by V0. Thus |V0| ≤ εn + 2εkL/γ + k ≤ 3εn/γ.
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Given a vertex v ∈ V0 and a star S ∈ S, we say that S is v-friendly if there
is a vertex V ′

i ∈ S such that v has at least γL′/4 neighbours in V ′
i . Let Nv

denote the number of v-friendly stars S ∈ S. Then

γn/2 < (γ − 3ε/γ)n ≤ dG(v) − |V0| ≤ Nv · (1 + 2/γ)L′ +
∑

S∈S
|S| · γL′/4,

and therefore, since
∑

S∈S |S| = k,

Nv >
γ

3L′ ·
(

γn

2
− γkL′

4

)

≥ γ2n

12L′ .

So
2|V0|
αL′ ≤ 6εn

γαL′ < Nv

for every vertex v ∈ V0. But this implies that we can greedily assign each vertex
v ∈ V0 to a v-friendly star S ∈ S in such a way that to every S ∈ S we assign
at most αL′/2 vertices from V0.

Consider a fixed S ∈ S and let X ⊆ V0 be the set of all vertices assigned to
S. Let U1 be the centre of S and let U2, . . . , U|S| be its other vertices. So each
Uℓ is a set of the form V ′

i . Fix any bipartite quadrangulation PS of maximum
degree 4∆(S) ≤ 8/γ whose vertex classes are U1 and U2 ∪ · · · ∪ U|S| such that
for each ℓ ≤ |S| there is a set Cℓ of at least L′/4 ≥ |X| facial 4-cycles of PS with
the property that, firstly, each C ∈ Cℓ has two of its vertices in Uℓ, secondly,
these vertices are distinct for different C ∈ Cℓ and thirdly, each facial 4-cycle of
PS lies in at most one such Cℓ. Recalling that L′ is even, it is not difficult to
see that such quadrangulations exist (see Fig. 1).
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Figure 1: A quadrangulation PS which corresponds to a star S with three leaves.
The black vertices belong to U1. The shaded faces indicate a possible choice
for C1.

As each edge of S corresponds to a (2ε, d/2)-super-regular subgraph of G′,
the Blow-up lemma (Lemma 10) implies that the subgraph of G′ corresponding
to S (that is G′[U1 ∪ · · · ∪U|S|]) contains a spanning copy of PS such that every
vertex v ∈ X is joined to two opposite vertices on some facial 4-cycle of PS and
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such that these 4-cycles differ for distinct vertices v ∈ X. Indeed, this can be
achieved as follows. By definition, each v ∈ X has at least γL′/4 neighbours in
some Uℓ (1 ≤ ℓ ≤ |S|). Assign v to a cycle Cv ∈ Cℓ such that these cycles Cv

differ for distinct such v. When applying the Blow-up lemma, for each v ∈ X
the two vertices in V (Cv)∩Uℓ are image restricted to the neighbourhood of v in
Uℓ. (This can be done since the vertices in V (Cv)∩Uℓ are distinct for different
v.)

The graph obtained from PS by inserting all the vertices v ∈ X in their facial
4-cycles Cv is still a quadrangulation. Hence G contains a planar subgraph
which is a disjoint union of |S| quadrangulations and thus has 2n − 4|S| ≥
2n − 4N(ε, 2) edges. �

4.3 Planar subgraphs of size 3n − C

The critical chromatic number χcr(H) of a graph H is defined as (χ(H) −
1)|H|/(|H|−σ), where σ denotes the minimum size of the smallest colour class
in an optimal colouring of H. For the proof of Theorem 3 we need the following
result of Komlós [13, Thm. 8].

Theorem 13 For every ε > 0 and every graph H there exists an integer k0 =
k0(H, ε) such that all but at most εk vertices of every graph R of order k ≥ k0

and minimum degree δ(R) ≥ (1 − 1/χcr(H))k can be covered by disjoint copies
of H.

Note that Theorem 13 immediately implies that for all ε, γ > 0 there exists
an integer n0 = n0(ε, γ) such that every graph R of order n ≥ n0 and minimum
degree at least γn contains a planar graph with at least 2n− εn edges. Indeed,
let H := K2,s in Theorem 13, where s is sufficiently large compared to ε and
γ. Then the critical chromatic number of H is close to one and the disjoint
union of all copies of H given by Theorem 13 is a planar subgraph of R of the
required size. Similarly, as there exist large triangulations whose critical chro-
matic number is close to 2 (e.g. modify the graph in Fig. 2 below), Theorem 13
implies that Theorem 3 is true for large n if we only ask for a planar subgraph
with 3n − εn edges.

Proof of Theorem 3. By making γ smaller, we may assume that 1/γ is an
integer divisible by 4. Let ε0(γ) and d0(γ) =: d be as given in Proposition 9. Set
a := 2/γ and H := Ka,a,1, the complete 3-partite graph with vertex classes of
size a, a and 1. Let ε0(d/2, 8a, 2a+1, γ/4) =: ε∗ and α(d/2, 8a, 2a+1, γ/4) =: α
be as defined in the Blow-up lemma (Lemma 10). Put

ε := min

{

ε0(γ),
ε∗

2
,
γ3α

640
,
γd

12

}

and let k0 := k0(H, ε) be defined as in Theorem 13. Clearly, it suffices to show
that every graph G whose order n is sufficiently large compared with γ contains
a planar subgraph with at least 3n− 6N(ε, k0) vertices, where N(ε, k0) is given
by the Regularity lemma (Lemma 7).

11



We first apply the Regularity lemma to G to obtain an exceptional set V0

and clusters V1, . . . , Vk where k0 ≤ k ≤ N(ε, k0). Let L and G′ be as defined in
the Regularity lemma and let R denote the reduced graph. Thus Proposition 9
implies that δ(R) ≥ (1/2 + γ/2)k. As χcr(H) = 2(2a + 1)/2a = 2 + 1/a and
therefore δ(R) ≥ (1− 1/χcr(H))k, we can apply Theorem 13 to obtain a set H
of disjoint copies of H in R such that all but at most εk vertices of R lie in the
union H ′ of all these copies. As ∆(H ′) = 2a, we may apply Proposition 8 to
find for every Vi ∈ V (H ′) a set V ′

i ⊆ Vi of size (1 − 2aε)L =: L′ such that for
every edge ViVj ∈ H ′ the graph (V ′

i , V ′
j )G′ is (2ε, d − (1 + 2a)ε)-super-regular.

We add all vertices of G which do not lie in some V ′
i to the exceptional set V0

and still denote this enlarged set by V0. Thus

|V0| ≤ εn + εkL + 2aεkL ≤ 4aεn.

Put R′ := R[V (H ′)]. We will think of R′ and of the graphs in H as graphs
whose vertices are the new sets V ′

i .
Given a vertex v ∈ V0 and S ∈ H, we say that S is v-friendly if there are

vertices V ′
i and V ′

j lying in different classes of the Ka,a ⊆ S such that v has
at least γL′/4 neighbours in both V ′

i and V ′
j . Let Nv denote the number of

v-friendly S ∈ H. Then

(1/2+γ/2)n < (1/2+γ−4aε)n ≤ dG(v)−|V0| ≤ Nv(2a+1)L′+|H|(a+1+γa/4)L′

and therefore

Nv >
(1/2 + γ/2)n

(2a + 1)L′ − k(a + 1 + γa/4)L′

(2a + 1)2L′

≥ n

(2a + 1)L′ ·
(

1

2
+

γ

2
− a(1 + 1/a + γ/4)

2a

)

≥ nγ

5L′ ·
γ

8
=

γ2n

40L′ .

So
2|V0|
αL′ ≤ 8aεn

αL′ < Nv

for every vertex v ∈ V0. But this implies that we can successively assign each
vertex v ∈ V0 to a v-friendly S ∈ H in such a way that to every S ∈ H we
assign at most αL′/2 vertices from V0.

Consider a fixed S ∈ H and the set X ⊆ V0 of all vertices assigned to S. Let
PS be any 3-partite plane graph which satisfies the following three properties.
Firstly, the classes of PS have sizes aL′, aL′ and L′ respectively. Secondly,
∆(PS) ≤ 8a and, thirdly, PS is a triangulation apart from |X| disjoint facial
4-cycles and the vertices of each of these 4-cycles lie in the two larger vertex
classes of PS . Such plane graphs exist, see e.g. Fig. 2.

Since each edge of S corresponds to a (2ε, d/2)-super-regular subgraph of G′,
the Blow-up lemma (Lemma 10) implies that the subgraph of G′ corresponding
to S contains a spanning copy of PS where every vertex v ∈ X is joined to all
vertices on one of the facial 4-cycles in PS and these 4-cycles differ for distinct
vertices from X. (The latter can be achieved in a similar way as in the proof
of Theorem 2.) Thus by inserting the vertices from X into these facial 4-cycles
of PS we obtain a triangulation. Proceeding similarly for every element of H,
we obtain a spanning planar subgraph of G which is the disjoint union of |H|
triangulations and thus has 3n − 6|H| ≥ 3n − 6N(ε, k0) edges. �
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Figure 2: A triangulation apart from the shaded faces (into which the excep-
tional vertices will be inserted)

As a special case, the following proposition implies that the constant C in
Theorem 3 must depend on γ and that the extra γn in the condition on the
minimum degree cannot be replaced by a sublinear term.

Proposition 14 For all positive integers k and n which satisfy n/2+k = r(2k+
1) for some integer r ≥ 2 there is a graph G of order n and minimum degree
n/2+k which does not contain a planar subgraph with more than 3n−6−n/12k
edges.

Proof. Let G be the graph obtained from a disjoint union of r cliques G1, . . . , Gr

of order 2k + 1 by adding a set Y of n/2 − k new vertices and joining every
vertex in Y to every vertex in V (G1)∪ · · ·∪V (Gr) =: X. So G has order n and
minimum degree n/2+k. Consider a planar subgraph P of G with a maximum
number of edges. Put C := 3n − 6 − e(P ). We will show that C ≥ n/12k.
Let E be a set of C edges such that P + E is a triangulation, T say. Thus
E ∩ E(G) = ∅. Call an edge e ∈ E useful for Gi if either

• e has an endvertex in Gi (and thus both endvertices of e lie in X) or

• e has both endvertices in Y and is an edge of a facial triangle of T which
contains a vertex of Gi.

We claim that for every i there is an edge in E which is useful for Gi. Since
a given edge from E lies in two faces of T and hence is useful for at most two
cliques Gi, this would imply that

C = |E| ≥ r

2
=

n/2 + k

4k + 2
≥ n

8k + 4
≥ n

12k
,

as desired. So fix i ≤ r and let us now show that there is an edge in E which is
useful for Gi. Suppose not. Then every vertex of Gi lies in a facial triangle of
T which is contained in G. So each such triangle contains at least one edge of
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Gi. We say that all these facial triangles of T are of type I and all other facial
triangles (i.e. those which do not contain an edge of Gi) are of type II. So no
vertex of X − V (Gi) lies in a facial triangle of type I and thus there are facial
triangles of type II. Since T is a triangulation, there is a path in the dual graph
from a triangle of type I to a triangle of type II. Hence there is a triangle of
type I which shares an edge with some triangle D of type II. But D cannot be
contained in G, and so it contains an edge e from E. It is now easy to check
that e is useful for Gi, a contradiction. �

4.4 Triangulations and Quadrangulations

The square G2 of a graph G is the graph obtained from G by adding an edge
between every two vertices of distance two in G. For the proof of Theorem 4
we will use the following result of Fan and Kierstead [10]. (It was extended to
arbitrary powers of Hamilton cycles by Komlós, Sárközy and Szemerédi [17],
see also [16].)

Theorem 15 Every graph of minimum degree at least 2|G|/3 contains the
square of a Hamilton path.

Proof of Theorem 4. Clearly, we may assume that γ < 1/3. Ap-
ply Proposition 9 to obtain ε0(γ) and d0(γ). Put d := min{γ, d0(γ)}. Let
ε0(d/2, 8, 3, (d/2)4) =: ε∗ and α(d/2, 8, 3, (d/2)4) =: α be as given in the Blow-
up lemma (Lemma 10). Set

ε := min

{

ε0(γ),
ε∗

3
,

γα

252
,
d3

16

}

.

and k0 := max{2/ε, 20/γ}. Throughout the proof we assume that n is suffi-
ciently large for our estimates to hold.

Apply the Regularity lemma (Lemma 7) to G to obtain an exceptional set
V0 and clusters V1, . . . , Vk where k0 ≤ k ≤ N(ε, k0). Let L and G′ be as defined
in the Regularity lemma. By adding at most 2 of the Vi to the exceptional set
V0 if necessary, we may assume that 3 divides k. We still denote the enlarged
exceptional set by V0. Thus |V0| ≤ εn + 2L ≤ εn + 2n/k0 ≤ 2εn. Let R
denote the reduced graph. By Proposition 9 we have δ(R) ≥ (2/3 + γ/2)k − 2.
So Theorem 15 implies that R contains the square of a Hamilton path P . As
∆(P 2) = 4, we may apply Proposition 8 to obtain adjusted clusters V ′

i ⊆ Vi

(i ≥ 1) of size (1 − 4ε)L =: L′ such that every edge of P 2 corresponds to a
(2ε, d − 5ε)-super-regular subgraph of G′. We add all vertices that do not lie
in some V ′

i to the exceptional set V0. Thus |V0| ≤ 2εn + 4εkL ≤ 6εn. Given
a vertex x ∈ R, we will write V ′(x) for the adjusted cluster corresponding to
x. Since |V ′(x)|, |V ′(y)| ≥ L/2 for every edge xy ∈ R, it follows from the ε-
regularity of the original pair that the graph (V ′(x), V ′(y))G′ corresponding to
xy is 2ε-regular and has density > d − ε.

Partition the vertices of P 2 into k′ := k/3 disjoint sets D1, . . . ,Dk′ , each
containing 3 consecutive vertices of P . So the vertices in each Di induce a
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triangle of P 2. For all 1 ≤ i < k′ let Ni be the number of vertices of R which
are joined to at least five of the six vertices in Di ∪ Di+1. Then

6δ(R)−2e(R[Di∪Di+1]) ≤ eR(Di∪Di+1, V (R)\(Di∪Di+1)) ≤ 6Ni+4|R| (5)

and thus

Ni ≥ δ(R) − 2|R|/3 − e(R[Di ∪ Di+1])/3 ≥ γk/2 − 2 − 5 > 0.

So for each 1 ≤ i < k′ we can find a vertex ai ∈ R as well as vertices
si, ti ∈ Di and ui+1, wi+1 ∈ Di+1 with siui+1 ∈ P 2 and such that in R each
of si, ti, ui+1, wi+1 is joined to ai. (Here the vertices ai need not be distinct
for different i.) As each edge of R corresponds to a 2ε-regular subgraph of
G′ of density > d − ε, it easily follows from repeated applications of Proposi-
tion 6 that there are vertices xi 6= yi in V ′(ai) such that in the graph G′ their
common neighbourhood in each of V ′(si), V

′(ti), V ′(ui+1), V
′(wi+1) has size at

least (d − 3ε)2L′. Moreover, all these vertices xi and yi can be chosen to be
distinct. Roughly speaking, the proof now proceeds as follows. We apply the
Blow-up lemma to obtain for all i an (almost-) triangulation which is a span-
ning subgraph of the subgraph of G′ corresponding to Di. (Each exceptional
vertex will also be added to one of these triangulations.) The vertices xi and yi

will be used to ‘glue together’ all these triangulations into a single triangulation
containing all vertices of G. In this gluing process we will also use two edges
between V ′(si) and V ′(ui+1).

So let Si ⊆ V ′(si) be any set consisting of (d − 3ε)3L′ vertices which lie
in the common neighbourhood of xi and yi but are not of the form xj or yj

(1 ≤ j < k′). Note that this is possible since (d − 3ε)3L′ ≤ (d − 3ε)2L′ − 2k′.
Define Ti, Ui+1 and Wi+1 similarly. Since we still have |Ui+1| ≥ 2εL′, we can
apply Proposition 6 again to find a set S′

i ⊆ Si of size (d− 3ε)4L′ ≤ |Si| − 2εL′

such that in G′ each vertex from S′
i has at least (d − 3ε)|Ui+1| ≥ (d − 3ε)4L′

neighbours in Ui+1.
Remove all xi and yi from the adjusted clusters to which they belong (but do

not add them to V0). Then the sizes of the clusters thus obtained lie between
L′ − 2k′ and L′. Set ℓ := ⌊(L′ − 2k′)/4⌋. By moving a constant number of
vertices into V0 if necessary, we may assume that for all 1 ≤ i ≤ k′ every cluster
belonging to Di has size 4ℓ =: L′′. We still denote by V ′(x) the (re)-adjusted
cluster corresponding to a vertex x ∈ R and by V0 the enlarged exceptional
set. Thus |V0| ≤ 7εn and each pair of clusters in Di still corresponds to a
(3ε, d/2)-super-regular subgraph of G′. Furthermore, we can easily ensure that
each newly adjusted cluster of the form V ′(si), V ′(ti), V ′(ui) or V ′(wi) still
contains S′

i, Ti, Ui or Wi respectively.
Let H1, H2 and H3 be the 3-partite plane graphs of order 3L′′ given in

Fig 3. So each Hi has maximum degree 8 and all of its vertex classes have size
L′′ = 4ℓ. Moreover, both H1 and H2 are triangulations apart from two disjoint
facial 4-cycles. In H1 the vertices on these 4-cycles lie in the same two vertex
classes while in H2 one of the 4-cycles has its vertices in the first and second
vertex class and the other one in the second and third vertex class. H3 is a
triangulation apart from one facial 4-cycle.
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H3

H1 H2

Figure 3: The graphs H1, H2 and H3, the only non-triangular facial cycles are
indicated with thick lines

The Blow-up lemma implies that for all 1 ≤ i ≤ k′ the subgraph of G′

corresponding to R[Di] contains a spanning copy of each of H1, H2 and H3.
However, before we apply the Blow-up lemma we also have to take care of the
exceptional vertices. So given a vertex v ∈ V0 and 1 ≤ i ≤ k′, we say that Di

is v-friendly if each of the three newly adjusted clusters in Di contains at least
γL′′ neighbours of v. Let Nv denote the number of v-friendly Di’s. Then

(2/3 + γ/2)n < dG(v) − |V0| ≤ Nv · 3L′′ + k′ · (2 + γ)L′′.

Thus

Nv >
n

3L′′

(

2

3
+

γ

2
− k(2 + γ)L′′

3n

)

≥ n

3L′′

(γ

2
− γ

3

)

=
γn

18L′′

and hence
2|V0|
αL′′ ≤ 14εn

αL′′ < Nv

for every v ∈ V0. This shows that we can successively assign each exceptional
vertex v ∈ V0 to some v-friendly Di in such a way that to each Di we assign at
most αL′′/2 vertices.
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We are now ready to construct our spanning triangulation of G. We first
apply the Blow-up lemma to find a spanning copy P1 of H3 in the subgraph of
G′ corresponding to R[D1] so that the vertices of the unique facial 4-cycle in
P1 lie alternately in S′

1 and T1 and so that every exceptional vertex v assigned
to D1 is joined to all vertices on some facial triangle of P1 where these facial
triangles are disjoint for distinct such vertices v ∈ V0. (This can be done in
a similar way as in the proof of Theorem 2 since H3 contains at least αL′′/2
disjoint facial triangles which are also disjoint from the unique facial 4-cycle of
H3.) Let x1

S, y1
S ∈ S′

1 and x1
T , y1

T ∈ T1 be the vertices of the facial 4-cycle of P1

and call this cycle C1
ST .

For 1 < i < k′, we now say that Di is of type I if the unordered pairs si, ti
and ui, wi coincide and of type II if they differ. The pair si, ti will be used to
‘glue’ the (almost-) triangulation Pi corresponding to Di to that correspond-
ing to Di+1, whereas the pair ui, wi will be used to ‘glue’ Pi to the (almost-)
triangulation corresponding to Di−1. As the next step, we apply the Blow-up
lemma to find a spanning copy P2 of H1 if D2 is of type I, or of H2 if it is of
type II, in the subgraph of G′ corresponding to R[D2] such that the vertices of
one facial 4-cycle lie alternately in S′

2 and T2, the vertices of the other facial
4-cycle lie alternately in U2 and W2 and such that every exceptional vertex v as-
signed to D2 is joined to all vertices on some facial triangle of P2. (Again, these
facial triangles are disjoint for distinct such vertices v.) Let x2

S , y2
S ∈ S′

2 and
x2

T , y2
T ∈ T2 be the vertices of the first facial 4-cycle C2

ST and let x2
U , y2

U ∈ U2

and x2
W , y2

W ∈ W2 be the vertices of the other facial 4-cycle C2
UW . As, by def-

inition of S′
1, each of x1

S, y1
S has at least (d − 3ε)4L′ neighbours in U2, we may

also require that x2
U is joined to x1

S and y2
U is joined to y1

S . (To achieve this, we
restrict the image of x2

U to the neighbourhood of x1
S in U2 and the image of y2

U

to the neighbourhood of y1
S in U2.) Furthermore, by definition of S′

1, T1, U2 and
W2, both x1 and y1 are joined to all vertices of C1

ST and C2
UW . Thus x1 and

y1 may be used to ‘glue’ P1 and P2 together in order to obtain a planar graph
which is a triangulation apart from one facial 4-cycle, namely C2

ST (Fig. 4).
We may continue in this fashion to obtain a spanning triangulation. Indeed,

for Pk′ we again choose a copy of H3 such that the vertices on the unique facial
4-cycle Ck′

UW of Pk′ lie alternately in Uk′ and Wk′ and such that one of the two

vertices from Uk′ on Ck′

UW is joined to xk′−1
S while the other one is joined to

yk′−1
S . Thus if we glue Pk′ into the planar graph constructed in the previous

step, we obtain a triangulation T . As each exceptional vertex v is joined to
all vertices on some facial triangle of T and all these are distinct, we can add
the exceptional vertices to T to obtain a triangulation containing all vertices of
G. �

Proof of Theorem 5 (sketch). The proof proceeds in a similar way as that
of Theorem 4 except for a few modifications (and simplifications) which we
describe below. We may now assume that the reduced graph R has even order
and contains a Hamilton path P (instead of the square of a Hamilton path).
We partition P into |P |/2 := k′ independent edges D1, . . . Dk′ . We then adjust
the clusters such that each edge Di corresponds to a (2ε, d − 2ε)-super-regular
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Figure 4: Gluing two almost-triangulations P1 and P2

subgraph of G′. A calculation similar to (5) shows that for every pair Di,Di+1

there is a vertex ai ∈ R which is joined to both a vertex si ∈ Di and a vertex
ui+1 ∈ Di+1. We choose two vertices xi, yi ∈ V ′(ai) which have many common
neighbours in both V ′(si) and V ′(ui+1). Finally, we apply the Blow-up lemma
to obtain spanning quadrangulations Pi of the subgraphs of G′ corresponding
to the Di which are ‘glued together’ into a single quadrangulation P using the
vertices xi and yi (Fig. 5). These quadrangulations are chosen so that every
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Figure 5: Gluing two quadrangulations P1 and P2

exceptional vertex v is joined to two opposite vertices on some facial 4-cycle
where these 4-cycles are disjoint for distinct exceptional vertices v. So all the
exceptional vertices can be added to P to obtain a spanning quadrangulation
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of G. �

As remarked towards the end of Section 1, the planar graphs guaranteed
by Theorems 2–5 can be constructed in polynomial time: both the Regularity
lemma and the Blow-up lemma can be implemented in polynomial time (see [1]
and [15]). As the order of the reduced graph is constant, the remaining steps
can also be carried out in polynomial time.
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