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Abstract— We investigate the impact of hop-limited routing
paths on the total cost of a telecommunication network. For
different survivability settings (no survivability, link and path
restoration), the optimal network cost without restrictions on
the admissible path set is compared to the results obtained with
two strategies to impose hop limits on routing paths.

Based on optimal solutions for 10 real-world based problem
instances, we show that hop limits may lead to an unpredictable
raise in total network cost – even with large hop limits. The total
network cost with a hop limit of 7 hops for all demands can be up
to 25% higher than without restrictions on the admissible path
set. With our second strategy, which imposes demand-dependent
hop limits based on the shortest hop count, we obtain similar
results. This indicates that column generation techniques should
be applied to deal with all admissible paths.

Index Terms— survivable network design, hop limits, routing,
restoration, branch-and-cut algorithm, mixed-integer program-
ming

I. I NTRODUCTION

A. Motivation

In the design of telecommunication networks, many issues
have to be taken into account. Among others, there may be
constraints on the admissible routing paths like a maximum
number of allowed hops (the number of links in a path). Such
hop limits can have technological reasons (such as degradation
of signal quality or too high transmission delay when the
number of hops increases), or they can merely be imposed
to simplify the planning process. This raises two questions:

1) Do hop limits really simplify the planning process?
2) How much does the overall network cost increase when

hop limits are imposed?

On ten real-world based problem instances, this paper com-
pares the optimal network cost with different kinds of ad-
missible path sets: without any restrictions, with demand-
independent hop limits, and with demand-dependent hop lim-
its. Each of these path sets is tested with different survivability
settings (no survivability, link or path restoration), and with
different hop limits (where appropriate). It turns out that the
quality of the solutions obtained with a hop-limited path set
compared to the optimal solutions obtained by allowing all
routing paths is rather unpredictable. Thus, whenever the used
technology allows it, it is advisable to allow all routing paths
and to employ column generation techniques. However, if hop
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limits are used, they should be demand-dependent rather than
globally fixed.

B. Literature

In many publications on network design in which a routing
has to be determined, a mathematical model with a path
flow formulation (also called arc-path formulation) has been
used to tackle the arising multicommodity flow subproblems.
Compared to an edge flow (also called node-arc) formulation,
such a path flow formulation has the main advantage that
restrictions on the admissible path set can be more easily
modeled. In addition, such a formulation has a relatively small
number of constraints, but unfortunately at the expense of an
exponential number of path variables.

To cope with the large number of variables and to reduce
calculation times, some authors apply column generation tech-
niques [1]–[4], while other authors feed a fixed, precalculated
set of routing paths into an LP or MIP solver. For the latter
approach, several ways of defining the admissible path set have
been presented. Common variants are

1) a global hop limit which is the same for all demands
[5], [6],

2) a demand-dependent hop limit, which is the length of a
shortest hop path for a given demand plus some fixed
additional number of hops [7], and

3) a demand-dependent hop limit, which is iteratively
raised until a specified number of paths has been found
for each demand [8].

We now briefly present the problems investigated in these
papers, together with the used solution approach.

Murakami [1] uses a path flow formulation for compar-
ing the cost of path restoration with stub release and link
restoration under a single link failure scenario, either with
a given working path routing or with joint optimization of
continuous working and spare capacities. The author applies
column generation for both working and restoration paths
using a (quadratic) shortest path algorithm.

Dahl and Stoer [2] formulate the problem of installing
discrete working and spare link capacities for the survivability
models reservation and diversification with so-called metric
inequalities [9]. These inequalities are generated at runtime
using a path flow formulation which is solved using column
generation for routing paths in all operating states.

Poppe and Demeester [3] use a similar model to formulate
the problem of installing continuous spare capacities for link



and path restoration based on a given working path routing.
Column generation is used to identify missing restoration
paths.

Wess̈aly [4] determines discrete working and spare capac-
ities using a path flow formulation for reservation, diversifi-
cation, or path restoration. This path flow LP is solved by
generating working and restoration paths only when needed.

Herzberg and Bye [5] is the only paper known to us in
which the cost effect of hop limits is investigated to some
extent. The authors consider the spare capacity assignment
problem for a given working path routing under a single link
failure scenario with link restoration. A path flow formulation
with continuous capacities is presented. On one small but
well connected test instance (11 nodes,23 links) with integer
capacities (obtained by solving a linear program, rounding the
capacities up to the next integer and trying to heuristically
lower some of the capacities again), the effect of hop limits
is tested by enumerating all paths up to a given number of
hops, which varies between3 and7. The results show that on
the investigated test instance, restricting the restoration paths
to a length of at most five hops is enough to obtain optimal
solutions, which the authors state to having observed on other
test instances as well.

Xiong and Mason [6] use a path flow formulation for path
restoration without stub release and for link restoration under
a single link failure scenario. A set of working and restoration
paths is precalculated, which contains at most40 paths per
demand. A path length restriction of6 and10 hops is imposed
for the two small and the two larger test instances, respectively.

Iraschko, MacGregor, and Grover [7] compare the cost
of link and path restoration (with or without stub release)
for single link failures both with a predefined shortest path
routing and with joint working and spare capacity optimiza-
tion. Capacities and flow variables in the path flow model
are allowed to take any integer value. For each demand, the
authors enumerate all paths up to a given hop limit, which
is the length of a shortest hop path for this demand plus a
fixed number of additional hops, complemented by a small
set of link disjoint paths to guarantee a solution. This leads to
a large path set and thus probably to good solutions, although
no good lower bounds are given for the test networks. The
authors report on very long calculation times even on small
test instances as soon as working and spare capacities are
optimized together (9 hours for link restoration,2.7 days for
path restoration without stub release on an instance with10
nodes,22 links, and45 demands).

Doucette and Grover [8] compare several protection and
restoration mechanisms for networks of varying density. The
authors use a path flow formulation with arbitrary integer
capacities and a predetermined path set. All paths up to an
iteratively adapted hop limit are enumerated until at least5,
10, or 20 paths have been found for each demand (the exact
number depends on the considered problem).

C. Discussion of the different approaches

A column generation approach can be used to obtain optimal
solutions whenever the pricing problem (i.e., the problem of
identifying missing path variables) is exactly solvable in poly-
nomial time. For instance, this is the case when restrictions
on the admissible path set are absent or take the form of hop
limits, which are often used settings. On the contrary, when
the pricing problem isNP-hard (e.g., for path restoration with
stub release [10]), the column generation approach does no
longer yield guaranteed optimal solutions, but it can still be
used as a good heuristic.

The main advantage of a predefined path set is the fact that
nearly arbitrary wild path set restrictions can be incorporated
in the model. In practice, the predefined path set often consists
simply of all paths up to a given number of hops (which may
be demand-dependent or not). On the other hand, as the set of
possible paths per demand is often too large to be completely
enumerated, this approach usually yields heuristic solutions.

Although popular belief states that this strategy often leads
to near-optimal results, we know of no explicit study of the
cost effects of hop limits which is, like the one presented in
this paper, based on a modular link capacity model, integrated
optimization of working and failure routings, optimal solu-
tions, and a reasonably large set of test instances. However,
these ingredients are indispensable for a fair comparison of
the different approaches under realistic planning conditions.
This is a gap which we intend to fill with this work.

As far as calculation times are concerned, these are often
comparable with a predefined path set and with column
generation, according to several of the authors mentioned
above. For sparse networks and small hop limits, enumerating
all admissible paths is quickly done and leads to small
calculation times. However, as the number of paths increases
exponentially with density and hop limits, available memory
and calculation time can be easily exceeded. This is the
point where column generation comes in, since the calculation
times with this approach increase much more slowly with the
number of allowed hops than by enumerating all paths.

This paper is structured as follows: after a brief sketch of
our mathematical model and algorithmic approach in Section
II, we present and discuss our computational tests and results
in Section III. Eventually, we conclude with Section IV.

II. M ODEL AND ALGORITHM

We investigate network design problems dealing with an
integrated planning of

• a topology,
• modular link capacities,
• a routing during normal operation, and
• a routing in all single link failure states.

The used model is derived from the mixed-integer linear
programming formulation described in [11], which also mod-
els hardware requirements imposed by network elements and
interface cards. These extensions, as well as the possibility to
respect existing parts of a network (as opposed to greenfield



planning) are actually implemented in our network planning
tool DISCNET [12] but have been omitted in this paper.

The given networks consist of a set of nodes and potential
(undirected) links between these nodes. For each of these links,
some set oflink designs(e.g., STM-N or OC-N capacities)
may be specified, out of which at most one may be installed.
Every link design installable on a given link has a capacity
and a cost value assigned to it. The latter can be composed of
a fixed installation cost and length-dependent cost. The final
topology consists exactly of those links for which a link design
is chosen by the algorithm; the other links are omitted.

In addition to the topology and capacity planning input,
a survivability concept is given, which are in our case no
survivability, link or path restoration. These routing conditions
are described in our model using a path flow formulation.
With link or path restoration, full restoration of all single link
failures is assumed.

The problem is solved withDISCNET [12], which uses a
branch-and-cut framework based on an LP relaxation con-
taining link design variables but no routing variables. The
path flow formulation of the routing constraints is used to
test whether given link capacities allow a feasible routing,
and if not, to generate generalizations [4], [10] of metric
inequalities [9] which are added to the LP relaxation to cut off
the infeasible solution. To solve the path flow formulation, we
use column generation for working and restoration paths. A
more detailed description of this approach, further employed
cutting planes, and the methods used to identify missing paths
can be found in [4], [10].

III. C OMPUTATIONAL RESULTS

In this section, we describe our computational tests to
evaluate the effect of two kinds of hop limits for working paths
on the overall network cost. After a short presentation of our
10 real-world based instances stemming from SDH-, WDM-,
and leased line planning problems, we show and discuss our
results.

We present two test series, each for no survivability, link or
path restoration. In the first series, a fixed global hop limit
between3 and 7 is imposed on all working paths. In the
second series, a demand-dependent hop limit is imposed on the
working paths: the length of a routing path is restricted by the
number of hops in a shortest hop path for the corresponding
demand, plus some fixed number (which is the same for all
demands). The latter parameter varies between1 and4. In both
series, the hop limits are only imposed on working paths; the
length of restoration paths is unlimited.

For each test instance, Table I shows the number of nodes,
potential links, and demands, respectively, together with the
average node degreēd = 2|E|/|V | and the number of available
link designs (#ld), which is the same for all links of an
instance.

In all figures presented in this paper,100 corresponds to
the optimal network cost whenall routing paths are allowed,
regardless of their length.

TABLE I

CHARACTERISTICS OF THE TEST INSTANCES

Name |V | |E| |D| d̄ #ld
g1 10 25 29 5.0 2
g2 12 18 27 3.0 4
g3 15 21 13 2.8 3
g4 15 22 105 2.9 7
g5 18 21 62 2.3 9
g6 18 27 62 3.0 9
g7 20 28 119 2.8 6
g8 14 21 91 3.0 5
g9 24 27 72 2.3 7
g10 24 30 101 2.5 12
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Fig. 1. No survivability, fixed hop limit

A. Fixed hop limit

Figure 1 shows the optimal network cost for each of our
instances when a hop limit between3 and7 is imposed on all
paths. As can be seen, three instances (g1, g3, and g8) have
near-optimal solutions even with a global hop limit of4, while
other instances (g7, g9, and g10) need some very long paths
(with at least6, 5 and7 hops, respectively) to allow a solution
at all. The figure shows that the cost of instance g10 is about
25% higher with hop limit7 than with all possible routing
paths allowed.

In a similar way, Figures 2 and 3 show the corresponding
results for link and path restoration, respectively.

Comparing Figure 1 with Figures 2 and 3, it can be seen
that the cost effect of hop limits is much greater without
survivability than with restoration. This is probably due to
the fact that only working paths are length-bounded in our
calculations, but not the restoration paths.

However, considering all three figures, there are some
instances (like g1 and g3) for which an optimal solution
is always obtained with relatively short paths, while other
instances (like g7, g9 and g10) always need very long paths to
achieve a low network cost or to allow a feasible solution at all.
Altogether, it is not clear which properties of the network are
responsible for the corresponding behavior; neither network
density, nor capacity granularity (number of link designs), nor
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Fig. 2. Link restoration, fixed hop limit
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Fig. 3. Path restoration, fixed hop limit

the number of demands seem to be good indicators, at least
for our test instances.

The minimal path length which is needed to allow a solution
at all can significantly change with different survivability
requirements: instance g2 needs paths of length7 to obtain
an optimal solution when no survivability is required, while
with link or path restoration, working paths of length3 are
sufficient.

In summary, the quantitative behavior of total network cost
as a function of the hop limit is quite unpredictable. For
obtaining near-optimal solutions with high probability, one
would have to enumerate all paths up to at least 8 or 9 links.
Especially in dense networks, this soon leads to a very large
path set which is no longer manageable.

B. Demand-dependent hop limit

As an alternative, we now set the hop limit for each demand
individually, as a function of the length of a shortest hop path
for this demand. In addition to this shortest hop length, an
admissible path is allowed to employk further links, where
k has the same value for all demands. Figures 4, 5, and 6
show the results withk = 1, . . . , 4, for the same survivability
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Fig. 4. No survivability, demand-dependent hop limit
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Fig. 5. Link restoration, demand-dependent hop limit

settings as above (note the different scale on the cost axis in
Figure 4). Again,100 corresponds to theoptimalnetwork cost
whenall routing paths are allowed.

Figures 5 and 6 show that with link or path restoration,4
hops in addition to the shortest path length are sufficient to
achieve optimality in all of our test instances, and3 additional
hops are sufficient in all instances but one.

On the contrary, this approach does not yield equally good
results without survivability, as indicated by Figure 4. With4
additional hops, the cost for two out of the ten instances is at
least 10% above the optimal solution, and for four instances,
the difference exceeds 5%. With only3 additional hops, the
situation is even much worse.

Investigating the solutions obtained without survivability
more closely, we have noticed that

• demands with a high demand value are most often routed
on short paths,

• wherever the demand-dependent hop limits have a strong
effect, see instances g7, g9, and g10, about 10–20% of all
demands are routed on relatively long paths, i.e., with 8
links or more. For other instances, very few demands are
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Fig. 6. Path restoration, demand-dependent hop limit

routed on long paths. Unfortunately, whether an instance
needs long paths for many demands or not can only be
seen after calculating an optimal solution.

Summarizing our results, we have not found any suitable
criterion which could tell us in advance whether hop limits
would have a major impact on the overall network cost for
a given instance. The results with a predefined path set are
more or less unpredictable, which strongly encourages the
use of column generation techniques. However, if predefined
paths are used, the choice of paths should be done on a per-
demand basis and not by setting a global hop limit. A good
compromise for restoration is the use of a predefined path
set with demand specific hop limits for the working paths,
combined with column generation for the restoration paths, as
described above. This holds for link restoration as well as for
path restoration; as can be seen from the figures, the behavior
of the problem instances is nearly the same for both restoration
concepts.

In our calculations for this paper, we simulated a hop-
limited path set by using a hop-limited variant [4] of Dijkstra’s
shortest path algorithm for identifying missing routing paths
during the column generation procedure. The calculation times
often raised monotonically with the hop limit but rather in a
linear way than exponentially as it is the case when all paths
up to a given length are enumerated. This property makes the
column generation approach well scalable. Even without any
hop limit, most of the instances could be solved to optimality
within the range of seconds or minutes on a Linux machine
with 1 GB of RAM and a 1.7 MHz processor.

IV. CONCLUSION

In this paper, we have studied the impact of varying hop
limits on the overall network cost in the planning of a
telecommunication network. Based on our mixed-integer linear
programming model, we have solved10 problem instances
to optimality using a branch-and-cut framework and column
generation for working and restoration paths. For each of these
instances, we have considered three different admissible path

sets and three survivability concepts (no survivability, link and
path restoration).

Based on these provably optimal solutions, we have com-
pared the overall network cost without restrictions on the
admissible paths to the network cost with hop-limited paths,
either with demand-dependent or with demand-independent
hop limits.

Concerning the two questions from the introduction, we
found out that hop limits may sometimes lead to good so-
lutions and relatively short calculation times, but may as well
make a problem infeasible or cause the total network cost to
increase by an unpredictable amount. With a fixed hop limit
of 7 hops (for which it is hard to enumerate all paths), the
total network cost has been up to 25% higher than without
hop limits. With a demand-dependent hop limit (shortest hop
count plus some additional fixed number of hops), the situation
is a little better, but the increase in network cost can still be
about 15% with4 additional hops.

Thus, whenever the used technology allows it, one should
use either column generation or, as the second best choice,
demand-dependent hop limits, or a combination of both, but
no globally fixed hop limit for all demands.
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