
Coloring Semirandom Graphs

Amin Coja-Oghlan⋆

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany
coja@informatik.hu-berlin.de

Abstract. We study semirandomk-colorable graphs made up as follows. Partition the vertex set
V = {1, . . . , n} randomly intok classesV1, . . . , Vk of equal size and include eachVi-Vj -edge
with probabilityp independently (1 ≤ i < j ≤ k) to obtain a graphG0. Then, an adversary may
add furtherVi-Vj-edges (i 6= j) to G0, thereby completing the semirandom graphG = G∗

n,p,k.
We show that ifnp ≥ max{(1 + ε)k ln n, C0k

2} for a certain constantC0 > 0 and an arbitrarily
small but constantε > 0, anoptimalcoloring ofG∗

n,p,k can be found in polynomial time with high
probability. Furthermore, ifnp ≥ C0 max{k lnn, k2}, ak-coloring ofG∗

n,p,k can be computed in
polynomial expected time. Moreover, anoptimalcoloring ofG∗

n,p,k can be computed in expected
polynomial time ifk ≤ ln1/3 n andnp ≥ C0k ln n. By contrast, it is NP-hard tok-color G∗

n,p,k

w.h.p. if np ≤ ( 1
2
− ε)k ln(n/k).

1 Introduction

1.1 Graph Coloring Heuristics

In theGraph Coloring Problemwe are given a graphG = (V, E), and the goal is to color the vertices
V with as few colors as possible such that adjacent vertices receive distinct colors. The least number of
colors so that there exists such a coloring is thechromatic numberχ(G).

While the Graph Coloring Problem is of fundamental interestin theoretical computer science as well
as in discrete mathematics, the problem is notoriously hard. Indeed, Feige and Kilian [15] proved that
no polynomial time algorithm approximatesχ(G) within a factor ofn1−ε for all input graphsG, unless
ZPP=NP; heren = #V , andε > 0 is an arbitrarily small constant. Furthermore, Khanna, Linial, and
Safra [27] showed that it is NP-hard to color3-colorable graphs with4 colors.

Nevertheless, these hardness results merely provide evidence that for every polynomial time algo-
rithm thereexisthard problem instances. Hence, the hardness results do not rule out the existence of
goodgraph coloring heuristicsthat perform well on “almost all instances” in some meaningful sense.
Therefore, the goal of this paper is to analyze graph coloring heuristics rigorously within the framework
of the algorithmic theory of random graphs (cf. [20]).

Of course, in order to obtain rigorous results, we need to specify precisely what “almost all in-
stances” is supposed to mean. One possible answer is to consider the well-knownErdős-Ŕenyi-model
Gn,p of random graphs. The random graphGn,p hasn verticesV = {1, . . . , n}, and each of the

(

n
2

)

possible edges is present with probabilityp independently. Bollobás [5] and Łuczak [31] determined the
probable value ofχ(Gn,p): we have

χ(Gn,p) ∼ −n ln(1 − p)

2 ln(np)
w.h.p. if n−1 ≪ p ≤ 0.99. (1)

(For small edge probabilitiesp = O(1/n), Achlioptas and Naor [1] obtained more precise results.) We
emphasize that (1) shows that the chromatic numberχ(Gn,p) is fairly “high”. For if np = Ω(ln n),
then with probability1 − o(1) asn → ∞ the maximum degree ofGn,p is O(np) (cf. [6, Chapter 3].
Therefore, Brook’s theorem immediately entails that the chromatic number isO(np), and (1) is just by
aO(ln(np))-factor smaller than this trivial upper bound.

⋆ Date: January 10, 2005. An extended abstract version of thispaper appeared in Proc. 31st ICALP (2004) 383–395
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In order to investigate graphs with a smaller chromatic number than (1), Kučera [29] suggested a
random modelGn,p,k that has an additional parameterk to control the chromatic number. The random
graphGn,p,k is obtained as follows.

M1. Partition the vertex setV = {1, . . . , n} randomly intok classesV1, . . . , Vk of equal cardinality
(we assume thatk dividesn).

M2. Include everyVi-Vj-edge (i 6= j) with probabilityp independently of all others to obtainG0 =
Gn,p,k.

Thus,V1, . . . , Vk is a k-coloring “planted” inGn,p,k, so thatχ(Gn,p,k) ≤ k. We say thatGn,p,k has
some propertyE with high probability(“w.h.p.”) if the probability thatE holds tends to1 asn → ∞.

However, theGn,p and theGn,p,k model share a serious drawback: in both models the instancesare
purely random. As the theory of random graphs shows (cf. [25]), such instances have a very particular
combinatorial structure. Therefore, designing heuristics for Gn,p or Gn,p,k yields heuristics for avery
special classof graphs. Consequently, heuristics for purely random instances may lack “robustness”, as
even minor changes in the structure of the input may deteriorate the performance.

Therefore, Blum and Spencer [4] suggested asemirandommodelG∗
n,p,k that is inbetween the ran-

dom graphG∗
n,p,k and worst-case instances. The semirandom graphG∗

n,p,k is obtained as follows. First,
a random graphG0 = Gn,p,k is chosen via M1–M2; letV1, . . . , Vk signify its plantedk-coloring. Then,
an adversary completes the problem instance as follows.

M3. The adversary may add toG0 furtherVi-Vj-edges (i 6= j) to obtainG = G∗
n,p,k.

Note thatV1, . . . , Vk remains a “planted”k-coloring ofG∗
n,p,k. Hence,χ(G∗

n,p,k) ≤ k.
Let I(G0) signify the set of all graphs that can be obtained fromG0 = Gn,p,k via M3. We say that

G∗
n,p,k has some propertyE with high probability(“w.h.p.”) if the propertyE holds with probability

1 − o(1) asn → ∞ regardless of the adversary’s decisions. That is,

lim
n→∞

P [G0 = Gn,p,k is such thatE holds for allG ∈ I(G0)] = 1.

In contrast toGn,p,k, the semirandom graphG∗
n,p,k does notconsistof random edges, butcontains

some random edges. Therefore,G∗
n,p,k models a somewhat more general type of instances. On the

one hand, the adversary can alter certain “statistical” properties ofG0 = Gn,p,k. For example, the
adversary can change the distribution of the vertex degreesor add “dense spots” to the graph, thereby
changing also spectral properties. On the other hand, the adversary is just allowed to add edges that
“point towards” the hidden coloringV1, . . . , Vk. Thus, intuitively the adversary just seems to make
the problem “easier”. Therefore, it appears natural to require that a “robust” heuristic should not get
confused by the adversary’s actions. In other words, theG∗

n,p,k model discriminates between heuristics
that are robust enough to withstand such an adversarial “help”, and heuristics that are not.

Let us discuss the difference betweenGn,p,k andG∗
n,p,k with a concrete example. Alon and Ka-

hale [2] suggested a spectral heuristic thatk-colorsGn,p,k w.h.p. if k is fixed andp > Ck/n for a
certain constantCk > 0. Given an input instanceG0 = Gn,p,k, the heuristic first removes all vertices
of degree greater than5np, thereby obtaining a graphG′

0. Then, the heuristic computes thek− 1 eigen-
vectors of the adjacencyA(G′

0) of G′
0 with the smallest eigenvalues. These eigenvectors yield partition

of G′
0 that is “close” to the planted coloring ofG0 w.h.p. Finally, in order to obtain an actualk-coloring

of G0, the heuristic improves this partition using various combinatorial techniques.
However, this spectral approach breaks down on theG∗

n,p,k model. Let us assume for concreteness
thatk = 3, and thatC3 ≤ np = O(1). Then a standard argument shows that w.h.p. each of the planted
color classesV1, V2, V3 of G0 containsΩ(n) isolated vertices. Hence, w.h.p. the adversary can pick
disjoint setsA1, A2 ⊂ V1, B1, B2 ⊂ V2 of isolated vertices such that#Ai = #Bi = 2np/3. Then,
the adversary adds allAi-Bi-edges toG0 to obtain a graphG. Thus, inG both(A1, B1) and(A2, B2)
are bipartite cliques. LetG′ be the graph obtained by removing all vertices of degree> 5np from G,
and letA be the adjacency matrix ofG′. Then similar spectral arguments as in [2] show that the two
eigenvectors ofA with the smallest eigenvalues just represent the bipartitecliques(A1, B1), (A2, B2),
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but do not encode any useful information to3-colorG. Thus, the adversary can jumble up the spectrum
of G0 to render the spectral approach useless. (A similar construction shows that onG∗

n,p,k the spectral

approach breaks down also for larger values ofp – say,np = no(1).)

1.2 Results

The goal of this paper is to investigate heuristics for coloringG∗
n,p,k. First, we present a simple heuristic

that computes anoptimalcoloring ofG∗
n,p,k in polynomial time w.h.p. In addition, we suggest heuristics

for coloringG∗
n,p,k in polynomial expected time. We will compare these results with previous work in

Section 1.3.

Coloring G
∗

n,p,k optimally. While G∗
n,p,k is alwaysk-colorable, it might happen that the chromatic

number is actually smaller thank. Therefore, we say that a heuristicA colorsG∗
n,p,k optimally w.h.p.if

the following two conditions are satisfied.

Correctness. For all input graphsG the algorithmA either outputs an optimal coloring or “fail”.
Completeness.On inputG∗

n,p,k, the output is an optimal coloring w.h.p.

Thus, we requireA not only to find a coloring of the input graph, but also to compute a matchinglower
bound on the chromatic number. In other words,A is supposed tocertify that its output is an optimal
coloring.

Theorem 1. Let ε > 0 be arbitrarily small but constant. Moreover, suppose thatk = k(n) andp =
p(n) are such that

np ≥ max{(1 + ε)k lnn, C0k
2} for a certain constantC0 > 0. (2)

There is a polynomial time algorithmColor that colorsG∗
n,p,k optimally w.h.p.

Note that fork = o(ln n) – hence in particular for constantk – the assumption in Theorem 1
just readsnp ≥ (1 + ε)k ln(n). Color employs a semidefinite programming (“SDP”) relaxationϑ̄2

of the chromatic number (we will recall the definition in Section 2). The basic observation is that on
G = G∗

n,p,k w.h.p. all optimal fractional solutions tōϑ2 areintegral, i.e., encode actual colorings ofG.
The algorithmColor can be considered as a “more robust” version of the spectral heuristic of

Alon and Kahale [2]. More precisely,Color can cope with the semirandom modelG∗
n,p,k, because we

replace the spectral techniques by SDP techniques. Nevertheless, theproof that all optimal fractional
solutions to the SDP̄ϑ2 are integral w.h.p. relies on SDP duality and extends the spectral considerations
of Alon and Kahale. Extending the spectral techniques to thesemirandom model was posed as an open
problem by Frieze and McDiarmid [20, Research Problem 19].

The following hardness result complements Theorem 1.

Theorem 2. Let3 ≤ k ≤ n1/2. There is no polynomial time algorithm that in the case

np ≤ (1 − ε)
k

2
ln(n/k) (3)

k-colorsG∗
n,p,k w.h.p., unless NP⊂RP.

If k = o(lnn), then conditions (2) and (3) differ only by a factor of2. Thus, Theorem 2 implies that for
k = o(ln n) the positive result Theorem 1 is essentially best possible.

Coloring G
∗

n,p,k
in expected polynomial time. Despite Theorem 2, can we push the positive result

Theorem 1 any further? The algorithmColor for Theorem 1 runsalwaysin polynomial time andk-
colorsG∗

n,p,k with high probability. One way to strengthen this result is to devise an algorithm that even
k-colorsany k-colorable input graph such that theexpectedrunning time overG∗

n,p,k is polynomial.
Here we define theexpected running timeof an algorithmA on inputG∗

n,p,k as

∑

G0

P(G0 = Gn,p,k) · max
G∈I(G0)

RA(G),
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whereRA(G) denotes the running time ofA on inputG, and the sum ranges over all possible outcomes
G0 of Gn,p,k. The following theorem shows that there is a coloring algorithm with polynomial expected
running time for almost the same range of the parameters as inTheorem 1.

Theorem 3. Suppose thatk = k(n) andp = p(n) are such that

np ≥ C0 max{k · lnn, k2} for a certain constantC0 > 0. (4)

There is an algorithmExpColor thatk-colors anyk-colorable input graph and that applied toG∗
n,p,k

has polynomial expected running time.

To achieve the algorithmExpColor with polynomial expected running time, we need to refine
the heuristicColor significantly. Indeed, whileColor may just “give up” if the input lacks certain
“typical” properties ofG∗

n,p,k, ExpColor must be able to handleall k-colorable input graphs. Hence,
if we imagineExpColor’s quest for ak-coloring as a search tree, then this search tree can be of
polynomial or of exponential size, or anything in between. Therefore, in order to guarantee a polynomial
expected running time, we need to extendColor and its analysis in two respects.

– We need to improve the algorithm so that the size of the searchtree is distributed “smoothly”
such that it is small on average. Loosely speaking, this means thatExpColor needs to cope with
minor “atypical defects” in the input instance in such a way that the running time increases only
proportionally to the size of the “defect”.

– We need to invent methods to analyze the average size of the search tree. In particular, we need to
quantify how “typical” or “atypical” in terms of theG∗

n,p,k model a certain input graph is.

Thus, we need to refine both the heuristic and its analysis, but the enhanced analysis also sheds further
light on the algorithmic techniques that the heuristic relies on.

For k = o(ln n) Theorem 2 shows that the bound (4) onp is best possible up to the precise value
of C0. However, in contrast toColor, ExpColor does not certify the optimality of the obtained
coloring. Nevertheless, at least fork ≤ ln1/3 n (and hence in particular for constantk), it is easy to
modifyExpColor to obtain an algorithm that certifies the optimality of its output.

Theorem 4. Suppose thatk = k(n) andp = p(n) are such that

np ≥ C0k · lnn for a certain constantC0 > 0, andk ≤ ln1/3 n. (5)

There is an algorithmOptColor that colors any input graph optimally and that applied toG∗
n,p,k has

polynomial expected running time.

1.3 Related Work

Blum and Spencer [4] were the first to study theG∗
n,p,k model. They showed that ak-coloring ofG∗

n,p,k

can be found in polynomial time w.h.p. ifk is constant and

np ≥ nαk+ε, whereαk =
k2 − k − 2

k2 + k − 2
(6)

andε > 0 is an arbitrarily small constant. This coloring heuristic is purely combinatorial.
Feige and Kilian [16] suggested the strongest previous heuristic for coloringG∗

n,p,k. The heuristic
finds ak-coloring in polynomial time w.h.p. ifk is constant andnp ≥ (1 + ε)k lnn. Note that for
constantk this assumption is identical to (2). In order tok-color G∗

n,p,k, the heuristic tries to recover
the classes of the plantedk-coloring one by one. To recover a color class, the heuristiccombines SDP
techniques for approximating the independence number fromAlon and Kahale [3] with the random
hyperplane rounding technique from Goemans and Williamson[22]. These SDP techniques are needed
to obtain an initial partition of the input graph that consists of relatively “sparse” sets. Then, the heuristic
makes use of matching techniques and expansion properties of G∗

n,p,k to extract the color class from the
initial partition.

Theorem 1 improves on the result of Feige and Kilian in the following respects.
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– It is not clear whether the heuristic in [16] is applicable when k grows as a function ofn (say,
k ≫ lnn). For the analysis of the SDP rounding techniques in [16] requires that the initial partition
consists ofexp(Ω(k)) classes to guarantee that the classes of the partition are sparse enough. On
the other hand, choosingp = 1/2 we can makek as large asΩ(

√
n) in Theorem 1.

– The algorithmColor is much simpler. For instance, it needs to solve an SDP only once, whereas
the heuristic of Feige and Kilian requires several SDP computations. (Nonetheless, the techniques
in [16] apply to further problems that we do not address in this paper.)

– Instead of just producing ak-coloring ofG = G∗
n,p,k w.h.p.,Color also provides acertificatethat

its output is indeed optimal.

In addition, Feige and Kilian [16] proved that no polynomialtime algorithmk-colorsG∗
n,p,k w.h.p.

if np ≤ (1 − ε) lnn, unless NP⊂RP. Theorem 2 improves this result by a factor ofk/2, although the
proof uses a similar idea.

Theorems 3 and 4 also improve on a coloring algorithm in Coja-Oghlan [10], which is based on
similar techniques as the algorithm of Feige and Kilian [16]. The coloring algorithm in [10]k-colors any
k-colorable input graph, and the expected running time onG∗

n,p,k is nΘ(k), provided thatnp ≫ k lnn.
Hence, the running time of this algorithm becomes superpolynomial if k = k(n) grows as a function of
n. By contrast, the expected running time ofExpColor is polynomial in bothn andk (cf. Theorem 3).
Furthermore, in contrast to the algorithmOptColor (cf. Theorem 4), even for constantk the coloring
algorithm in [10] does not certify the optimality of its output.

Building on [34], Subramanian [33] gave a heuristic for coloring G∗
n,p,k optimally in polynomial

expected time for constant values ofk under the assumption (6). The heuristic is purely combinatorial,
and the certificate of optimality is just a clique of sizek w.h.p. Theorem 4 extends this result to signifi-
cantly smaller values ofp. In fact, for small edge probabilitiesp = C0k lnn as in Theorem 4, the clique
number ofGn,p,k is 3 w.h.p. Hence,G∗

n,p,k has no clique of sizek (unless the adversary includes one)
that yields a certificate that the obtained coloring is optimal. Therefore, in order to certify optimality
OptColor employs SDP techniques.

With respect to coloringGn,p,k, Kučera [29] presented a simple heuristic that fork = O(
√

n/ lnn)
andp = 1/2 recovers the plantedk-coloring ofGn,p,k w.h.p. Note that Theorem 1 provides a slightly
result:Color colorsGn,p,k optimally if p = 1/2 andk ≤ c

√
n for a certain constantc > 0.

Dyer and Frieze [14] showed that an optimal coloring ofGn,p,k can be found in polynomial expected
time if p = Ω(1) remains bounded away from0 asn → ∞. Moreover, the best previous heuristic for
coloringGn,p,k in polynomial expected time is due to Subramanian [33]. The heuristic is combinatorial
and colorsGn,p,k optimally in polynomial expected time ifk is constant and

np ≥ nγ(k)+ε, whereγ(k) =
k2 − 3k + 2

k2 − k + 2
.

Theorem 4 provides a coloring heuristic that also applies tosignificantly smaller values ofp. Extending
Subramanian’s result to smaller values ofp was also mentioned as an open problem in the survey of
Krivelevich [28, Section 7].

Some heuristics for random instances of more general partitioning problems also entail results on
coloringGn,p,k. For instance, the heuristic of Subramanian and Veni Madhavan [35], which is based on
breadth first search,k-colorsGn,p,k in polynomial time w.h.p. ifk is constant andnp ≥ exp(C

√
lnn)

for a certain constantC > 0. Moreover, McSherry’s spectral heuristic [32] finds ak-coloring in polyno-
mial time w.h.p. ifk is constant andnp ≫ ln3 n. Finally, a randomized linear time partitioning heuristic
of Bollobás and Scott [7] recovers the hidden coloring w.h.p. if np ≥ Ck2 lnn for a certain constant
C > 0. Indeed, Bollobás and Scott conjecture that their heuristic can also handle the semirandom graph
G∗

n,p,k. Nevertheless, Theorem 1 applies to even smaller edge probabilities than [7, 32, 35]. Some further
references on coloring random and semirandom graphs can be found in the survey [28].
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1.4 Techniques and Outline

The algorithmsColor, ExpColor, andOptColor for Theorems 1, 3, and 4 make use of different
techniques than the previous algorithms for coloringGn,p,k andG∗

n,p,k. For instance,Color relies
on a direct analysis of the optimal solutions to the SDP relaxation ϑ̄2 on G∗

n,p,k (cf. Section 2 for the
definition ofϑ̄2). More precisely, we show that all optimal fractional solutions are in fact integral w.h.p.,
i.e., correspond tok-colorings ofG∗

n,p,k. While the algorithm for coloring semirandom graphs in [16]is
also based on SDP techniques (cf. Section 1.3),Color is rather different: the analysis ofColor shows
that there is a single SDP that captures the problem completely.

The techniques in the analysis ofColor extends previous work of Boppana [8] and Feige and
Kilian [16] on the MIN BISECTION problem. More precisely, in[8] it was shown that all optimal
fraction solutions to a SDP relaxation of MIN BISECTION correspond to actual bisections w.h.p. on
certain random instances; this analysis was extended in [16] to semirandom models. Nevertheless, the
analysis ofϑ̄2 on theG∗

n,p,k model turns out to be significantly more involved than the analyses for
MIN BISECTION in [8, 16]. One reason is that while in the MIN BISECTION problem the goal is to
recovertwo classes, the numberk = k(n) of color classes in theG∗

n,p,k model may actually grow as a
function ofn. A further reference is the work of Feige and Krauthgamer [17] on semirandom instances
of the Clique problem; the heuristic is based on the integrality of optimal fractional solutions to a certain
relaxation of the clique number.

In order to obtain the heuristicExpColor with polynomial expected running time, we need to
refine the investigation of̄ϑ2 on G∗

n,p,k. While Color relies on the fact that all fractional solutions
are perfectly integral w.h.p.,ExpColor is based on the observation that with probability extremely
close to1 all fractional solutions are at least “not too far” from being integral. To prove this statement,
we invoke results from Coja-Oghlan, Moore, and Sanwalani [13] on semidefinite relaxations of MAX
k-CUT on the Erdős-Rényi modelGn,p. In addition, to extract the coloring from the fractional solution,
ExpColor employs network flow techniques from [11], which extend matching techniques from [16].
Finally,OptColor combinesExpColorwith a technique for computing a lower bound onχ(G∗

n,p,k).
The heuristicColor and its analysis are the content of Section 3. Moreover, we presentExpColor

in Section 4. Then, in Section 5 we modifyExpColor to obtain the algorithmOptColor for Theo-
rem 4. Section 6 is devoted to the proof of Theorem 2. Finally,Section 7 contains the proofs of some
technical lemmas.

There are various constants involved in the analyses of the algorithms. Most of the constants are
somewhat arbitrary and are only made explicit for concreteness; no attempt has been made to optimize
these constants.

2 Preliminaries

Notation. Throughout, we letV = {1, . . . , n}. Moreover, ifX is a set, then we letδx,X = 1 if x ∈ X
andδx,X = 0 otherwise.

If G is a graph, then we letV (G) denote the vertex set andE(G) the edges set ofG. For a set
A ⊂ V (G), N(A) = NG(A) = {w ∈ V : ∃a ∈ A : {v, w} ∈ E(G)} signifies the neighborhood ofA.
Moreover,N̄(A) = N̄G(A) = V \ NG(A) denotes the non-neighborhood. Furthermore, byG [A] we
denote the subgraph ofG induced onA. If B ⊂ V (G) is a further set, then we lete(A, B) = eG(A, B)
be the number ofA-B-edges, i.e.,

e(A, B) = eG(A, B) = #{{v, w} ∈ E(G) : v ∈ A, w ∈ B}.

In addition, we lete(A) = eG(A) = eG(A, A).
If G = G∗

n,p,k, then we letG0 = Gn,p,k denote the random graph from whichG has been obtained
via M3. Moreover, we letV1, . . . , Vk denote the planted color classes ofG andG0. If U ⊂ {1, . . . , k},
then we letVU =

⋃

u∈U Vu.
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The scalar product of two vectorsξ, η ∈ R
n is denoted by〈ξ, η〉. Moreover,‖ξ‖ = 〈ξ, ξ〉1/2

signifies theL2-norm. We let1 = 1n ∈ R
n denote the vector with all entries equal to1. In addition, if

X a set andA ⊂ X , then1A = (ex)x∈X denotes the vector with entriesex = 1 if x ∈ A andex = 0
if x ∈ X \ A. If ξ ∈ R

n is a vector, thendiag(ξ) signifies then × n matrix with diagonalξ whose
off-diagonal entries are0.

The eigenvalues of a real symmetricn × n matrix A are denoted byλ1(A) ≥ · · · ≥ λn(A). If
A, B are symmetricn × n matrices, then we writeA ≥ B if λn(A − B) ≥ 0. Recall thatA is
positive semidefinite ifλn(A) ≥ 0, i.e.,A ≥ 0. Furthermore, for an × n matrix M we let ‖M‖ =
maxξ∈Rn, ‖ξ‖=1 ‖Mξ‖. In addition,diag(M) ∈ R

n is the vector consisting of the diagonal entries of
M . By J we denote a matrix with all entries equal to1 (of any size). Moreover,E = diag(1) signifies
the matrix with ones on the diagonal and off-diagonal entries equal to0.

We shall mainly be interested in matrices associated with graphs. The adjacency matrix of a graph
G is denoted byA(G). In addition,L(G) = diag(A(G)1) − A(G) signifies the Laplacian.

A SDP relaxation of the chromatic number. The coloring heuristics rely on a semidefinite program-
ming (“SDP”) relaxationϑ̄2 of the chromatic number. The semidefinite program was first defined by
Goemans and Kleinberg [21] and was further studied by Charikar [9] and Szegedy [36]. Following
Charikar, we definēϑ2 in terms of vector colorings; this approach is related to thework of Karger,
Motwani, and Sudan [26].

Let G = (V, E) be a graph with vertex setV = {1, . . . , n}. Let (v1, . . . , vn) be ann-tuple of unit
vectors inRn, and letk > 1. We call(v1, . . . , vn) a rigid vectork-coloring if

〈vi, vj〉 = (1 − k)−1 for all {i, j} ∈ E, and 〈vi, vj〉 ≥ (1 − k)−1 for all {i, j} 6∈ E.

Now, we defineϑ̄2(G) = inf{k > 1 : G admits a rigid vectork-coloring}. Sinceϑ̄2(G) can be stated
as a semidefinite program, the numberϑ̄2(G) and a rigid vector̄ϑ2(G)-coloring can be computed in
polynomial time within a tiny numerical error, e.g., via theellipsoid method (cf. [23, 36]).

Furthermore, we havēϑ2(G) ≤ χ(G). For assume thatG is k-colorable, and letV1, . . . , Vk be a
partition ofV into k independent sets. Moreover, let(ξ1, . . . , ξk) be a family of unit vectors inRk−1

such that〈ξi, ξj〉 = −(k − 1)−1 if i 6= j; such a family can be constructed inductively and it is unique
up to an orthogonal transformation. Letvi = ξj for all i ∈ Vj . Then(vi)i∈V is a rigid vectork-coloring
of G, whenceϑ̄2(G) ≤ k. Indeed,̄ϑ2 is a tighter relaxation ofχ than both the vector chromatic number
from [26] and the Lovász numberϑ(Ḡ) (cf. [23, 36]).

Let A = A(G) = (aij)i,j∈V be the adjacency matrix ofG. Moreover, letL = L(G) signify
the Laplacian. Letk ≥ 2. In addition toϑ̄2(G), we also need the following SDP from Frieze and
Jerrum [19]:

SDPk(G) = max
∑

1≤i<j≤n

aij ·
k − 1

k
(1 − 〈vi, vj〉) (7)

s.t. ‖vi‖ = 1 for i = 1, . . . , n,

〈vi, vj〉 ≥ (1 − k)−1 for all 1 ≤ i < j ≤ n,

v1, . . . , vn ∈ R
n.

If k is an integer, thenSDPk(G) is an upper bound on the weight of a MAXk-CUT of G. In particular,
SDP2(G) equals the MAX CUT relaxation of Goemans and Williamson [22].

An important property ofSDPk is that the semidefinite program ismonotone:

if G′ containsG as a subgraph, thenSDPk(G′) ≥ SDPk(G). (8)

Furthermore,̄ϑ2(G) andSDPk(G) are related as follows: ifG has a rigid vectork-coloring (vi)i∈V ,
then(vi)i∈V is a feasible solution toSDPk with objective function value

∑

1≤i<j≤n

aij ·
k − 1

k
(1 − 〈vi, vj〉) = #E. (9)
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As trivially SDPk(G) ≤ #E, we conclude thatSDPk(G) = #E. Conversely, if(v′i)i∈V is a feasible
solution toSDPk(G) with objective function value#E, then(v′i)i∈V is a rigid vectork-coloring.

To prove Theorem 3, we need the following result, which is an immediate consequence of [13,
Theorems 3 and 4].

Lemma 5. There exist constantsζ0, ζ1 > 0 such that the following holds. Suppose thatnp ≥ ζ0. Then
for all k ≥ 2 we haveP

[

SDPk(Gn,p) ≤ (1 − k−1)
(

n
2

)

p + ζ1n
3/2p1/2

]

≥ 1 − exp(−300n).

Eigenvalues of random matrices.The proof of Theorem 1 relies on estimates of the eigenvaluesof
A(Gn,p,k). In order to estimate these eigenvalues, we employ the following two results.

Lemma 6. Suppose thatnp ≥ c1 lnn for a constantc1 > 0. Then there exists a numberc2 > 0
that depends only onc1 such that with probability≥ 1 − O(n−2p−1) the random symmetric matrix
A = A(Gn,p) enjoys the following property:∀1 ⊥ η ∈ R

n : ‖Aη‖ ≤ c2
√

np · ‖η‖.

Lemma 7. Suppose thatnp ≥ c1 lnn for a constantc1 > 0. Then there exists a numberc2 > 0
that depends only onc1 such that with probability≥ 1 − O(n−2p−1) the following holds. LetA =
(aij)i,j=1,...,n be a matrix whose entries are mutually independent random variables such thataii = 0
for all i and

p = P(aij = 1) = 1 − P(aij = 0) (i 6= j).

Then∀1 ⊥ η ∈ R
n : ‖Aη‖ ≤ c2

√
np · ‖η‖.

Lemma 6 is implicit in Feige and Ofek [18], and Lemma 7 in Alon and Kahale [2]. Explicit proofs
of both lemmas can also be found in [12].

Chernoff bounds. Assume thatX is binomially distributed with parameters(n, p). Let µ = E(X) =
np. We frequently need the followingChernoff boundson the tails ofX (cf. [25, Chap. 2] for proofs):

P(X ≥ µ + t) ≤ exp

(

− t2

2(µ + t/3)

)

, P(X ≤ µ − t) ≤ exp

(

− t2

2µ

)

(0 < t). (10)

Moreover, lettingφ(x) = (1 + x) ln(1 − x) − x for x > −1, we have

P(X ≤ µ − t) ≤ exp

(

−µφ

(−t

µ

))

(0 < t < µ). (11)

3 A Simple Heuristic for Finding an Optimal Coloring

3.1 Outline

We assume that (2) is satisfied with a sufficiently large constantC0 > 0, which will be specified implicitly
in the analysis.The algorithmColor for Theorem 1 is shown in Figure 1.

In summary,Color(G) computes the rigid vector coloring(xv)v∈V . This can be done in polyno-
mial time via semidefinite programming (cf. Section 2). Then, Color constructs an auxiliary graphH
in which two verticesv, w are adjacent iff their distance‖xv − xw‖ is at least0.1, i.e., if xv andxw

are “far apart”. To this graphH , Color applies the simple greedy coloring algorithm. (Recall thatthe
greedy algorithm just goes through the verticesv = 1, . . . , n and colors eachv with the least color in
{1, . . . , n} not yet used by the neighbors ofv.)

To show thatColor either finds an optimal coloring of the input graphG or outputs “fail”, note
that the graphH constructed in Step 2 containsG as a subgraph. For if{v, w} ∈ E, then〈xv, xw〉 ≤ 0.
Sinceχ(G) ≥ ϑ̄2(G), C is an optimal coloring ofG if C uses at most⌈ϑ̄2(G)⌉ colors.

Hence, to prove Theorem 1, it remains to show thatColor(G = G∗
n,p,k) outputs an optimal col-

oring w.h.p. LetV1, . . . , Vk be thek-coloring planted inG. Directed by the proof that̄ϑ2(G) ≤ χ(G)
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Algorithm 8. Color(G)
Input: A graphG = (V, E). Output:Either aχ(G)-coloring ofG or “fail”.

1. Compute ϑ̄2(G) along with a rigid vector ϑ̄2(G)-coloring of G (xv)v∈V .
2. Let H = (V, F ) be the graph with edge set F = {{v, w} : 〈xv, xw〉 ≤ 0.995}. Apply the greedy

coloring algorithm to H , and let C be the resulting coloring.
3. If C uses at most ⌈ϑ̄2(G)⌉ colors, then output C as a coloring of G. Otherwise, output “fail”.

Fig. 1. the algorithmColor.

(cf. Section 2), we call a rigid vectork-coloring(xv)v∈V integral if there are vectors(x∗
i )i=1,...,k such

thatxv = x∗
i for all v ∈ Vi, and

〈

x∗
i , x

∗
j

〉

= (1 − k)−1 for i 6= j. In other words,(xv)v∈V is integral
iff the rigid vector coloring maps each color class onto a single point, and the angle between the points
corresponding toVi andVj is cos−1

[

(1 − k)−1
]

if i 6= j.
If the rigid vector coloring(xv)v∈V computed in Step 1 is integral, then the graphH constructed

in Step 2 is a completek-partite graph with color classesV1, . . . , Vk. That is, inH the setsV1, . . . , Vk

are independent, but eachv ∈ Vi is connected with all vertices inV \ Vi. Consequently, the greedy
algorithm finds ak-coloring ofH . Hence, if alsōϑ2(G) = k, thenColor finds and outputs an optimal
coloring ofG. Thus, the remaining task is to establish the following lemma.

Lemma 9. Let G = G∗
n,p,k. W.h.p. we havēϑ2(G) = k, and every rigid vectork-coloring of G is

integral.

To prove Lemma 9, we make use of the relationship betweenSDPh andϑ̄2 (cf. Section 2). With
respect toSDPh, we prove the following in Section 3.2.

Lemma 10. There is a constantζ > 0 such thatG = G∗
n,p,k enjoys the following property.

LetG′ be a graph obtained by adding an edge{v∗, w∗} to G, wherev∗, w∗ ∈ Vi for

somei. Let2 < h ≤ k. ThenSDPh(G′) ≤ #E(G) − ζ · n2p
hk · (k − h).

(12)

Proof of Lemma 9.To prove that̄ϑ2(G
∗
n,p,k) = k w.h.p., letG = G∗

n,p,k, and assume that̄ϑ2(G) = h <
k. Let (xv)v∈V be a rigid vectorh-coloring ofG. Then(xv)v∈V is a feasible solution toSDPh, whence
SDPh(G) = #E(G) due to (9). However, by Lemma 10 and the monotonicity property (8) we have
SDPh(G) < #E(G) w.h.p. Thus,̄ϑ2(G) = k w.h.p.

Finally, to show that any rigid vectork-coloring(xv)v∈V of G = G∗
n,p,k is integral w.h.p., suppose

thatG has the property stated in Lemma 10. Lets, t ∈ V ∗
i , and letG′ be the graph obtained fromG by

adding the edge{s, t}. Then we have

#E(G) =
k − 1

k





∑

{v,w}∈E(G)

1 − 〈xv, xw〉





≤ k − 1

k



1 − 〈xs, xt〉 +
∑

{v,w}∈E(G)

1 − 〈xv, xw〉



 ≤ SDPk(G′)
Lemma 10

≤ #E(G).

Therefore,〈xs, xt〉 = 1, whencexs = xt, becausexs, xt are unit vectors. Consequently, there are unit
vectorsx∗

i such thatxv = x∗
i for all v ∈ Vi, i = 1, . . . , k.

Furthermore, ifi 6= j, theneG(Vi, Vj) is binomially distributed with meann2k−2p. Hence, our
assumption (2) and the Chernoff bound (10) entail thateG(Vi, Vj) > 0 for all i 6= j w.h.p. Thus, let
v ∈ Vi, w ∈ Vj be vertices such that{v, w} ∈ E(G). Then

〈

x∗
i , x

∗
j

〉

= 〈xv, xw〉 = (1 − k)−1. Hence,
the rigid vector coloring(xv)v∈V is in fact integral. ⊓⊔
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3.2 Proof of Lemma 10

SDP duality provides a powerful tool for proving an upper bound on the optimal solution to a maxi-
mization problem such asSDPh. Let G = (V, E) be a graph. Then thedual semidefinite programof
SDPh(G) reads

DSDPh(G) = min
h − 1

2h

n
∑

i=1

yii −
1

2h

∑

i6=j

yij

s.t. L(G) ≤ Y,

yij ≤ 0 for i 6= j,

Y = (yij)i,j=1,...,n is a real symmetricn × n matrix

(cf. Helmberg [24, Chap. 2] for a thorough treatment of SDP duality theory). By weak SDP duality
(cf. [24, pp. 17–18]), we haveSDPh(G) ≤ DSDPh(G). Observe that the set of feasible solutionsY to
DSDPh(G) is the same for all values ofh.

To prove Lemma 10, we exhibit a feasible solution toDSDPh(G) for which the desired objective
function value claimed in (12) is attained. The construction makes use of Lemmas 6 and 7. Let us first
consider a randomk-colorable graphG = Gn,p,k with plantedk-coloringV1, . . . , Vk. As permuting the
vertices does not affect the semidefinite program, we may assume that

Vi =

{

(i − 1)n

k
+ 1, . . . ,

in

k

}

(i = 1, . . . , k). (13)

Let G′ be the graph obtained fromG by adding an edge{v∗, w∗}, wherev∗, w∗ ∈ Vi0 for somei0. Let
A = A(G), L′ = L(G′), B = L′ − L(G). Forv ∈ V , let dv be the degree ofv in G, and let

d(i)
v = eG(v, Vi), d̄ =

1

(k − 1)n

∑

v∈V

dv.

Let i(Va) = (a − 1)n
k + i denote thei’th vertex inVa. Moreover, set

dmin = min
i,j,a6=b

n · d(b)
i(Va) · d

(a)
j(Vb)

k · eG(Va, Vb)
. (14)

Further, we define a family ofnk × n
k -matricesY ′

ab as follows: we letY ′
aa = 0 for a = 1, . . . , k, and for

1 ≤ a, b ≤ k, a 6= b, we let

Y ′
ab =





k

n
dmin −

d
(b)
i(Va) · d

(a)
j(Vb)

eG(Va, Vb)





i,j=1,...,n/k

.

In addition, we letY ′ = (Y ′
ab)a,b=1,...,k be then × n matrix comprising of the blocksY ′

ab. Further, we
let y′ = (dv + dmin)v∈V ∈ R

n, and finallyY = Y ′ + diag(y′). ThenY is a real symmetricn × n
matrix, and the definition (14) ofdmin ensures that all off-diagonal entries ofY are≤ 0.

We claim thatY is a feasible solution toDSDPh w.h.p. Thus, we need to show thatL′ ≤ Y w.h.p.
SinceL′ − Y = −(A − B + Y ′) − dminE, it suffices to prove thatλn(A − B + Y ′) = −dmin w.h.p.
As a first step, we shall exhibit a subspaceK ⊂ R

n generated by eigenvectors ofA − B + Y ′ that
correspond to the planted coloringV1, . . . , Vk. To this end, we note that

Yab1 =



dmin −
n/k
∑

j=1

d
(b)
i(Va)d

(a)
j(Vb)

eG(Va, Vb)





1≤i≤n/k

=
[

dmin − d
(b)
i(Va)

]

1≤i≤n/k
(a 6= b),
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because
∑n/k

j=1 d
(a)
j(Vb)

= eG(Va, Vb). Therefore, forc = 1, . . . , k we have

Y ′
1Vc

= [(1 − δv,Vc
)(dmin − eG(v, Vc))]v∈V . (15)

Further,
A1Vc

= (eG(v, Vc))v∈V , andB1Vc
= 0. (16)

Combining (15) and (16), we get

(A − B + Y ′)1Vc
= [(1 − δv,Vc

)dmin]v∈V . (17)

Finally, we letξ(a,b) = 1Va
− 1Vb

∈ R
n (a, b = 1, . . . , k). Then (17) yields

(A − B + Y ′)ξ(a,b) = −dminξ
(a,b) (a 6= b), (A − B + Y ′)1 = (k − 1)dmin1. (18)

Let K ⊂ R
n be the vector space spanned by1 and the vectorsξ(a,b) (a 6= b). Then1V1 , . . . ,1Vk

∈ K,
and therefore1V1 , . . . ,1Vk

generateK. Since by (18)K is generated by eigenvectors ofA − B + Y ′,
any eigenvectorη of A − B + Y ′ with eigenvalue< −dmin is perpendicular toK. Thus, the following
lemma shows that no eigenvector with eigenvalue< −dmin exists w.h.p., and hence concludes the proof
thatL′ ≤ Y w.h.p.

Lemma 11. LetG = Gn,p,k. Then w.h.p. we havedmin = Ω(np/k) and| 〈(A − B + Y ′)η, η〉 | < dmin

for all unit vectorsη ⊥ K and all possible choices ofv∗, w∗.

We prove Lemma 11 in Section 3.3. Now, suppose that indeedL′ ≤ Y . Then by construction

n
∑

i=1

yii = 〈y′,1〉 = 2#E(G) + ndmin, (19)

∑

i6=j

yij =
∑

a6=b

〈Y ′
ab1,1〉 (15)

=
∑

a6=b

n

k
− eG(Va, Vb) = (k − 1)ndmin − 2#E(G). (20)

Combining (19) and (20), we obtain

DSDPh(G′) ≤ h − 1

2h

n
∑

i=1

yii −
1

2h

∑

i6=j

yij = #E(G) − ndmin

2h
(k − h).

As dmin = Ω(np/k) w.h.p. by Lemma 11, we conclude that Lemma 10 holds forG = Gn,p,k.
Finally, let G = G∗

n,p,k, and letG0 be the randomk-colorable graph contained inG (i.e., G ∈
I(G0)). LetG′

0 (resp.G′) be obtained fromG0 (resp. fromG) by adding an edge{v∗, w∗}, v∗, w∗ ∈ Vi.
Since adding a single edge can increase the value ofSDPh by at most1, w.h.p. we have

SDPh(G′) ≤ SDPh(G′
0) + #E(G) − #E(G0) ≤ #E(G) − Ω

( np

2hk

)

(k − h),

as desired.

3.3 Proof of Lemma 11

To prove the lemma, we decompose the adjacency matrixA of G = Gn,p,k into blocksA = (Aab)a,b=1,...,k

of size n
k × n

k . Then due to our assumption (13) for any two verticesv ∈ Va and w ∈ Vb, the
(v − (a − 1)n

k ), (w − (b − 1)n
k )-entry of Aab is 1 if {v, w} ∈ E(G) and0 if {v, w} 6∈ E(G). In

particular,AT
ab = Aba andAaa = 0. Moreover, the entries of each blockAab with a 6= b are mutually

independent random variables that attain the value1 with probabilityp and the value0 with probability
1 − p.
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Lemma 12. If G = Gn,p,k, then w.h.p. the following statements hold.

1. d̄ = Θ(np/k).
2. For all unit vectorsη ⊥ K we have| 〈Aη, η〉 | ≤ O(

√
d̄k).

3. For all a, b ∈ {1, . . . , k} and all1 ⊥ ξ ∈ R
n/k we have

∣

∣‖1‖−1 · 〈Aabξ,1〉
∣

∣ ≤ O(
√

d̄).

Proof. The first statement is an immediate consequence of the definition of d̄ and the Chernoff bound (10).
Moreover, the third statement is an immediate consequence of Lemma 7, becausenp/k = Ω(lnn)
by (2).

To prove the second statement, letGa = Gn/k,p for a = 1, . . . , k be a family ofk mutually inde-
pendent random graphs. LetA∗

a = A(Ga) be the adjacency matrices (a = 1, . . . , k). Moreover, let

A∗ =







A∗
1 0

. . .
0 A∗

k







be then × n matrix with then
k × n

k -blocksA∗
1, . . . , A

∗
k on the diagonal and0’s elsewhere. In addition,

setA∗ = A + A∗. ThenA∗ is distributed as the adjacency matrixA(Gn,p) of a random graphGn,p.
Observe thatη ⊥ K implies thatη ⊥ 1. Thus, sincenp = Ω(ln n) by (2), Lemma 6 entails that there is
a constantζ1 > 0 such that w.h.p.

∀η ⊥ K, ‖η‖ = 1 : | 〈A∗η, η〉 | ≤ ζ1

√

d̄k. (21)

Furthermore, decomposingη ⊥ K into k subsequent piecesη1, . . . , ηk ∈ R
n/k, we obtain

|〈A∗η, η〉| =

∣

∣

∣

∣

∣

k
∑

a=1

〈A∗
aηa, ηa〉

∣

∣

∣

∣

∣

≤
∑

a:ηa 6=0

‖ηa‖2 ·
∣

∣

∣

∣

〈

A∗
a

ηa

‖ηa‖
,

ηa

‖ηa‖

〉∣

∣

∣

∣

≤ ‖η‖2 · max
a:ηa 6=0

∣

∣

∣

∣

〈

A∗
a

ηa

‖ηa‖
,

ηa

‖ηa‖

〉∣

∣

∣

∣

. (22)

If η ⊥ K, thenηa ⊥ 1 for a = 1, . . . , k. Therefore, asA∗
a = A(Gn/k,p) andnp/k = Ω(lnn), by

Lemma 6 there is a constantζ2 > 0 such that w.h.p.

∀η ⊥ K, ‖η‖ = 1 : |〈A∗η, η〉| ≤ max
a:ηa 6=0

∣

∣

∣

∣

〈

A∗
a

ηa

‖ηa‖
,

ηa

‖ηa‖

〉∣

∣

∣

∣

≤ ζ2

√

d̄. (23)

Finally, we claim that w.h.p.

∀η ⊥ K, ‖η‖ = 1 : |〈Aη, η〉| ≤ (ζ1 + ζ2)
√

d̄k. (24)

Indeed, suppose thatA violates (24). Then there is a unit vectorη ⊥ K such that|〈Aη, η〉| > (ζ1 +

ζ2)
√

d̄k. Hence, for allA∗ that satisfy (23) we have|〈A∗η, η〉| ≥ |〈Aη, η〉| − |〈A∗η, η〉| > ζ1

√
d̄k, so

thatA∗ violates (21). Since (21) and (23) hold with probability1−o(1), we conclude that the probability
that (24) is violated iso(1), as desired. ⊓⊔

Proof of Lemma 11.Sincenp ≥ (1 + ε)k ln(n), the fact thatdmin = Ω(d̄) w.h.p. follows from the
Chernoff bound (11). Furthermore, we claim that

| 〈Y ′η, η〉 | ≤ O(
√

d̄k) w.h.p. (25)

Indeed, consider the followingnk × n
k matricesZab (a, b = 1, . . . , k): we let Zaa = 0 for all a, and

Zab = k
ndminJ − Y ′

ab (a 6= b). Moreover, letZ = (Zab)a,b=1,...,k be then× n matrix consisting of the
blocksZab. Then for allη ⊥ K we have

〈Zη, η〉 = −〈Y ′η, η〉 , (26)



13

becauseη ⊥ 1Va
for all a ∈ {1, . . . , k}. Thus, it suffices to estimate| 〈Zη, η〉 |. Letξ = (ξi)1≤i≤n/k, η =

(ηi)1≤i≤n/k ∈ R
n/k be unit vectors perpendicular to1. Then

eG(Va, Vb) 〈η, Zabξ〉 =

〈

η,





n/k
∑

j=1

d
(b)
i(Va)d

(a)
j(Vb)

ξj





1≤i≤n/k

〉

=

〈

η,
[

d
(b)
i(Va) 〈Aba1, ξ〉

]

1≤i≤n/k

〉

= 〈Aba1, ξ〉
n/k
∑

i=1

d
(b)
i(Va)ηi = 〈Aba1, ξ〉 〈Aab1, η〉 = 〈Aabξ,1〉 〈Abaη,1〉 .

By the third part of Lemma 12, w.h.p. we have

|〈Aabξ,1〉| , |〈Abaη,1〉| ≤ O

(

√

d̄n/k

)

(27)

for all unit vectorsξ, η ⊥ 1 and alla, b. Moreover, sinceeG(Va, Vb) is binomially distributed with mean
n2k−2p, the Chernoff bound (10) and the first part of Lemma 12 entail that w.h.p.

eG(Va, Vb) = Ω(d̄n/k) (1 ≤ a < b ≤ k). (28)

Combining (27)–(28), we get

| 〈Zabξ, η〉 | ≤
O(d̄n/k)

eG(Va, Vb)
= O(1) w.h.p. (1 ≤ a < b ≤ k). (29)

Thus, letη ⊥ K be a unit vector. Decomposingη into k piecesη1, . . . , ηk ∈ R
n/k, we get

| 〈Zη, η〉 | =

∣

∣

∣

∣

∣

∣

k
∑

a,b=1

〈Zabηb, ηa〉

∣

∣

∣

∣

∣

∣

≤
∑

a,b:ηa 6=06=ηb

‖ηa‖ · ‖ηb‖ ·
∣

∣

∣

∣

〈

Zab
ηb

‖ηb‖
,

ηa

‖ηa‖

〉∣

∣

∣

∣

(29)
≤ O





k
∑

a,b=1

‖ηa‖ · ‖ηb‖



 ≤ O(1)

[

k
∑

a=1

‖ηa‖
]2

= O(k)
(2)
≤O

(√

d̄k
)

. (30)

Combining (26) and (30), we obtain (25).
As ‖B‖ ≤ 2, the second part of Lemma 12 in combination with (25) yields that w.h.p.

∀η ⊥ K, ‖η‖ = 1 : | 〈(A − B + Y ′)η, η〉 | ≤ O
(√

d̄k
)

. (31)

As dmin = Ω(d̄) andd̄ = Θ(np/k), (2) and (31) give

∀η ⊥ K, ‖η‖ = 1 : | 〈(A − B + Y ′)η, η〉 | < dmin,

provided that the constantC0 is sufficiently large. ⊓⊔

4 Coloring G
∗

n,p,k
in Polynomial Expected Time

In this section we present the algorithmExpColor for Theorem 3. After exhibiting a few proper-
ties ofG∗

n,p,k in Section 4.1, we outline the algorithmExpColor and its subroutines in Section 4.2.
Sections 4.3–4.5 contain the technical details of the analysis ofExpColor.

Throughout, weG = G∗
n,p,k. We assume that (4) is satisfied with a sufficiently large constantC0.
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4.1 Basic Properties ofG∗

n,p,k

Let U ⊂ {1, . . . , k}, and consider the graphG [VU ] induced on the color classesVi with i ∈ U . Let
u = #U . ThenG [VU ] is u-colorable, so thatSDPu(G [VU ]) = #E(G [VU ]) (cf. (9)). Now letG′ be
a graph obtained fromG by adding random edgesinside the color classesVi, i ∈ U . The following
lemma, which we prove in Section 7.1, shows that these additional random edges do not increase the
value ofSDPu “too much”. More precisely, we haveSDPu(G′) − SDPu(G) = O(nu

k

√
np); note that

by (4)#E(G [Vu]) is binomially distributed with mean
(

u
2

)

n2k−2p ≫ nu
k

√
np.

Lemma 13. LetU ⊂ {1, . . . , k} be a set of cardinalityu = #U . With probability≥ 1−exp (−100nu/k)
the graphG = G∗

n,p,k enjoys the following property.

Let G′ be a graph obtained fromG by adding each edge inside the color classesVi

with probabilityp independently. Then for a certain constantC1 > 0 we have

P
[

SDPu(G′[VU ]) ≤ #E(G[VU ]) + C1
nu

k

√
np
]

≥ 2/3,

where probability is taken over the choice of the random edges inside the color classes.

(32)

We will use Lemma 13 in Section 4.2 in order to investigate thegeometric structure of rigid vector
colorings ofG.

Now consider a single color classVi. The subgraph ofG = G∗
n,p,k consisting only of theVi-V \ Vi-

edges is a random bipartite graph. Hence, we expect that thisbipartite graph is a good “expanding
graph”. To quantify the expansion property of this graph precisely, we need the following concept. Let
T ⊂ V \ Vi, and letη ≥ 0. A setM of T -Vi-edges ofG is ad-fold matching with defect≤ η from T to
Vi if there exists a setD ⊂ T , #D ≤ η, such that

– every vertex inT \ D is incident with preciselyd edges inM , and
– every vertex inVi is incident with at most one edge inM .

Now, we define thedefectdefG(Vi) as follows (cf. [11, Section 2.3]).

D1. If there is a subsetU ⊂ Vi of cardinality#U ≥ n
2k such that#V \ (Vi ∪ NG(U)) > n

200k2 , then
we letdefG(Vi) = n

2k .
D2. Otherwise, we letdefG(Vi) be the least number0 ≤ η ≤ n

2k such that for all6 ≤ d ≤ ⌈50k⌉ the
following holds: every setT ⊂ V \Vi of size#T ≤ n

2dk admits ad-fold matching toVi with defect
≤ η.

ThendefG(Vi) quantifies the expansion of the bipartite graph consisting of the Vi-V \ Vi-edges ofG:
the smaller the defect is, the better is the expansion.

The following lemma bounds the probability that the defect gets large.

Lemma 14. Letηi ≥ 0 for i = 1, . . . , k. ThenP (defG(Vi) ≥ ηi for i = 1, . . . , k) ≤∏k
i=1

(

n/k
ηi

)−100
.

We prove Lemma 14 in Section 7.2. Furthermore, in Section 7.3we prove the following lemma,
which shows that every sufficiently large independent set ofG∗

n,p,k consists mainly of vertices from one
color class w.h.p.

Lemma 15. With probability≥ 1− exp(−100n) the semirandom graphG = G∗
n,p,k enjoys the follow-

ing property.

If U is an independent set inG of size#U ≥ n
100k , then#U ∩Vi > 199

200#U for some
1 ≤ i ≤ k.

(33)

Moreover, with probability≥ 1 − exp(−100n/ lnk) the graphG = G∗
n,p,k satisfies the following

condition for alli ∈ {1, . . . , k}.

If U ⊂ Vi, #U ≥ n
2k ln(k) , then#N̄G(U) ≤ 2n

k . (34)
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4.2 Outline

In order tok-color G, ExpColor(G, k) (cf. Figure 2) runs the procedureClasses, which proceeds
recursively ink stages. In each stage,Classes tries to recover one of the color classesV1, . . . , Vk, and
then hands the graph without the recovered color class to thenext stage. More precisely, ifWl is the set
of vertices that have not yet been colored in the previous stages, then thel’th stage tries to exhibit a set
Sl of large independent sets ofG[Wl]. Then for eachSl ∈ Sl, Classes passes the graphG[Wl \ Sl]
to stagel + 1, which tries to find a(k − l)-coloring of this graph. IfG is “typical”, which happens with
high probability, then eachSl will consist precisely of one color class, so that ak-coloring will be found
immediately.

Algorithm 16. ExpColor(G,k)
Input: A graphG = (V, E), an integerk ≥ χ(G). Output:A k-coloring ofG.

1. For T = 1, . . . , ⌊exp (n/ ln k)⌋ do
2. Let η = max{ξ ∈ Z : exp(ξ),

(

n/k
ξ

)

≤ T}.
For each decomposition η = η1 + · · · + ηk where 0 ≤ ηi ≤ n

2k
are integers such that

∏k

i=1

(

n/k
ηi

)

≤ T do
3. If Classes(G, V, k, η1, . . . , ηk) k-colors G, then output the coloring and halt.
4. For T = ⌈exp (n/ ln k)⌉ , . . . , ⌊exp(n)⌋ do

If Exact(G, k, T ) k-colors G, then output the resulting coloring and halt.
5. Color G optimally via Lawler’s algorithm [30] in time O(2.443n).

Fig. 2. the algorithmExpColor.

However, since our goal is an algorithm thatk-colorsall k-colorable graphs, we also have to deal
with “atypical” input instancesG. To this end,ExpColor uses the variableT , which controls the size
of the “search tree” thatExpColor is building, i.e., what amount of running timeExpColor spends in
order tok-colorG. This amount of time is distributed among thek stages ofClasses via the variables
η1, . . . , ηk. The variableηk−l+1 determines for how “typical” thel’th stage takes its input graph: the
largerηk−l+1, the less “typical” the graph is assumed to be. In order to (try to) produce a setSl that
contains one of the hidden color classes, stagel of ExpColor may spend time(n

(

n/k
ηk−l+1

)

)O(1). Thus,
as the variableT grows from1 to exp(n), the running time increases “smoothly” from polynomial to
exponential.

In addition toClasses, ExpColoras a further subroutineExact. This procedure is used as a
fallback if Classes does notk-colorG beforeT exceedsexp(n/ ln k).

In order to analyzeExpColor, we shall assign to each graphG = G∗
n,p,k a valueT ∗ such that

ExpColor k-colorsG beforeT exceedsT ∗. Then, on the one hand we can bound the running time of
ExpColor(G, k) in terms ofT ∗. On the other hand, we shall investigate the distribution ofT ∗ to prove
that theexpectedrunning time is polynomial.

The procedureClasses. The input ofClasses (cf. Figure 3) consists of the graphG, a setW ⊂
V (G), the numberk, and integersη1, . . . , ηl. Classes is to find anl-coloring ofG[W ]. In Steps 1–3,
Classes computes a setSl of independent sets ofGl = G[W ], each of cardinalityn/k. Then, in Steps
4–5,Classes tentatively colors each of the setsSl ∈ Sl with thel’th color, and calls itself recursively
on input(G, W \ Sl, k, η1, . . . , ηl−1) in an attempt to(l − 1)-colorG[W \ Sl].

Suppose that the input graphG is a semirandom graphG∗
n,p,k with hidden coloringV1, . . . , Vk. Sim-

ilarly as the heuristicColor in Section 3,Classes employs the relaxation̄ϑ2 of the chromatic number
(cf. Section 2 for the definition), but in a more sophisticated way. If ηl < n

2k , then Step 2 ofClasses
tries to use the rigid vector coloring(xv)v∈W to recover a large independent setSv (cf. Lemma 19 be-
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Algorithm 17. Classes(G,W,k, η1, . . . , ηl)
Input: A graphG = (V, E), a setW ⊂ V , integersk, η1, . . . , ηl.
Output:Either anl-coloring ofG[W ] or “fail”.

1. Let Gl = G[W ].
If l = 1 and Gl is an independent set, then return a 1-coloring of Gl.
If ϑ̄2(Gl) > l, then return “fail”.
Otherwise, compute a rigid vector l-coloring (xv)v∈W of Gl.

2. If ηl < n
2k

If for all w ∈ W the set Sw = {u ∈ W : 〈xu, xw〉 ≥ 0.99} has cardinality < 199n
200k

, return “fail”.
Otherwise, let v = min

{

w ∈ W : #Sw ≥ 199n
200k

}

.
Let Sl = Purify(G, Sv, ηl, n/k).

3. else
Let Sl = ∅. For each U ⊂ W , #U = n

2k ln(k)
, do

Let T = N̄Gl
(U).

If #T ≤ 2n/k, then for all I ⊂ T , #I = n/k, do
If I is an independent set, then add I to Sl.

4. For each Sl ∈ Sl do
5. If Classes(G, W \ Sl, k, η1, . . . , ηl−1) (l − 1)-colors G [W \ Sl], return the l-coloring of Gl

obtained by coloring Sl with an l’th color.
6. Return “fail”.

Fig. 3. the procedureClasses.

low). By Lemma 15, with extremely high probabilitySv consists mainly of vertices of one color class
Vi. Then, to recoverVi from Sv, Classes uses a further procedurePurify (cf. Corollary 20 below).

However, ifηl ≥ n
2k , then Step 3 ofClasses assumes that̄ϑ2 behaves “badly”, so that the afore-

mentioned approach is hopeless. Instead, Step 3 enumeratesall subsetsU of W of cardinality n
k ln k and

considers their non-neighborhoods. Eventually, Step 3 will encounter a setU that lies entirely inside a
color classVi. By the second part of Lemma 15, we expect that#N̄Gl

(U) ≤ 2n
k . If so, Step 3 adds

all independent subsets of̄NGl
(U) of cardinality n

k to Sl. Thus, asU is contained in the independent
setVi, we haveVi ⊂ N̄Gl

(U), so that the color classVi will be added toSl. The following proposition
summarizes the analysis ofClasses.

Proposition 18. To each semirandom graphG = G∗
n,p,k that satisfies Properties (33) and (34) we can

associate a sequence(η∗
1 , . . . , η∗

k) ∈
{

0, 1, . . . , n
2k

}k
such that the following two conditions hold.

1. Classes(G, V, k, η∗
1 , . . . , η∗

k) outputs ak-coloring ofG.

2. Letη1, . . . , ηk ≥ 0. ThenP (η∗
i ≥ ηi for all i) ≤∏k

i=1

(

n/k
ηi

)−90
.

The running time ofClasses(G, V, k, η1, . . . , ηk) is at mostnO(1)
∏k

i=1

(

n/k
ηi

)14
.

The crucial insight behindClasses is that w.h.p. we can use the rigid vector coloring to recover
a “large” independent set of size199n

200k (cf. Step 2). By Lemma 15, such an independent set will consist
mainly of vertices from one of the planted color classes, i.e., in the case of success we have recovered a
huge fraction of one color class. In order to extract a large independent set from the vector coloring, the
basic idea is as follows. Imagine that we would throw random edges into the color classes ofG = G∗

n,p,k

by including the edges inside the color classesVi with probability p independently. (Of course, the
algorithmcan’t do this, because it does not know the color classes yet.) Let G′ be the resulting graph.
How doSDPk(G) andSDPk(G′) compare? By Lemma 13, with probability≥ 2

3 over the choice of
the random edges inserted into the color classes,SDPk(G′) exceedsSDPk(G) = #E(G) by at most
O(n3/2p1/2). Hence, if(xv)v∈V is a rigid vectork-coloring of G, then there are onlyO(n3/2p1/2)



17

random edges{v, w} inside the color classesVi whose contribution1 − 〈xv, xw〉 to the sum (cf. (9))

SDPk(G) ≤
(

1 − 1

k

)

∑

{s,t}∈E(G′)

1 − 〈xs, xt〉 ≤ SDPk(G′)

is “large”, say,1 − 〈xv, xw〉 ≥ 1/200. But then we can derive from our assumption (4) that there is at
least one color class such that for almost all verticesv, w in this class the vectorsxv, xw are “close to
each other”, say,〈xv, xw〉 ≥ 0.99. In fact, these vertices can be found easily by “guessing” one of them,
sayw, and considering all the vertices that are close to it, i.e.,the setSw. The following lemma makes
this idea rigorous.

Lemma 19. Let G = G∗
n,p,k. Assume that Property (32) holds for the setU ⊂ {1, . . . , k}, #U =

u > 1. Let (xv)v∈VU
be a rigid vectoru-coloring ofG[VU ]. Then there is a vertexv ∈ VU such that

Sv = {w ∈ VU : 〈xv, xw〉 ≥ 0.99} is an independent set of cardinality≥ 199n
200k in G.

Proof. Consider the graphH = (VU , F ), whereF = {{v, w} : 〈xv, xw〉 < 0.99}. ThenG[VU ] is a
subgraph ofH , because〈xv, xw〉 < 0 for all edges{v, w} ∈ E(G). LetB =

⋃

i∈U E(H [Vi]) be the set
of all edges ofH that join two vertices that belong to the same color class ofG. Let b = #B.

Furthermore, letG′ be the random graph obtained fromG by including eachVi-Vi-edge with prob-
ability p independently for alli ∈ {1, . . . , k}. Note that(xv)v∈V is a feasible solution toSDPu. Hence,
by Property (32), with probability≥ 2/3 over the choice of the random edges inside the color classes
we have

∑

{v,w}∈E(G′[VU ])

u − 1

u
(1 − 〈xv, xw〉) ≤ SDPu(G′[VU ]) ≤ #E(G[VU ]) + C1

nu

k

√
np. (35)

Observe that an edgee = {v, w} of G′[VU ] contributes1 to the sum on the left hand side ife ∈ E(G),
and thate contributes≥ 1

200 if e ∈ B. Therefore, (35) entails that

P
(

#B ∩ E(G′[VU ]) ≤ 200C1
nu

k

√
np
)

≥ 2

3
. (36)

We claim thatb ≤ u
401n2k−2. Indeed, assume for contradiction thatb > u

401n2k−2. Then (4) yields
thatbp > 2000C1nuk−1√np, provided that the constantC0 is large enough. Since#B ∩E(G′[VU ]) is
binomially distributed with meanbp, by the Chernoff bound (10) we obtain

P
(

#B ∩ E(G′[VU ]) > 200C1
nu

k

√
np
)

≥ P

(

#B ∩ E(G′[VU ]) ≥ bp

10

)

≥ 1

2
,

contradicting (36).
Thus,b ≤ u

401n2k−2. Consequently, there is somei ∈ U and a vertexv ∈ Vi such thatv has degree
< n

200k in H [Vi]. Hence,Sv = N̄H(v) has size#Sv ≥ 199n
200k . Furthermore, as for allw, w′ ∈ Sv we

have〈xv, xw〉 , 〈xv, xw′〉 ≥ 0.99, we obtain that〈xw, xw′〉 ≥ 0. Therefore,{w, w′} 6∈ E(G), so thatSv

is an independent set inG. ⊓⊔
In addition to the relaxation̄ϑ2, Step 2 ofClasses employs a procedurePurify from [11]. The

following corollary is a reformulation of [11, Proposition2.6] for the present setting.

Corollary 20. Let G = G∗
n,p,k. Let i ∈ {1, . . . , k}. Suppose thatI is an independent set that satisfies

#I∩Vi ≥ 99n
100k . Further, assume thatdefG(Vi) ≤ η < n

2k . Then the outputS ofPurify(G, I, η, n/k)

containsVi as an element. Finally, the running time ofPurify(G, I, η, n/k) is≤ nO(1)
(

n/k
η

)14
.

Thus, suppose that Step 2 ofClasses recovers a large independent setSv from the rigid vector
coloring such that#Sv already contains99% of the vertices of some color classVi. Then Corollary 20
entails thatPurify will in fact recover the actual classVi, provided that the parameterη exceeds the
defectdefG(Vi). Combining Lemma 19 and Corollary 20, we prove Proposition 18 in Section 4.3.
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The ProcedureExact If Classes fails to k-color the input graphG = G∗
n,p,k, thenExpColor

calls the procedureExact (cf. Figure 4). The goal ofExact is to exhibit ak-coloring ofG in expected
timenO(1) exp(n/ ln k). Thus, the expected running time ofExact is somewhat smaller than the worst
case running timeexp(Θ(n)) of known exact coloring algorithms. In Section 4.4 we prove the following
proposition.

Proposition 21. LetG = (V, E) be ak-colorable graph, and letexp(n/ lnk) ≤ T ≤ exp(n).

1. Exact(G, k, T ) either outputs ak-coloring ofG or “fail”.
2. The running time ofExact(G, k, T ) is≤ nO(1)T 4.
3. If G = G∗

n,p,k, then the probability thatExact(G = G∗
n,p,k, k, T ) answers “fail” is ≤ T−90.

Algorithm 22. Exact(G,k, T )
Input: A graphG = (V, E), an integerk ≥ χ(G), an integerT ≥ 0.
Output:Either ak-coloring ofG or “fail”.

1. Let 0 ≤ x ≤ n be the largest integer such that
(

n
x

)

kxk! ≤ T .
For each triple (X, ϕ, σ), where

• X ⊂ V , #X = x,
• ϕ is a k-coloring of G[X],
• σ is a permutation of {1, . . . , k}

do the following.
2. For l = 1, . . . , k do

If V \ (S1 ∪ · · · ∪Sl−1) has no independent subset of size n/k, then abort the “for” loop
and try the next triple (X, ϕ, σ).
Otherwise, let S′

l be the lexicographically first subset of V \ (S1 ∪ · · · ∪ Sl−1) of size
n/k that is independent in G. Then, let Sl = (S′

l ∪ ϕ−1(σl)) \ ϕ−1({1, . . . , k} \ {σl}).

3. If (S1, . . . , Sk) is a k-coloring of G, then output this coloring and halt.
4. Answer “fail”.

Fig. 4. the procedureExact.

The idea behindExact is to “guess” a certain part of the hidden coloring ofG = G∗
n,p,k. More

precisely,Exact enumerates all setsX of a suitably chosen sizex, and all k-coloringsϕ of X ;
the k-coloring ϕ : X → {1, . . . , k} that Exact is really interested in is the one induced by the
planted coloring ofG. Then, in Step 2,Exact tries to find large independent setsS′

l of G. By Prop-
erty (33), we expect that each of these sets consists mainly of vertices in one color classVσl

. Using the
“guess”(X, ϕ, σ), Exact tries to correct the setS′

l so thatSl = Vσl
: Step 2 removes all vertices in

ϕ−1({1, . . . , k} \ {σl}), i.e., all vertices from the other classes that have erroneously ended up inS′
l ,

and adds all vertices inϕ−1(σl), i.e, all missing vertices fromVσl
. The size of the “guess” ofExact is

ruled by the parameterT . Note that the choice ofx ensures that the number of possible triples(X, ϕ, σ)
is≤ T .

4.3 Proof of Proposition 18

GivenG = G∗
n,p,k, we define the sequenceη∗ = (η∗

1 , . . . , η∗
k) of numbersη∗

i ∈ {0, . . . , n
2k} along with

a permutationσ of {1, . . . , k} inductively as follows. Having definedη∗
i andσi for i = 1, . . . , l− 1, we

let
Ul = {1, . . . , k} \ {σ1, . . . , σl−1}. (37)
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If the graphG[VUl
] does not satisfy Property (32), then we letη∗

l = n/(2k), and letσl = min Ul.
Otherwise, let(xv)v∈VUl

be the rigid vector(k − l + 1)-coloring of G[VUl
] computed by Step 1 of

Classes on inputG andW = VUl
. By Lemma 19, there is a vertexw such that#Sw ≥ 199n

200k . Let

vl = min

{

w ∈ VUl
: #Sw ≥ 199n

200k

}

(38)

be the smallest such vertex (recall thatVUl
⊂ V = {1, . . . , n}). As we assume thatG has Property (33),

there is a uniqueσl ∈ {1, . . . , k} such that#Vσl
∩ Svl

> 99n
100k . Now, we let

η∗
l = defG(Vσl

), (39)

and proceed inductively.
The following lemma establishes the first part of Proposition 18. Throughout, we assume thatG has

Properties (33) and (34).

Lemma 23. Classes(G, V, k, η∗
k, η∗

k−1, . . . , η
∗
1) finds ak-coloring ofG.

Proof. We show by induction that eventuallyVσl
∈ Sl for l = 1, . . . , k. Assume that the algorithm sets

Sj = Vσj
for j = 1, . . . , l − 1. We show that then the setSl computed by

Classes



G, W = V \
l−1
⋃

j=1

Vσj
, k, η∗

k, . . . , η∗
l





containsVσl
as an element. There are two cases to consider.

1st case:η∗
l < n/(2k). Classes executes Step 2. Thus, by (38), Step 2 picksv = vl. Moreover, due

to (39) we haveη∗
l = defG(Vσl

) < n/(2k). Therefore, Corollary 20 entails that the outputSl of
Purify containsVσl

as an element.
2nd case:η∗

l ≥ n/(2k). Eventually, Step 3 will encounter someU ⊂ Vσl
, #U = n

2k ln k . By Prop-
erty (34), we have#N̄Gl

(U) ≤ 2n/k. As Vσl
⊂ N̄Gl

(U), Step 3 addsVσl
to Sl.

Thus, in both cases we haveVσl
∈ Sl, so that eventually Step 4 will trySl = Vσl

. Then Step 5 calls

Classes



G, V \
l
⋃

j=1

Vσj
, k, η∗

k, . . . , η∗
l+1



 .

Hence, proceeding inductively, we conclude that the coloring(Vσ1 , . . . , Vσk
) will be recovered. ⊓⊔

Moreover, the second assertion in Proposition 18 follows from the next lemma.

Lemma 24. Let η1, . . . , ηk ≥ 0 be integers. Letη∗
1 , . . . , η∗

k be as defined above, with input graphG =

G∗
n,p,k. ThenP [η∗

i ≥ ηi for i = 1, . . . , k] ≤∏k
i=1

(

n/k
ηi

)−90
.

Proof. Fix a sequenceη1, . . . , ηk ≥ 0 of integers. LetG = G∗
n,p,k be a semirandom graph with planted

coloringV1, . . . , Vk. Given integers1 ≤ l, λ ≤ k, we define an eventE(l, λ) as follows:G ∈ E(l, λ) iff
there exist two disjoint setsJ1, J2 ⊂ {1, . . . , k} and an injective mapτ : J1 ∪ J2 → {1, . . . , k} such
that the following conditions are satisfied.

E1. #J1 = l and#J2 = λ.
E2. ForU = Vτ(J1) Property (32) is violated.
E3. defG(Vτi

) ≥ ηi ≥ 1 for all i ∈ J2.
E4. ηi = 0 for all i ∈ {1, . . . , k} \ (J1 ∪ J2).
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We shall prove below that

P [E(l, λ)] ≤
k
∏

i=1

(

n/k

ηi

)−98

for all l, λ. (40)

Furthermore, we claim that ifG = G∗
n,p,k is such thatη∗

i ≥ ηi for i = 1, . . . , k, then there exist
l∗, λ∗ so thatG ∈ E(l∗, λ∗). For if Property (32) does not hold inG with U = {1, . . . , k}, then
G ∈ E(k, 0). Otherwise, we can define

l∗ = k − max
{

1 ≤ l ≤ k : Property (32) holds inG[VUj
] for all j ≤ l

}

, (41)

whereUl is defined in (37). In addition, we set

J1 = {k − l∗ + 1, . . . , k} = σ−1(Uk−l∗+1), J2 = {1 ≤ i ≤ k − l∗ : ηi > 0},

and we defineτ : J1 ∪ J2 → {1, . . . , k}, j 7→ σj . Then by (39) and (41),J1, J2, andτ satisfy E1–E4
with respect toE(l∗, λ∗ = #J2). Hence,G ∈ E(l∗, λ∗). As a consequence, ifmaxi=1,...,k ηi > 0, then
we obtain

P [η∗
i ≥ ηi for i = 1, . . . , k] ≤

k
∑

l,λ=1

P [E(l, λ)]
(40)
≤ k2 ·

k
∏

i=1

(

n/k

ηi

)−98 (4)
≤

k
∏

i=1

(

n/k

ηi

)−90

,

as desired.
Thus, the remaining task is to prove (40). If we fix setsJ1, J2, and an injectionτ : J1 ∪ J2 →

{1, . . . , k} such that E1 and E4 hold, then by Lemma 13 and Lemma 14 we have

P [E2, E3 occur] ≤ exp

(

−100ln

k

)

∏

i∈J2

(

n/k

ηi

)−100

≤ exp

(

− ln

k

) k
∏

i=1

(

n/k

ηi

)−99

. (42)

Further, there are

≤
(

k

l

)(

k

λ

)

klλ! ≤ k2l+λ (43)

ways to chooseJ1, J2, andτ subject to E1 and E4. (For there are≤
(

k
l

)

ways to chooseJ1 and≤
(

k
λ

)

ways to chooseJ2. GivenJ1 andJ2, there are≤ kl ways to choose the restriction ofτ to J1, and finally
≤ λ! choices of the restriction ofτ to J2 subject to E4.) Combining (42) and (43), we obtain

P [E(l, λ)] ≤ k2l+λ · exp

(

− ln

k

) k
∏

i=1

(

n/k

ηi

)−99

≤ kλ ·
(

k

n

)λ

·
k
∏

i=1

(

n/k

ηi

)−98

≤
(

k2

n

)λ

·
k
∏

i=1

(

n/k

ηi

)−98 (4)
≤

k
∏

i=1

(

n/k

ηi

)−98

,

thereby establishing (40). ⊓⊔

Proof of Proposition 18.Since the first two assertions follow from Lemmas 23 and 24, wejust need
to bound the running time ofClasses(G, V, k, η1, . . . , ηk). Clearly, Step 1 runs in polynomial time.
Moreover, by Corollary 20, the total time spend on executingStep 2 (for allk stages) is

≤ nO(1)
k
∏

i=1

(

n/k

ηi

)14

. (44)
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Further, Step 3 consumes time

nO(1)

(

n

n/(2k ln k)

)(

2n/k

n/k

)

≤ nO(1)

(

n/k

n/(2k)

)7

; (45)

for there are≤
(

n
n/(2k ln k)

)

ways to choose the setU , and if#T ≤ 2n/k, then there are≤
(2n/k

n/k

)

ways
to choose the setI. Since Step 3 gets executed only ifηl = n

2k , (44) and (45) entail that the total running
time is

≤ nO(1)

[

k
∏

i=1

(

n/k

ηi

)14

+

k
∏

i=1

(

n/k

ηi

)7
]

≤ nO(1)
k
∏

i=1

(

n/k

ηi

)14

,

so that the proposition follows. ⊓⊔

4.4 Proof of Proposition 21

Due to Steps 3–4,Exact(G, k, T ) either outputs ak-coloring of its input graphG or “fail”. Thus, the
remaining task is to bound the running time ofExact on inputG∗

n,p,k.
Thus, letG = G∗

n,p,k, and letV1, . . . , Vk be the plantedk-coloring ofG. Assuming Property (33),
we construct

– setsX∗
l ⊂ V of cardinality2x∗

l for l = 1, . . . , k,
– a permutationσ∗ of {1, . . . , k},
– independent setsS′

1
∗
, . . . , S′

k
∗

inductively as follows. Starting withl = 1, let S′
l
∗ ⊂ V \ ⋃l−1

j=1 Vσ∗

l
be the lexicographically first

independent set of cardinalityn/k. Then by Property (33), there is an1 ≤ i ≤ k such that#Vi ∩S′
l
∗

>
n/(2k). Setσ∗

l = i, let

X∗
l = (Vi \ S′

l
∗
) ∪ (S′

l
∗ \ Vi), (46)

x∗
l = S′

l
∗ \ Vi, (47)

and proceed inductively. Finally, setX∗ =
⋃k

l=1 X∗
l andx∗ = #X∗. Then

x∗ ≤ 2
k
∑

i=1

x∗
i . (48)

Further, letϕ∗ be the coloring induced onX∗ by thek-coloring(V1, . . . , Vk) of G, and set

T ∗ =

(

n

x∗

)

kx∗

k!.

If Property (33) is violated inG, then we letT ∗ = ⌈exp(n)⌉.
Lemma 25. If T ∗ < ⌈exp(n)⌉, thenExact(G, k, T ) outputs ak-coloring for all T ≥ T ∗.

Proof. We claim that at the latest whenT = T ∗, (X, ϕ, σ) = (X∗, ϕ∗, σ∗) Steps 2–3 ofExact will
k-color G. The proof is by induction onl = 1, . . . , k. Suppose thatExact has setSj = Vσj

for all

1 ≤ j < l. To show that thenSl = Vσl
, we letS′

l ⊂ V \⋃l−1
j=1 Sj = V \⋃l−1

j=1 Vσj
be the independent

set of sizen/k computed in Step 2. AsS′
l is the lexicographically first independent set of sizen/k, by

construction we haveS′
l = S′

l
∗. Hence, (46) entails that

(Vσl
\ S′

l) ∪ (S′
l \ Vσl

) = X∗
l ⊂ X∗ = X. (49)

As σ = σ∗ andϕ = ϕ∗ is thek-coloring induced by(V1, . . . , Vk) onX∗, we get

Sl = (S′
l ∪ ϕ−1(σl)) \ ϕ−1({1, . . . , k} \ {σl}) = (S′

l ∪ (X∗ ∩ Vσl
)) \ (X∗ \ Vσl

)
(49)
= Vl,

as desired. Thus, Steps 2–3 find ak-coloring. ⊓⊔
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Lemma 26. Let exp(n/ ln k) ≤ T ≤ ⌈exp(n)⌉. ThenP [T ∗ > T ] ≤ T−90.

Proof. If G violates Property (33), thenT ∗ = ⌈exp(n)⌉, and the assertion follows from Lemma 15.
Thus, we may assume that Property (33) holds. Set

x(T ) = max

{

x ≥ 0 : ∀ 0 ≤ y ≤ x : T ≥
(

n

y

)

kyk!

}

,

X (T ) =

{

(x1, . . . , xk) ∈ {0, . . . , x(T )}k :
k
∑

i=1

xi =

⌈

x(T )

2

⌉

}

.

Since (4) entails

(

n

100k/p

)

k100k/pk! ≤
(

n

100k/p

)2

k200k/p ≤
(enp

100

)200k/p

≤ exp
( n

ln k

)

≤ T,

we conclude that

x(T ) ≥ 100k

p
. (50)

Given a sequencex1, . . . , xk of integers≥ 0, we consider the following eventE(x1, . . . , xk):

there is a permutationσ of {1, . . . , k} and a collection of setsS′′
1 , . . . , S′′

k such thatS′′
l ⊂ Vσl

,
#S′′

l ≥ n
2k , and#N̄G(S′′

l ) \ Vσl
≥ xi for l = 1, . . . , k.

We shall prove below that for all(x1, . . . , xk) ∈ X (T )

P [E(x1, . . . , xk)] ≤ exp

(

2n −
[np

4k
− lnn

] x(T )

2

)

. (51)

Now, letG = G∗
n,p,k be such thatT ∗ > T . Let S′′

l = S′
l
∗ ∩ Vσ∗

l
. Because the setsS′

l
∗ are indepen-

dent, we haveS′
l
∗ \ Vσ∗

l
⊂ N̄G(S′′

l ) (l = 1, . . . , k). Moreover, by construction we have#S′′
l ≥ n

2k , so
thatE(x∗

1, . . . , x
∗
k) occurs (cf. (47)). Further, asT ∗ > T , we have

x(T ) < x∗
(48)
≤ 2

k
∑

i=1

x∗
i .

Reducing some of thex∗
i ’s if necessary, we obtain a sequence(x1, . . . , xk) ∈ X (T ) such thatE(x1, . . . , xk)

occurs. Thus,

P [T ∗ > T ] ≤
∑

(x1,...,xk)∈X (T)

P [E(x1, . . . , xk)]
(51)
≤#X (T ) · exp

(

2n −
[np

4k
− lnn

] x(T )

2

)

. (52)

Observe that

#X (T ) ≤
(

x(T ) + k − 1

k − 1

)

≤ 2x(T )+k−1, (53)

T ≤
(

n

x(T ) + 1

)

kx(T )+1k!
(50)
≤ exp(4x(T ) lnn). (54)

Therefore, continuing (52), we get

P [T ∗ > T ]
(53)
≤ 2x(T)+k−1 exp

(

2n −
[np

4k
− lnn

] x(T )

2

)

(50)
≤ exp

(

2x(T ) ln(n) + 2n − np

4k
x(T )

) (4), (50)
≤ exp

(

−np

8k
x(T )

) (4), (54)
≤ T−90,
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as desired.
Finally, let us prove (51). Let(x1, . . . , xk) ∈ X (T ). Let us fix setsS′

l ⊂ Vσl
of cardinality≥ n

2k for a
moment. In addition, consider setsX1, . . . , Xk such thatXl ⊂ V \Vσl

and#Xl = xl for l = 1, . . . , k.

If eG(Xl, S
′
l) = 0 for l = 1, . . . , k, then we know of≥ 1

2

∑k
l=1 #Xl · #S′

l ≥ nx(T )

4k edges that are not
present inG = G∗

n,p,k, although each of these edges occurs with probabilityp independently inGn,p,k.
Hence,

P [eG(Xl, S
′
l) = 0 for l = 1, . . . , k] ≤ (1 − p)nx(T )/(4k) ≤ exp

(

−x(T )np

4k

)

. (55)

Furthermore, given the permutationσ, there are at most2n/k ways to choose the setS′
l . Moreover, there

are at most
(

n
xl

)

ways to choose the setXl. Therefore, the union bound and (55) yield

P [E(x1, . . . , xk)] ≤ exp

(

−x(T )np

4k

)

· k!

k
∏

l=1

(

n

xl

)

2n/k

≤ k! exp
(

n +
[

ln(n) − np

4k

]

x(T )
) (4)

≤ exp
(

2n +
[

ln(n) − np

4k

]

x(T )
)

,

so that (51) follows. ⊓⊔

Proof of Proposition 21.The first assertion is immediate. Forexp(n/ ln k) ≤ T ≤ ⌈exp(n)⌉, Steps 1–3
of Exact(G, k, T ) consume time

≤ nO(1)

[(

n

x

)

kxk!

]

·
(

n

n/k

)

≤ nO(1)T · exp

(

2n

ln k

)

≤ nO(1)T 3;

for there are≤
(

n
x

)

kxk! ways to choose the triple(X, ϕ, σ), and Step 2 needs to check≤
(

n
n/k

)

subsets
of V . Hence, the proposition follows from Lemma 25 and Lemma 26. ⊓⊔

4.5 Proof of Theorem 3

By Proposition 21,ExpColor computes ak-coloring of everyk-colorable input graph. Thus, the re-
maining task is to show thatExpColor(G∗

n,p,k, k) runs in polynomial expected time.
Given 1 ≤ T ≤ exp(n/ lnk), we can bound the running time of Steps 2–3 ofExpColor as

follows. There are at mostzη =
(

η+k−1
k−1

)

ways to choose the numbersη1, . . . , ηk. If η ≥ k − 1, then

zη ≤ 2η+k−1 ≤ exp(2η) ≤ T 2, (56)

by the definition ofη. Moreover, ifη < k − 1, then due to (4) we have

zη =

(

η + k − 1

η

)

≤
(

2k

η

)η

≤
(

n

kη

)2η

≤
(

n/k

η

)2

≤ T 2. (57)

Further, having fixed(η1, . . . , ηk), by Proposition 18 Step 3 consumes time≤ nO(1)
∏k

i=1

(

n/k
ηi

)

≤
nO(1)T 14. Thus, the total running time of Steps 2–3 for a givenT is

RT ≤ zη · nO(1)T 14
(56), (57)
≤ nO(1)T 16. (58)

Now let G = G∗
n,p,k. Then we define a numberT ∗ = T ∗(G∗

n,p,k) as follows. If G violates
Property (33), then we setT ∗

1 = exp(n). Otherwise, ifG violates Property (34), then we letT ∗
1 =

exp(n/ ln k). Moreover, ifG satisfies both Property (33) and (34), then let(η∗
1 , . . . , η∗

k) be as in Propo-
sition 18 and setT ∗

1 =
∏k

i=1

(

n/k
η∗

i

)

. In addition, let

T ∗
2 = min {exp(n/ lnk) ≤ T ≤ ⌈exp(n)⌉ : Exact(G, k, T ) finds ak-coloring ofG} .
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SetT ∗ = T ∗
1 , if T ∗

1 ≤ exp(n/ lnk), andT ∗ = max{T ∗
1 , T ∗

2 } otherwise. Then by Proposition 18 and
Proposition 21,ExpColor finds ak-coloring ofG before the variableT exceedsT ∗.

Combining Propositions 18 and 21 and Lemmas 13 and 15, we conclude that

P [T ∗ > T ] ≤ T−80 (59)

for all 1 ≤ T ≤ ⌈exp(n)⌉. Consequently, by (58) and (59) we get

⌊exp(n/ ln k)⌋
∑

T=1

RT P [T ∗ > T ] ≤ nO(1)
∞
∑

T=1

T 16−80 = nO(1),

so that the expected time spent on executing Steps 1–3 ofExpColor is polynomial. Finally, ifT ∗ ≥
exp(n/ ln k), then by Proposition 21 the expected time spent on executingSteps 4–5 ofExpColor is
polynomial as well. Thus,ExpColor(G∗

n,p,k, k) runs in polynomial expected time.

5 Coloring G
∗

n,p,k
Optimally in Polynomial Expected Time

The goal of this section is to prove Theorem 4.Throughout, we assume that (5) holds.The algorithm
OptColor is based on the following observation.

Lemma 27. We haveP
[

ϑ̄2(G
∗
n,p,k) ≤ k − 1

2

]

≤ exp(−100n).

Proof. Let G0 = Gn,p,k, and letG = G∗
n,p,k ∈ I(G0) be a semirandom graph obtained fromG0. Let

h = k − 1
2 . If ϑ̄2(G0) ≤ ϑ̄2(G) ≤ h, thenG0 has a rigid vectorh-coloring (xv)v∈V . Plugging the

feasible solution(xv)v∈V into the semidefinite programSDPh, we conclude that

if ϑ̄2(G0) ≤ h, thenSDPh(G0) ≥ #E(G0) (cf. (9)). (60)

Furthermore, as#E(G0) is binomially distributed with mean(1 − k−1)n2p/2, (10) entails that

P

[

#E(G0) ≤ (1 − k−1)
n2p

2
− Cn3/2p1/2

]

≤ exp(−101n), (61)

whereC > 0 denotes a suitable constant. Combining (60) and (61), we conclude that

P
[

ϑ̄2(G
∗
n,p,k) ≤ h

]

≤ exp(−101n) + P

[

SDPh(Gn,p,k) ≥ (1 − k−1)
n2p

2
− Cn3/2p1/2

]

≤ exp(−101n) + P

[

SDPh(Gn,p,k) ≥ (1 − h−1)
n2p

2
+

n2p

4k2
− Cn3/2p1/2

]

(5)
≤ exp(−101n) + P

[

SDPh(Gn,p,k) ≥ (1 − h−1)
n2p

2
+

(√
C0

4
− C

)

n3/2p1/2

]

. (62)

Choosing the constantC0 large enough, we can ensure that
√

C0/4 − C ≥ √
C0/8. Furthermore, as

the random graphGn,p can be obtained fromGn,p,k by adding random edges inside the planted color
classesV1, . . . , Vk, the monotonicity property (8) entails thatSDPh(Gn,p,k) is stochastically dominated
by SDPh(Gn,p). Hence, (62) yields

P
[

ϑ̄2(G
∗
n,p,k) ≤ h

]

≤ exp(−101n) + P

[

SDPh(Gn,p) ≥ (1 − h−1)
n2p

2
+

√
C0

8
n3/2p1/2

]

. (63)

Finally, Lemma 5 entails that

P

[

SDPh(Gn,p) ≥ (1 − h−1)
n2p

2
+

√
C0

4
n3/2p1/2

]

≤ exp(−101n), (64)

provided that the constantC0 is sufficiently large. Thus, the assertion follows from (63)and (64). ⊓⊔
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Algorithm 28. OptColor(G)
Input: A graphG = (V, E). Output:An optimal coloring ofG.

1. Let κ =
⌈

ϑ̄2(G)
⌉

.
2. Call ExpColor(G,κ) and output the resulting coloring.

Fig. 5. the algorithmOptColor.

Given an input graphG = (V, E), the algorithmOptColor just computes the lower boundκ =
⌈

ϑ̄(G)
⌉

onχ(G) and callsExpColor(G, κ) (cf. Figure 5).

Proof of Theorem 4.If κ = k, then Theorem 3 shows thatExpColor(G, κ) finds aκ-coloring of
G = G∗

n,p,k. Furthermore, ifκ < k, then either Steps 1–4 ofExpColor(G, κ) will color G with κ
colors, or Step 5 ofExpColor computes an optimal coloring ofG. Hence, asκ ≤ χ(G), in any case
OptColor outputs an optimal coloring. Finally, the fact that the expected running time ofOptColor
is polynomial follows from Theorem 3 and Lemma 27. ⊓⊔

6 Proof of Theorem 2

Consider a random graphG0 = Gn,p,k, and letV1, . . . , Vk be its color classes, where#Vi = n/k. Let
p = dk/n, d = (1

2 −ε) ln(n/k). Let i, j1, j2 ∈ {1, . . . , k} be distinct. Then for eachv ∈ Vi, the number

d
(j1)
v of neighbors ofv in Vj1 has binomial distribution with parametersn/k andp. Therefore,

P(d(j1)
v = 0) = P(d(j2)

v = 0) = (1 − p)n/k ∼ exp(−d) =
(n

k

)ε−1/2

.

Thus,P(d
(j1)
v = d

(j2)
v = 0) ∼ (n/k)2ε−1. Hence, the expected number of verticesv ∈ Vi satisfying

d
(j1)
v = d

(j2)
v = 0 is ∼ (n/k)2ε. Since edges are chosen independently, by the Chernoff bound (10)

the number of such vertices is in fact≥
(

n
k

)ε
w.h.p. Consequently, w.h.p. there are setsSi ⊂ Vi,

#Si =
(

n
k

)ε
, i = 1, 2, 3, such thatNG0(Si) ∩ (V1 ∪ V2 ∪ V3) = ∅.

Now assume that we had an algorithmA that cank-colorG∗
n,p,k w.h.p. LetH be an arbitrary graph

that admits a 3-coloring with color classes of cardinality
(

n
k

)ε
each. We show how to convertA into a

randomized algorithm that 3-colorsH , which is NP-hard. First, randomly partitionV = {1, . . . , n} into
k setsV1, . . . , Vk of cardinalityn/k. Then choose

(

n
k

)ε
verticesSi from Vi at random fori = 1, 2, 3.

Further, form a completek-partite graph on the verticesV1\S1, V2\S2, V3\S3, V4, . . . , Vk, and connect
S1 ∪ S2 ∪ S3 completely withV4 ∪ · · · ∪ Vk. Finally, embed a randomly permuted copy ofH into the
setS1 ∪ S2 ∪ S3 (without taking care of the coloring ofH , of course). LetG be the resulting graph. We
claim that runningA(G) yields ak-coloring ofG w.h.p.

To prove the claim, we volunteer as an adversary that givenG0 = Gn,p,k produces the instance
G described above. (To this end, we may use unlimited computational power.) Given a random graph
G0 = Gn,p,k with color classesV1, . . . , Vk, we first look for setsSi ⊂ Vi such that#Si =

(

n
k

)ε
and

N(Si)∩ (V1 ∪ V2 ∪ V3) = ∅, i = 1, 2, 3. As pointed out above, such setsS1, S2, S3 exist w.h.p.– if not,
we give up. Then, we turnG0−(S1∪S2∪S3) into a completek-partite graph, and connectS1∪S2∪S3

completely withV4∪· · ·∪Vk. Further, we compute a3-coloring of the worst-case instanceH with color
classes of equal size, permute the vertices in each of the three color classes ofH randomly, and map
the three color classes ontoS1, S2, S3 (thus, this time we respect the coloring). Thedistributionof the
resulting graphG′ coincides with the distribution of the graphG constructed in the previous paragraph,
so thatA k-colorsG w.h.p. As anyk-coloring ofG induces a 3-coloring onG[S1 ∪ S2 ∪ S3] = H , we
have shown that a polynomial time algorithm fork-coloringG∗

n,p,k w.h.p. yields a randomized algorithm
for 3-coloring the worst-case instanceH .
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Remark 29.The only difference between the above construction and the ones given in [16] is that in-
stead of reducing the problem ofk-coloring ak-colorable graph tok-coloringG∗

n,p,k, we reduced the
problem of3-coloring a3-colorable graph tok-coloringG∗

n,p,k. The idea of working a worst-case in-
stance into the semirandom instance occurs already in [4].

7 Proofs of Auxiliary Lemmas

Throughout, we assume that (4) holds for some large enough constantC0 > 0.

7.1 Proof of Lemma 13

By Lemma 5 there exists a constantC1 > 0 such that

P

[

SDPu(Gun/k,p) ≤
(

1 − 1

u

)(

un/k

2

)

p +
C1

2

un

k

√
np

]

≥ 1 − exp

(

−201un

k

)

. (65)

Now considerG0 = Gn,p,k, and letG′
0 be a graph obtained fromG0 by adding each edge inside the

planted color classesVi, i = 1, . . . , k, with probabilityp independently. ThenG′
0 is distributed as a

random graphGn,p. Thus, in particular,

G′
0[VU ] = Gun/k,p. (66)

LetB be the event that#E(G0[VU ]) ≥
(

1 − 1
u

) (

un/k
2

)

p− C1nu
2k

√
np. Furthermore, letA be the event

that (32) is violated forVU in G0. Then invoking (65) and (66), we obtain

1

3
P (A∩ B) ≤ P

[

SDPu(Gun/k,p) >

(

1 − 1

u

)(

un/k

2

)

p +
C1

2

un

k

√
np

]

≤ exp

(

−201un

k

)

. (67)

Moreover,#E(G0[VU ]) is binomially distributed with meanE [#E(G0[VU ])] =
(

u
2

) (

n
k

)2
p ∼

(

1 − 1
u

)

·
(

un/k
2

)

. Hence, choosing the constantC1 > 0 sufficiently large and applying the Chernoff bound (10),
we get

P (B) ≥ 1 − exp

(

−201nu

k

)

. (68)

Now, (68) implies thatP (A \ B) ≤ P(¬B) ≤ exp (−201nu/k) , which in combination with (67)
entails

P(A) = P (A ∩ B) + P (A \ B) ≤ 2 exp

(

−201nu

k

)

≤ exp

(

−200nu

k

)

. (69)

Finally, let G = G∗
n,p,k. Let G0 = Gn,p,k be the randomk-colorable graph contained inG. Let

M = #E(G [VU ])−#E(G0 [VU ]) be the number of edges added by the adversary. ThenSDPu(G′) ≤
SDPu(G′

0) + M, because adding one edge can increase the value ofSDPu by at most 1. Therefore, if
SDPu(G′

0) ≤ #E(G′
0 [VU ]) + C1

nu
k

√
np, then

SDPu(G′) ≤ M + #E(G′
0 [VU ]) + C1

nu

k

√
np = #E(G′ [VU ]) + C1

nu

k

√
np.

Hence, the assertion follows from (69).

7.2 Proof of Lemma 14

Throughout, we fix a partition(V1, . . . , Vk) of V = {1, . . . , n} intok disjoint sets of cardinalityn/k. Let
G0 = Gn,p,k be a randomk-colorable graph with planted coloringV1, . . . , Vk, and letG = G∗

n,p,k be the
semirandom graph obtained fromG0 by the adversary. ThendefG(Vi) ≤ defG0(Vi) for i = 1, . . . , k.
Hence, it suffices to show that Lemma 14 holds forG = G0 = Gn,p,k.
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Since onG = Gn,p,k the random variables(defG(Vi))i=1,...,k are not mutually independent, we
decomposeG into k mutually independent subgraphsG(i) and investigate the defectsdefG(i)(Vi) (i =
1, . . . , k). Letting

p′ = 1 −
√

1 − p ≥ p/2, (70)

we obtain the graphG(i) by including each of the(1 − k−1)k−1n2 possible(V \ Vi)-Vi-edges with
probabilityp′ independently. Thus,G(i) is a random bipartite graph. Furthermore, in the union

H =
k
⋃

i=1

G(i) =

(

V,
k
⋃

i=1

E(G(i))

)

everyVi-Vj-edge is present with probability2p′ − p′2 = p independently of all other edges (i 6= j).
Therefore,H has the same distribution asG = Gn,p,k. As a consequence, givenη1, . . . , ηk ≥ 0, we
have

P [defG(Vi) ≥ ηi for i = 1, . . . , k] = P [defH(Vi) ≥ ηi for i = 1, . . . , k]

≤ P [defG(i)(Vi) ≥ ηi for i = 1, . . . , k] =
k
∏

i=1

P [defG(i)(Vi) ≥ ηi] ,

because the graphsG(i) are mutually independent. Hence, our aim is to prove that

P [defG(i)(Vi) ≥ ηi] ≤
(

n/k

ηi

)−100

for i = 1, . . . , k. (71)

To prove (71), we first bound the probability that Condition D1 in the definition of the defect occurs.

Lemma 30. With probability≥ 1− exp(−100n/k) the random graphG(i) has the following property.

If U ⊂ Vi has cardinality≥ n
2k , then#V \ (Vi ∪ NG(i)(U)) ≤ n

200k2 . (72)

Proof. Assuming thatnp ≥ C0k
2 for a sufficiently large constantC0 (cf. (4)), we haves = 300/p ≤

n/(200k2). Fix a setU ⊂ Vi of cardinality≥ n
2k for a moment. Then

P [V \ (Vi ∪ NG(i)(U)) ≥ s] ≤
(

n

s

)

(1 − p′)ns/k
(70)
≤
(en

s

)s

exp
(

−nps

2k

)

≤ exp

(

300 ln(np)

p
− 150n

k

)

(4)
≤ exp

(

−149n

k

)

. (73)

As there are≤ 2n/k setsU ⊂ Vi of cardinality≥ n
2k , due to the union bound (73) entails that

P [(72) is violated] ≤ 2n/k exp

(

−149n

k

)

≤ exp

(

−148n

k

)

,

so that the assertion follows. ⊓⊔

Furthermore, the next lemma regards Condition D2 in the definition of the defect.

Lemma 31. Let1 ≤ η ≤ n
2k . Then with probability≥ 1 −

(

n/k
η

)−101
the graphG(i) has the following

property.

Let6 ≤ d ≤ ⌈50k⌉. Then every subsetT ⊂ V \ Vi of size#T ≤ n
2kd has ad-fold matching to

Vi with defect≤ η.

To prove Lemma 31, we need the following observation.
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Lemma 32. The probability that inG(i) there areη ≥ 1 vertices inV \ Vi that have< np′/(2k)
neighbors inVi is ≤ n−200η.

Proof. Letv ∈ V \Vi. AseG(i)(v, Vi) is binomially distributed with meannp/k, the Chernoff bound (10)
yields

P

[

eG(i)(v, Vi) ≤
np′

2k

]

≤ exp

(

−np′

8k

)

.

Therefore, the probability that there are≥ η ≥ 1 such vertices is

≤
(

n

η

)

exp

(

−np′η

8k

)

(70)
≤ exp

[(

ln(n) − np

16k

)

η
] (4)
≤n−200η,

as claimed. ⊓⊔
In addition, we need the following lemma from [11, Lemma 4.3].

Lemma 33. Let V ′ ⊂ V be a subset of cardinalityn1, and letV ′′ = V \ V ′, #V ′′ = n2. Let γ > 0
be an arbitrary constant, and let2 ≤ d ≤ n2/10. Then there exists a numberω0 = ω0(γ) such that the
following holds. Letω = ω0 max{d, lnn}, and letH be a random bipartite graph obtained as follows:
every vertex inV ′ chooses a set of at leastω = ω0 max{d, lnn} neighbors inV ′′ uniformly at random;
these choices occur independently for all vertices inV ′. Then for allη ∈ {0, 1, . . . , n2/2} we have

P
[

∃T ⊂ V ′ : #T ≤ n2

2d
∧ #NH(T ) < d#T − η

]

≤
(

n2

η

)−γ

.

Proof of Lemma 31.Fix 6 ≤ d ≤ ⌈50k⌉. We say thatG(i) is (d, η)-goodif every setS ⊂ V \ Vi admits
ad-fold matching toVi with defect≤ η. Let ω = np′/(2k), W = {v ∈ V \ Vi : eG(i)(v, Vi) ≤ ω}, and
G′ = G(i) [V \ W ]. Let ω0 = ω0(110) be the number from Lemma 33. If we choose the constantC0

large enough, then (4) and (70) yield thatω ≥ ω0 · max{d, lnn}.
Letting0 ≤ η1 ≤ η, we have

P(#W = η1) ≤ n−200η1 (74)

by Lemma 32. In addition, setη2 = η−η1. Let us call a setT ⊂ V \ (Vi∪W ) (d, η2)-badif #T ≤ n
2kd

andeG(i)(T, Vi) < d#T − η2. Then Lemma 33 entails that

P(G(i) has a(d, η2)-bad set|#W = η1) ≤
(

n/k

η2

)−110

. (75)

If G(i) has no(d, η2)-bad set, thenG(i) is (d, η)-good. For ifS ⊂ V \ Vi has size#S ≤ n
2dk , then

Hall’s theorem entails thatT = S \ W has ad-fold matching toT with defect≤ η2. As a consequence,
(74) and (75) yield

P
[

G(i) is not(d, η)-good
]

≤
η
∑

η1=0

P [#W = η1] P
[

G(i) has a(d, η2)-bad set|#W = η1

]

≤
η
∑

η1=0

n−200η1

(

n/k

η2

)−110

≤
(

n/k

η

)−109

. (76)

Summing (76) over6 ≤ d ≤ ⌈50k⌉, we obtain

P
[

G(i) is (d, η)-good for all6 ≤ d ≤ ⌈50k⌉
]

≥ 1 − 50k

(

n/k

η

)−109 (4)
≥ 1 −

(

n/k

η

)−108

,

thereby proving the lemma. ⊓⊔
Combining Lemma 30 and Lemma 31, we conclude that (71) holds,thereby completing the proof

of Lemma 14.
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7.3 Proof of Lemma 15

To establish the first part of Lemma 15, it suffices to considerrandomk-colorable graphsG = Gn,p,k.
Let V1, . . . , Vk be the plantedk-coloring. LetU ⊂ V be any set of cardinalityu = #U ≥ n

100k such
that

ui = #U ∩ Vi ≤
199

200
u for i = 1, . . . , k. (77)

Our goal is to bound the probability thatU is independent inG. Clearly,u =
∑k

i=1 ui, and the number

of possible edges among the vertices ofU is λ =
∑

1≤i<j≤k uiuj = 1
2

[

u2 −∑k
i=1 u2

i

]

. Note that

λ is minimized subject to (77) when
∑

i u2
i is maximized. Thus,λ attains its minimal value foru1 =

199u/200, u2 = u/200, andui = 0 for i > 2. Consequently, there is a constantC1 > 0 such that

λ ≥ 199

40000
u2 ≥ C1

(n

k

)2

. (78)

Hence,

P [U is indepdendent] ≤ (1 − p)λ
(78)
≤ exp

(

−C1
n2p

k2

)

(4)
≤ exp(−101n), (79)

provided that the constantC0 is large enough. As there are≤ 2n ways to chooseU , the assertion follows
from the union bound and (79).

As for the second assertion, letG = Gn,p,k be a randomk-colorable graph with planted coloring
V1, . . . , Vk. Consider a setU ⊂ Vi, #U ≥ n

2k ln k . Then

P
[

#N̄G(U) \ Vi >
n

k

]

≤
∑

T⊂V \Vi, #T=n/k

P [eG(U, T ) = 0] ≤
(

n

n/k

)

(1 − p)n2/(2k2 ln k)

≤ exp

(

2n

k
ln(k) +

n

k
− n2p

2k2 ln k

)

(4)
≤ exp

(

−100n

ln k

)

,

provided that the constantC0 is sufficiently large.
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