
Combinatorics, Probability and Computing (2005) 00, 000–000. c© 2005 Cambridge University Press
DOI: 10.1017/S0000000000000000 Printed in the United Kingdom

Finding Large Independent Sets in

Polynomial Expected Time

AMIN COJA-OGHLAN†

Humboldt-Universität zu Berlin, Institut für Informatik,

Unter den Linden 6, 10099 Berlin, Germany

coja@informatik.hu-berlin.de

We consider instances of the maximum independent set problem that are constructed
according to the following semirandom model. Let Gn,p be a random graph, and let
S be a set of k vertices, chosen uniformly at random. Then, let G0 be the graph
obtained by deleting all edges connecting two vertices in S. Finally, an adversary may
add edges to G0 that do not connect two vertices in S, thereby producing the instance
G = G∗

n,p,k. We present an algorithm that on input G = G∗
n,p,k finds an independent

set of size ≥ k within polynomial expected time, provided that k ≥ C(n/p)1/2 for a
certain constant C > 0. Moreover, we prove that in the case k ≤ (1 − ε) ln(n)/p this
problem is hard.

1. Introduction and Results

1.1. The Maximum Independent Set Problem and Random Graphs

An independent set in a graph G = (V, E) is a set S of vertices of G such that no

two vertices in S are adjacent. The independence number α(G) is the size of a largest

independent set. The maximum independent set problem–given a graph G, find an inde-

pendent set of maximum cardinality–is well known to be NP-hard. Indeed, H̊astad [17]

has shown that unless NP = ZPP, no polynomial time algorithm approximates α(G)

within a factor of n1−ε (ε > 0 arbitrarily small but constant). Consequently, since we do

not hope for efficient algorithms that compute good approximate solutions in the worst

case, it is natural to ask for efficient algorithms that perform well on average instances,

as proposed by Karp already in 1976 [21].

The common way to describe “average” instances is to consider a probability distri-

bution on the instances, i.e., on graphs. Since the seminal work of Erdős and Rényi,

the binomial model Gn,p has been the standard model of a random graph. Both the

combinatorial structure and the algorithmic theory of Gn,p have been studied inten-

sively [5, 14, 18]. Given a parameter 0 < p = p(n) < 1, the random graph Gn,p is

† Research supported by the Deutsche Forschungsgemeinschaft (grant DFG FOR 413/1-1).

2 Amin Coja-Oghlan

obtained by including each of the
(

n
2

)

possible edges with probability p independently of

all others. We say that Gn,p enjoys some property P with high probability (whp.) if the

probability that Gn,p satisfies P converges to 1 as n → ∞.

The probable value of the independence number of Gn,p has been determined by Bol-

lobás and Erdős, Frieze, and Matula [6, 13, 25] (cf. [18] for a unified treatment), who

have proved that

α(G) ∼

{

2 log1/(1−p)(n) for constant 0 < p < 1
2 ln(np)

p for 1/n ≪ p = o(1)
whp. (1.1)

With respect to algorithms, it is known that, e.g., in the case p = 1/2 a simple greedy

heuristic (that just computes a maximal independent set w.r.t. inclusion) whp. finds an

independent set of size ∼ log2(n) and hence is (2+o(1))-approximative whp. The reason is

that whp. all maximal independent sets of G = Gn,1/2 are of size ≥ (1
2 +o(1))α(G) (cf. [5,

p. 288]). Remarkably, no polynomial time algorithm is known to find an independent set

of size ≥ (1 + Ω(1)) log2(n) whp.

Although on input Gn,1/2 the greedy heuristic whp. achieves a (2 + o(1))-approxima-

tion, there is a serious drawback. Namely, the greedy heuristic does not compute an

upper bound on the independence number, and hence cannot distinguish between such

input graphs G = Gn,p with a “low” α(G) as in (1.1), and “exceptional” inputs with

much larger α(G). In fact, it is easy to figure out graphs G for which the ratio between

α(G) and the size of the independent set computed by the greedy heuristic is Ω(n).

To cope with the NP-hardness of approximating the independence number, Krivelevich

and Vu [24] have proposed an approximation algorithm that runs in polynomial expected

time applied to Gn,p, rather than in worst-case polynomial time. Let RA(G) denote the

running time of an algorithm A on input G. We say that A has a polynomial expected

running time applied to Gn,p, if there is a constant l > 0 such that
∑

G RA(G)P(G =

Gn,p) = O(nl), where the sum ranges over all graphs on n vertices. The algorithm

of Krivelevich and Vu achieves an approximation guarantee of O((np)1/2(ln np)−1) on

all input graphs, and runs in polynomial expected time applied to Gn,p, provided that

n−1/2 ≤ p ≤ 0.99. Coja-Oghlan and Taraz [9, 10] have given a similar algorithm that

works for the entire range of edge probabilities 1/n ≤ p ≤ 0.99.

The algorithms suggested in [9, 10, 24] essentially combine the greedy heuristic with

a technique for computing an upper bound on the independence number. For instance,

the algorithm of Krivelevich and Vu [24] uses the greedy heuristic to find an independent

set S of size Ω(ln(np)/p). Then, the algorithm computes the largest eigenvalue λ of

a certain auxiliary matrix, which is an upper bound on the independence number. If

λ ≤ 4(n/p)1/2, then the output is just S, the cardinality of S being within the desired

approximation ratio. However, if λ > 4(n/p)1/2, the algorithm has a super-polynomial

running time. Still, the expected running time remains polynomial, because on input

Gn,p, the probability that λ > 4(n/p)1/2 is extremely small.

1.2. Semirandom Models

However, there are several reasons why Gn,p may fail to provide an appropriate model

of the “average” instances we are confronted with. First, since all inclusion-maximal

Finding Large Independent Sets in Polynomial Expected Time 3

independent sets of Gn,p are of size (1.1) up to a constant factor whp., Gn,p cannot

model instances that actually contain one very large independent set that we are to find.

Indeed, in the case α(G) > 4(n/p)1/2 the approximation algorithms for Gn,p [9, 10, 24]

have an exponential running time. Moreover, Gn,p enjoys several well-studied structural

properties (cf. [5, 18]) that the “average” instances we have in mind may not have. For

example, if 0 < p < 1 is constant, then whp. all vertex degrees of Gn,p are roughly np, and

the largest eigenvalue of the adjacency matrix is separated from the second eigenvalue

(cf. [15]). Hence, it would be desireable to study a model that

• covers the case of “average” instances containing some large independent set, and

• describes instances that lack some typical properties of Gn,p.

In this paper, we study a semirandom model for the maximum independent set problem

that meets the above requirements. The first semirandom models (for the k-coloring

problem) have been studied by Blum and Spencer [4]. As instances of semirandom graph

problems consist of a random share and a worst case part constructed by an adversary,

such models intermediate between the worst-case paradigm and random graphs.

The following semirandom model has been proposed by Feige and Krauthgamer [12].

Let V = {1, . . . , n}. First, a set S ⊂ V of cardinality Ω(n1/2) is chosen uniformly at

random. Then, every edge {v, w}, v ∈ V , w ∈ V \ S, is included into the graph G0 with

probability p = 1/2, independently of all other edges. Thus, G0 is a random graph Gn,1/2

with a planted independent set of size Ω(n1/2). Finally, the adversary may add to G0

further edges {v, w}, v ∈ V , w ∈ V \S, thereby completing the instance G. Since S is an

independent set of G, we have α(G) ≥ Ω(n1/2). Observe that the adversary can change

the vertex degrees, the eigenvalues of the adjacency matrix, and other parameters of G0.

The algorithm studied by Feige and Krauthgamer has always a polynomial running time

and finds the hidden independent set S with high probability over the choice of G0.

In this paper, we study the following two semirandom models. Given an edge proba-

bility 0 < p = p(n) < 1 and a number k = k(n), the random share Gn,p,k of the first

semirandom model G∗
n,p,k is constructed as follows.

M1. A set S ⊂ V consisting of k vertices is chosen uniformly at random.

M2. The random graph G0 = Gn,p,k is obtained by including every edge {v, w}, v ∈ V ,

w ∈ V \ S, with probability p independently of all other edges.

Having chosen G0, the adversary completes the instance.

M3. The adversary may add to G0 edges {v, w} where v ∈ V and w ∈ V \ S, thereby

obtaining G = G∗
n,p,k.

Clearly, S remains an independent set in G, whence α(G) ≥ k. Thus, G∗
n,p,k models

instances of the maximum independent set problem that do contain a very large inde-

pendent set. Note that G∗
n, 1

2 ,Ω(
√

n)
coincides with the model treated in [12].

Instances of our second semirandom model G∗
n,p are constructed as follows.

M1′. Choose a random graph G0 = Gn,p.

M2′. The adversary may add to G0 arbitrary edges, thereby completing the instance

G = G∗
n,p.

4 Amin Coja-Oghlan

Thus, G∗
n,p describes instances of the maximum independent set problem that do not

contain a very large independent set. (To be precise, for values of k ≤ n larger than (1.1)

the probability that α(G∗
n,p) ≥ k is non-zero but o(1).)

Let G0 = Gn,p,k. Let I(G0) signify the set of all graphs that can be obtained from

G0 according to M3. We say that the expected running time of an algorithm A applied

to G∗
n,p,k is polynomial if there is a constant l > 0 such that

∑

G0
P(G0 = Gn,p,k) ·

maxG∈I(G0) RA(G) = O(nl). Moreover, we say that the semirandom graph G∗
n,p,k enjoys

a certain property P with high probability (“whp.”) if

lim
n→∞

P (G0 = Gn,p,k is such that P holds for all G ∈ I(G0)) = 1.

We have similar definitions for the model G∗
n,p. The main result of this paper is the

following theorem.

Theorem 1.1. Suppose that ln(n)2/n ≤ p ≤ 0.99 and that k ≥ C(n/p)1/2 for a suffi-

ciently large constant C. There is an algorithm Find that satisfies the following condi-

tions.

1 For any input graph G, Find(G, k) outputs an independent set of size ≥ k if α(G) ≥ k.

If α(G) < k, then Find(G, k) outputs ∅.

2 Both applied to G = G∗
n,p,k and to G = G∗

n,p Find(G, k) runs in polynomial expected

time.

Thus, Thm. 1.1 extends the result of Feige and Krauthgamer [12] in the two following

respects.

• The algorithm in [12] always runs in polynomial time and succeeds in finding the

planted independent set with high probability on input G∗
n,p,k. By contrast, Find sat-

isfies a stronger requirement: applied to G∗
n,p,k, Find always succeeds in finding an

independent set of size ≥ k, and has a polynomial expected running time. While,

e.g., for p = Θ(1) and k = Ω(n1/2) it is easy to modify the approach of Feige and

Krauthgamer to satisfy the stronger requirement as well, for smaller values of p the

stronger requirement is significant (cf. Sec. 1.3 for more details).

• The running time of Find is polynomial also when applied to G∗
n,p. Hence, Find can

distinguish between G∗
n,p and G∗

n,p,k efficiently.

However, in contrast to the algorithm of Feige and Krauthgamer, Find(G∗
n,p,k, k) does

not provide a certificate that its output is a largest independent set (cf. Sec. 5 for more

details).

Furthermore, Find complements the work of Krivelevich and Vu [24] and Coja-Oghlan

and Taraz [9, 10] on the independent set problem on Gn,p as follows.

• Find can exhibit a large independent set efficiently (i.e., in expected polynomial time),

if there is any. In contrast, the running time of the algorithms studied in [9, 10, 24] is

exponential if the input instance contains a large independent set.

• Find can handle semirandom instances, hence is applicable to a wider class of input

distributions than just Gn,p.

Finding Large Independent Sets in Polynomial Expected Time 5

Why are algorithms with a polynomial expected running time interesting? Imagine the

quest of the algorithm for either a large independent set or a proof that there is no such

set as a search tree. Since the algorithm is supposed to work on all instances properly,

this search tree can be of polynomial or of exponential size, or anything in between.

While a heuristic that just works well with high probability may either fail or produce an

enormous search tree if the input instance lacks some “typical” properties, an algorithm

with polynomial expected running time must be such that minor “atypical” defects in

the input instance increase the running time only a little. Thus, on the one hand the

interest lies in algorithmic techniques that lead to a search tree whose size is distributed

“smoothly” in such a way that it is small on average. On the other hand, we need to

invent methods to analyze the size of the search tree. In general, such an analysis requires

a more careful investigation than a proof that the algorithm works with high probability.

The following hardness result complements Theorem 1.1.

Theorem 1.2. Let 0 < ε < 1/100 be a constant. Suppose that ln(n)2 ≤ np ≤ n1/2, and

let k = (1−ε) ln(n)/p. There is no polynomial time algorithm that applied to G∗
n,p,k finds

an independent set of size ≥ k whp., unless NP ⊂ RP.

Thm. 1.2 shows that for p = ln(n)2/n the positive result (Thm. 1.1) is essentially best

possible (up to the precise value of the constant C). Nevertheless, as p increases, the gap

between the upper bound on the size of independent sets that can be found efficiently

(cf. Thm. 1.2) and the size of the hidden independent set required by Thm. 1.1 grows.

Finally, observe that for edge probabilities p > n−1/2 the statement of Thm. 1.2 is void,

as in this range (1−ε) ln(n)/p is smaller than the independence number (1.1) of Gn,p. The

proof of Thm. 1.2 follows [11, proof of Thm. 2] (cf. Sec. 1.3 for more detailed comments).

We present the algorithm Find and its analysis in Sec. 2. In Sec. 3 we prove Thm. 1.2.

Sec. 4 contains the proof of a technical lemma that is part of the analysis of Find. Finally,

we conclude in Sec. 5.

1.3. Techniques and Further Related Work

The first to study the planted independent set model Gn,1/2,k has been Kučera [23], who

has observed that in the case k = Ω(n lnn)1/2 one can recover the planted independent

set simply by picking the k vertices of least degree. However, this approach fails if k =

o(n ln(n))1/2. Furthermore, Jerrum [19] has shown that on Gn,p,k, where p = 1/2 and

k = nβ for a constant β < 1/2, (a restricted variant of) simulated annealing with

high probability fails to find an independent set of size > (1 + ε) log2 n in polynomial

time. Alon, Krivelevich and Sudakov [2] have presented an algorithm based on spectral

techniques that on input Gn,1/2,k finds the hidden independent set whp., if k = Ω(n)1/2.

No polynomial time algorithm is known that can handle the case k = o(n1/2). Though,

it is easy to recover a planted independent set S of size k = o(n1/2) in time nO(ln n)

(cf. [2]): enumerate all subsets T of size 10 ln(n) and consider the set of all non-neighbors

of T ; if T ⊂ S, then with high probability the non-neighborhood of T is precisely S.

Using spectral techniques, McSherry [26] has studied a general partitioning problem on

6 Amin Coja-Oghlan

random graphs. In particular, on input Gn,p,k McSherry’s heuristic recovers the planted

independent set whp., provided that k = Ω(n1/2).

The semirandom model G∗
n,p,k with p = 1/2 and k = Ω(n1/2) has first been consid-

ered by Feige and Krauthgamer [12]. Their algorithm relies on the fact that in the case

k ≥ Ω(n1/2) with high probability ϑ(G∗
n,p,k) = k, where ϑ denotes the Lovász num-

ber (cf. [16, 22]). As the Lovász number can be seen as a semidefinite programming

(“SDP”) relaxation of the independence number, the inequality ϑ(G∗
n,p,k) ≥ k holds triv-

ially. Since it is not hard to extend the result of Feige and Krauthgamer [12] to smaller

values of p (say, p ≥ nε−1) and k ≥ Ω(n/p)1/2, one obtains an algorithm that recovers

the hidden independent set with high probability. Moreover, in the case p = 1/2 and

k = Ω(n1/2), the method immediately yields an algorithm with polynomial expected

running time, because the hidden independent set can most probably be recovered in

time nO(ln(n)) as indicated above. However, at least in the case p ≤ n−1/2 the approach

of Feige and Krauthgamer (even in combination with the concentration result [3] on the

eigenvalues of random symmetric matrices) does not seem to lead to an algorithm with

polynomial expected running time.

In the semirandom model G∗
n,p,k, the adversary can cause the spectral heuristic from [2]

to fail to recover an independent set of size ≥ k (say, p = 1/2 and k = Ω(n1/2)). Further,

even in the case p = 1/2, k = Ω(n lnn)1/2, the degree trick from [23] does not work on

G∗
n,p,k. Thus, in a sense G∗

n,p,k requires more robust algorithmic techniques than Gn,p,k.

Feige and Kilian [11] have presented an algorithm for finding an independent set of

size Ω(n) hidden in a semirandom graph with high probability. Their model is even

more adversarial than G∗
n,p,k, as random edges are only included between the hidden

independent set S and V \ S (but not between vertices inside V \ S). Complementing

the result of Feige and Kilian, the author has given an algorithm for recovering an

independent set of size Ω(n) in polynomial expected time [8]. The algorithms in [8, 11] are

based on semidefinite programming techniques developed in [1, 20] (e.g., computing the

Lovász number ϑ and rounding fractional solutions via random hyperplanes). However,

these SDP rounding techniques do not seem to apply if the planted independent set has

size o(n).

Though the algorithm Find for Thm. 1.1 is also based on computing Lovász’s SDP

relaxation ϑ of the independence number, we suggest a somewhat different approach

than the previous papers [2, 8, 11, 12]. Indeed, we do not need to derive the probable

value of ϑ(G∗
n,p,k) explicitly, which has been the main technical difficulty in [12]. Instead,

we just rely on results on the Lovász number of random graphs Gn,p, in particular on

a concentration result on ϑ(Gn,p) from [9]. Applying to an optimal fractional solution a

more direct (deterministic) rounding technique than rounding via random hyperplanes

as in [8, 11], the initial step of Find(G∗
n,p,k, k) computes an independent set I. Using the

concentration result on ϑ(Gn,p), we prove that with probability ≥ 1 − exp(−20k) this

set I already contains 99% of the vertices in the hidden independent set S and only few

vertices in V \ S. This fact is crucial in order to obtain a polynomial expected running

time. To remove the vertices that do not belong to S from I and to recover the remaining

part S \ I, Find employs a procedure Purify, which relies on flow techniques. The flow

Finding Large Independent Sets in Polynomial Expected Time 7

techniques follow ideas from [11] and extend the approach used in [8] (cf. the remark at

the end of Sec. 2.3 for more specific comments).

The proof of Thm. 1.2 is very similar to the proof of a hardness result of Feige and

Kilian [11, Thm. 2] on finding an independent set of size Ω(n) in a semirandom graph.

The main difference is that the semirandom graph G∗
n,p,k treated in the present paper is

a bit less adversarial than the model studied in [11], as in G∗
n,p,k there are random edges

present inside V \ S (cf. Step M2 of the definition of G∗
n,p,k).

An extended abstract version of this paper, from which most of the proofs are omitted,

has appeared in the proceedings of STACS 2003.

1.4. Notation

Throughout, we let V = {1, . . . , n}. If X is a set, then #X signifies the cardinality of X .

We omit floor and ceiling signs when these do not affect the arguments. Moreover, we

frequently assume implicitly that n is sufficiently large.

Let G be a graph. We let V (G) (resp. E(G)) denote the vertex (resp. edge) set of G.

For X ⊂ V (G), we let N(X) = NG(X) denote the neighborhood {y ∈ V (G)| {x, y} ∈

E(G) for some x ∈ X} of X . Furthermore, G[X] signifies the subgraph of G induced

on X .

By 〈ξ, η〉 we denotes the scalar product of two vectors ξ, η. Furthermore, ~1 denotes the

vector with all components equal to 1 (in any dimension).

If G = G∗
n,p,k, then G0 = Gn,p,k denotes the random share contained in G, and

S signifies the hidden independent set (cf. the definition M1–M3 of G∗
n,p,k). Similarly, if

G = G∗
n,p, then we let G0 denote the random graph Gn,p contained in G (cf. the definition

M1′–M2′ of G∗
n,p).

2. The Algorithm Find

2.1. Outline

Throughout Section 2, we assume that ln(n)2 ≤ np ≤ 0.99n. Suppose that the input

graph is G = G∗
n,p,k, where k ≥ C(n/p)1/2 for a sufficiently large constant C. As a

first step, Find(G, k) runs a subroutine Filter, which uses semidefinite programming

in order to determine a set I of vertices of G that contains a large share of the hidden

independent set S but only few vertices of V \ S. If Filter succeeds in finding such a

set I, then Find applies a further subroutine Purify to I in order to recover the entire

set S (or another independent set of size ≥ k). The subroutine Purify relies on a certain

expansion property that the random share G0 contained in the input instance G with

high probability has.

However, since Find is supposed to find an independent set of size k on any input

graph G with α(G) ≥ k, Find must take into account that the expansion property may

be violated to a certain degree. To this end, Find uses the variable η. In the beginning,

Find assumes that the expansion property is perfectly satisfied (η = 0). If the input graph

resists the attempts of Find to exhibit an independent set of size ≥ k, then Find increases

η slowly. As the parameter η grows, the running time of the subroutine Purify increases,

as does the probability that Purify succeeds. Finally, if Purify does not manage to

8 Amin Coja-Oghlan

Algorithm 1. Find(G, k)

Input: A graph G = (V, E) and an integer 1 ≤ k ≤ n. Output: A subset of V .

1. Let I = Filter(G, k). If I = ∅, then terminate with output ∅.

2. For η = 0, . . . , k/2 do:

3. If S = Purify(G, I, η, k) 6= ∅, then output an arbitrary element of S .

4. Output S̃ = Exact(G, k).

Figure 1. The Algorithm Find.

exhibit an independent set of size ≥ k for any value of η ≤ k/2, then Find calls the

subroutine Exact that will always find an independent set of size ≥ k (if there is any).

The procedure Filter and its analysis will be given in Sec. 2.2. Showing that the

output I of Filter with extremely high probability contains most vertices of S is the

crucial point in the analysis of Find. Then, in Sec. 2.3 and 2.4 we present the procedures

Purify and Exact. Finally, we prove Thm. 1.1 in Sec. 2.5.

2.2. The Subroutine Filter

The procedure Filter is based on computing the Lovász number ϑ(G), which can be

considered as an SDP relaxation of the independence number. Let us briefly recall the

definition of ϑ (cf. [16, 22] for thorough treatments). Let G = (V, E) be a graph, and let

d be a positive integer. An orthogonal labeling of G is a tuple (av)v∈V of vectors in Rd

such that for any two vertices v, w ∈ V , v 6= w, with {v, w} 6∈ E we have 〈av, aw〉 = 0

(this definition follows [22]). The cost of a d-dimensional vector a = (a1, . . . , ad)
T is

c(a) =

{

a2
1‖a‖

−2 if a 6= 0

0 otherwise.

Let TH(G) be the set of all vectors (xv)v∈V ∈ Rn with non-negative coordinates such that

for all orthogonal labelings (av)v∈V of G we have
∑

v∈V xvc(av) ≤ 1. Then TH(G) ⊂

[0, 1]n is a compact convex set, which can be seen as a relaxation of the stable set

polytope (cf. [16]). The Lovász number of G is ϑ(G) = max{〈~1, x〉| x ∈ TH(G)}. It is well-

known that α(G) ≤ ϑ(G) ≤ χ(Ḡ), i.e., ϑ(G) is “sandwiched” between the independence

number of G and the chromatic number of the complement of G. Moreover, an immediate

consequence of the definition is that ϑ is monotone:

If H1 = (V, E1) is a subgraph of H2 = (V, E2), then ϑ(H2) ≤ ϑ(H1). (2.1)

Using the ellipsoid method, one can compute a vector x′ ∈ TH(G) such that ϑ(G) −

〈~1, x′〉 ≤ 1 in polynomial time [16, p. 294].

The following proposition summarizes the analysis of Filter.

Proposition 2.1. Suppose that k ≥ C(n/p)1/2 for a sufficiently large constant C > 0.

Let I be the output of Filter(G, k).

1 For all input graphs G, I is an independent set. Moreover, if I = ∅, then α(G) < k.

Finding Large Independent Sets in Polynomial Expected Time 9

Algorithm 2. Filter(G, k)

Input: A graph G = (V, E) and an integer 1 ≤ k ≤ n. Output: A subset I of V .

1. Compute a vector x = (xv)v∈V ∈ TH(G) such that 〈~1, x〉 ≥ ϑ(G) − 1. If 〈~1, x〉 < k − 1,

then return ∅.
2. Return I = {v ∈ V | xv ≥ 2/3}.

Figure 2. The Algorithm Filter.

2 If G = G∗
n,p,k, then with probability ≥ 1 − exp(−20k) we have

#I ∩ S ≥
99k

100
. (2.2)

3 If G = G∗
n,p, then with probability ≥ 1 − exp(−20k) we have I = ∅.

Thus, Prop. 2.1 claims that Filter(G∗
n,p,k) whp. finds an independent set I that

contains most vertices of the hidden independent set S. In addition, we shall see in

Sec. 2.3 that such a set (most probably) contains only few vertices of V \ S.

Lemma 2.2. For any graph G the set I computed in Step 2 of Filter(G, k) is inde-

pendent.

Proof. Let G = (V, E). Assume that there are two vertices v1, v2 ∈ I such that

{v1, v2} ∈ E. Then we obtain an (one-dimensional) orthogonal labeling (av)v∈V of G by

letting av1 = av2 = 1, and av = 0 for v ∈ V \ {v1, v2}. Let x ∈ TH(G) be the vector com-

puted in Step 1 of Filter. As v1, v2 ∈ I, we obtain 1 ≥
∑

v∈V xvc(av) = xv1 + xv2 ≥ 4
3 ,

a contradiction.

Lemma 2.3. Suppose that k ≥ C(n/p)1/2 for some sufficiently large constant C > 0.

Let G = G∗
n,p,k. Then, with probability ≥ 1 − exp(−20k) the set I computed in Step 2 of

Filter(G, k) satisfies #I ∩ S > 99k/100.

To prove L. 2.3, we need the following fact concerning the Lovász number of Gn,p.

Lemma 2.4. Assume that t > c1(n/p)1/2 for a certain constant c1 > 0. Then

P (ϑ(Gn,p) > t) ≤ exp(−20t).

Proof. This is an immediate consequence of [9, Thms. 1 and 4].

L. 2.4 shows that whp. ϑ(Gn,p) is much smaller than ϑ(G∗
n,p,k) ≥ k ≥ C(n/p)1/2

(provided that C is large enough).

Proof of L. 2.3. As a first step, we shall prove that in the case #I ∩ S ≤ 99k/100 we

10 Amin Coja-Oghlan

have ϑ(G0 − S) ≥ k
300 − 1. Indeed, let x = (xv)v∈V ∈ TH(G) be the vector computed in

Step 1. If #I ∩ S ≤ 99k/100, then

∑

s∈S

xs =
∑

s∈I∩S

xs +
∑

s∈S\I

xs ≤ #I ∩ S +
2#S \ I

3
≤

299k

300
. (2.3)

Since (xv)v∈V \S ∈ TH(G − S), we have

∑

v∈V \S

xv ≤ ϑ(G − S). (2.4)

Combining (2.3) and (2.4), we obtain

k ≤ α(G) ≤ ϑ(G) ≤ 1 +
∑

v∈V

xv ≤ 1 + ϑ(G − S) +
299k

300
≤ 1 + ϑ(G0 − S) +

299k

300
,

where the last inequality follows form the monotonicity (2.1) of ϑ. Thus, ϑ(G0 − S) ≥
k

300 − 1.

To conclude the proof of L. 2.3, observe that G0 − S is just a random graph Gn−k,p.

Therefore, if C ≥ 400c1, then L. 2.4 yields our assertion.

Proof of Prop. 2.1. The first two assertions in Prop. 2.1 follow from L. 2.2 and L. 2.3

immediately. Now assume that the input graph is G = G∗
n,p. Then, by L. 2.4 and by the

monotonicity of the Lovász number (2.1), P (ϑ(G) ≥ k − 1) ≤ exp(−20k). Hence, with

probability ≥ 1 − exp(−20k) Filter(G∗
n,p, k) outputs ∅.

2.3. The Subroutine Purify

Let G = G∗
n,p,k be the input of Find. Suppose that Filter(G, k) has found an indepen-

dent set I that contains 99% of the vertices in S (cf. Prop. 2.1). To recover the entire set

S, Purify makes use of network flow techniques and the fact that the random bipartite

graph consisting of the V \ S-S-edges of G0 is a good expanding graph whp.; that is,

whp. every set T ⊂ V \ S of cardinality ≤ k
2d has at least d#T neighbors in S, for all d

in a certain range.

Since Purify only relies on the aforementioned expansion property, we analyze the

procedure in a slightly more general setting. Let G = (V, E) be a graph, and let R ⊂ V

be a set of cardinality k ≥ 1. Let T ⊂ V \ R and 6 ≤ d ≤
⌈

50n
k

⌉

. Then a d-fold matching

from T to R with defect ≤ η is a set M of T -R-edges that satisfies the following conditions.

• At least #T − η vertices in T are incident with precisely d edges in M . The ≤ η

remaining vertices in T , which are called defect vertices, are not incident with an edge

in M .

• No vertex in R is incident with more than one edge in M .

Thus, a d-fold matching consists of disjoint stars on d + 1 vertices with centers in T . To

measure how far from being a good expanding graph G is (w.r.t. the sets R and V \R),

we define the defect defG(R).

D1. If there is some U ⊂ R such that #U ≥ k
2 and #V \ (R ∪ N(U)) > k2

200n , then we

let defG(R) = k
2 .

Finding Large Independent Sets in Polynomial Expected Time 11

D2. Otherwise, we let defG(R) be the least number 0 ≤ η ≤ k
2 such that for all 6 ≤ d ≤

⌈ 50n
k ⌉ the following holds: every set T ⊂ V \R of size #T ≤ k

2d has a d-fold matching

to R with defect ≤ η.

The following lemma is an easy consequence of Hall’s theorem.

Lemma 2.5. Let 6 ≤ d ≤
⌈

50n
k

⌉

. If all sets X ⊂ V \R, #X ≤ k
2d satisfy #N(X)∩R ≥

d#X − η, then every set T ⊂ V \ R of cardinality ≤ k
2d admits a d-fold matching to R

with defect ≤ η.

The following proposition summarizes the analysis of Purify.

Proposition 2.6. Let G = (V, E) be a graph, and let R ⊂ V be an independent set

of cardinality k. Suppose that defR(G) < k
2 . Let I ⊂ V be an independent set such that

#I ∩ R ≥ 99k
100 . Let 0 ≤ η ≤ k/2. Then the following holds.

(a) If η ≥ defR(G), then the output S of Purify(G, I, η, k) contains R as an element.

(b) The running time of Purify(G, I, η, k) is ≤ nO(1)
(

k
η

)14
.

To state the procedure Purify, we need some notation. A network N consists of a

vertex set V (N), an arc set A = A(N) ⊂ V (N) × V (N), a source s ∈ V (N), a sink

t ∈ V (N) \ {s}, and a capacity c : A → Z≥0. A flow in N is a map f : A → Z≥0 such

that f(a) ≤ c(a) for all a ∈ A, satisfying Kirchhoff’s law

∀v ∈ V (N) \ {s, t} :
∑

(v,w)∈A

f(v, w) =
∑

(w,v)∈A

f(w, v). (2.5)

Moreover, the value of f in N is w(f) =
∑

(s,v)∈A f(s, v)−
∑

(v,s)∈A f(s, v). A maximum

flow is a flow of maximum value, and can be computed in polynomial time [27, pp. 154–

155]. If f1, f2 are flows in N , then we can define a flow f1 + f2 by letting (f1 + f2)(a) =

f1(a) + f2(a), provided that f1(a) + f2(a) ≤ c(a) for all a ∈ A.

Purify(G, I, η, k) proceeds in two phases. In the first phase (Steps 1–2), Purify at-

tempts to identify and remove the vertices in I \R, thereby obtaining a set I ′. We analyze

the first phase in L. 2.7 below. In the second phase (Steps 3–8), the aim is to enlarge

I ′ ⊂ R several times, each time adding to the current set I ′′ ⊂ R at least half of the

remaining vertices in R \ I ′′. Thus, after at most log2(n) steps, we have I ′′ = R, i.e., R is

recovered. L. 2.8 is devoted to the analysis of the second phase. Observe that the output

S of Purify either consists of independent sets of size k or is empty.

Lemma 2.7. Under the assumptions of Prop. 2.6 (a) there exists a set D ⊂ I, #D ≤ η,

such that the set I ′ computed in Step 2 of Purify(G, I, η, k) satisfies I ′ ⊂ R and #I ′ ≥
97k
100 .

Consider the network N constructed in Step 2 of Purify. Given a flow g in N and a

set U ⊂ I \ D, we define the restricted flow gU as follows. For every edge {v, w} ∈ E,

12 Amin Coja-Oghlan

Algorithm 3. Purify(G, I, η, k)

Input: A graph G = (V, E), integers η, k, I ⊂ V . Output: A set S of subsets of V .

1. Let S = ∅. If #I > 2k, then return ∅.

Otherwise, for all D ⊂ I , #D ≤ η do
2. Construct the following network N :

• The vertices of N are s, t, sv for v ∈ I \ D, and tw for w ∈ V .

• The arcs of N are (s, sv) for v ∈ I\D, (tw, t) for w ∈ V , and (sv, tw) if {v, w} ∈ E.

• The capacities are c(s, sv) =
⌈

50n
k

⌉

, c(tw, t) = 1, c(sv, tw) = 1 if {v, w} ∈ E.

Compute a maximum flow f in N , let L = {v ∈ I \ D| f(s, sv) = c(s, sv)}, and set

I ′ = I \ (L ∪ D).
3. If Ṽ = V \ N(I ′) satisfies #Ṽ ≤ 2k then

4. For each set Y ⊂ Ṽ , #Y ≤ 6η, such that I ′ ∪ Y is an independent set of

cardinality k add I ′ ∪ Y to S .
5. For all D′ ⊂ Ṽ , #D′ ≤ η, do

Let I ′′ = I ′. For τ = 0, 1, . . . , ⌈log2(n)⌉ do

Let V ′ = V \ (N(I ′′) ∪ D′). Construct the following network N ′.

• The vertices of N ′ are s′, t′, s′v for v ∈ V ′ \ I ′′, and t′w for w ∈ V ′.

• The arcs of N ′ are (s′, s′v) for v ∈ V ′ \ I ′′, (t′w, t′) for w ∈ V ′, and

(s′v, t′w) if {v, w} ∈ E.

• The capacities are c(s′, s′v) = 6, c(t′w, t′) = 1, c(s′v, t′w) = 1 if

{v, w} ∈ E.

Compute a maximum flow f ′ in N ′. Let

L′ = {v ∈ V ′ \ I ′′| f ′(s′, s′v) = c(s′, s′v)}

and I ′′ = V ′ \ L′. If I ′′ is an independent set of cardinality k then

add I ′′ to S .
6. Return S .

Figure 3. The Algorithm Purify.

where v ∈ I \ D and w ∈ V , we let

gU (sv, tw) =

{

0 if v ∈ I \ (D ∪ U)

g(sv, tw) if v ∈ U .

Furthermore,

gU (s, sv) =
∑

u∈V :{u,v}∈E

gU (sv, tu) (v ∈ I \ D),

gU (tw, t) =
∑

u∈I\D:{u,w}∈E

gU (su, tw) (w ∈ V).

Thus, gU transports the same amount of flow from s through (sv)v∈U via (tw)w∈V to t as

g does, but it does not carry any flow through (sv)v∈I\(D∪U). Note that the flow that gU

sends through the arcs (s, sv) and (tw, t) is simply determined by Kirchhoff’s law (2.5).

Finding Large Independent Sets in Polynomial Expected Time 13

For a flow g′ in the network N ′ constructed in Step 5 and U ′ ⊂ V ′ \ I ′′ we define the

restricted flow g′U ′ analogously.

Proof of L. 2.7. Let d =
⌈

50n
k

⌉

. Since defR(G) < k
2 and because I is an independent

set, we have #I \R ≤ k
2d (by D1). Hence, by L. 2.5 the set I \R admits a d-fold matching

M∗ to R with defect ≤ η. Let D be the set of defect vertices.

The matching M∗ induces a flow h in the network N as follows. For each e = {v, w} ∈

M∗, where v ∈ I \ (R ∪ D), w ∈ R, we define a flow he in N by letting

he(sv, v) = he(v, w) = he(w, tw) = 1,

he(a) = 0 for all arcs a 6∈ {(sv, v), (v, w), (w, tw)}.

Then, h =
∑

e∈M∗ he is a flow of value w(h) = d#I \ (R ∪ D).

Let f be the maximum flow computed in Step 2 of Purify(G, I, η, k). Then the re-

stricted flow fI\(R∪D) satisfies

w(fI\(R∪D)) = d#I \ (R ∪ D). (2.6)

For fI∩R + h is a flow in N of value w(fI∩R + h) = w(fI∩R) + w(h), because R is

an independent set. Hence, (2.6) follows from the maximality of f . As a consequence,

L ⊃ I \ (R ∪ D), so that I ′ ⊂ R. Since n ≥ d#L ≥ 50n#L
k , we conclude that #L ≤ k

50 .

Therefore, #I ′ ≥ 97k
100 .

Lemma 2.8. Suppose that the assumptions of Prop. 2.6 (a) hold, and that the set I ′

with that Step 3 is encountered satisfies #I ′ ≥ 97k
100 and I ′ ⊂ R. Then the output S of

Purify contains R as an element.

Proof. Since defR(G) < k
2 , we have #V \ (R ∪ N(I ′)) ≤ k2

200n by D1, whence #Ṽ ≤

k + k2

200n ≤ 3k
2 . We claim that either #R \ I ′ ≤ 6η or #Ṽ \ R ≤ #R\I′

3 . For assume

#Ṽ \R > #R\I′

3 . Since #R\I ′ < 3k
100 , there exists T ⊂ Ṽ \R such that #R\I′

3 ≤ #T ≤ k
100 .

Consequently, there is a 6-fold matching M from T to R with defect ≤ η. Since there is

no T -I ′-edge, we have

#R \ I ′ ≥ 6(#T − η) ≥ 6

(

#R \ I ′

3
− η

)

= 2#R \ I ′ − 6η.

Hence, 6η ≥ #R \ I ′.

If 6η ≥ #R\I ′, Step 4 will add R to S. Thus, let us assume that #Ṽ \R ≤ #R\I′

3 ≤ k
100 .

Then, there is a 6-fold matching from Ṽ \R to R \ I ′ with defect ≤ η. Letting D′ be the

set of defect vertices, I ′′ = I ′, and V ′ = V \ (D′∪N(I ′′)), we have a 6-fold matching M∗

from V ′ \ R to R \ I ′′ with defect 0.

Let f ′ be the maximum flow computed in Step 5 of Purify, and let L′ = {v ∈

V ′ \ I ′′| f ′(s′, s′v) = 6}. We claim that

#L′ ∩ (R \ I ′′) ≤
#R \ I ′′

36
. (2.7)

For if v ∈ L′∩(R\I ′′), then there are at least 6 vertices w ∈ V ′\R such that f ′(s′v, t′w) = 1.

14 Amin Coja-Oghlan

As c(t′w, t′) = 1 for all w, we get #L′ ∩ (R \ I ′′) ≤ #V ′\R
6 . Further, we have #V ′ \ R ≤

1
6#R \ I ′′, because M∗ induces a 6-fold matching with defect 0 from V ′ \ R to R \ I ′′.

Finally, we claim L′ ⊃ V ′ \ R. For consider the flow h in N ′ induced by the matching

M∗ as in the proof of L. 2.7. Let f ′
R be the restriction of f ′ to R. Since R is an independent

set, f ′
R + h is a flow in N ′. Moreover, w(f ′

R + h) = w(f ′
R) + w(h) ≥ w(f ′). Hence, letting

f ′
V ′\R signify the restriction of f ′ to V ′ \R, we obtain w(f ′

V ′\R) ≥ w(h) = 6#V ′ \R. As

a consequence, L′ ⊃ V ′ \ R. Thus, (2.7) shows that after at most ⌈log2 n⌉ iterations the

set R will be added to S.

Proof of Prop. 2.6. The first assertion in Prop. 2.6 follows from L. 2.7 and L. 2.8.

Furthermore, the running time of Purify is at most

nO(1)

(

2k

η

)





(

2k

η

)

+
∑

l≤6η

(

2k

l

)



 ≤ nO(1)

(

2k

η

)7

≤ nO(1)

(

k

η

)14

,

because η ≤ k/2.

Finally, we investigate the distribution of defG(S) for G = G∗
n,p,k. The proof of the

following lemma will be given in Sec. 4.

Lemma 2.9. Suppose that k ≥ C(n/p)1/2 for a sufficiently large constant C > 0. Let

η ≥ 0. Then P
(

defG∗

n,p,k
(S) ≥ η

)

≤
(

k
η

)−20
.

Remark. The network flow techniques used in the procedure Purify extend the match-

ing techniques of Feige and Kilian [11]. Such an extension is necessary in order to obtain a

polynomial expected running time, as we need to “correct” a small defect with only little

effort (this is precisely what the parameter η is intended for). Furthermore, Purify refines

the flow techniques used by the author in [8]; as given in [8], the flow techniques do not

apply to the case that the independent set has size o(n). The procedure Purify developed

in this paper has also been useful in the context of coloring semirandom graphs [7].

2.4. The Subroutine Exact

If Filter and Purify were not able to either exhibit an independent set of size ≥ k or

prove the absence of such a set, Find executes the subroutine Exact. Throughout, we

assume that k ≥ C(n/p)1/2 for a sufficiently large constant C > 0.

Proposition 2.10. Let G = (V, E) be a graph. If α(G) ≥ k, then Exact(G, k) outputs

an independent set of cardinality ≥ k. On the other hand, if α(G) < k, then Exact(G, k)

outputs ∅. If k < n/10 and either G = G∗
n,p,k or G = G∗

n,p, then the probability that

Exact(G, k) runs Step 2 is ≤
(

n
k

)−1
.

The next two lemmas bound the probability that Exact(G∗
n,p,k, k) or Exact(G∗

n,p, k)

executes Step 2.

Finding Large Independent Sets in Polynomial Expected Time 15

Algorithm 4. Exact(G, k)

Input: A graph G = (V, E) and an integer 1 ≤ k ≤ n. Output: A subset of V .

1. If k ≤ n/10 then

For all S̃ ⊂ V , #S̃ = k
ln(n/k)

, do

For all Y ⊂ V , #Y ≤ k
ln(n/k)

, do

If V \ (N(S̃) ∪ Y) is an independent set of cardinality ≥ k, then return

with output V \ (N(S̃) ∪ Y).
If #V \ N(S̃) < k for all S̃ ⊂ V , #S̃ = k

ln(n/k)
, then return with output ∅.

2. For all S̃ ⊂ V of cardinality k do

If S̃ is an independent set, return with output S̃.

3. Return ∅.

Figure 4. The Algorithm Exact.

Lemma 2.11. Suppose that G = G∗
n,p,k and k ≤ n/10. Then, with probability ≥ 1 −

(

n
k

)−1
Step 1 of Exact(G) finds an independent set of cardinality ≥ k.

Proof. Since V = {1, . . . , n} is an ordered set, we can consider the set S0 consisting

of the k/ ln(n/k) smallest vertices in S. Let Y0 = {v ∈ V \ S| N(v) ∩ S0 = ∅}. If

#Y0 ≤ k/ ln(n/k), Step 1 of Exact will eventually try S̃ = S0 and Y = Y0, thereby

recovering S. Moreover,

P

(

#Y0 ≥
k

ln(n/k)

)

≤

(

n
k

ln(n/k)

)

(1 − p)
k2

ln2(n/k) ≤

(

e ln(n/k)n

k

)
k

ln(n/k)

exp

(

−
k2p

ln2(n/k)

)

≤ exp

(

3k −
k2p

ln2(n/k)

)

≤ exp (−5k ln(n/k)) ≤

(

n

k

)−1

,

because kp ≥ (np)1/2 ≥ 10 ln(np)3 ≥ 10 ln(n/k)3.

Lemma 2.12. Let k < n/10. The probability that in G = G∗
n,p there is a set S̃ ⊂ V of

cardinality ≥ k/ ln(n/k) such that #V \ N(S̃) ≥ k is at most
(

n
k

)−1
.

Proof. If S̃ ⊂ V has cardinality k
ln(n/k) and #V \N(S̃) ≥ k, then #V \(S̃∪N(S̃)) ≥ k

2 ,

because ln(n/k) > 2. Hence, the probability that Gn,p admits a set S̃ as in the lemma is

at most
(

n

k/ ln(n/k)

)(

n

k/2

)

(1 − p)
k2

2 ln(n/k) ≤ exp

(

6k ln(n/k) −
k2p

2 ln(n/k)

)

≤ exp (−5k ln(n/k)) ≤

(

n

k

)−1

,

because kp ≥ 100 ln(n/k)3.

16 Amin Coja-Oghlan

Proof of Prop. 2.10. Suppose that k ≤ n/10 and α(G) ≥ k, and let S be an independent

set of cardinality k. Let S̃ ⊂ S be a subset of cardinality k
ln(n/k) . Then V \ N(S̃) ⊃ S,

whence either Step 1 or Step 2 of Exact finds an independent set of cardinality ≥ k.

On the other hand, if α(G) < k, then Exact(G, k) obviously outputs ∅. The assertion

concerning the probability that Step 2 gets executed follows from L. 2.11 and L. 2.12.

2.5. Proof of Thm. 1.1

Let G = (V, E) be a graph. It is an easy consequence of Prop. 2.10 and the fact that

ϑ(G) ≥ α(G) that Find(G, k) outputs an independent set of cardinality ≥ k if α(G) ≥ k,

and outputs ∅ otherwise. Therefore, the remaining task is to bound the expected running

time of Find(G∗
n,p,k, k) and of Find(G∗

n,p, k).

Let us first deal with G = G∗
n,p,k. Set

η∗ =

{

k/2 if the output I of Filter does not satisfy (2.2)

defG(S) otherwise.

By Prop. 2.1 and L. 2.9,

P(η∗ ≥ η) ≤

(

k

η

)−16

. (2.8)

For η̃ = 0, 1, . . . , k/2, let Eη̃ be the expected running time of Find conditioned on η∗ = η̃.

If η∗ < k/2, then the output I of Filter(G, k) satisfies the assumptions of Prop. 2.6.

Therefore, by Prop. 2.6 Purify(G, I, η∗, k) outputs an independent set of cardinality

≥ k. Hence, Find(G, k) finds an independent set of cardinality ≥ k before the variable

η exceeds η∗. Again by Prop. 2.6 the total running time of Find(G, k) is ≤ nO(1)
(

k
η∗

)14
.

Thus, for η̃ < k/2 we have

Eη̃ ≤ nO(1)

(

k

η̃

)14

. (2.9)

If η∗ = k/2, then either Steps 1–3 of Find(G, k) succeed in finding an independent set

of cardinality ≥ k, or Find calls Exact. By Prop. 2.6, the total running time before

Find calls Exact is ≤ nO(1)214k. Furthermore, the running time of Step 1 of Exact is

≤ nO(1)
(

n
k/ ln(n/k)

)2
≤ nO(1) exp(6k). If k < n/10, then by Prop. 2.10 the expected time

spent on executing Step 2 of Exact is polynomial. On the other hand, if k ≥ n/10, then

the running time of Step 2 of Exact is nO(1)
(

n
k

)

≤ nO(1) exp(4k). Hence,

Ek/2 ≤ nO(1)
(

214k + exp(6k) + exp(4k)
)

≤ nO(1)214k. (2.10)

Thus, (2.8), (2.9) and (2.10) entail that the expected running time of Find(G∗
n,p,k, k) is

at most

k/2
∑

η̃=0

Eη̃P (η∗ = η̃) ≤ nO(1)



1 +
∑

0<η̃<k/2

(

k

η̃

)−1

+ 2−k



 = nO(1).

As for G = G∗
n,p, note that the running time of Find(G, k) is polynomial if Filter(G, k)

outputs ∅. By Prop. 2.1,

P (Filter(G, k) outputs ∅) ≥ 1 − exp(−20k). (2.11)

Finding Large Independent Sets in Polynomial Expected Time 17

Furthermore, if Filter(G, k) does not output ∅, then by Prop. 2.6 Find spends time

≤ nO(1) exp(14k) on executing Steps 2–3. Hence, (2.11) shows that the expected time

consumed by Steps 2–3 of Find is polynomial. Finally, Find calls Exact(G, k) (provided

that no independent set of cardinality ≥ k has been found before). Step 1 of Exact

consumes time ≤ exp(6k). Furthermore, if k < n/10, then by Prop. 2.10 the expected

running time of Step 2 of Exact is nO(1), and if k ≥ n/10, then the running time of

Step 2 of Exact is ≤ nO(1)
(

n
k

)

≤ exp(4k). Thus, invoking (2.11), we conclude that the

expected running time of Find(G∗
n,p, k) is

≤ nO(1) (1 + exp(−16k) (1 + exp(4k) + exp(6k) + exp(14k))) = nO(1),

thereby proving Thm. 1.1.

3. Proof of Thm. 1.2

Remember that deciding whether a given graph G′ = (V ′, E′) satisfies α(G′) ≥ #V ′/2

is NP-hard, and consider an instance G′ = (V ′, E′) of this problem. Let N = nε/2, and

suppose that V ′ = {1, . . . , 2N}. Let V2 = {2N+1, . . . , k+N} and V1 = {k+N+1, . . . , n}.

Then V ′, V1, V2 ⊂ V are disjoint, and #V1 = n − k − N , #V2 = k − N . We obtain a

graph G′′ with vertex set V by including all edges E′ into G′′ and connecting every

vertex in v ∈ V1 with all vertices in V \ {v}. Let σ be a permutation of V chosen

uniformly at random, and let H = (V, E(H)) be the graph with edge set E(H) =

{{σ(v), σ(w)}| {v, w} ∈ E(G′′)}; that is, H is a randomly permuted copy of G′′. Then

α(H) ≥ k if and only if α(G′) ≥ N , so that deciding whether α(G) ≥ k is NP-hard.

We claim that in the case α(G′) ≥ N the adversary can convert the random graph

Gn,p,k into the graph H whp. Thus, let G0 = Gn,p,k, and let S be the independent set

planted in G0. Let X be the set of all of vertices v ∈ V \ S that have no neighbor in

S in the graph G0. Then #X is binomially distributed with mean n(1 − p)k ∼ nε. By

Chernoff bounds [18, p. 26], nε/2 ≤ #X ≤ 2nε whp. Moreover, the expected number of

edges spanned by the vertices in X is E(#E(G0[X])) ≤
(

2nε

2

)

p ≤ 2n2εp = o(1), whence X

is an independent set whp. Since the adversary does not need to work in polynomial time,

it can look for an independent set S′ of cardinality N in G′. The adversary identifies the

vertices in S′ with N distinct randomly chosen vertices in S and the remaining vertices

of G′ with N distinct randomly chosen vertices Y ⊂ X ; let τ : V ′ → V be the resulting

injective map. Then, in order to embed a copy of G′ into G0, for each edge {v, w} ∈ E′

the adversary inserts the edge {τ(v), τ(w)}. Finally, the adversary connects every vertex

in V \(S∪Y) with all other vertices. Let G be the resulting graph. Then, the distribution

of G coincides with the distribution of H .

Consequently, if we would have an algorithm A that whp. finds an independent set

of cardinality k in G∗
n,p,k, we would obtain the following randomized algorithm with

one-sided error for deciding whether α(G′) ≥ N : Construct the graph H . If A(H) finds

an independent set of cardinality ≥ k, then answer “‘α(G′) ≥ N”. Otherwise, answer

“probably α(G′) < N”.

18 Amin Coja-Oghlan

4. Proof of L. 2.9

In order to prove L. 2.9, we need some technical lemmas. Throughout, we assume that

np ≥ ln(n)2 and that k ≥ C(n/p)1/2 for some large constant C > 0.

Lemma 4.1. Let G = G∗
n,p,k. With probability ≥ 1 − exp(−21k) the graph G0 enjoys

the following property: If T ⊂ V \ S, #T ≥ 100/p, and U ⊂ S, #U ≥ k/2, then in G0

there is a T -U -edge.

Proof. We may assume that #U = k/2 and #T = 100/p. The probability that in G0

there are sets T and U as above with no edge joining T and U is at most
(

n

100/p

)(

k

k/2

)

(1 − p)
50k

p ≤ exp

(

100 ln(np)

p
− 49k

)

≤ exp (−21k) ,

because kp ≥ (np)1/2 ≥ 100 ln(np).

Lemma 4.2. The probability that in G0 = Gn,p,k there are η ≥ 1 vertices in V \S that

have < kp/2 neighbors in S is ≤ n−25η.

Proof. Let v ∈ V \S. Since #N(v)∩S is binomially distributed with mean kp, Chernoff

bounds (cf. [18, p. 26]) yield P(#N(v) ∩ S ≤ kp/2) ≤ exp(−kp/8). As np ≥ ln(n)2, the

estimate
(

n

η

)

exp

(

−
kpη

8

)

≤ nη exp

(

−
kpη

8

)

≤ exp

(

−
C(np)1/2η

16

)

≤ n−25η

proves our assertion.

Lemma 4.3. Let V1 ⊂ V be a subset of cardinality n1, and let V2 = V \ V1, #V2 =

n2. Let γ > 0 be an arbitrary constant, and let 2 ≤ d ≤ n2/10. Then there exists a

number ω0 = ω0(γ) such that the following holds. Let ω = ω0 max{d, lnn}, and let H

be a random bipartite graph obtained as follows: every vertex in V1 chooses a set of

at least ω = ω0 max{d, lnn} neighbors in V2 uniformly at random; these choices occur

independently for all vertices in V1. Then, for all η ∈ {0, 1, . . . , n2/2} we have

P
(

∃T ⊂ V1 : #T ≤
n2

2d
∧ #NH(T) < d#T − η

)

≤

(

n2

η

)−γ

.

Proof. We are to bound the probability that there is a set T ⊂ V1, 1 ≤ #T = t ≤ n2

2d

that admits a set U ⊂ V2, #U = dt−η, such that N(T) ⊂ U . There are at most
(

n1

t

)(

n2

dt

)

possible choices of T and U . Given T and U , the probability that for v ∈ T we have

N(v) ⊂ U is at most

(

#U

ω

)(

n2

ω

)−1

≤
ω−1
∏

j=0

dt − j

n2 − j
≤

(

dt

n2

)ω

.

Finding Large Independent Sets in Polynomial Expected Time 19

Consequently, P(N(T) ⊂ U) ≤
(

dt
n2

)tω

. Thus, we are to show that

n2
2d

∑

t=max{1,⌈ η
d⌉}

(

n2

η

)γ(

n1

t

)(

n2

dt

) (

dt

n2

)tω

≤ 1.

Since η ≤ dt ≤ n2

2 , we have
(

n2

η

)γ
≤

(

n2

dt

)γ
. Therefore,

(

n2

η

)γ(

n1

t

)(

n2

dt

) (

dt

n2

)tω

≤

(

(en2

dt

)γd en1

t

(en2

dt

)d
(

dt

n2

)ω)t

≤

(

dt

n2

)ω0dt/4
(

exp((γ + 1)d + 1)
n1

t
2−ω/4

)t

≤

(

dt

n2

)ω0dt/4

,

where the last inequality follows from the fact that ω ≥ ω0 ln(n). Hence,

⌊(n2/d)1/2⌋
∑

t=max{1,⌈η/d⌉}

(

n2

η

)γ(

n1

t

)(

n2

dt

) (

dt

n2

)tω

≤

⌊(n2/d)1/2⌋
∑

t=max{1,⌈η/d⌉}

(

dt

n2

)ω0dt/4

≤
(n2

d

)1/2
(

d

n2

)ω0d/8

≤
1

2
.

Moreover, we have

⌊n2
2d ⌋

∑

t=
⌈

(n2
d)

1/2
⌉

(

n2

η

)γ(

n1

t

)(

n2

dt

) (

dt

n2

)tω

≤

⌊n2
2d ⌋

∑

t=
⌈

(n2
d)

1/2
⌉

2−ω0dt/4 ≤ 2−(n2d)1/2

≤
1

2
,

thereby proving the lemma.

Proof of L. 2.9. Given G = G∗
n,p,k, let W = {v ∈ V \S| #N(v)∩S < kp/2}, G′ = G0−W ,

and ω = kp/2. Let 6 ≤ d ≤
⌈

50n
k

⌉

. Then in G′ every vertex in V \ (S ∪ W) has chosen

≥ ω neighbors in S uniformly at random and independently of all others. Choosing C

sufficiently large, we can ensure that ω ≥ ω0(25)d, where ω0(25) is as in L. 4.3. Let η > 0,

η1 ∈ {0, 1, . . . , η}, and η2 = η − η1. By L. 4.2,

P(#W = η1) ≤ n−25η1 . (4.1)

Let us call a set T ⊂ V \ (S ∪W) η2-bad if #T ≤ k
2d and #N(T)∩ S < d#T − η2. If we

condition on #W = η1, then L. 4.3 yields that the probability that there is a η2-bad T

is ≤
(

k
η2

)−25
. Furthermore, if there is no (d, η2)-bad set T , then L. 2.5 entails that every

set T ′ ⊂ V \ S has a d-fold matching to S with defect ≤ η1 + η2 = η. Therefore, (4.1)

entails that the probability that there exists a set T ⊂ V \S that does not admit a d-fold

matching to S with defect ≤ η is

≤

η
∑

η1=0

P(there is an η2-bad T |#W = η1)P(#W = η1)

≤

η
∑

η1=0

n−25η1

(

k

η2

)−25

≤ (2np)−1

(

k

η

)−20

.

20 Amin Coja-Oghlan

Summing over all 6 ≤ d ≤ ⌈ 50n
k ⌉, we conclude that the probability that condition D2

is violated for a certain value of η is ≤ 1
2

(

k
η

)−20
. To bound the probability that D1 is

violated, we invoke L. 4.1.

5. Conclusion

In contrast to the algorithm of Feige and Krauthgamer [12], Find(G∗
n,p,k, k) does not

certify the optimality of its output. However, one could modify the algorithm easily in

order to guarantee that the size of the independent set found by the algorithm is within

a factor of 1 + ε from the independence number, for an arbitrarily small constant ε > 0.

Indeed, a similar argument as in the proof of L. 2.3 shows that P(ϑ(G∗
n,p,k) > (1+ε)k) ≤

exp(−20k), provided that k ≥ C(n/p)1/2 for a sufficiently large constant C = C(ε).

Hence, with probability ≥ 1−exp(−20k) we obtain a certificate that α(G∗
n,p,k) ≤ (1+ε)k.

Though Thm. 1.2 gives a lower bound on the size of independent sets that can be

recovered within polynomial expected time, there remains a gap between this lower bound

and the upper bound provided by Find. Therefore, it is an open problem to either

construct an algorithm that beats the upper bound provided by Find, or to prove a

better lower bound. An algorithm that can distinguish between graphs Gn,p,k with a

planted independent sets of size k = o(n/p)1/2 and random graphs Gn,p efficiently might

also lead to a better performance guarantee for coloring Gn,p than provided by [9, 10, 24].

References

[1] Alon, N., Kahale, N.: Approximating the independence number via the ϑ-function. Math.
Programming 80 (1998) 253–264.

[2] Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph.
Random Structures & Algorithms 13 (1998) 457–466

[3] Alon, N., Krivelevich, M., Vu, V.H.: On the concentration of the eigenvalues of random
symmetric matrices. Israel Journal of Mathematics 131 (2002) 259–267

[4] Blum, A., Spencer, J.: Coloring random and semirandom k-colorable graphs. J. of Algo-
rithms 19 (1995) 203–234

[5] Bollobás, B.: Random graphs, 2nd edition, Cambridge University Press 2001
[6] Bollobás, B., Erdős, P.: Cliques in random graphs. Math. Proc. Camb. Phil. Soc. 80 (1976)

419–427
[7] Coja-Oghlan, A.: Coloring semirandom graphs optimally. Proc. 31st ICALP (2004) 383–395
[8] Coja-Oghlan, A.: Solving NP-hard semirandom graph problems in polynomial expected

time. To appear in J. Algorithms. A preliminary version has appeared in Proc. 6th RAN-
DOM (2002) 139–148

[9] Coja-Oghlan, A.: The Lovász number of random graphs. To appear in Combinatorics,
Probability and Computing. A preliminary version has appeared in Proc. 7th RANDOM
(2003) 228–239

[10] Coja-Oghlan, A., Taraz, A.: Exact and approximative algorithms for coloring G(n, p). Ran-
dom Structures & Algorithms 24 (2004) 259-278.

[11] Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and System
Sci. 63 (2001) 639–671

[12] Feige, U., Krauthgamer, J.: Finding and certifying a large hidden clique in a semirandom
graph. Random Structures & Algorithms 16 (2000) 195–208

Finding Large Independent Sets in Polynomial Expected Time 21

[13] Frieze, A.: On the independence number of random graphs. Discrete Mathematics 81 (1990)
171–175

[14] Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures &
Algorithms 10 (1997) 5–42

[15] Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices, Combinatorica 1

(1981) 233–241
[16] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimiza-

tion, Springer 1988
[17] H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182 (1999)

105–142
[18] Janson, S., Luczak, T., Ruciński, A.: Random Graphs, Wiley 2000
[19] Jerrum, M.: Large cliques elude the metropolis process. Random Structures & Algorithms

3 (1992) 347–359
[20] Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite program-

ming. J. Assoc. Comput. Mach. 45 (1998) 246–265
[21] Karp, R.: Probabilistic analysis of some combinatorial search problems. In: Traub, J.F.

(ed.): Algorithms and complexity: New Directions and Recent Results, pp. 1–19. Academic
Press, 1976

[22] Knuth, D.: The sandwich theorem, Electron. J. Combin. 1 (1994)
[23] Kučera, L.: Expected complexity of graph partitioning problems. Discrete Applied Math.

57 (1995) 193–212
[24] Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromatic

number in expected polynomial time. J. of Combinatorial Optimization 6 (2002) 143–155
[25] Matula, D.: The largest clique size in a random graph. Technical report, Southern Methodist

Univ. Dallas, Texas (1976)
[26] McSherry, F.: Spectral partitioning of random graphs. Proc. 42nd FOCS (2001) 529–537
[27] Schrijver, A.: Combinatorial optimization, volume A. Springer 2003

