Locally Consistent Constraint Satisfaction
Problems with Binary Constraints

Manuel Bodirsky! and Daniel Kral’?:3*

! Institut fiir Informatik, Abteilung Algorithmen und Komplexitit I,
Humboldt-Universitédt zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany.
bodirsky@informatik.hu-berlin.de
2 Institute for Mathematics, Technical University Berlin 1,
Strasse des 17. Juni 136, 10623 Berlin, Germany.
3 Department of Applied Mathematics,
Faculty of Mathematics and Physics, Charles University,
Malostranské namésti 25, 118 00 Praha 1, Czech Republic.
kral@kam.mff.cuni.cz

Abstract. An instance of a constraint satisfaction problem is called k-
consistent if any k constraints of it can be simultaneously satisfied. We
focus on constraint languages with a single binary constraint. In this
case, the constraint satisfaction problem is equivalent to the question
whether there is a homomorphism from an input digraph G to a fixed
target digraph H. The instance corresponding to G is k-consistent if
every subgraph of G of size at most k is homomorphic to H. Let py(H)
be the largest p such that every k-consistent G contains a subgraph G’ of
size at least p||E(G)|| that is homomorphic to H. The ratio px (H) reflects
the fraction of constraints of a k-consistent instance that can be always
satisfied. We determine pi(H) for all digraphs H that are not acyclic and
show that limy_, o pr(H) = 1 if H has tree duality. For the latter case
we design an algorithm that computes in linear time for a given input
graph G either a homomorphism from almost the entire graph G to H,
or a subgraph of G of bounded size that is not homomorphic to H.

1 Introduction

Constraint satisfaction problems (CSP) form an important model for problems
arising in many areas of computer science. This is witnessed by the interest in the
computational complexity of various variants of CSP’s [1,2,8-11,23]. However,
sometimes not all the constraints need to be satisfied, but it suffices to satisfy
a large fraction of them. In order to maximize this fraction, the input can be
pruned at the beginning by removing small sets of contradictory constraints so

* Supported by Institute for Theoretical Computer Science (ITI), project
1M0021620808 of Czech Ministry of Education.

 The author is a postdoctoral fellow at TU Berlin within the framework of the Euro-
pean training network COMBSTRU.

that the input becomes “locally” consistent. Formally, an instance of CSP is said
to be k-consistent if any k constraints can be simultaneously satisfied.

A similar notion of local consistency can be defined in terms of variables: an
instance is k-consistent if the values of any k variables can be chosen so that any
constraint on only these variables is satisfied. Our results extend to this setting.

Both these notions of local consistency differ fundamentally from the notion
of k-consistency of Freuder [11] (and also the notion of relational k-consistency
of Dechter and van Beek [4]), where a CSP instance is k-consistent if every
solution for the constraints on k — 1 variables (constraints) can be extended to
another variable (constraint).

1.1 History of Locally Consistent CSPs

The notion of local consistency considered in this paper can be traced back to
the early 1980’s. Lieberherr and Specker [19,20] studied the problem for CNF
formulas: they require that any k clauses of a given formula can be satisfied
and asked what fraction of all the clauses can be satisfied. They settled the case
k =1,2,3. A simpler proof of their results was found by Yannakakis [24]. The
case k = 4 was settled in [17] (exploring a connection to Usiskin’s numbers [21]).
Locally consistent CNF formulas can also be found in Chapter 20 of [16].
Huang et al. [14] and Trevisan [22] resolved the asymptotic behavior of locally
consistent CNF formulas as k approaches infinity. Trevisan [22] was the first to
define the notion of local consistency for CSPs with constraints that are Boolean
predicates. For a set IT of Boolean constraints, pi(II) is the maximum p such
that a fraction of at least p constraints can be satisfied in any k-consistent
input. Note that we now allow negations in the arguments of the constraints
(the domain is the Boolean field). If IT is the set of all the predicates of arity £,
then limy_, oo pr, (IT) = 21 ¢ [22]. The ratios pi(IT), k > 1, for a set IT consisting
of a single predicate of arity at most three were determined by Dvoidk et al. [6].
The asymptotic behavior for sets II of predicates was studied in [18], where
limy,_, 00 pi (IT) was expressed as the minimum of a certain functional on a convex
set of polynomials derived from II. Efficient algorithms for locally consistent
CSPs with constraints that are Boolean predicates were also designed [6, 7, 18].

1.2 Ouwur Contribution

We initiate the study of locally consistent CSPs on larger finite domains and
focus on the case where all the constraints are of the same binary relation.
The relation can be described by a digraph H whose vertices correspond to the
elements of the domain. Two vertices are joined by an arc if the ordered pair of
the corresponding elements is contained in the relation. Similarly, the input can
be described by a digraph G': the vertices of G correspond to the variables and the
arcs to the given constraints. There is a satisfying assignment for the input if and
only if G is homomorphic to H, i.e., there exists a mapping h : V(G) — V(H)
such that h(u)h(v) € E(H) for every uv € E(G).

The notion of local consistency translates to digraphs as follows: G corre-
sponds to an k-consistent input if every subgraph of G of size at most k, i.e.,
with at most k edges, is homomorphic to H. The ratio py (H) denotes the largest
p such that for any k-consistent G there is a mapping h : V(G) — V(H) pre-
serving at least p||G|| arcs of G. The version defined in terms of variables also
translates to digraphs: for that we require that each subgraph G’ of order at
most k is homomorphic to H. The corresponding ratio is denoted by p}, (H).

We can restrict our attention to digraphs H that are cores. H is a core if it
does not have a homomorphism to a proper subgraph. Every digraph H contains
a unique (up to isomorphism) subgraph H' such that H is homomorphic to H’
and H' is a core. Obviously, pi(H) = px(H') and p}(H) = p}(H').

We show that if H contains a directed cycle (or a loop), then pi(H) and
pi(H) coincide and are equal to the fractional relative density o, (H) of H as
defined in Section 2. For such H we design a simple linear time algorithm that
finds a mapping h : V(G) — V(H) preserving at least J,.,(H) - ||G|| arcs of G.

Finally, we focus on acyclic digraphs H. Using the notion of tree duality
from [13] we show that limy o pr(H) = 1 for all orientations of a path and all
acyclic tournaments. In general, the equality limg_, o pr(H) = 1 holds for all H
that have tree duality. Unfortunately, there are acyclic digraphs H that do not
have tree duality (there are even examples that are orientations of trees)—we
discuss the cases not settled in a satisfactory way in the concluding Section 5
where we also mention possible generalizations for CSPs with larger languages.

2 Target Graphs with Cycles or Loops

We first focus on the binary relations (constraints) whose corresponding target
graph H is not acyclic. This includes the case when the relation is symmetric.
For a digraph H, we define the fractional relative density of H as follows.

1
el (H) = max z(u) - z(v)
© z:V(H)—(0,1)] Z z(v)=1 quZE(H)

vEV (H)

The maximum is taken over all functions z : V(H) — (0,1) such that the sum
of z(v) is equal to one. In particular, if H contains a loop, then 6, (H) = 1.

This notion of density is similar to that of relative density as used e.g. in [15]:

||H'|
Oret (H) = @#H?J)CCH |H'|2"

The two notions are different in general. Consider the digraph H obtained by re-
placing each edge of K5 by a bigon and removing two non-incident arcs. The rel-
ative density dre1(H) is 18/25 = 0.720 but the fractional relative density 9, (H)
is 88/121 ~ 0.727 (set z(v) = 3/11 for the vertex incident with 8 arcs and
z(v) = 2/11 for the other vertices). However, the two notions coincide when H

corresponds to a symmetric binary relation [5]. In this case, both the target and

the input graph can be viewed as an undirected digraph (replace each bigon by
a single undirected edge).

Let w(H) denote the size of the largest subset A C V(H) such that any two
distinct vertices of A are joined by an arc.

Proposition 1. If a digraph H corresponds to a symmetric binary relation,
then 6!, (H) = 0re1(H). Moreover, 6.e1(H) equals 1, if H contains a loop, and
Orel(H) =1 —1/w(H) otherwise.

Proof. If H contains a loop, then 6e1(H) = 0}, (H) = 1. In the rest, we assume
that H has no loops. Let = : V(H) — (0,1) be the function such that 01 (H) =
Y wern T(W) - (V) X, cy iy ©(v) =1 and the support of z is minimal. We
show that uv € E(H) for any two vertices u and v contained in the support.
Assume the opposite and let u and v be two non-adjacent vertices such that
z(u) >0 and z(v) > 0. Let Xy =23 cpm 2(w) and Xy =32 e p) (W)

By symmetry, we can assume that X, < X,. Consider the following function z':
z(u) — min{z(u), z(v)} if w = v,
7' (w) = z(v) + min{z(u), z(v)} if w = v, and
z(w) otherwise.

Since the vertices u and v are non-adjacent in H, the following holds:

Z z'(u) - 2’ (v) — Z z(u) - z(v) = 2(X, — Xy) min{z(u), z(v)}.

weE(H) w€EE(H)
The choice of z implies that X, = X, and 6;(H) = 3 ,,cpm) ' (u) - 7' (v).
Since X,, = X, the configuration is again symmetric with respect to v and v
and we may assume that z(u) < z(v). Consequently, ' (u) = 0 and the support
of z is not minimal. We conclude that the support of z induces a complete graph.

It is an easy exercise in calculus to show that if 6, (H) = 3., cp(m) 2(u) -
z(v), then z(u) = 1/k where k is the size of the support of z. Hence, §,,(H) =
1—-1/w(H). Since d;e1(H) < 0,4(H), we have dre1(H) = 0, (H).

The density 6, (H) is always a lower bound on pi(H) (even if H is acyclic):
Lemma 1. Let H be a digraph. The following holds for every k > 1:

pk()>6rel()

Moreover, there exists a deterministic algorithm that for any digraph G finds a
mapping h : V(G) — V(H) that preserves at least d,,,(H) - ||G|| arcs of G. The
running time of the algorithm is linear in the size of G (if H is fized).

Proof. Let = : V(H) — (0,1) be the function such that }° cy g z(v) = 1
and 6. (H) = X, epm) #(u) - (v). Consider a mapping h : V(G) = V(H)
that maps each vertex of G to a vertex v € V(H) with probability z(v). The
probability that an arc of G is mapped to an arc of H is exactly >, B(H) z(u)-
z(v) = 9], (H). Hence, the expected number of arcs preserved by h is d,,(H) -
[|G||- The mapping h can be found deterministically in linear time using the
derandomization method based on conditional expectations as described in [24].

We now recall Markov’s inequality and Chernoff’s inequality:

Proposition 2. If X is a non-negative random variable with the expected value
E, then the following holds for every o > 1:

Prob(X > a) <

Q|

Proposition 3. If X is the sum of N independent random zero-one variables,
each equal to one with probability p, then the following holds for 0 < § < 1:

§2pN

Prob(X > (1+8)pN) < e~ #~ and Prob(X < (1 —8)pN) < e~

We now prove the converse inequality of Lemma 1:
Theorem 1. If H is a non-acyclic digraph, then py(H) = 6,,,(H) for all k > 1.

Proof. Fix k> 1 and g, 0 < € < 1/2. Let n be a sufficiently large integer. We
find a digraph G whose every subgraph of size at most k is homomorphic to H,
but every mapping h : V(G) — V(H) preserves at most (d!.,(H) + ¢)||G|| arcs.

We first consider a random digraph G¢ and we later prune it to obey all
the constraints. Gy is a random graph of order n in which the arc from w to v,
u # v, is included with probability n~171/2¥ independently of the other arcs. G
contains no loops. Since the expected number of arcs of G is n(n—1)n~111/2k =
n1/2k(n — 1), Proposition 3 implies that the probability that the number of arcs
is smaller than (1 — £/4)n'*1/2% does not exceed 1/4 for a sufficiently large n.

Next, we estimate the number of (not necessarily directed) cycles of Go. The
expected number of bigons is (5)n~2+2/2F < nl/k and that of cycles of length
£=3,...,kis at most nf2¢(n—1+1/2k)t < 2ty1/2 By Proposition 2, the number
of such bigons and cycles does not exceed 4 - k2¥n1/2 with probability at least
1/4. Hence, if n is sufficiently large (and k is fixed), the number of arcs contained
in such bigons and cycles is bounded by en/4 with probability at least 3/4.

Fix a mapping h : V(Go) — V(H). Set z(v) := |h1(v)|/n for v € V(H). By
the definition of ¢ ;(H), the following holds:

rel
Y z(wa) < 8g(H) (1)

wEE(H)

The expected number of arcs of G preserved by h can be estimated using (1):

S @R)T = N w(w)z(o)n TR < 6l (H)n R
w€E(H) uwveEE(H)

By Proposition 3, the probability that the number of arcs preserved by h exceeds

25! (H)nl+1/2k
(1 + ¢/4)8!,(H)n'*+1/2F is at most e~ 4 . Since there are |V (H)|"
possible choices of h, and since the target graph H and the numbers k and € are
fixed, the probability that there exists h : V(Gy) — V(H) preserving more than
(1 +&/4)d" ,(H)n*+/2% arcs of Gy is at most 1/4 if n is sufficiently large.
We conclude that the following holds with a positive probability:

1. Gy contains at least (1 —e/4)n'*1/2* arcs,
2. the size of the set F of the arcs contained in bigons or cycles of length at

most k in Gy does not exceed en/4, and
3. every h: V(Go) — V(H) preserves at most (1 +£/4) &' (H)n'**+1/2* arcs.

Therefore, there exists a graph Gy with the above three properties. The final
graph G is obtained from Gy by removing the arcs contained in the set E.

The size of G is at least (1 —/2)n' /2%, Since every mapping h : V(Go) —
V (H) preserves at most (1+¢/4)8!,(H)n'T'/2* arcs and G is a subgraph of Gy,
every h : V(G) — V(H) also preserves at most this number of arcs. We now
infer the bound on the fraction of arcs preserved by h (recall that ¢ < 1/2):

(1+e/4)8 (H)n'H12h 1+e/4

||G|| —= 1—6/2 rel(H) S (1+E) : (H) -

rel

Next, we show that any subgraph of G of size at most k is homomorphic
to H. Let G' be such a subgraph. Since the size of G' is at most k, G’ is an
orientation of a forest. Hence, there is a homomorphism from G’ to any directed
cycle. In particular, there is a homomorphism from G’ to H.

Since for every ¢ > 0, there is a digraph G corresponding to a k-consistent
input and the fraction of arcs preserved by any h : V(G) — V(H) is at most
0! (H)+e, we have py(H) < ¢! (H). The opposite inequality holds by Lemma, 1.

rel — “rel

Proposition 1 and Theorem 1 imply the following for symmetric relations:

Corollary 1. Let H be a digraph corresponding to a symmetric binary relation
R. The following holds for every k > 1:

(H) = 1 if there exists an element a such that [a,a] € R
Pk " 1-1/w(H) otherwise

Since every subgraph of order at most k of G from the proof of Theorem 1 is
an orientation of a forest and thus homomorphic to H, the following also holds:

Corollary 2. If H is a non-acyclic digraph, then p},(H) = 0. (H) for all k > 1.

rel

3 Graph Homomorphisms and Tree Duality

A key ingredient to our algorithm in the next section is the notion of tree du-
ality. A digraph H has tree duality if G is homomorphic to H if and only if
every directed tree homomorphic to G is also homomorphic to H. E.g., every
orientation of a simple path or every acyclic tournament has tree duality. Feder
and Vardi [10] and Hell, Nesetiil and Zhu [13] observed that if H has tree du-
ality, then the H-coloring problem (the decision problem whether a given graph
is homomorphic to H) can be solved in polynomial time [12] by the so-called
arc-consistency procedure (also called consistency check).

An equivalent definition of having tree duality uses the notion of set graphs.
For a digraph H, the set graph 2 is the graph whose vertices are non-empty

subsets of V' (H) and two subsets U and V are joined by an arc if the following
holds: for every vertex u € U, there exists a vertex v € V such that wv is an arc
of H, and for every vertex v € V, there exists a vertex u € U such that uv is an
arc of H (see Figure 1). H has tree duality if and only if 2 is homomorphic to
H [3,10]. Note that this criterion can be used to decide algorithmically whether
a given digraph H has tree duality.

Fig. 1. An example of a digraph H with tree duality and its set graph.

We now describe the arc-consistency procedure studied already in [11]. At
the beginning, each vertex v of an input graph G is assigned the set £o(v) of all
the vertices of the target graph H and the set assigned to v after ¢ steps of the
algorithm is denoted by £;(v). At the i-th step, a vertex w € V(H) is removed
from the set of v if G contains an arc vv' such that H does not contain an arc
ww' for any w' € £;_1(v') or G contains an arc v'v such that H does not contain
an arc w'w for any w' € £;_1(v'). We say that such an arc vv' is violated at
the i-th step. The procedure terminates when there are no violated arcs. The
number of steps never exceeds |G| - |[H|. The running of the procedure is linear
in |G| + ||G|| when H is fixed (and when the assignments ¢; at each step are
implicitly represented).

If there is a vertex v whose final set is empty, then G is not homomorphic to
H. Otherwise, the mapping h : V(G) — V(2) that maps each v to its final set
is a homomorphism from G to 27 . If H has tree duality, then 27 is homomorphic
to H and thus G is homomorphic to H.

4 Target Graphs with Tree Duality

We show that if H has tree duality, then limy_, o, p(H) = 1, and we design an
algorithm that either finds a good mapping from G to H or detects a subgraph of
G of bounded size not homomorphic to H. Note that even if H has tree duality,
the problem to maximize the number of satisfied constraints can be hard. For
instance the problem whether G is homomorphic to the digraph consisting of a

single arc can be solved in polynomial time, but the maximization problem is
hard: for an undirected graph Gy, let G be the digraph obtained by replacing
each edge with a bigon. The maximum number of arcs that can be preserved by
a mapping from G to the arc is equal to the size of the maximum cut of Gy.

Theorem 2. If H is a digraph that has tree duality, then the following holds:

lim p(H) =1.

k— o0
Moreover, there is an algorithm that for an input graph G and € > 0 either finds
a mapping h : V(G) — V(H) preserving at least (1 —) - ||G|| arcs or finds a
subgraph of G of size at most |H|r2|H|/E] not homomorphic to H. The running
time of the algorithm is linear in |G| + ||G|| if the target graph H is fized.

Proof. We first describe the algorithm. The algorithm runs the arc-consistency
procedure for the first [2|H|/e] steps and constructs the corresponding assign-
ments £;. It then distinguishes two cases. The first case is that there exists a
vertex v with £;(v) = 0. Let ¢ be the smallest index with this property. For every
w € V(H), there exists a step of the algorithm when w was removed from the set
of v because an incident edge was violated. For w € V(H), consider such an edge
v, and the corresponding step 4,,. Note that i,, < i. Now, for every w' € V(H)
missing in ¢;, (vy), consider the step when w' was removed from the sets of v,,.
Note that ¢;, (vy) # @ by the choice of i. We obtain new sets of arcs that were
violated before the i,,-th step and that caused vertices w' to be removed from
the set of v,,. Continue in this way unless the sets assigned to the vertices of G
are equal to V(H). This terminates because the numbers 4,, of steps decrease.
Since ¢ < [2|H]|/e], the number of considered violated arcs does not exceed:

[H|+ |H|(H| = 1)+ |H|(|H| = 1)> + -+ [H|(H| =)PEE < g VT

This set of arcs contains a subgraph of G that is not homomorphic to H.

The other case is that £;(v) # 0 for allv € V(G) and i. Let E; be the set of the
arcs violated at the i-th step. Since each edge is violated at most 2|H| times (at
each step when the edge is violated, the size of the set of one of its end-vertices
decreases), the sum |E;| + --- + |Efg (/-1 is bounded by 2|H| - ||G||. Hence,
there exists ¢ = 1,...,[2|H|/e] such that |E;| < €||G||. Consider a mapping
h' : V(G) — V(2H) defined as h'(v) := £;_1(v); h' preserves all arcs possibly
except for those of E;. Since 2¥ is homomorphic to H, there is a homomorphism
h : V(G) — V(H) that preserves at least (1 — ¢)||G|| arcs. The bound on the
running time of our algorithm follows from the discussions in Section 3.

Since the algorithm finds for a | H|[2/H|/¢]_consistent G a mapping preserving
at least (1 —¢€)||G]| arcs, pjgraimi/e1 (H) > 1 — ¢ and limy o0 pr(H) = 1.

Since p3,(H) > pi(H) and p(H) is non-decreasing in k, Theorem 2 implies:
Corollary 3. If H is a digraph that has tree duality, then the following holds:

lim pp(H)=1.
k—o0

Moreover, there is an algorithm that for an input graph G and € > 0 either finds
a mapping h : V(G) — V(H) preserving at least (1 —) - ||G|| arcs or finds
a subgraph of G of order at most 1 + |H|(2|H|/5] not homomorphic to H. The
running time of the algorithm is linear in |G| + ||G|| if H is fized.

5 Directions for Future Research

The main interest in locally consistent CSPs comes from the question how much
it helps that the input is locally consistent. This is reflected by the behavior of
pr(H) as a function of k. In case that H contains a loop or a directed cycle, the
assumption on local consistency does not help at all. On the other hand, if H
has tree duality, this assumption helps a lot. We were not able to settle the case
where H is acyclic but does not have tree duality. In Figure 2, there are the three
smallest digraphs H for which we cannot compute the limit limg_, o px (H).

Fig. 2. The three smallest digraphs H for which limy_,o pr(H) is unknown.

In [6,7, 18], the authors also addressed the weighted versions of the problems.
Let us mention that all our results, in particular Theorems 1 and 2, Corollaries 1,
2 and 3, hold for the weighted versions of the problems, too. The reader is
welcome to check him/her/itself that the proofs translate to this setting.

The ultimate goal is to settle the behavior of locally consistent CSPs with
more types of constraints and with constraints of arbitrary arity. The approach
to CSPs for binary constraints based on graphs with tree duality applies to all
constraint languages that admit a set function, even if the constraint language
contains several constraint types. Note that this class of computational prob-
lems contains many previously known tractable families of problems including
Horn, constant, and ACI problems [3]. However, we have little knowledge of the
behavior for constraint languages without tree duality.

Acknowledgement

The authors are indebted to Zdenék Dvotak for discussions on relative density
of graphs and to Pavol Hell for his comments on tree duality.

References

1.

2.

ot

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

A. Bulatov, A. Krokhin, P. Jeavons: The Complexity of Maximal Constraint Lan-
guages. In: Proc. 33rd Symp. on Theory of Computation, STOC (2001) 667—674.
S. Cook, D. Mitchell: Finding Hard Instances of the Satisfiability Problem: A
Survey. In: Satisfiability Problem: Theory and Applications. DIMACS Series in
DMTCS Vol. 35 AMS (1997).

V. Dalmau, J. Pearson: Closure Functions and Width 1 Problems. In: Proc. 5th
International Conferences on Principles and Practice of Constraint Programming,
CP, LNCS 1713, Springer Berlin (1999) 159-173.

R. Dechter, P. van Beek: Local and Global Relational Consistency. Theor. Comput.
Sci. 173 (1997) 283-308.

Z. Dvorédk: personal communication.

Z. Dvoiédk, D. Kral’, O. Pangric: Locally Consistent Constraint Satisfaction Prob-
lems. In: Proc. 31st International Colloquium on Automata, Languages and Pro-
gramming, ICALP, LNCS 3142, Springer-Verlag Berlin (2004) 469-480.

Z. Dvorék, D. Kral’, O. Pangric: Locally Consistent Constraint Satisfaction Prob-
lems, to appear in Theor. Comput. Sci.

D. Eppstein: Improved Algorithms for 3-coloring, 3-edge-coloring and Constraint
Satisfaction. In: Proc. 12th ACM-SIAM Symposium on Discrete Algorithms,
SODA (2001) 329-337.

T. Feder, R. Motwani: Worst-case Time Bounds for Coloring and Satisfiability
Problems. J. Algorithms 45(2) (2002) 192-201.

T. Feder, M. Vardi: Monotone monadic SNP and constraint satisfaction. In: Proc.
25th Symposium on the Theory of Computation, STOC (1993) 612-622.

E. C. Freuder: A sufficient condition for backtrack-free search. J. ACM 29 (1982)
24-32.

P. Hell, J. Nesetfil: Graphs and homomorphisms. Oxford University Press (2004).
P. Hell, J. Nesetfil, X. Zhu: Duality and polynomial testing of tree homomorphisms.
Trans. Amer. Math. Soc. 348(4) (1996) 1281-1297.

M. A. Huang, K. Lieberherr: Implications of Forbidden Structures for Extremal
Algorithmic Problems. Theor. Comput. Sci. 40 (1985) 195-210.

S. Janson, T. Luczak, A. Ruciiski: Random Graphs. Wiley, New York (2000).

S. Jukna: Extremal Combinatorics with Applications in Computer Science.
Springer, Heidelberg (2001).

D. Kral’: Locally Satisfiable Formulas. In: Proc. 15th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). STAM (2004) 323-332.

D. Krédl’, O. Pangrdc: An Asymptotically Optimal Linear-Time Algorithm for Lo-
cally Consistent Constraint Satisfaction Problems, submitted.

K. Lieberherr, E. Specker: Complexity of Partial Satisfaction. J. of the ACM, 28(2)
(1981) 411-422.

K. Lieberherr, E. Specker: Complexity of Partial Satisfaction II. Technical Report
293, Dept. of EECS, Princeton University (1982).

Z. Usiskin: Max-min Probabilities in the Voting Paradox. Ann. Math. Stat. 35
(1963) 857-862.

L. Trevisan: On Local versus Global Satisfiability, SIAM J. Discrete Math., 17(4)
(2004), 541-547. A preliminary version available as ECCC report TR97-12.

G. J. Woeginger: Exact Algorithms for NP-hard Problems: A Survey. In: Proc.
Worksh. Comb. Opt.—Eureka, You Shrink. LNCS 2570, Springer (2003) 185-207.
M. Yannakakis: On the Approximation of Maximum Satisfiability. J. Algorithms
17 (1994) 475-502.

