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Abstract. A relational structure is a core, if all its endomorphisms are
embeddings. This notion is important for the classification for the com-
putational complexity of constraint satisfaction problems. It is a funda-
mental fact that every finite structure S has a core, i.e., S has an endo-
morphism e such that the structure induced by e(S) is a core; moreover,
the core is unique up to isomorphism.
We prove that this result remains valid for ω-categorical structures, and
prove that every ω-categorical structure has a core, which is unique up
to isomorphism, and which is finite or ω-categorical. We also show that
the core of an ω-categorical structure Γ is model complete, and therefore
∀∃-axiomatizable. If Γ contains all primitive positive definable relations,
then the core of Γ admits quantifier elimination. We discuss consequences
for constraint satisfaction with ω-categorical templates.

1 Introduction

Let Γ and ∆ be relational structures with the same relational signature
τ . A mapping f : Γ → ∆ is called a homomorphism, if for all relations
R ∈ τ and x1, . . . , xn ∈ Γ the relation R(f(x1), . . . , f(xn)) holds in ∆
whenever R(x1, . . . , xn) holds in Γ . A homomorphism is called strong, if
R(x1, . . . , xn) holds in Γ if and only if R(f(x1), . . . , f(xn)) holds in ∆.
A injective strong homomorphism is also called an embedding. A homo-
morphism from Γ to Γ is called an endomorphism of Γ , and a bijective
strong endomorphism of Γ is called an automorphism of Γ .

Definition 1. A (finite or infinite) structure Γ is a core if every endo-
morphisms of Γ is an embedding. A core Γ is called a core of ∆ if Γ is
the image of an endomorphism of ∆.

Homomorphisms that are not embeddings are called strict. The above
definition says that cores do not have strict endomorphisms. For finite
cores it clearly holds that every endomorphism is an automorphism. The
following is well-known and easy to prove.



Proposition 1. Every finite relational structure has a core, which is
unique up to isomorphism.

Therefore, we speak of the core of a finite relational structure Γ . As we will
see, the notion of a core is central for the complexity study of constraint
satisfaction problems; for its general rôle in structural combinatorics see
e.g. [21].

1.1 Cores of Infinite Structures

Various core-like properties of infinite structures were studied by Baus-
laugh [5, 6]. In general, infinite structures might not have a core in the
sense introduced above, and the core might not be unique, see [5, 6].

In this article we focus on structures that are ω-categorical (also called
countably categorical, or ℵ0-categorical), i.e., countably infinite structures
with a first-order theory that has only one countable model, up to iso-
morphism. This is for instance the case for the dense linear order of the
rational numbers (Q;<). Clearly, (Q;<) is a core. We state one of the
main results.

Theorem 1. Every ω-categorical structure has a core, which is unique
up to isomorphism, and which is finite or ω-categorical.

If we add all primitive positive formulas to the signature of an ω-categorical
core, the resulting relational structure admits quantifier elimination. We
also show that an ω-categorical structure Γ is a core if and only if every
first-order formula has in Γ an existential positive definition. In particu-
lar, ω-categorical cores are model complete; see Section 5.

1.2 Constraint Satisfaction

The notion of a core has applications in the theory of constraint satis-
faction. Let Γ be a structure with relational signature τ . The constraint
satisfaction problem for the so-called template Γ is the following compu-
tational problem:

CSP(Γ )
INSTANCE: A finite structure S of the same relational signature τ as the
template Γ .
QUESTION: Is there a homomorphism h : S → Γ?

We want to stress that Γ is not part of the input; each Γ defines a com-
putational problem. Note that the image of Γ under an endomorphism
has the same constraint satisfaction problem as Γ .



Proposition 2. Let Γ be a relational structure. Then CSP(Γ ) can be
formulated as a constraint satisfaction problem with a finite template if
and only if Γ has a finite core.

Proof. Clearly, if Γ has a finite core T , then CSP(Γ ) is equivalent to
CSP(T ). Conversely, suppose CSP(Γ ) equals CSP(T ) for a finite tem-
plate T . This implies that every finite substructure of Γ homomorphi-
cally maps to T . A standard compactness argument shows that there is
a homomorphism from Γ to T , and therefore Γ has a finite core. ut

For a finite template T , the computational problem CSP(T ) is clearly
contained in NP. A classification of tractable and hard constraint satis-
faction problems with a finite template is intensively studied, but still not
complete. See [10,17,20], just to mention a few highlights on that subject.
In all these approaches, the authors make use of the assumption that the
templates of the constraint satisfaction problems under consideration are
cores.

The class of constraint satisfaction problems with an infinite tem-
plate was not yet studied systematically. It turns out that many inter-
esting computational problems can be formulated with templates that
are ω-categorical, as demonstrated by the following list of well-known
computational problems.

– Allen’s interval algebra, and all its fragments [4, 22,26,29]
– Problems in phylogenetic analysis [19,30]
– Tree description constraints in computational linguistics [8, 9, 14]
– Computational problems in the theory of relation algebras [16,23,28]
– All problems in monotone monadic SNP without inequality [7, 17]

In particular, every constraint satisfaction problem with a finite template
T can also be formulated with an ω-categorical template. To see this, add
for each vertex v in T a countably infinite number of copies v1, v2, . . . ,
such that for all i ≥ 1 the relation R(. . . , vi, . . . ) holds in the resulting
structure Γ if and only if R(. . . , v, . . . ) holds in T . It is not hard to see that
the structure Γ is ω-categorical, and that the core of Γ is isomorphic to
T . Clearly, there are constraint satisfaction problems with ω-categorical
templates that can not be formulated with finite templates: all the classes
of computational problems mentioned above contain examples of such
problems.



1.3 Examples

To illustrate the concepts we have seen so far, we formulate several well-
known computational problems as constraint satisfaction problems. With
Theorem 2 in the next section it will be easy to check that the corre-
sponding templates are all ω-categorical. Three more examples follow at
the end of Section 2, since we need the concept of amalgamation to define
them conveniently. In all these examples, it is fairly easy to check that
the chosen template is a core.

Betweenness. An important NP-hard problem is Betweenness [18], since
the hardness of many fragments of Allen’s Interval Algebra [4, 26] can
be proven easily by reduction from Betweenness. Given a finite set V ,
and a collection C of ordered triples (x, y, z) of distinct elements from
V , the computational question is whether there is an injective function
f : V → {1, . . . , |V |} such that, for each (a, b, c) ∈ V , we have either
f(a) < f(b) < f(c) or f(c) < f(b) < f(a). The formulation as a constraint
satisfaction problem is straightforward, using for instance the rational
numbers as the base set of the template.

Switching-Acyclicity. Given a digraph D = (V ;E), can we partition the
vertices V into two parts, such that the graph that arises from D by
switching all arcs between the two parts is acyclic? To formulate this as a
constraint satisfaction problem with an ω-categorical template, consider
a dense subset X of Q, and switch the order < between the elements of X
and Q−X, and leave the edges within X and within Q−X unchanged [9].
The resulting structure is called S(2) and is isomorphic for all choices of
dense sets X, see e.g. [13]. The constraint satisfaction problem of S(2) is
the problem described above. For equivalent definitions of S(2) and an
hardness-proof of its constraint satisfaction problem, see [7, 9].

Partial tree descriptions. Our next example was studied in computational
linguistics [14], and the first polynomial time algorithm can be found
in [8]. Let D be a digraph with two types of arcs, called ancestorship and
non-ancestorship arcs. The question is whether D is a consistent partial
tree description, i.e., whether we can find a forest with oriented edges
on the vertex set of D, such that for every ancestor arc in D there is
a directed path in the forest, and for every non-ancestor arc there is no
directed path in the forest.

To formulate this problem as a constraint satisfaction problem, we
choose the following ω-categorical dense proper semilinear order [2,12,15]



as a template. The domain of the structure is the set Λ of all non-empty
finite sequences a = (q0, q1, . . . , qn−1) of rational numbers. Let a < b if
either

– b is a proper initial subsequence of a, or
– b = (q0, . . . , qn−1, qn) and a = (q0, . . . , qn−1, q

′
n, qn+1, . . . , qm), where

the rational number qn is smaller than q′n.

The relation < corresponds to ancestorship edges in partial tree descrip-
tions. The set of all ordered pairs of distinct points that are not in <,
denoted by �, corresponds to the non-ancestorship edges. CSP((Λ;<,�))
is the constraint satisfaction problem we were looking for.

Non-cores. Of course, there are plenty of ω-categorical structures that
are not cores, for instance the Random graph R [11,24], whose core is the
complete graph Kω on a countably infinite set of vertices (the constraint
satisfaction problem of R and Kω is trivial). Another example is the
structure (Λ;<), i.e., the template for partial tree descriptions introduced
above without the relation �. Here the core is isomorphic to (Q;<).

2 Countably Categorical Structures

Finite structures are up to isomorphism determined by their first-order
theory. We can not expect this for infinite structures: by the theorem of
Löwenheim-Skolem, every consistent theory with a model of cardinality
λ has models of arbitrary cardinality ≥ λ. However, it might still be the
case that all models of a certain cardinality are isomorphic. If this is the
case for the countably infinite models, we call the theory ω-categorical.
A countably infinite structure Γ is called ω-categorical, if its first-order
theory Th(Γ ) (i.e., the set of all first-order sentences that hold in Γ ,
where the atomic formulas are built from the symbols in τ and equality)
is ω-categorical. Throughout the paper we only consider relational and at
most countable structures and signatures. Despite the powerful theorems
quoted below, the class of ω-categorical structures remains somewhat
mysterious, and all classification results require some additional proper-
ties (stability in e.g. [27], or homogeneity in [13]). All notions used here
are standard and can be found e.g. in [24].

Theorem 2 (Engeler, Ryll-Nardzewski, Svenonius). The following
properties of a structure Γ are equivalent:

1. the structure Γ is ω-categorical;



2. for each n ≥ 1, there are finitely many orbits of n-tuples in the auto-
morphism group of Γ ;

3. for each n ≥ 1, there are finitely many inequivalent formulas with n
free variables over Γ .

Permutation groups with the second property in Theorem 2 are called
oligomorphic [11]. We need another concept, which is of a more combi-
natorial nature, and links ω-categoricity via homogeneity and Fräıssé’s
theorem to amalgamation classes.

A structure is homogeneous (sometimes also called ultra-homogeneous)
if every isomorphism between finite substructures of Γ can be extended to
an automorphism (in this paper, substructure always means induced sub-
structure, as in [24]). A structure Γ admits quantifier elimination, if every
first-order formula has in Γ a quantifier-free definition. An ω-categorical
structure has quantifier elimination if and only if it is homogeneous (2.22
in [11]). A homogeneous τ -structure is ω-categorical if and only if the sig-
nature τ contains finitely many relation symbols of arity k, for all k ≥ 1.

An example of an ω-categorical structure that is not homogenous is
(Λ;<,�) [15]. For an example of a homogeneous structure that is not
ω-categorical, consider the expansion of a countably infinite structure Γ
by unary singleton predicates for each element in Γ . This structure is
homogeneous, since there are no distinct isomorphic substructures in Γ ,
and it is not ω-categorical, since the number of orbits in the automorphism
group of Γ is infinite.

The next theorem asserts that a countable homogeneous structure
is up to isomorphism characterized by its age, i.e., the set of its finite
substructures. A class of finite relational structures C is an amalgama-
tion class if C is nonempty, closed under isomorphisms and taking sub-
structures, and has the amalgamation property, which says that for all
A,B1, B2 ∈ C and embeddings e1 : A → B1 and e2 : A → B2 there
exists C ∈ C and embeddings f1 : B1 → C and f2 : B2 → C such that
f1e1 = f2e2.

Theorem 3 (Fräıssé). A countable class C of finite relational structures
with countable signature is the age of a countable homogeneous structure
if and only if C is an amalgamation class. In this case the homogeneous
structure is up to isomorphism unique and called the Fräıssé-limit of C.

The following templates of well-known constraint satisfaction problems
are easily defined with amalgamation classes.

Triangle-free colorings. The class of all triangle-free graphs is an amal-
gamation class. Let us denote its Fräıssé-limit by 6. Clearly, CSP(6) is



tractable; but it can not be formulated with a finite template. The struc-
ture [6,6], i.e., the structure that consists of two copies of 6, where all
vertices between the two copies are linked, has an interesting constraint
satisfaction problem, which can be formulated as follows: Given a graph,
can we partition its vertices into two parts such that both parts do not
contain a triangle? This problem is a rather typical example from the class
monotone monadic SNP without inequality (MMSNP), a fragment of ex-
istential second-order logic introduced in [17] in the context of constraint
satisfaction. A general result on so-called G-free colorability implies its
NP-hardness [1].

Quartet compatibility. The next example is an important structure in the
theory of infinite permutation groups [11]. A boron tree is a finite tree
in which all vertices have degree one (hydrogen atoms) or degree three
(boron atoms). On the hydrogen atoms of a boron tree we can define
a quaternary relation xy|uv that holds when the paths joining x to y
and u to v are disjoint. The class of all structures D with a quaternary
relation that stem from a boron tree as defined above is an amalgamation
class [2]. Let D be the Fräıssé-limit of D. Then CSP(D) is a well-known
NP-hard problem [30] that was independently studied in phylogenetic
analysis (without any reference to constraint satisfaction), and is called
quartet-compatibility : Given a collection C of quartets xy|uv over a set
X, is there some tree with leaf set X such that for each quadruple xy|uv
in C the paths from x to y and from u to v do not have common vertices?

Rooted triple consistency. The next problem is studied in phylogenetic
analysis, again without notice that the problem can be stated as a con-
straint satisfaction problem. If we fix a point a in the previous structure
D and consider the ternary relation ‘:’ defined by x : yz ⇔ ax|yz, we
again obtain an ω-categorical structure (this is a C-set in [2]). The age of
this structure now contains the finite structures T that come from finite
rooted trees, and the relation x : yz says that the least common ancestor
of y and z is strictly below the least common ancestor of x, y, and z in
the tree T . The corresponding constraint satisfaction problem is known as
the rooted triple consistency problem [30], and tractable. The first poly-
nomial time algorithm for this problem goes back to [3], motivated by a
question in database theory.



3 Primitive Positive Expansions

A formula φ is primitive (primitive positive), if it is of the form

∃x.ψ1 ∧ · · · ∧ ψk

where ψi are literals (atomic formulas) that might include the equality
relation. It is called existential (existential positive), if it is of the form
∃x.Ψ where Ψ is quantifier-free (and negation-free). The strongest of these
four syntactic restrictions, primitive positivity, is important for constraint
satisfaction, since the expansion of a template with a primitive positive
definable (short, p.p.-definable) relation does not change the complexity of
the corresponding constraint satisfaction problem. This is an easy obser-
vation, see e.g. [25]. But primitive positive definitions are also important
for purely model theoretic questions.

Recall that a structure Γ admits quantifier elimination, if every first-
order formula has in Γ a quantifier-free definition. For example, consider
modules, and add all p.p.-definable relations to the signature. The theo-
rem of Baur and Monk says that the resulting structure admits quantifier
elimination (see e.g. [24]). As we will see at the end of this section, cores
behave similarly in this respect. The following well-known fact can be
applied to eliminate negations in existential formulas.

Proposition 3. Let T be a first-order theory such that every homomor-
phism between models of T is an embedding. Then every existential for-
mula is equivalent to an existential positive formula with respect to T .

Proof. A formula is equivalent to an existential positive formula with
respect to a theory T if and only if it is preserved by all homomorphisms
between models of T ; this is e.g. Exercise 2 in Section 5.5 in [24]. Let f
be a homomorphism between two models of T . By assumption, f is an
embedding, and therefore clearly preserves all existential formulas. ut

We start with a proposition on primitive expansions.

Proposition 4. If we expand a structure by all primitive definable rela-
tions, the resulting structure Γ is homogeneous.

Proof. Let a be a tuple of elements from Γ , let B1, B2 be induced sub-
structures of Γ and e1 : a → B1 and e2 : a → B2 be embeddings. Since
there are relation symbols for every primitive formula in the signature,
there is a relation R1 that holds on the tuple e1(a) and corresponds to the



primitive formula for the structure B1 where the points from B1 − e1(a)
are existentially quantified. We also have a relation R2 corresponding to
B2 where the points from B2 − e2(a) are existentially quantified. Since
e1 and e2 are embeddings, these relations also hold on a, and they assert
that we can find an extension C of a with embeddings f1 : B1 → C,
f2 : B2 → C such that f1e1 = f2e2. Thus, the age of Γ has the amalga-
mation property, and Theorem 3 implies that Γ is homogeneous. ut

The following is an useful consequence of Proposition 3.

Proposition 5. Let Γ be a τ -structure where τ contains a relation sym-
bol for each primitive positive definable relation in Γ . If all homomor-
phisms between models of Th(Γ ) are embeddings, then Γ is homogeneous.

Proof. If we expand Γ by all primitive definable relations, Proposition 4
shows that the resulting structure Γ ′ is homogeneous. Hence, each orbit
of k-tuples is uniquely determined by the literals that hold on a k-tuple
from the orbit. To show that also Γ is homogeneous, let R be an orbit
of k-tuples in Γ . Since R has a quantifier-free definition in Γ ′, R is in Γ
equivalent to a boolean combination of primitive formulas. By Theorem 3,
we know that primitive formulas have a primitive positive definition in Γ .
Since τ contains a relation symbol for each of them, R has a quantifier-
free definition, and therefore is homogeneous. ut

4 The Core of a Countably Categorical Structure

We prove that every countably categorical structure has a core, which
is again ω-categorical and unique up to isomorphism. We start with a
proposition that states the existence of a ‘youngest’ endomorphic image
of an ω-categorical structure. The proof employs a typical technique for
ω-categorical structures.

Proposition 6. Let Γ be an ω-categorical relational τ -structure. Then
there exists an endomorphism c of Γ such that for every other endomor-
phism g, all finite substructures of c(Γ ) embed into g(Γ ). This is, there
exists an endomorphic image of Γ of smallest age.

Proof. Let S be the set of all finite τ -structures S such that there is an
endomorphism g of Γ such that S is not a substructure of g(Γ ). We
have to show that there is an endomorphism c such that c(Γ ) does not
contain any substructure from S. For the construction of c we consider
the following tree. Let a1, a2, . . . be an enumeration of Γ . The vertices on



level n of the tree are equivalence classes of good homomorphisms from
{a1, . . . , an} to Γ . A homomorphism h is good, if h({a1, . . . , an}) does
not contain any substructure from S. Two homomorphisms g1 and g2 are
equivalent, if there exists an automorphism α of Γ such that g1 = g2α.
Clearly, if a homomorphism is good, then all equivalent homomorphisms
and all restrictions are also good. A vertex u on level n + 1 in the tree
is connected to a vertex v on level n, if some homomorphism from u is
the restriction of some homomorphism from v. Because of ω-categoricity,
the tree is finitely branching. We want to show that the tree has vertices
on each level n, and iteratively construct a sequence h1, h2, . . . , hk of
homomorphisms from {a1, . . . , an} to Γ , where the last endomorphism
hk induces a good homomorphism. Initially, if the structure induced by
{a1, . . . , an} does not have a substructure from S, we can choose the
identity as a good homomorphism. Otherwise, there is a substructure
S ∈ S on the elements {a1, . . . , an} and an endomorphism e such that e(Γ )
does not contain S. Hence, h1 := e|{a1,...,an} is a strict homomorphism.

In step i, if the structure induced by hi({a1, . . . , an}) does not have
a substructure from S, then hi is a good homomorphism, and we are
again done. Otherwise there is an endomorphism e of Γ and a structure
S ∈ S on elements from hi({a1, . . . , an}), such that e(Γ ) does not contain
S. We can then define a strict homomorphism hi+1 : {a1, . . . , an} → Γ
by hi+1(x) := e(hi(x)). Since in the sequence of structures induced by
h1({a1, . . . , an}), h2({a1, . . . , an}), . . . either the number of vertices de-
creases or the number of tuples in relations increases, and since Γ is
ω-categorical, the sequence has to be finite. Hence, there exists a good
homomorphism from {a1, . . . , an} to Γ , for all n ≥ 0. By König’s tree
lemma, there exists an infinite path in the tree. Since adjacency in the
tree was defined by restriction between homomorphisms, this path de-
fines an endomorphism c of Γ . By construction, c(Γ ) does not contain a
substructure from S. ut

It follows that all cores of Γ have the same age as c(Γ ).

Theorem 4. Let Γ be an ω-categorical τ -structure. If τ contains a re-
lation symbol for each primitive positive definable relation, then it has a
homogeneous core, which is unique up to isomorphism. Moreover, the core
is finite or ω-categorical.

Proof. Let Γ ∗ := c(Γ ) be the structure induced by the endomorphism c
constructed in Proposition 6. We first show

(∗) Every homomorphism between two models Γ1 and Γ2 of Th(Γ ∗) is
strong and injective.



In particular, this holds for endomorphisms of Γ ∗, and therefore Γ ∗ is a
core. To prove (∗), first observe that both Γ1 and Γ2 embed into Γ . They
both have the same first-order theory and thus the same age as Γ ∗, which
is contained in the age of Γ . Since Γ is ω-categorical, there are embeddings
of Γ1 and Γ2 in Γ , and we can thus assume that Γ1 ⊆ Γ and Γ2 ⊆ Γ .
Now suppose for contradiction that f : Γ1 → Γ2 is a homomorphism that
does not preserve the formulas ¬R(u) or u1 = u2 for some k-ary relation
R on Γ1 and some tuple u = (u1, . . . , uk) of elements in Γ1. We will then
construct an endomorphism h of Γ such that h(Γ ) does not contain a copy
of the substructure S induced by u in Γ1. This is a contradiction: On the
one hand S is a substructure of Γ ∗, since Γ1 has the same theory and thus
the same age as Γ ∗. On the other hand, since S is not a substructure of
h(Γ ), Proposition 6 says that S is not a substructure of Γ ∗.

To construct this homomorphism h we consider an infinite but finitely
branching tree. The vertices on level n in this tree will be equivalence
classes of good homomorphisms from {a1, a2, . . . , an} to Γ , where a1, a2, . . .
is an enumeration of Γ . A homomorphism g on level n is good, if the struc-
ture induced by g({a1, . . . , an}) does not contain an induced copy of S.
Two homomorphisms g1 and g2 are equivalent if there exists an automor-
phism α of Γ such that g1 = g2α. Adjacency is defined by restriction;
this is, two nodes on level n and n + 1 are adjacent in the tree if there
are representatives g1 and g2 of the nodes such that g1 is a restriction of
g2. Clearly, all restrictions of a good homomorphism are again good ho-
momorphisms, and all homomorphisms in an equivalence class are good,
or all are not good. By ω-categoricity of Γ , the tree is finitely branch-
ing. The crucial step is that the tree contains vertices on every level, i.e.,
there exists a good homomorphism hn : {a1, . . . , an} → Γ for each n ≥ 1.
We show this in the following; and here we use the assumption that all
p.p.-definable relations are in the signature of Γ .

To find hn for each n ≥ 1, we consider a sequence (hi
n)i≥0 of ho-

momorphisms into Γ , where the domain of h0
n is {a1, . . . , an}, and the

domain of hi+1
n equals the image of hi

n. Hence, we can define the fol-
lowing composed homomorphism h

(i)
n : {a1, . . . , an} → Γ by h

(i)
n (x) :=

hi
n(. . . h1

n(h0
n(x)) . . . ). We now define the sequence (hi

n)i≥0. If the struc-
ture induced by the domain of hi

n does not contain an induced copy
of S, we are done, because then h

(i−1)
n is a good homomorphism from

{a1, . . . , an} to Γ . Otherwise, there are elements (bi1, . . . , b
i
k) in the do-

main of hi
n that induce a structure isomorpic to the structure S induced

by (u1, . . . , uk) in Γ . We now define hi
n(bij) := f(uj) for 1 ≤ j ≤ k, and

want to extend this mapping to a (strict) homomorphism hi
n on the other



elements bik+1, . . . , b
i
m, m ≤ n, in the domain of hi

n. Consider the formula
φ := ∃xi

k+1, . . . , x
i
mψ, where ψ is a conjunction of atomic formulas cor-

responding via xi
j ↔ bij to the structure induced by bik+1, . . . , b

i
m in Γ ,

and xi
1, . . . , x

i
k are the free variables of φ. This formula φ clearly holds for

bi1, . . . , b
i
k.

Since the signature contains a relation symbol for all p.p.-definable
relations, the primitive positive formula φ also holds on u1, . . . , uk, since
these vertices induce the same structure as bi1, . . . , b

i
k. Since f preserves

primitive positive formulas, φ also holds on f(u1), . . . , f(uk). We thus can
find representatives rk+1, . . . , rm in Γ for the variables xi

k+1, . . . , x
i
m of the

existential quantifiers in φ, and extend hi by hi
n(bij) := rj for k+ 1 ≤ j ≤

m. Then hi
n clearly is a homomorphism to Γ , which is also strict, because

it does not preserve some of the inequalities or negated relations that hold
on bi1, . . . , b

i
k. Therefore the sequence (h(i)

n )i of homomorphisms must be
finite, because ω-categoricity of Γ implies that there are only finitely
many non-isomorphic homomorphic images of the structure induced by
{a1, . . . , an} in Γ . Let h(i0)

n be the last homomorphism in this sequence. By
construction, this function is a good homomorphism hn for every n ≥ k.

Therefore, the constructed tree contains vertices on all levels, and
König’s tree lemma asserts that the tree contains an infinite path. Since
adjacency is defined by restriction, this path defines an infinite endomor-
phism h of Γ . The image h(Γ ) does not contain an induced copy of S.
This contradicts the minimality property of Γ ∗ formulated in Proposi-
tion 6. Hence, every homomorphism from Γ1 to Γ2 is an embedding. This
completes the proof of (∗).

Since τ contains a relation symbol for each p.p.-definable relation, and
since a tuple in Γ ∗ satisfies a primitive positive formula if and only if it
satisfies the formula in Γ , the signature contains a relation symbol also for
all p.p.-definable relations in Γ ∗. Since Γ ∗ also also has Property (∗), it
satisfies the conditions of Proposition 5, and is homogeneous. By Fräıssé’s
theorem Γ ∗ is uniquely described by its age. We proved in Proposition 6
that every core has the same age as Γ ∗, up to isomorphism, and therefore
all cores of Γ are isomorphic.

Since Γ is ω-categorical, there are only finitely many inequivalent n-
ary primitive positive formulas in Γ , and thus the signature of Γ ∗ contains
finitely many relation symbols of each arity. Together with homogeneity,
this implies that Γ ∗ is finite or ω-categorical. ut

We can now prove Theorem 1 that was already stated in the intro-
duction.



Theorem 1. Every countably categorical structure has a core, which is
again ω-categorical and unique up to isomorphism.

Proof. Let Γ be an ω-categorical τ -structure. To find the core of Γ , we
first expand Γ by all p.p.-definable relations. By Theorem 4, there exists
an endomorphism c of the expanded structure Γ+, such that c(Γ+) is
an ω-categorical core. We denote the restriction of the core to the sig-
nature τ by Γ0. Clearly, c(Γ ) = Γ0 is also ω-categorical, since reducts
of ω-categorical structures are ω-categorical. We claim that Γ0 is a core:
Suppose f is an endomorphism of Γ0 that is not injective or not strong.
Then f is also a strict endomorphism of Γ0 with the signature that is
expanded by the p.p.-definable relations; this contradicts that c(Γ+) is a
core.

Next we show that Γ0 is unique up to isomorphism. Suppose Γ1 is a
another core of Γ . Then the expansion of Γ1 by all p.p.-formulas is a core
of Γ+, and by Theorem 4 isomorphic to c(Γ+). Hence the τ -restrictions
Γ1 and Γ0 of these structures are also isomorphic. Thus the core of an
ω-categorical structure is unique up to isomorphism. ut

Proposition 7. Let Γ be an ω-categorical core, and let R be an orbit of
k-tuples in Aut(Γ ). Then R has a primitive positive definition in Γ .

Proof. Let Γ ′ be the expansion of Γ by all p.p.-definable relations. Since R
is an orbit also in Γ ′, all k-tuples in R are isomorphic to some substructure
S of Γ ′. By Theorem 4, Γ ′ is homogeneous, and all k-tuples in Γ ′ that
are isomorphic to S are contained in R. Thus, R has a definition as a
conjunction ϕ of atomic formulas. We replace all relation symbols in ϕ
that are contained in the signature of Γ ′, but not in the signature of Γ ,
by their primitive positive definition. The resulting formula is equivalent
to a primitive positive definition of R in Γ . ut

This result yields alternative characterizations of cores of ω-categorical
structures. An embedding of a τ -structures Γ in a τ -structure ∆ is called
elementary, if it preserves all first-order τ -formulas (this is a standard
notion in model-theory [24]). A set of functions F from Γ to Γ locally
generates a function g, if for every finite subset A of Γ there is a function
f ∈ F such that g(a) = f(a) for all a ∈ A (this is a standard notion in
universal algebra [31]).

Theorem 5. Let Γ be an ω-categorical structure. Then the following are
equivalent.



1. Γ is a core.
2. Every first-order formula has in Γ an existential positive definition.
3. Every endomorphism of Γ is elementary.
4. The automorphism group of Γ locally generates the endomorphism

monoid of Γ .

Proof. Let Γ be an ω-categorical core. Every first-order definable k-ary
relation R in Γ is the union of a finite number of orbits of k-tuples of
Aut(Γ ). With Proposition 7 we can find a primitive positive definition
for each orbit, and by commuting existential quantifiers with a finite
disjunction we obtain an existential positive definition for R. Hence, 1
implies 2.

Since endomorphisms clearly preserve existential positive formulas, 2
implies that every endomorphism is elementary.

A function from Γ to Γ is in the local closure of the automorphism
group of Γ if and only if it preserves all first-order definable relations. If we
assume that every endomorphism is elementary, then the automorphism
group locally generates all endomorphisms of Γ .

To prove that 4 implies 1, assume that Γ has a strict endomorphism
f , i.e., there is a tuple (u1, . . . , uk) in Γ such that f(u1) = f(u2), or
R(f(u1), . . . , f(uk)) and not R(u1, . . . , uk). Clearly, such a function f can-
not be locally generated by automorphisms. ut

A theory T is called model-complete, if all embeddings between models
of T are elementary. In the case that T is the theory of an ω-categorical
structure Γ , we call also Γ model complete, as usual. It is well-known that
an ω-categorical structure is model complete if and only if its first-order
theory has an ∀∃-axiomatization, i.e., is equivalent to a set of sentences of
the form ∀x∃yφ(x, y), where φ is quantifier-free (see e.g. Theorem 7.3.3f
in [24]). The following follows immediately from Theorem 5.

Corollary 1. The core of an ω-categorical structure is model-complete,
and therefore its first-order theory has a ∀∃-axiomatization.

5 Adding Constants to the Signature

One of the main results in [10] says that if Γ is a finite core, then adding
a singleton-relation does not increase the complexity of the correspond-
ing constraint satisfaction problem. We show that the same holds for
constraint satisfaction problems where the template is an ω-categorical
core. Note that this directly applies to all the computational problems
presented in the introduction and Section 2.



Theorem 6. Let Γ be an ω-categorical core, and Γ ′ be the expansion of
Γ by a unary singleton relation C = {c}. If CSP(Γ ) is tractable, then so
is CSP(Γ ′). (If CSP(Γ ′) is NP-hard, then so is CSP(Γ ).)

Proof. We show how to solve CSP(Γ ′) in polynomial time, under the
assumption that CSP(Γ ) can be solved in polynomial time. Let S′ be an
instance of CSP(Γ ′). Let P be the orbit of c in the automorphism group
of Γ . By Proposition 7, P is p.p.-definable in Γ . Thus we can assume
without loss of generality that Γ and Γ ′ contain the relation P . Replace
all occurrences of the relation C in S′ by the relation P . Solve the resulting
instance S of CSP(Γ ); by assumption this is possible in polynomial time.
If S is not satisfiable, then in particular S′ was not satisfiable. On the
other hand, if there is a homomorphism h from S to Γ , we claim that there
is a homomorphism from S′ to Γ ′. Since P is the orbit of the element c,
there is an automorphism α of Γ such that hα is a solution of the instance
S′ of CSP(Γ ′). ut

6 Discussion

We showed that every ω-categorical structure Γ has a core, which is
unique up to isomorphism. Since the core of Γ has the same constraint sat-
isfaction problem as Γ , and since the core is again finite or ω-categorical,
we reduced the classification of constraint satisfaction with ω-categorical
templates to the classification of constraint satisfaction problems where
the template is a finite or ω-categorical core.

The complexity of a constraint satisfaction problem does not change
if we expand the template by a p.p.-definable relation. If we expand the
core by all p.p.-definable relations, the resulting structure admits quanti-
fier elimination. Finally we proved that a result known for constraint sat-
isfaction with finite templates [10] remains valid for ω-categorical struc-
tures: if we expand an ω-categorical core by a singleton relation, then the
resulting constraint satisfaction problem has the same complexity.
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9. M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous
templates. In Proceedings of CSL’03, pages 44–57, Vienna, 2003.

10. A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of con-
straints using finite algebras. To appear in SIAM Journal on Computing, 2004.

11. P. J. Cameron. Oligomorphic Permutation Groups. Cambridge Univ. Press, 1990.

12. P. J. Cameron. The random graph. R. L. Graham and J. Nešetřil, Editors, The
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