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Abstract

Recently, Dreyer and Duderstadt have proposed a modification of the Becker–Döring
cluster equations which now have a nonconvex Lyapunov function. We start with
existence and uniqueness results for the modified equations. Next we derive an
explicit criterion for the existence of equilibrium states and solve the minimization
problem for the Lyapunov function. Finally, we discuss the long time behavior in
the case that equilibrium solutions do exist.
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1 Introduction

The Becker–Döring equations are an infinite set of kinetic equations that de-
scribe the dynamics of cluster formation in a system of identical particles.
In this model, clusters can coagulate to form larger clusters or fragment to
smaller ones. In what follows we describe clusters by their size l ≥ 2, the
number of particles in the cluster, and we denote by zl(t) the total number
of l–clusters in the system at time t. Note that here we always assume that
all l-clusters are uniformly distributed in the physical space. Moreover, the
number of free atoms in the system is abbreviated with z1(t), so that the state
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of the complete system is given by a nonnegative sequence z(t) = (zl(t))l∈N,
where 0 6∈ N.

The crucial assumption of Becker and Döring in [1] was that an l–cluster
can change its size only by gaining a free atom (coagulation) to form an (l +
1)–cluster, or loosing an atom (fragmentation) to form an (l − 1)–cluster.
In particular, for all l ≥ 2 there are two typical transition rates, namely a
condensation rate ΓC

l (t) and a vaporization rate ΓV
l (t) giving at time t the

probability that a l-clusters gains or looses a 1-cluster, respectively. The net
rate of conversion of l–clusters into (l + 1)–clusters is denoted by Jl(t). For
l ≥ 2 it reads

Jl(t) = ΓC
l (t) zl(t)− ΓV

l+1(t) zl+1(t), (BD1)

and the change of the total number of l-clusters for l ≥ 2 is given by

d

dt
zl(t) = Jl−1(t)− Jl(t), l ≥ 2. (BD2)

To describe the change of z1(t), the number of free atoms, a different equation
is needed because free particles are involved in all reactions in the system.
Here we are only interested in the case that the total number of all atoms in
the system is conserved, i.e. %(z(t)) = const, where

%(z) =
∞∑
l=1

lzl. (1)

This constraint gives rise to d
dt

z1(t) = −J1(t) −
∑∞

l=1 Jl(t), which can be ex-
pressed as follows

d

dt
z1(t) = J0(t)− J1(t), J0(t) = −

∞∑
l=1

Jl(t). (BD3)

The system (BD1)–(BD3) was derived and investigated the first time by
Frenkel in [2]. Clearly, the equations must be closed by some constitutive as-
sumptions relating the rates ΓC

l (t) and ΓV
l (t) to the state z(t) of the system.

In [3], Dreyer and Duderstadt give a historical overview on the Becker–Döring
equations with mass conservation. As they point out, almost all of the litera-
ture is based on a misinterpretation of [1]: The quantities zl(t) are considered
as the volume densities of l-clusters, and not as numbers. Clearly, this reinter-
pretation corresponds to the non-explicit assumption that the total volume of
the system is conserved. Dreyer and Duderstadt criticize this standard inter-
pretation and the resulting constitutive laws, and derive new closure laws from
fundamental thermodynamic principles. Next we first summarize the standard
model, and afterwards we describe the modified model in detail.
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The standard model

In the standard model, see for instance [4,5,6], the dynamical equations (BD1)–
(BD3) are closed by the following constitutive assumptions

ΓC
l (t) = cl z1(t), ΓV

l (t) = d l, (SM)

where cl and dl depend neither on the state z nor on the time t. In fact, this is
reasonable if z1(t) is the volume density of free atoms. The coefficient cl and
dl are then determined by some heuristic arguments. To give an example, a
very common ansatz is

cl = lα, d l = cl

(
zs +

q

lγ

)
(2)

with 0 ≤ α < 1, zs > 0, q > 0, γ < 1, and

α = 1/3, γ = 1/3 for diffusion controlled kinetics in 3D,

α = 0, γ = 1/2 for diffusion controlled kinetics in 2D,

α = 2/3, γ = 1/3 for interface reaction limited kinetics in 3D,

α = 1/2, γ = 1/2 for interface reaction limited kinetics in 2D.

Within the standard model (BD1)–(BD3) with (SM) there exists a convex
Lyapunov function L with

L(z) =
∞∑
l=1

zl

(
ln

(
zl

Ql

)
− 1

)
, Q1 = 1, Ql+1 =

l∏
n=1

cn

dn+1

, (3)

such that L(z(t)) decreases with time t for all solutions z(t). An equilibrium
state z of the dynamics is a state for which all transfer rates Jl vanish. After
some basic calculation we find that an equilibrium state z and its density %
are given by

zl = Ql µ
l, % =

∞∑
l=1

l Ql µ
l. (4)

With (2) it can be shown that the radius of convergence of the power series
in (4) is zs, and that for µ = zs the series converges to %s =

∑∞
l=1 lQlz

l
s. In

particular, %s is the maximal value for the equilibrium density, and can be
interpreted as saturation density. As a consequence, if the density %0 of initial
data exceeds %s, for t → ∞ the total mass of the system cannot be stored
in a equilibrium solution, but the excess density %0 − %s must be transferred
into larger and larger clusters when time proceeds. However, this process is in
general extremly slow if the excess density is small. This metastability has been
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rigorously established in [6] for typical initial data. As a consequence, exact
numerical simulations are difficult to perform and impossible to perform for
small %0−%s, see [7]. In addition, it has been established that the dynamics of
large clusters after the metastable state can be described the classical Lifshitz-
Slyozov-Wagner equation for coarsening [6,8,9].

The non-standard model of Dreyer and Duderstadt

Dreyer and Duderstadt [3] model the system of all clusters=droplets as mixture
of different substances, where a droplet with l atoms is regarded as a particle
of the substance l. To be more precise, Dreyer and Duderstadt introduce a
maximal size lmax for the droplets, and thus they consider a mixture of lmax

different substances. Since the maximal droplet size lmax is usually very large,
we are mainly interested in the limiting case lmax = ∞.

The main advantage of this new approach is that thermodynamics is able to
describe the equilibrium without any knowledge of the dynamical law. On the
contrary, thermodynamics give some constraints for the dynamical law. The
main ideas in [3] can be summarized as follows.

(1) The Second Law of thermodynamics states that the available free energy,
or availability, of the system becomes minimal in equilibrium. This follows
from a careful evaluation of Clausius theorem, and reflects the assumption
on the physical process.

(2) The available free energy al for a single droplet with l atoms can be given
explicitly in many situations, see for instance the examples below.

(3) Thermodynamic mixture theory provides an explicit expression for the
availability A of a many droplet system. In particular, with a1 = 0 it
follows that

A(z) =
∞∑
l=1

al zl +
∞∑
l=1

zl ln

(
zl

N(z)

)
, (5)

where N(z) abbreviates the total number of all droplets, i.e.

N(z) =
∞∑
l=1

zl. (6)

Note that the second sum in (5) takes care of the entropy of mixing.
(4) The Second Law of thermodynamics requires that the availability A de-

creases with time for any real world process, and from this we obtain a
consistency relation for the transition rates ΓV

l and ΓC
l , see below.

For convenience we set

ql = exp (−al) with q1 = 1, (7)
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so that the availability A of the many-droplet system reads

A(z) =
∞∑
l=1

zl ln

(
zl

qlN(z)

)
=

∞∑
l=1

zl ln zl −
∞∑
l=1

zl ln ql −N(z) ln N(z). (8)

Since the function x 7→ x ln x is convex, we conclude that A is the sum of a
convex, a linear and a concave functional. In particular, A is a neither convex
nor concave.

Next we evaluate the thermodynamic consistency relation mentioned above.
A formal calculation yields

d

dt
A(z) =

( ∞∑
l=1

(
1 + ln

zl

ql

)
d

dt
zl

)
−
(
1 + ln N(z)

)
d

dt
N(z)

=
∞∑
l=1

ln

(
zl

ql N(z)

)
d

dt
zl =

∞∑
l=1

(
Jl−1(z)− Jl(z)

)
ln

(
zl

ql N(z)

)

= ln

(
z1

N(z)

)
J0(z) +

∞∑
l=1

Jl(z)

(
ln

(
zl+1

ql+1 N(z)

)
− ln

(
zl

ql N(z)

))

= ln

(
z1

N(z)

)(
−

∞∑
l=1

Jl(z)

)
+

∞∑
l=1

Jl(z) ln

(
ql zl+1

ql+1 zl

)

=
∞∑
l=1

Jl(z) ln

(
ql zl+1 N(z)

ql+1 zl z1

)

=
∞∑
l=1

(
ΓC

l zl − ΓV
l+1zl+1

)
ln

(
ql zl+1 N(z)

ql+1 zl z1

)
(9)

The Second Law of thermodynamics states that d
dt

A(z) is non-positive for all
solutions of the Becker-Döring dynamics (BD1)–(BD3). Dreyer and Duder-
stadt satisfy this restriction by fixing the ratio between the transition rates
via

ΓV
l+1(t)

ΓC
l (t)

=
ql

ql+1

N(z(t))

z1(t)
, (NSM)

so that the net rates Jl(t) for l ≥ 1 read

Jl(t) = ΓC
l (t)

zl(t)−
N
(
z(t)

)
z1(t)

ql zl+1(t)

ql+1

. (10)

With (NSM) the production of availability becomes

d

dt
A(z) =

∞∑
l=1

ΓC
l

(
zl −

N(z)

z1

ql

ql+1

zl+1

)
ln

(
ql zl+1 N(z)

ql+1 zl z1

)

=
∞∑
l=1

ΓC
l

(
zl − wl

) (
ln wl − ln zl

)
≤ 0, (11)
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with wl = N(z) zl+1 ql/(ql+1 z1). In particular, the availability A is a nonconvex
Lyapunov function for the dynamical system (BD1)–(BD3) with (NSM).

In [3], Dreyer and Duderstadt derive the availability A for two important ex-
amples. As mentioned above, they always consider a system which contains
only a single droplet with l atoms, and derive explicit expression for the avail-
ability al. The availability A of the many-droplet system is given by (5).

Example 1 corresponds to a simple vapor-liquid system, in which a single
gaseous droplet with l atoms is included in a liquid matrix, both made from
the same chemical substance as for instance water. The result is

a0 = 1, al = −δl + γl
2
3 for l > 1. (12)

where δ and γ are positive constants.

Example 2 is more complicated, and describes a single liquid droplet contained
in a crystalline solid, where both are a binary mixture of Gallium and Arsenic.
Moreover, the solid is surrounded by an inert gas with prescribed pressure.
The resulting expressions for the availability show that al growth with l for
large l, and this gives rise to the following simplified ansatz

al = +β l for l � 1, (13)

where β is a positive constant. We will show in Section 3 that both examples
differ in the set of possible equilibrium states.

Although thermodynamics give a constraint for the dynamical law, we are free
to choose the transition rates ΓC

l (t). In what follows we always assume that

ΓC
l (t) = z1(t) γ l, (14)

where γ l is constant. We mention that other choices of the time dependence
of ΓC

l (t) may be reasonable, which, however, change only the time scale of the
evolution. Finally, we obtain the following system of equations

d

dt
zl(t) = Jl−1

(
z(t)

)
− Jl

(
z(t)

)
for l ≥ 1, (MBD1)

J0(z) = −
∞∑
l=1

Jl(z), (MBD2)

Jl(z) = γ l

(
z1 zl −N(z)

ql

ql+1

zl+1

)
for l ≥ 1. (MBD3)

In what follows we will refer to this system as the modified Becker-Döring
equations. Moreover, we always assume

0 < R := lim
l→∞

ql

ql+1

< ∞, (A1)
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as well as

lim
l→∞

γ l

l
= 0. (A2)

Note that (A1) implies the identity 1/R = liml→∞ q
1/l
l .

Aims and results

This paper is organized as follows. In Section 2 we give a brief survey on
existence and uniqueness results for the modified equations. We will skip some
technical details, because in this part we mainly adapt methods which are well
established for the standard model.

In Section 3 we investigate equilibrium states for the dynamical equations.
Our first result is a necessary and sufficient condition (EQ) for the existence of
such equilibrium states. Since this condition depends only on some properties
of the sequence (al)l∈N, there is no upper bound for the mass of an equilibrium
state. In other words, (EQ) implies that for all % > 0 there exists a unique
and nonnegative equilibrium state z with %(z) = %. Moreover, in Section 3 we
study the minimization problem A(z) → min under the constraint %(z) = %,
where % > 0 is fixed, and we prove the following two statements. 1. If (EQ) is
satisfied, then the equilibrium state with mass % is a minimizer. 2. In the case
that (EQ) is violated there is no minimizer at all, but the infimum is % ln R.

Section 4 is devoted to the limit t → ∞, where the main problem is the
following. Although the mass is conserved for finite times, see Section 2, some
amount of mass may disappear in the limit t →∞. At first we show that for
t →∞ the state z(t) converges (in some weak sense) either to an equilibriums
state with positive mass or to 0. Second, we state and prove an sufficient
condition for that the mass remains conserved for t →∞. Finally, we identify
several cases, and prove for most of them that either all mass is conserved or
all mass disappears.

2 Existence and Uniqueness

Our main goal within this section is to prove the global existence of non-
negative, weak solutions for the initial value problem of (MBD1)–(MBD3),
see Theorem 4 below. Furthermore, we will explain how uniqueness results
can be derived. For these reasons we fix some nonnegative initial data z̃ with
%0 := %(z̃) > 0 and z̃l ≥ 0 for all l ∈ N, and for simplicity we assume
z̃1 > 0. We seek solutions t 7→ z(t) of the Becker-Döring equations in the
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space C([0, ∞); X), where the state space X is given by

X =
{
z = (zl)l∈N : ||z||X < ∞

}
, ||z||X =

∞∑
l=1

l |zl| , (15)

Since we are only interested in solutions of the Becker-Döring equations which
are positive or at least nonnegative, we introduce the cones X0+ and X+ of
all nonnegative and strictly positive, respectively, elements of X, i.e.

X0+ =
{
z ∈ X : zl ≥ 0 ∀ l ∈ N

}
, X+ =

{
z ∈ X : zl > 0 ∀ l ∈ N

}
. (16)

We cite some results of [10].

Proposition 1 (Ball, Carr, Penrose) The space X is a Banach space, and
it is the dual space of

?X =
{
z = (zl)l∈N : l−1zl

l→∞−−−→ 0
}
. (17)

Moreover, let Z =
(
m 7→ z(m)

)
be any sequence in X, and let z(∞) be some

element of X. Then

(1) Z converges to z(∞) weak? in X if and only if

(a) the sequence m 7→
∣∣∣∣∣∣z(m)

∣∣∣∣∣∣
X

is bounded, and

(b) z
(m)
l

m→∞−−−−→ z
(∞)
l for all l ∈ N.

(2) Z converges to z(∞) strongly in X if and only if
(a) z(m) m→∞−−−−→ z(∞) weak? in X, and

(b)
∣∣∣∣∣∣z(m)

∣∣∣∣∣∣
X

m→∞−−−−→
∣∣∣∣∣∣z(∞)

∣∣∣∣∣∣
X
.

Remarks. (i) The flux Jl is always weak? continuous for l ≥ 1. (ii) Assumption
(A2) provides the weak? continuity of J0. (iii) Assumption (A1) implies that
the sequence l 7→ | l−1 ln ql| is bounded, and the availability functional A from
(8) is thus well defined on the whole cone X0+. (iv) The cone X0+ is closed
under both strong and weak? convergence, and with (1) we have ||z||X = %(z)
for all z ∈ X0+.

For later purposes we define weak? continuous functionals Nl, l ≥ 1, by

Nl(z) :=
∞∑

n=l

zn. (18)

Clearly, this definition implies N(z) = N1(z) and zl = Nl(z)−Nl+1(z). More-
over, by means of formal transformations we find %(z) =

∑∞
l=1 Nl(z) and

d

dt
Nl

(
z(t)

)
= Jl−1

(
z(t)

)
for all l ∈ N ∪ {0}. (19)
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The existence of solutions for the modified model can be proved similarly to
the classical results in [10]: In the first step we consider a finite, m-dimensional
approximate problem, which results from the infinite system by neglecting all
droplets with more than m atoms. This gives rise to the following system of
ordinary differential equations

d

dt
z

(m)
l (t) = Jl−1

(
z(m)(t)

)
− Jl

(
z(m)(t)

)
, l = 2, ..., m− 1,

d

dt
z(m)

m (t) = Jm−1

(
z(m)(t)

)
,

d

dt
z

(m)
1 (t) = −J1

(
z(m)(t)

)
−

m−1∑
l=1

Jl

(
z(m)(t)

)
,

(20)

with initial condition

z
(m)
l (0) = z̃

(m)
l , z̃

(m)
l = z̃l for l = 1, ..., m. (21)

In the second step we construct weak solutions of the infinite system (MBD1)–
(MBD3) as weak? limits of solutions to (20)–(21).

Remarks. (i) The vector z(m) can be regarded as an element of X by setting

z
(m)
l ≡ 0 for all l > m. (ii) The approximate system is again closed by (MBD3).

(iii) The initial data z̃(m) of the approximate system converge for m → ∞
strongly in X to z̃, the initial data of the infinite system.

Existence and uniqueness results for the finite dimensional IVP (20)–(21) can
be established by means of standard techniques for ODEs.

Lemma 2 For all m ∈ N there exists a smooth and nonnegative solution
z(m) ∈ C∞([0, ∞); X) of the approximate IVP (20)–(21). Moreover, with

N
(m)
l = N

(
z(m)

)
, J

(m)
l = Jl

(
z(m)

)
, A(m) = A

(
z(m)

)
, %(m) = %

(
z(m)

)
(22)

we find %(m)(t) = %(m)(0) and

− d

dt
A(m)(t) ≥ const(

%(m)
)2

m−1∑
l=1

∣∣∣J (m)
l (t)

∣∣∣2 with const > 0, (23)

for all t ≥ 0, and
d

dt
N

(m)
l (t) = J

(m)
l−1 (t) for all t ≥ 0 and all l = 1, ..., m.
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Proof. For brevity we prove only (23). With similar transformations as in (9)
and exploiting (MBD3) we obtain

d

dt
A(z) =

m−1∑
l=1

γ l

(
z

(m)
1 z

(m)
l −N

(m)
1

ql

ql+1

z
(m)
l+1

)
ln

 ql z
(m)
l+1 N

(m)
1

ql+1 z
(m)
l z

(m)
1


= −

m−1∑
l=1

γ l

(
dl − cl

) (
ln cl − ln dl

)
(24)

with cl = z
(m)
1 z

(m)
l and dl = N

(m)
1 z

(m)
l+1 ql/ql+1. From liml→∞ ql/ql+1 = R and

z
(m)
l ≤ %(m)/l and z

(m)
1 ≤ N

(m)
1 ≤ %(m) (25)

it follows that cl, dl < const
(
%(m)

)2
/l, and hence

γ l

(
cl − dl

) (
ln cl − ln dl

)
≥ γ l

max{cl, dl}
(cl − dl)

2

≥ l γ l

const
(
%(m)

)2 (cl − dl)
2

≥ const(
%(m)

)2

l

γ l

∣∣∣J (m)
l

∣∣∣2 . (26)

Assumption (A2) implies l/γ l ≥ const > 0, and (23) follows from (26). 2

In order to pass to the limit m →∞ we need some uniform estimates for the
solution of the approximate problem.

Lemma 3 The following functions in Lemma 2 are uniformly, i.e. indepen-
dently of m, bounded in C([0, ∞)).

(1) z
(m)
l , N

(m)
l , J

(m)
l , ż

(m)
l , and Ṅ

(m)
l for all l ≥ 1,

(2) z̈
(m)
l , N̈

(m)
l , J̇

(m)
l for all l ≥ 2,

(3) J
(m)
0 , J̇

(m)
1 .

For brevity we omit the proof, which is carried out in [11]. Moreover, we can
derive all assertions quite easily from the equations (20) and assumption (A2).

Theorem 4 Let z(m) as in Lemma 2. Then there exists a subsequence j 7→
z(mj), and a function z ∈ C(I; X), I = [0, ∞), with the following properties.

(1) (a) The convergences z
(m)
l

j→∞−−−−→ zl and N
(m)
l

j→∞−−−−→ Nl(z) are strong in
C(I) for l = 1, and and even strong in C1(I) for l ≥ 2,

(b) The convergence J
(m)
l

j→∞−−−−→ Jl(z) is strong in C(I) for l = 0, and
even strong in C1(I) for l ≥ 1.

10



(2) We have zl(t) ≥ 0 for all l ≥ 1 and all t ∈ I,
(3) The limit z satisfies

d

dt
zl(t) = Jl−1

(
z(t)

)
− Jl

(
z(t)

)
,

d

dt
Nl

(
z(t)

)
= Jl−1

(
z(t)

)
, (27)

for all l ≥ 2 and all t ∈ [0, ∞), and for all t1, t2 ∈ I we have

z1(t2)− z1(t1) =

t2∫
t1

J0

(
z(t)

)
dt. (28)

(4) The availability A decreases according to

A
(
z(t1)

)
− A

(
z(t2)

)
≥ const

(%0)
2

t2∫
t1

∞∑
l=1

∣∣∣Jl

(
z(t)

)∣∣∣2 dt ≥ 0. (29)

Theorem 5 The total mass of z from Theorem 4 is conserved, i.e. %(z(t)) =
%(z(0)) = %0 for all finite t ≥ 0.

Remarks.

(1) Because of (28) the limit z is a weak solution of (MBD1)–(MBD3).
(2) In Section 4 it turns out to be useful that (27) holds in a strong sense for

large l.
(3) Inequality (29) follows from (23) and the Lemma of Fatou. All other as-

sertions of Theorem 4 are consequences of the uniform bounds in Lemma
3 and the Arzelá-Ascoli Theorem, see [11]. Moreover, we obtain uniform
continuity with respect to time for several functions including zl, Nl(z),
Jl(z) for l ≥ 1.

(4) The proof of Theorem 5 is not so obvious and needs some careful estimates
for the mass contained in the tail of the solution. However, since one can
use similar methods as in [10] we skip the proof and refer to [11].

Finally we give a brief summary of the uniqueness results in [11]. To establish
uniqueness for the infinite system (MBD1)–(MBD3) it is convenient to pass
to new variables ζ = (ζl)l∈N with

ζl := Nl(z) =
∞∑

n=l

zn. (30)
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Note that zl = ζl−ζl+1, N(z) = ζ1, and %(z) =
∑∞

l=1 ζl. The change of variables
transforms (MBD1)–(MBD2) into

d

dt
ζl(t) = Jl−1

(
ζ(t)

)
for l ≥ 1, (31)

J0(ζ) = −
∞∑
l=1

Jl(ζ) (32)

Jl(ζ) = γ l

(
(ζ1 − ζ2) (ζl − ζl+1)− ζ1

ql

ql+1

(ζl+1 − ζl+2)
)

for l ≥ 1. (33)

Note that Theorems 4 and 5 yield the global existence of weak solutions for
(31)–(33). The reformulation of the original system now provides uniqueness
results in form of Gronwall type estimates.

Theorem 6 Let ζ(1) and ζ(2) be two weak solutions of (31)–(33), and set
ζ̃ = ζ(2) − ζ(1). Then there exists a time dependent constant C(t) such that

∣∣∣∣∣∣ζ̃(t)
∣∣∣∣∣∣
`1(N)

≤
∣∣∣∣∣∣ζ̃(0)

∣∣∣∣∣∣
`1(N)

+ C(t)

t∫
0

∣∣∣∣∣∣ζ̃(s)
∣∣∣∣∣∣
`1(N)

ds.

A similar result for the classical Becker-Döring equations is derived in [12],
and the basic estimates therein can easily be adapted for proving Theorem 6.
This is done in [11].

3 Equilibrium states

An equilibrium state of the Becker-Döring system is a state z ∈ X+, such
that all fluxes Jl vanish in z. Clearly, 0 ∈ X is always an equilibrium state.
In this section we study equilibrium states with prescribed positive total mass
%(z) = %. Here % > 0 is a given constant which remains fixed within this
section.

For the analysis it is convenient to use the following variant Ã of the availability

Ã(z) = A(z)− %(z) ln R =
∞∑
l=1

zl ln

(
zl

q̃lN(z)

)
, (34)

with q̃l = qlR
l and R as in (A1), because Ã is weak? continuous on X0+. To

12



prove this, we split Ã into three parts Ã = Ã1 + Ã2 + Ã3, where

Ã1(z) = −N(z) ln (N(z)), (35)

Ã2(z) =
∞∑
l=1

zl ln zl, (36)

Ã3(z) = −
∞∑
l=1

zl ln q̃l. (37)

The weak? continuity of Ã1 is obvious, of Ã2 it was proved in [10], and of Ã3

it is a consequence of Proposition 1 and liml→∞ l−1 ln q̃l = ln 1 = 0.

Next we derive a necessary condition for the existence of an equilibrium state
z with prescribed total mass %(z) = % > 0. We set Jl(z) = 0 in (MBD3), and
obtain

zl+1 =
z1

N

ql+1

ql

zl =
z1

R N

q̃l+1

q̃l

zl, (38)

where N = N(z). With q̃1 = R q1 = R and the abbreviation µ := z1/
(
R N

)
,

µ ∈ [0, 1/R], equation (38) yields

zl =
(

z1

R N

)l−1 q̃l

q̃1

z1 = N q̃l µ
l = N ql (R µ)l for all l ∈ N. (39)

Finally, the condition N = N(z) and the constraint %(z) = % require

N
∞∑
l=1

q̃l µ
l = N as well as N

∞∑
l=1

l q̃l µ
l = %,

which imply

f̃(µ) = 1 and N =
%

g̃(µ)
with f̃(µ) =

∞∑
l=1

q̃l µ
l, g̃(µ) =

∞∑
l=1

q̃l l µ
l. (40)

Note that both power series in (40) have the same radius of convergence
R̃ = 1. The function f̃ is continuous and strictly increasing on [0, 1], and
satisfies f̃(µ) ≥ q̃1 µ = µ R. Consequently, the parameter µ exists in the inter-
val [0, min{1, 1/R}] if and only if f̃(1) = limµ→1 f̃(µ) ≥ 1. Moreover, in order
to guarantee %(z) = % > 0 we must have N > 0, or equivalently, g̃(µ) < ∞.
Since f̃(1) > 1 implies µ < 1 and therefore g̃(µ) < ∞, we end up with the
following condition (EQ) for the existence of an equilibrium state

f̃(1) > 1, or f̃(1) = 1 and g̃(1) < ∞. (EQ)

Its negation reads

f̃(1) < 1, or f̃(1) = 1 and g̃(1) = ∞. (NEQ)

13



Theorem 7 For any % > 0 there exists an equilibrium state z with %(z) = %
if and only if (EQ) is satisfied. Moreover, if (EQ) is satisfied then

(a) there exists a unique value µ ∈ (0, 1] such that

f̃(µ) = 1, (41)

(b) z ∈ X+ is given as in (39)–(40), i.e.

zl = N q̃l µ
l, N = N(z) = %/g̃(µ), (42)

(c) we have Ã(z) = % ln µ ≤ 0.

For the two examples from Section 1 the equilibrium condition (EQ) reads as
follows. Example 1. Equation (12) implies R = exp (−δ) = q̃1 < 1 and

f̃(1) = exp (−δ) +
∞∑
l=2

exp
(
−γl2/3

)

≤ exp (−δ) +
1

γ3/2

∞∫
1

exp
(
−s2/3

)
ds. (43)

In particular, for large values 4 of both δ and γ there is no equilibrium state
z. Example 2 . From (13) we deduce R = exp (+β) > 1, q̃l = 1 for large l, and
f̃(1) = ∞, so that there always exists the equilibrium state (41)–(42) with
µ < 1/R < 1.

Let ∂zÃ(z) and ∂z%(z) denote the Gateaux differentials of A and % in z, re-
spectively, which are well defined for strictly positive z ∈ X+. By means of
basic calculus we derive from (42) that

∂zÃ(z) =

(
ln

zl

q̃l N

)
l∈N

=
(
ln µ l

)
l∈N

, ∂z%(z) = (l)l∈N, (44)

and conclude that (42) is equivalent to

∂zÃ(z) = (ln µ) ∂z%(z). (45)

However, since the functional Ã is not convex, it is not obvious that (45)
defines a minimizer of Ã under the constraint of prescribed mass. For this
reason we study the optimization problem

Ãmin = inf
{
Ã(z) : z ∈ X0+, %(z) = %

}
(OPT)

in more detail. Our main results are formulated in the next two theorems.

4 See [3] for physically relevant values.
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Theorem 8 For (EQ) the infimum Ãmin in (OPT) is attained. Moreover, a
minimizer is given by equations (41)–(42).

Theorem 9 For (NEQ) we have Ãmin = 0 in (OPT), but there is no mini-
mizer.

3.1 Proof of Theorem 8

Lemma 10 For z ∈ X0+ and any µ ∈ (0, 1) we have

Ã(z) ≥ %(z) ln µ−N(z) ln
(
f̃(µ)

)
. (46)

Proof. It is sufficient to consider z 6= 0, so that N(z) > 0. At first we rewrite
T := Ã(z)− %(z) ln µ as follows

T = Ã(z)−
∞∑
l=1

zl ln
(
µl
)

=
∞∑
l=1

zl ln

(
zl

q̃l N(z) µl

)

= N(z)
∞∑
l=1

(q̃l µl)

(
zl

q̃l N(z) µl

)
ln

(
zl

q̃l N(z) µl

)

= N(z)

( ∞∑
l=1

pl

)( ∞∑
l=1

pl h(yl)

)
/

( ∞∑
l=1

pl

)
, (47)

where h(y) = y ln y, pl = q̃l µ
l, and yl = zl/

(
q̃l N(z) µl

)
. Note that

∞∑
l=1

pl = f̃(µ) < ∞, (48)

and pl > 0 for all l. Since the function h is convex, Jensen’s inequality yields

T ≥ N(z)

( ∞∑
l=1

pl

)
h

(( ∞∑
l=1

pl yl

)
/

( ∞∑
l=1

pl

))

= N(z)

( ∞∑
l=1

pl

)
h

(( ∞∑
l=1

zl/N(z)

)
/

( ∞∑
l=1

pl

))
= N(z) f̃(µ) h

(
1/f̃(µ)

)
= −N(z) ln

(
f̃(µ)

)
, (49)

and the proof is complete. 2

Corollary 11 Suppose (EQ), and let z ∈ X0+ with %(z) = %. Then,

Ã(z) ≥ % ln (µ) = Ã(z), (50)

where µ and z as in Theorem 7. In particular, Theorem 8 is proved.
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Proof. Set µ = µ in Lemma 10, and compare with (c) in Theorem 7. 2

3.2 Proof of Theorem 9

In this section we consider the case (NEQ), i.e. we assume either f̃(1) < 1
or f̃(1) = 1 and g̃(1) = ∞, and we prove that now the optimization problem

(OPT) has no minimizer. Recall that liml→∞ q̃
1/l
l = 1, and note that f̃(1) ≤ 1

implies q̃l ≤ 1 for all l ∈ N, as well as liml→∞ q̃l = 0.

Our strategy is to construct certain perturbations of q̃, such that we can rely
on the result of the previous section. For this reason we set

Π =
{
p = (pl)l∈N : pl > 0 ∀ l ∈ N, lim sup

l→∞

∣∣∣l−1 ln pl

∣∣∣ < ∞
}
, (51)

and define a functional A an X0+ × Π by

A(z, p) =
∞∑
l=1

zl ln
zl

pl N(z)
= −N(z) ln (N(z)) +

∞∑
l=1

zl ln
zl

pl

, (52)

so that Ã(z) = A(z, q̃) and A(z) = A(z, q). Note that A(z, p) is well defined
for all (z, p) ∈ X0+ × Π. Moreover, if liml→∞ pl

1/l = 1 the functional A is
weak? continuous with respect to z.

Definition (52) implies

A
(
z, p(2)

)
= A

(
z, p(1)

)
+

∞∑
l=1

zl ln
p

(1)
l

p
(2)
l

(53)

where p(1), p(2) are two arbitrary elements of Π. Furthermore, −A preserves
the order in Π, i.e.

A
(
z, p(2)

)
≥ A

(
z, p(1)

)
for p(2) ≤ p(1). (54)

Now we approximate q̃ by a sequence
(
m 7→ q(m)

)
⊂ Π, where q(m) is defined

by

q
(m)
l = max {q̃l, πm}, πm = sup

l>m
q̃l. (55)

Note that limm→∞ πm = 0 and that 0 < πm ≤ 1 for all m ∈ N. If m is large
the sequence q(m) is a good approximation of q̃, because both series differ only
for large l. In particular,

lm := min{l : q̃l 6= q
(m)
l } = min{l : q̃l < πm}

m→∞−−−−→ ∞. (56)
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If q̃ is a decreasing sequence, as for instance in the first example from Section
1, equation (56) reduces to

q
(m)
l = q̃l for l ≤ m, q

(m)
l = q̃m+1 for l > m. (57)

For any m ∈ N there exists a unique minimizer of A
(
·, q(m)

)
, because we find

∞∑
l=1

q
(m)
l = ∞ > 1 and lim

l→∞

(
q
(m)
l

)1/l
= lim

l→∞
(πm)1/l = 1, (58)

and thus there exist variants of Theorems 7 and 8 with q(m) instead of q̃. This
provides the existence of

A
(m)
min := min

{
A
(
z, q(m)

)
: %(z) = %

}
, (59)

as well as the identity

A
(m)
min = % ln µm = A

(
z(m), q(m)

)
, (60)

where µm ∈ (0, 1) and z(m) ∈ X+ satisfy

∞∑
l=1

q
(m)
l µl

m = 1, z
(m)
l = Nm q

(m)
l µm

l, (61)

where Nm = %/
(∑∞

l=1 q
(m)
l l µl

m

)
. Recall that %

(
z(m)

)
= % for all m.

Definition (55) implies

q̃ ≤ ... ≤ qm+1 ≤ qm ≤ ... ≤ q1 ≤ 1. (62)

This chain and (54) give

A(z, q̃) ≥ ... ≥ A
(
z, qm+1

)
≥ A(z, qm) ≥ ... ≥ A

(
z, q1

)
∀ z ∈ X0+, (63)

and hence

Ãmin ≥ ... ≥ A
(m+1)
min ≥ A

(m)
min ≥ ... ≥ A

(1)
min, (64)

where Ãmin = inf
{
A(z, q̃) : %(z) = %

}
.

Lemma 12

(a) For any z ∈ X0+ and m →∞ we have A
(
z, q(m)

)
↑ A(z, q̃).

(b) The sequence m 7→ z(m) from (61) is a minimizing sequence for Ã, and

A
(m)
min ↑ Ãmin for m →∞,
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(c) Ãmin = 0.

Proof. Using (53) and q
(m)
l ≤ 1 we find

A(z, q̃)−A
(
z, q(m)

)
=

∞∑
l=1

zl ln
q
(m)
l

q̃l

=
∑

l : q̃l 6=q
(m)
l

zl ln
q
(m)
l

q̃l

≤
∑

l : q̃l 6=q
(m)
l

zl ln
1

q̃l

, (65)

and Hölder’s inequality gives

A(z, q̃)−A
(
z, q(m)

)
≤

 sup
l : q̃l 6=q

(m)
l

∣∣∣l−1 ln q̃l

∣∣∣

 ∑

l : q̃l 6=q
(m)
l

zl l


≤

 sup
l : q̃l 6=q

(m)
l

∣∣∣ln q̃
1/l
l

∣∣∣
( ∞∑

l=1

zl l

)
≤ % sup

l≥lm

∣∣∣ln q̃
1/l
l

∣∣∣, (66)

where lm is defined in (56). Combining (66) and (63) yields

A
(
z, q(m)

)
≤ A(z, q̃) ≤ A

(
z, q(m)

)
+ % ηm, (67)

were ηm abbreviates ηm = supl≥lm |l−1 ln q̃l|. The limit liml→∞ q̃
1/l
l = 1 implies

liml→∞ |l−1 ln q̃l| = 0, and thanks to (56) we find limm→∞ ηm = 0. Since (63)
provides the monotonicity as well as the convergence of the sequence m 7→
A
(
z, q(m)

)
we can pass to the limit m →∞ in (67), and obtain assertion (a).

Evaluating (67) for z = z(m) gives

A
(m)
min ≤ A

(
z(m), q̃

)
≤ A

(m)
min + % ηm. (68)

Moreover, (64) implies

A
(m)
min ≤ Ãmin ≤ A

(
z(m), q̃

)
≤ A

(m)
min + % ηm. (69)

Assertion (b) now follows from passing to the limit m → ∞ in (69). Finally
we prove assertion (c). From (62) and (61)1 we derive

µ1 ≤ ... ≤ µm ≤ µm+1 ≤ ... ≤ 1. (70)

Thus there exists µ̃ := limm→∞ µm ≤ 1. Suppose for contradiction that µ̃ < 1.
Then, (

m 7→
(
µl

m

)
l∈N

)
m→∞−−−−→

(
µ̃l
)

l∈N
in `1(N). (71)
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Since q(m) converges for m →∞ to q̃ in `∞(N), we can conclude

1 =
∞∑
l=1

q
(m)
l µl

m
m→∞−−−−→

∞∑
l=1

q̃l µ̃
l <

∞∑
l=1

q̃l ≤ 1. (72)

This contradiction shows µ̃ = 1. Therefore

Ãmin = lim
m→∞

A
(m)
min = % lim

m→∞
ln µm = 0, (73)

which was claimed. 2

Corollary 13 Since (EQ) is violated, there is no minimizer in (OPT). In
particular, Theorem 9 is proved.

Proof. By contradiction. Suppose there is a state z ∈ X0+ with %(z) = % > 0
and Ã(z) = 0. Then z 6= 0 and hence N(z) > 0. According to Lemma 10 we
can estimate

0 = Ã(z) ≥ %(z) ln µ−N(z) ln f̃(µ) for all µ ∈ (0, 1). (74)

At first suppose f̃(1) < 1, and let µ → 1. Then (74) yields a contradiction,
namely 0 = Ã(z) ≥ −N(z) ln f̃(1) > 0. Now suppose f̃(1) = 1 and g̃(1) = ∞.
Then, (74) implies

%(z) ln µ ≤ N(z) ln f̃(µ) ≤ %(z) ln f̃(µ) (75)

and hence µ ≤ f̃(µ) for all µ ∈ (0, 1). Moreover, from µ f̃ ′(µ) = g̃(µ) we
conclude limµ→1 f̃ ′(µ) = ∞. Therefore, for µ1 and µ2 with µ1, µ2 . 1 we find

f̃(µ2)− f̃(µ1) =

µ2∫
µ1

f̃ ′(µ) dµ ≥ 2 (µ2 − µ1). (76)

With µ2 → 1 it follows

f̃(µ1) ≤ f̃(1)− 2 (1− µ1) = 2 µ1 − 1 < µ1, (77)

which is the desired contradiction. 2

Corollary 14 Let m 7→ z(m) be an arbitrary sequence of minimizers for prob-
lem (OPT). Then, z(m) m→∞−−−−→ 0 weak? in X0+.

Proof. The sequence is bounded and thus weak? compact. Let j 7→ z(mj)

be a subsequence, such that z(mj) → z(∞) weak? in X0+ for j → ∞. The

weak? continuity of Ã implies Ã
(
z(∞)

)
= 0. Suppose that z(∞) 6= 0, i.e.
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%∞ := %
(
z(∞)

)
> 0, and let z̃ = % z(∞)/%∞. Since Ã(z̃) = % Ã

(
z(∞)

)
/%∞ = 0,

Corollary 13 yields a contradiction. We conclude z(∞) = 0, which shows that
0 is the unique accumulation point of the sequence. This implies the claimed
convergence. 2

4 The limit t →∞.

In this section we study the longtime behavior of the solution t 7→ z(t) from
Section 2. At first we show that any final limit is an equilibrium state, and
then we investigate whether this state is unique, and whether the mass remains
conserved in the limit t →∞. Recall that %(z(t)) = %(z(0)) = %0 holds for all
finite times t ≥ 0.

4.1 Auxiliary result

Lemma 15 For all l ≥ 0 and t →∞ we have Jl(z(t)) → 0.

Proof. Suppose for contradiction that there exist some ε > 0, an index l0 ≥ 1,
and a sequence m 7→ tm with tm →∞ for m →∞, such that∣∣∣Jl0

(
z(tm)

)∣∣∣ ≥ 2 ε for all m ∈ N. (78)

The uniform continuity of t 7→ Jl0

(
z(t)

)
, see the remarks for Theorems 4 and

5, imply the existence of τ > 0 with∣∣∣Jl0

(
z(t)

)∣∣∣ ≥ ε for all m ∈ N and t ∈ (tm, tm + τ). (79)

By extracting a subsequence, still denoted by m 7→ tm, we can achieve that
tm + τ ≤ tm+1 for all m ∈ N. Estimate (29) now implies

A
(
z(tm)

)
− A

(
z(tm+1)

)
≥ const

%0
2

tm+1∫
tm

∣∣∣Jl0

(
z(t)

)∣∣∣2 dt ≥ τε, (80)

and hence A(z(tm)) → −∞ for m →∞, which contradicts either Theorem 8
or Theorem 9. This proves the assertion for all l 6= 0. Now suppose l0 = 0 in
(78). Without loss of generality we can assume that there exists z(∞) ∈ X0+

such that

z(m) m→∞−−−−→ z(∞) weak? in X, (81)
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which implies Jl

(
z(m)

)
m→∞−−−−→ Jl

(
z(∞)

)
for all l ≥ 0, because all functionals

Jl are weak? continuous, see the remarks for Proposition 1. In the first part of
this proof we have shown that Jl

(
z(∞)

)
= 0 for all l ≥ 1. Finally, we find

J0

(
z(∞)

)
= −

∞∑
l=1

Jl

(
z(∞)

)
= 0, (82)

which is a contradiction for (78). 2

Let Xw be the space X equipped with with the weak? topology, and let ω
denote the ω-limit set of Z = {z(t) : t ≥ 0} in Xw, i.e.

ω =
{
z ∈ X : z = weak?−lim

m→∞
z(tm) for some m 7→ tm with lim

m→∞
tm = ∞

}
.

Corollary 16 Z is relatively compact in Xw, and ω contains at least one
equilibrium state z(∞) ∈ X0+ with

%∞ := %
(
z(∞)

)
∈ [0, %0] and Ã∞ := Ã

(
z(∞)

)
= lim

t→∞
Ã
(
z(t)

)
. (83)

Moreover, if z(∞) is unique, then

z(t)
t→∞−−−→ z(∞) weak? in X, (84)

and this convergence is strong in X if and only if %∞ = %0.

Proof. Note that limt→∞ Ã(t) exists, because the function t 7→ Ã(t) is de-
creasing and bounded. Moreover, since the total mass is conserved, the set Z
is relatively compact in Xw, and therefore ω contains some z(∞) ∈ X, which
clearly satisfies z(∞) ∈ X0+. Lemma 15 shows that z(∞) is in fact an equilib-
rium state, and (83) comes from the weak? continuity of Ã. The remaining
assertions follow from elementary topological principles and Proposition 1. 2

Next we prove a sufficient condition for the mass conservation in the limit
t →∞.

Theorem 17 Suppose that there exist R ′ ∈ [0, R) and a time t0 ≥ 0 such
that

λ(t) := z1(t)/N(t) ≤ R ′ (85)

holds for all t ≥ t0. Then the mass must be conserved for t → ∞, i.e.
%
(
z(∞)

)
= %0 for all z(∞) from Corollary 16.
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Note that (85) is equivalent to ΓV
l (t) ≥ κ ΓC

l (t), κ = R ′/R, so that the as-
sumption of Theorem (17) implies that for large cluster and large times the
fragmentation process dominates coagulation.

4.2 Main Results

Before we prove Theorem 17 we discuss its consequences. To this end we
consider several cases which are gathered in the following table.

Case Conditions Limit t →∞ Convergence

NEQ : (NEQ) z(∞) = 0 weak?

EQ-1 : (EQ), f̃(1) = 1 OPEN

EQ-2 : (EQ), f̃(1) > 1, R > 1 z(∞) = z(%0) strong

EQ-3 : (EQ), f̃(1) > 1, R ≤ 1

EQ-3a: ..., Ã∞ = 0, z(∞) = 0 weak?

EQ-3b: ..., Ã∞ < 0, z(∞) = z(%0) strong

In the case NEQ the solution converges weak? to 0, because there is no equilib-
rium state with positive mass at all. This case is actually the most interesting
one, because here all mass is contained in larger and larger clusters when time
increases. The same phenomenon occurs within the standard model if %0 ex-
ceeds the critical value %S, and in this case the long-time dynamics of the large
clusters is governed by the Lifshitz–Slyozov–Wagner (LSW) equation, see [13]
for a formal derivation, and [14,12,9,15] for rigorous results. We expect to find
an analogue for the LSW equation, now describing the long time evolution
for case NEQ of the modified model. However, this problem is addressed in a
forthcoming paper.

Let us continue with EQ-2. As we will see below, the condition R > 1 implies
the conservation of mass for t → ∞ without further assumption, i.e. z(∞)

is the unique equilibrium state with mass %0, and all claimed results follow
immediately from Corollary 16.

Next we consider EQ-3. Theorem 7 provides a family of equilibrium states z,
which are parameterized by the total mass %, or alternatively, by the availabil-
ity Ã. Corollary 16 states z(∞) = z(Ã∞), i.e. z(∞) is the unique equilibrium
state with availability Ã∞, so that the uniqueness of Ã∞ implies the unique-
ness of z(∞). Now suppose EQ-3b. From Ã∞ < 0 it follows that %∞ 6= 0, and
we will see that this already gives %∞ = %0, cf. Corollary 18 below. However,
in subcase EQ-3a we have Ã∞ = 0, i.e. z(∞) = z(0) = 0, and thus we con-
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clude that this subcase is very similar to NEQ. Note that the initial condition
Ã(z(0)) < 0 surely implies EQ-3b. However, for Ã(z(0)) > 0 it may depend on
the distribution of the initial mass whether the long time behavior is governed
by EQ-3a or EQ-3b.

Finally we discuss EQ-1. Again there exists a family of possible equilibrium
states, see Theorem 7. However, all these equilibrium states have the same
availability, because µ = 1 implies Ã(z) = % ln µ = 0, and it remains open to
establish uniqueness.

Now we have formulated all results concerning the limit t → ∞. In the re-
maining part we prove Theorem 17 as well as the following result.

Corollary 18 In the cases EQ-2 and EQ-3b we have %
(
z(∞)

)
= %0.

Proof. For Case EQ-2 we set t0 = 0 and choose R ′ ∈ (1, R). Then, Theorem
17 provides the conservation of mass, because λ(t) takes values in [0, 1]. Now

suppose Case EQ-3b, and recall that Ã
(
z(∞)

)
< 0 implies z(∞) 6= 0, and hence

N
(
z(∞)

)
> 0. Since z(t) → z(∞) weak? in X for t →∞, we find

λ(t) =
z1(t)

N(z(t))
t→∞−−−→ z

(∞)
1

N(z(∞))
= q̃1 µ =: λ, (86)

and f̃(1) > 1 gives µ < 1 and λ < R. Consequently, the assumptions of
Theorem 17 are satisfied for R ′ ∈ (λ, R) and t0 sufficiently large. 2

The proof of Theorem 17 consists of several non-trivial steps, which we present
in the following two subsections. Before we go into details, we shall briefly
describe the main ideas. At first we recall the quantities ζl from Section 2

ζl = Nl(z) =
∞∑

n=l

zn, (87)

such that ζ1 = N(z) and %(z) =
∑∞

l=1 ζl. In what follows we will identify
certain sequences σ = (σl)l∈N for which

Hσ(t) := max

{
%0

σl0

, sup
l≥l0+1

ζl(t)

σl

}
(88)

decreases with time for t ≥ t0 and for l0 sufficiently large. Moreover, some
of these sequences σ are elements of `1(N). Consequently, for all ε > 0 there
exists an index l1, such that

∑∞
l=l1

ζl(t) ≤ Hσ(t0)
∑∞

l=l1
σl ≤ ε holds true for all

t ≥ t0, and this uniform estimate implies the conservation of mass for t →∞.
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The approach described above is inspired by Ball and Carr [16], which use a
similar idea to prove conservation of mass within the standard model. Another
application of the method from [16] is given in [17].

4.3 More auxiliary results

Let l0 ∈ N be given, and let η = (ηl)l∈N be any strictly positive sequence with

0 < η0 := sup
l≥l0

ηl < 1. (89)

Depending on l0 and η we define a set S = Sη, l0 by

S :=

σ = (σl)l∈N :
(i) σl ≥ σl+1 ≥ 0 for all l ∈ N,

(ii) (σl − σl+1) ≥ ηl(σl−1 − σl) for all l ≥ l0

 . (90)

Moreover, let S+ := S \ {0} and note that (90) provides σl > 0 for all σ ∈ S+

and all l ∈ N.

Lemma 19 (Ball, Carr) The set S is closed under (i) addition, (ii) multi-
plication with positive constants, (iii) pointwise convergence of sequences, and
(iv) taking pointwise infima in arbitrary subsets.

Proof. (i) − (iii) are obvious. To prove (iv), let I be an arbitrary index set

and I 3 i 7→ σ(i) be any family in S. We set σl = infi∈I σ
(i)
l for all l ∈ N. By

construction,

σ
(i)
l ≥ σl for all i ∈ I, l ∈ N, (91)

σ
(i)
l ≥ σ

(i)
l+1 ≥ 0 for all i ∈ I, l ∈ N, (92)(

σ
(i)
l − σ

(i)
l+1

)
≥ ηl

(
σ

(i)
l−1 − σ

(i)
l

)
for all i ∈ I, l ≥ l0. (93)

(91) and (92) imply σ
(i)
l ≥ σ

(i)
l+1 ≥ σl+1 ≥ 0 and hence σl ≥ σl+1 ≥ 0. (91) and

(93) yield

(1 + ηl)σ
(i)
l ≥ σ

(i)
l+1 + ηl σ

(i)
l−1 ≥ σl+1 + ηl σl−1,

and thus (1 + ηl)σl ≥ σl+1 + ηl σl−1, as required. 2

We say, a sequence σ ∈ S is a S-majorant of a sequence ξ ∈ `∞(N), if σl ≥ ξl

holds for all l ≥ l0.
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Corollary 20 There exists an operator ̂ : `∞(N) → S, mapping ξ to ξ̂, such
that for given ξ the image ξ̂ is the minimal S-majorant of ξ. This reads

ξ̂ = inf
{
σ ∈ S : σl ≥ ξl for all l ≥ l0

}
. (94)

Proof. The set in which we take the infimum in (94) is not empty, because
it contains at least sufficiently large constants. The remaining assertions are
due to Lemma 19. 2

Lemma 21 Let m ∈ N, and let δ(m) be the Dirac distribution in m, i.e.

δ(m)
m = 1 and δ

(m)
l = 0 for all l 6= m. Then, δ̂(m) ∈ S+ satisfies δ̂(m)

l = 1 for
all l ≤ m. Moreover, we have∣∣∣∣∣∣δ̂(m)

∣∣∣∣∣∣
`∞(N)

= 1 as well as
∣∣∣∣∣∣δ̂(m)

∣∣∣∣∣∣
`1(N)

≤ m +
η0

1− η0

, (95)

where η0 is given in (89).

Proof. At first we observe that δ̂(m) must decrease, so that δ
(m)
l ≥ 1 for all

l ≤ m. Next we define a S-majorant σ of δ(m) by σl = 1 for l ≤ m, and
σl = η l−m

0 for l ≥ m. Clearly, we have σ ∈ S as well as

||σ||`∞(N) = 1 and ||σ||`1(N) = m +
η0

1− η0

. (96)

Since δ̂(m) is the minimal S-majorant of δ(m), we conclude σ ≥ δ̂(m), and this
implies all claimed results. 2

Lemma 22 (Ball, Carr) Let ξ ∈ `∞(N) be arbitrary. Then lim
l→∞

ξl = 0 im-

plies lim
l→∞

ξ̂l = 0.

Proof. Since ξ̂ is a nonnegative and increasing sequence there exists the limit

2 ε := lim
l→∞

ξ̂l = inf
l∈N

ξ̂l. (97)

Suppose for contradiction that ε > 0. Then there exists l1 ∈ N such that for all
l > l1 we have ξl ≤ ε < 2 ε ≤ ξ̂l. Due to Lemma 21 there is at least one strictly
positive sequence σ ∈ S with liml→∞ σl = 0. For any b > 0 the sequence ε+b σ
is contained in S, and for sufficiently large b it is a S-majorant of ξ, but not
of ξ̂. This is the desired contradiction. 2

In the next section we need the following stronger version of Lemma 22.
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Lemma 23 Any nonnegative and decreasing sequences ξ ∈ `∞(N) satisfies

∞∑
l=1

ξl < ∞ ⇐⇒
∞∑
l=1

ξ̂l < ∞. (98)

Proof. (⇐) is obvious. To prove (⇒) let ξ be nonnegative and decreasing
with ξ ∈ `1(N). We define a sequence m 7→ σ(m) of sequences as follows

σ(m) :=

(
m−1∑
k=1

(ξk − ξk+1) δ̂(k)

)
+ ξm δ̂(m), (99)

where δ̂(k) as in Lemma 21. Clearly, for all m we have σ(m) ∈ S and

σ
(m)
l =

(
m−1∑
k=1

(ξk − ξk+1) δ̂(k)
l

)
+ ξm δ̂(m)

l

≥
(

m−1∑
k=l

(ξk − ξk+1) δ̂(k)
l

)
+ ξm δ̂(m)

l

=

(
m−1∑
k=l

ξk − ξk+1

)
+ ξm = ξl (100)

with l = 1, ..., m − 1. Moreover, from δ̂(m+1) ≥ δ(m) it follows δ̂(m+1) ≥ δ̂(m)

and hence

σ(m+1) = σ(m) − ξm+1 δ̂(m) + ξm+1δ̂(m+1) ≥ σ(m). (101)

In particular, there exists the pointwise limit σ(∞) := limm→∞ σ(m). Lemma
19 gives σ(∞) ∈ S, and with ξ ≤ σ(∞) we find ξ̂ ≤ σ(∞). Finally, Lemma 21
provides the following uniform estimate

∣∣∣∣∣∣σ(m)
∣∣∣∣∣∣
`1(N)

≤ ξm

∣∣∣∣∣∣δ̂(m)
∣∣∣∣∣∣
`1(N)

+
m−1∑
k=1

(ξk − ξk+1)
∣∣∣∣∣∣δ̂(k)

∣∣∣∣∣∣
`1(N)

≤ ξm

(
m +

η0

1− η0

)
+

m−1∑
k=1

(ξk − ξk+1)

(
k +

η0

1− η0

)

=
ξ1 η0

1− η0

+ ξm m +
m−1∑
k=1

(ξk − ξk+1) k

=
ξ1 η0

1− η0

+ ξm m +

(
−(m− 1) ξm +

m−1∑
k=1

ξk

)

=
ξ1 η0

1− η0

+
m∑

k=1

ξk ≤
ξ1 η0

1− η0

+
∞∑

k=1

ξk, (102)

and the Lemma of Fatou yields σ(∞) ∈ `1(N), which implies ξ̂ ∈ `1(N). 2
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We mention that the equivalence (98) may fail if ξ is not decreasing.

4.4 Proof of Theorem 17

Within this subsection we always assume that the assumptions of Theorem 17
are satisfied, i.e. we have λ(t) ≤ R ′ for some R ′ < R and for all t ≥ t0.

Lemma 24 There exists µ0 < 1 and an index l0 ∈ N such that

d

dt
ζl(t) ≤ N

(
z(t)

)
γl−1

ql−1

ql

(
µ0

(
ζl−1(t)− ζl(t)

)
−
(
ζl(t)− ζl+1(t)

))
(103)

is satisfied for all l ≥ l0 and all t ≥ t0.

Proof. Recall from (A1) that R = liml→∞ ql/ql+1. We choose µ0 and l0 such
that λ(t) ≤ µ0 ql/ql+1 holds for all t ≥ t0 and all l ≥ l0. This implies

Jl

(
z(t)

)
= γ lN

(
z(t)

) ql

ql+1

(
ql+1

ql

λ(t) zl(t)− zl+1(t)

)
≤ γ l N

(
z(t)

) ql

ql+1

(
µ0 zl − zl+1(t)(t)

)
(104)

for all t ≥ t0 and l ≥ l0 − 1. From Theorem 4 we read off

d

dt
ζl(t) = Jl−1

(
z(t)

)
, (105)

and with zl(t) = ζl(t)− ζl+1(t) we obtain (103). 2

Now we can make use of the auxiliary results from the previous subsection.
For this reason we fix µ0, t0 and l0 as in Lemma 24, and we define the set S as
in Equation (90), where the sequence η is assumed to be constant with value
µ0.

Our next aim is to prove that for all σ ∈ S+ the quantity Hσ(t) from (88)
decreases with time t. For any time t with t ≥ t0 we define a set S(t) ⊆ S+

and a sequence σ̂(t) ∈ S by

S(t) :=
{
σ ∈ S+ : σl ≥ ζl(t

′) ∀ l ≥ l0 and ∀ t ′ ∈ [t, ∞)
}
, (106)

σ̂(t) := inf S(t). (107)

Since S(t) contains at least the constant %0, σ̂(t) ∈ S is well defined and
satisfies σ̂(t) ≤ %0. We mention that t1 < t2 implies S(t1) ⊆ S(t2) and hence
σ̂(t1) ≥ σ̂(t2).
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For technical reasons we introduce some discrete counterparts of S(t) and σ̂(t).
For fixed m ∈ N with m ≥ l0 we define

S(m)(t) :=
{
σ ∈ S+ : σl ≥ ζl(t

′) ∀ l with l0 ≤ l ≤ m + 1 and ∀ t ′ ∈ [t, ∞)
}
,

σ̂(m)(t) := inf S(m)(t). (108)

Obviously, σ̂(m)(t) ≤ σ̂(t), and again we find σ̂(m)(t1) ≥ σ̂(m)(t2) for all t1 < t2.
The sequence m 7→ σ̂(m)(t) is increasing and bounded for all t, because m1 <
m2 gives σ̂(t) ≥ σ̂(m2)(t) ≥ σ̂(m1)(t). This implies the existence of the pointwise
limit limm→∞ σ̂(m)(t) ≤ σ̂(t). Moreover, since this limit is an S-majorant of
ζ(t ′) for all t ′ ≥ t, it follows

σ̂(m)(t)
m→∞−−−−→ σ̂(t) pointwise in `∞(N) for all t ≥ t0. (109)

Remark 25 There exists C ∈ R such that lim supl→∞ σ̂l(t) l ≤ C holds for
all t ≥ t0.

Proof. Let l1 ≥ l0, and define a sequence σ by σl = %0 for l ≤ l1 and σl = %0/l
for l > l1. For all l > l1 we have

σl − σl+1

σl−1 − σl

=

1

l
− 1

l + 1
1

l − 1
− 1

l

=
(l − 1)

(l + 1)
≥ (l1 − 1)

(l1 + 1)
(110)

Next we choose l1 sufficiently large such that (l1 − 1)/(l1 + 1) > µ0, and we
find σ ∈ S+. Let t ′ ≥ t be arbitrary. By definition we have

ζl(t
′) =

∞∑
n=l

zn(t) ≤ 1

l

∞∑
n=l

n zn(t) ≤ %0

l
, (111)

i.e. σ is an S-majorant of ζ(t ′). Hence σ̂(t) ≤ σ. Finally, C := %0 l1 completes
the proof. 2

Remark 26 For fixed m ≥ l0, all t ≥ t0 and arbitrary σ ∈ S+ let

H(m)
σ (t) := max

{
σ̂

(m)
l0

(t)

σl0

,
σ̂

(m)
m+1(t)

σm+1

, max
l=l0+1, ..., m

ζl(t)

σl

}
. (112)

Then,

σ ∈ S(m)(t) ⇐⇒ H(m)
σ (t ′) ≤ 1 ∀ t ′ ∈ [t, ∞) (113)

is satisfied for all σ ∈ S+.
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Proof. Within this proof let t ′ always be arbitrary in [t, ∞). We start with
(⇐). From H(m)

σ (t ′) ≤ 1 it follows

σl ≥ ζl(t
′) ∀ l = l0 + 1, ..., m, (114)

and

σl0 ≥ σ̂
(m)
l0

(t ′), σm+1 ≥ σ̂
(m)
m+1(t

′). (115)

Since σ̂
(m)
l0

(t ′) ≥ ζl0(t
′) and σ̂

(m)
m+1(t

′) ≥ ζm+1(t
′) holds by construction, and

since t ′ was arbitrary, we find σ ∈ S(m)(t). Next we prove (⇒). σ ∈ S(m)(t)
gives σ ∈ S(m)(t ′), and thus σ ≥ σ̂(m)(t ′). This implies (114) as well as (115),
and we conclude H(m)

σ (t ′) ≤ 1. 2

Lemma 27 Let m ≥ l0 and σ ∈ S+ be given. Then, the function t 7→ H(m)
σ (t)

from (112) is decreasing. In particular, any σ ∈ S+ satisfies

σ̂(m)(t) ≤ H(m)
σ (t) σ. (116)

Proof. Note that the function t 7→ H(m)
σ (t) is well defined and continuous for

all t ≥ t0, and let t1 ≥ t0 be fixed. We prove by contradiction that

H(m)
σ (t) < H(m)

σ (t1) + ε (117)

holds for all ε > 0 and all t ≥ t1. Let ε > 0 be fixed and suppose

H(m)
σ (t2) = H(m)

σ (t1) + ε =: H(m)
ε . (118)

for some t2 > t1 with H(m)
σ (t) < H(m)

ε for all t with t1 ≤ t < t2. We find

H(m)
ε = max

l≥l0+1, ..., m

ζl(t2)

σl

, (119)

because the functions t 7→ σ̂
(m)
l0

(t) and t 7→ σ̂
(m+1)
l0

(t) are decreasing. Thus
there exists l1 ∈ {l0 + 1, ..., m} such that

ζl1(t2) = H(m)
ε σl1 . (120)

Moreover, Definition (112) guarantees that

ζl(t) ≤ H(m)(t) σl ≤ H(m)
ε σl (121)
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for all l = l0, ..., m + 1 and all t ∈ [t1, t2]. According to (103) we find

d

dt
ζl(t) ≤ N

(
z(t)

)
γ l

ql

ql+1

(
µ0 ζl−1(t)− (1 + µ0) ζl(t) + ζl1+1(t)

)
≤ N

(
z(t)

)
γ l

ql

ql+1

(
H(m)

ε

(
µ0 σl−1 + σl+1

)
− (1 + µ0) ζl(t)

)
≤ %0 γ l

ql

ql+1

(1 + µ0)
(
H(m)

ε σl − ζl(t)
)
, (122)

where the last estimate is due to µ0 σl−1 + σl+1 ≤ (1 + µ0) σl1 which follows
from the definition of S, see (90). We apply Gronwall’s Lemma for t ∈ [t1, t2],
and obtain(

H(m)
ε σl − ζl(t2)

)
≥ exp

(
− cl (t2 − t1)

) (
H(m)

ε σl − ζl(t1)
)

> 0, (123)

where cl > 0 can be read off from (122). The estimate (123) with l = l1 is a
contradiction for (120). Thus we have proved (117), and the limit ε → 0 yields
the claimed monotonicity result. Finally, let σ ∈ S+ be fixed and t ≥ t1 be
arbitrary. We find

ζl(t) ≤ H(m)
σ (t) σ ≤ H(m)

σ (t1) σ for all l = l0, ..., m + 1. (124)

In particular, H(m)
σ (t1) σ ∈ S(m)(t1), and it follows σ̂(m)(t1) ≤ H(m)

σ (t1) σ,
which was claimed in (116). 2

Lemma 28 For all t ≥ t0 we have σ̂(t) = η̂(t) where

η(t) := max
{
ζ(t), σ̂l0(t) δ(l0)

}
, (125)

δ(l0) is the Dirac distribution in l0, and η̂(t) is the minimal S-majorant of η(t).

Proof. Let m ≥ l0 be arbitrary. Remark 26 and Lemma 27 provide

S(m)(t) =
{
σ ∈ S+ : H(m)(t) ≤ 1

}

=


σ ∈ S+ :

σl0 ≥ σ̂
(m)
l0

(t)

σl ≥ ζl(t) ∀ l = l0 + 1, ..., m

σm+1 ≥ σ̂
(m)
m+1(t)


. (126)

Let η(m)(t) ∈ S+ be defined by

η(m)(t) := σ̂m+1(t) + η̂(t), (127)
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with η(t) as in (125). As simple calculation shows H
(m)

η(m)(t)
(t) ≤ 1, and from

(116) it follows that

σ̂(m)(t) ≤ H
(m)

η(m)(t)
(t) η(m)(t) ≤ η̂(t) + σ̂m+1(t). (128)

According to Remark 25 and (109) the limit m →∞ provides

σ̂(t) = lim
m→∞

σ̂(m)(t) ≤ η̂(t). (129)

Moreover, by construction we have σ̂l(t) ≥ ζl(t) and σ̂l(t) ≥ σ̂l0 δ
(l0)
l for all

l ≥ l0, which shows that σ̂(t) is S-majorant for η(t). Therefore, σ̂(t) ≥ η̂(t). 2

Corollary 29 For all t ≥ t0 and all σ ∈ S+ let Hσ(t) be given as in (88), i.e.

Hσ(t) := max

{
%0

σl0

, sup
l≥l0+1

ζl(t)

σl

}
, (130)

where Hσ(t) may be infinite. Then, for all σ ∈ S+ the function t 7→ Hσ(t) is
decreasing. In particular, any σ ∈ S+ satisfies

σ̂(t) ≤ Hσ(t) σ. (131)

Proof. Let σ ∈ S+ be fixed, let t1 ≥ t0 with H := Hσ(t1) < ∞, and let
t2 ≥ t1. With σ̃ = Hσ we find σ̃l0 ≥ %0 ≥ σ̂l0(t1) ≥ ζl0(t1) and σ̃l ≥ ζl(t1)
for all l > l0. In particular, σ̃ is an S-majorant of η(t1), and we conclude

σ̃ ≥ η̂(t1). Lemma 28 yields σ̃ ≥ σ̂(t1) ≥ σ̂(t2), and it follows that σ̃ is an
S-majorant of ζ(t2). This implies σ̃l ≥ ζl(t2) for all l > l0, and hence

1 ≥ Hσ̃(t2) =
1

H
Hσ(t2), (132)

which was claimed. Finally, (131) follows immediately. 2

Corollary 30 Let z(∞) be as in Corollary 16, and let ε > 0 be arbitrary. Then
we have

%0 ≥ %
(
z(∞)

)
≥ %0 − 2ε (133)

In particular, Theorem 17 is proved.

Proof. Let ε > 0 be fixed, and let

σ := H ζ̂(t0), H := H
ζ̂(t0)

(t0) =
%0

ζ̂(t0)l0

. (134)
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We have H ∈ [1, ∞), and Lemma 23 provides σ ∈ `1(N). Therefore we can
choose an index l1 ≥ l0 such that

∑∞
l=l1

σl ≤ ε. Moreover, according to Corol-
lary 29 we have ζl(t) ≤ σl for all l ≥ l0 and all t ≥ t0. Therefore, we find

%0 =
∞∑
l=1

ζl(t) ≤ ε +
l1∑

l=1

ζl(t) = ε +
l1∑

l=1

Nl

(
z(t)

)
. (135)

By construction, there exists a sequence m 7→ tm with tm → ∞ such that
z(tm) → z(∞) weak? in X for m → ∞. Using the weak? continuity of the
functionals Nl we find

l1∑
l=1

Nl

(
z(∞)

)
≥ %0 − ε. (136)

Finally, it is easy to prove that %
(
z(∞)

)
≤ %0 implies %

(
z(∞)

)
=
∑∞

l=1 Nl

(
z(∞)

)
,

and (133) follows immediately. 2
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Diploma thesis, Humboldt-Universität zu Berlin, Department of Mathematics,
in preparation (2005).
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