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Abstract

We introduce a forward scheme to simulate backward SDEs. Com-
pared to existing schemes, we avoid high order nestings of conditional
expectations backwards in time. In this way the error, when approxi-
mating the conditional expectation, in dependence of the time partition
is significantly reduced. Besides this generic result, we present an im-
plementable algorithm and provide an error analysis for it. Finally, we
demonstrate the strength of the new algorithm by solving some financial
problems numerically.
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1 Introduction

The study of nonlinear backward stochastic differential equations (BSDEs) was
initiated by Pardoux and Peng (1990). Mainly motivated by financial problems
(see e.g. the survey article by El Karoui et al. (1997)) the theory of BSDEs was
developed at high speed during the 1990s. Comparably slow progress has been
made on the numerics of BSDEs.

Up to now basically two types of schemes have been considered. Based
on the theoretical 4-step-scheme from Ma et al. (1994), numerical algorithms
for BSDEs have been developed by Douglas et al. (1996) and more recently
by Milstein and Tretyakov (2004). The main focus of these algorithms is the
numerical solution of a parabolic PDE which is related to the BSDE.

A second type of algorithms works backwards through time and tries to
tackle the stochastic problem directly. Bally (1997) and Chevance (1997) were
the first to study this type of algorithm with a (hardly implementable) random
time partition respectively under strong regularity assumptions. The work of
Ma et al. (2002) is in the same spirit, replacing, however, the Brownian motion
by a binary random walk in the approximative equation. See also Briand et al.
(2001) for the binary random walk approach. Only recently, a new notion of
L2-regularity on the control part of the solution was introduced in Zhang (2004),
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which allowed to prove convergence of this backward approach with determin-
istic partitions under rather weak regularity assumptions, see Zhang (2004),
Bouchard and Touzi (2004), and Gobet et al. (2004) for different algorithms.

A main drawback of the backward schemes is, that nestings of conditional
expectations backwards through the time steps have to been evaluated. For a
practical implementation the conditional expectations must be replaced by some
estimator. A generic result of Bouchard and Touzi (2004) shows that the error
due to the approximation of the conditional expectation grows with order 1/2,
as the number of time steps goes to infinity. This leads to high computational
costs, when a fine mesh of the time discretization is required.

In this paper we propose a new forward scheme, which avoids nestings of con-
ditional expectations backwards through the time steps. Instead it mimics the
Picard type iteration for BSDEs and, consequently, has nestings of conditional
expectation along the iterations.

We show that the additional error due to the iteration converges to zero at
geometric rate (Theorem 2.6). At this cost the error, when approximating the
conditional expectations by a generic estimator, in dependence of the time par-
tition is reduced by order 1/2 compared to existing backward schemes (Theorem
3.1). In fact, in our scheme this error does neither explode when the number of
time steps nor when the number of iterations tends to infinity. We believe that
this is a striking advantage compared to the backward scheme.

Besides this generic results, we develop a practically implementable numeri-
cal scheme. In particular, we use the regression-based least squares Monte-Carlo
method to approximate the conditional expectation as was suggested by Gobet
et al. (2004) in the context of the backward scheme. We analyze the error, when
replacing the conditional expectation by the orthogonal projections on subspaces
(Theorem 4.1), and also provide rates of convergence when the projection co-
efficients are substituted by their simulation-based analogues (Theorem 4.9).
Again we have an error reduction of order 1/2 in the mesh size of the time
partition compared to the results in Gobet et al. (2004). Depending on the
number L of simulated paths, the best expected rate of L−1/2 can be achieved
for appropriate projection spaces (Theorem 4.9).

Finally, we present some simulations related to financial problems (Section
5). We consider the hedging problem under different interest rates for invest-
ing and borrowing and the superhedging problem under borrowing constraints,
which lead to nonlinear BSDEs.

2 A Discretization of the Picard Type Iteration

In this section we introduce a discretized Picard iteration and prove its conver-
gence for the following type of BSDE:

dXt = b(t,Xt)dt + σ(t,Xt)dWt

dYt = f(t,Xt, Yt, Zt)dt + ZtdWt

X0 = x

YT = ξ.
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Here Wt = (W1,t, . . . ,WD,t)
∗, (the star denoting matrix transposition), is a D-

dimensional Brownian motion on [0, T ] and Zt = (Z1,t, . . . , ZD,t). The process
X is R

M -valued and the process Y is R-valued. Throughout the paper we
assume:

Assumption 2.1. There is a constant K such that

|b(t, x) − b(t′, x′)| + |σ(t, x) − σ(t′, x′)| + |f(t, x, y, z) − f(t′, x′, y′, z′)|
≤ K(

√
|t − t′| + |x − x′| + |y − y′| + |z − z′|)

for all (t, x, y, z), (t′, x′, y′, z′) ∈ [0, T ] × R
M × R × R

D,

ξ = Φ(X)

where Φ is a functional on the space of R
M -valued RCLL-functions on [0, T ]

satisfying the L∞-Lipschitz condition,

|Φ(x) − Φ(x′)| ≤ K sup
0≤t≤T

|x(t) − x′(t)|

for all RCLL-functions x, x′. Moreover,

sup
0≤t≤T

(|b(t, 0)| + |σ(t, 0)| + |f(t, 0, 0, 0)|) + |Φ(0)| ≤ K

where 0 denotes the constant function taking value 0 on [0, T ].

Note, that we do neither assume that the matrix σ is quadratic nor that σσ∗

is invertible.

Remark 2.2. We shall say that a constant depends on the data, if it depends
on K, T , x0 and the dimensions M and D only. Throughout the paper C
denotes a generic constant depending on the data which may vary from line to
line.

Theoretically, the backward part (Y,Z) can be obtained as the limit of a
Picard type iteration (Y (n), Z(n)), see e.g. Yong and Zhou (2000), theorem
7.3.4. Here (Y (0), Z(0)) ≡ (0, 0), and (Y (n), Z(n)) is the solution of the simple
BSDE

dY
(n)
t = f(t,Xt, Y

(n−1)
t , Z

(n−1)
t )dt + Z

(n)
t dWt

Y
(n)
T = ξ

with X as above.
The solution is given by

Y
(n)
t = E

[
ξ −

∫ T

t

f(s,Xs, Y
(n−1)
s , Z(n−1)

s )ds

∣∣∣∣∣Ft

]

and Z(n) is obtained via the martingale representation theorem. As is empha-
sized in Yong and Zhou (2000), ch. 7, the above Picard iteration is still implicit
due to the use of the martingale representation theorem.

We will now introduce a time discretization of the above iteration, which is
explicit but for the occurrence of conditional expectations.
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Suppose a partition π = {t0, t1, . . . , tN} of [0, T ] with mesh size |π| :=
maxi |ti+1 − ti| is given and a corresponding discretization X(π) of X as well
as some approximation ξ(π) of ξ. Let (Y (0,π), Z(0,π)) ≡ (0, 0). Then define
iteratively for i = 0, 1, . . . , N , with ∆i = ti+1 − ti and ∆Wd,i = Wd,ti+1

−Wd,ti
,

Y
(n,π)
ti

= E


ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Y
(n−1,π)
tj

, Z
(n−1,π)
tj

)∆j

∣∣∣∣∣∣
Fti


 ,

Z
(n,π)
d,ti

= E


∆Wd,i

∆i


ξ(π) −

N−1∑

j=i+1

f(tj ,X
(π)
tj

, Y
(n−1,π)
tj

, Z
(n−1,π)
tj

)∆j




∣∣∣∣∣∣
Fti


 ,

d = 1, . . . ,D. (Here we used the convention ∆Wd,N = 0). The processes Y (n,π)

and Z(n,π) are extended to RCLL processes by constant interpolation. Note that
the discretized Picard-type iteration has no nestings of conditional expectations
backward in time, but forward in the number of Picard iterations. This turns
out to be an advantage from the numerical point of view (see section 3 below).

We can now state convergence of the discretized Picard-type iteration:

Theorem 2.3. Suppose Assumption 2.1 holds, and for some constant C de-

pending on the data

sup
0≤t≤T

E
[
|Xt − X

(π)
t |2

]
≤ C|π|,

sup
|π|≤1

E
[
|ξ(π)|2

]
≤ C.

Then there is a constant C depending on the data such that

sup
0≤t≤T

E

[∣∣∣Yt − Y
(n,π)
t

∣∣∣
2
]

+ E

∫ T

0

|Zt − Z
(n,π)
t |2dt

≤ C

(
|π| + E[|ξ − ξ(π)|2] +

(
1

2
+ C|π|

)n)

provided |π| is sufficiently small.

Remark 2.4. (i) Note, the condition on the discretization X(π) of X is, for
instance, satisfied by the Euler scheme.

(ii) The condition on ξ(π) is satisfied, whenever for |π| ≤ 1

E[|ξ − ξ(π)|2] ≤ C|π|α

with some constant C depending on the data and some α > 0. Indeed,

E[|ξ − ξ(π)|2] ≤ 2E[|ξ|2] + 2E[|ξ − ξ(π)|2],

and, thanks to the L∞-Lipschitz condition and a classical estimate for SDEs,

E[|ξ|2] ≤ 2K2E[ sup
0≤t≤T

|Xt|2] + 2|Φ(0)|2

≤ C

(
|x|2 +

∫ T

0

|b(t, 0)|2 + |σ(t, 0)|2dt

)
+ 2K2 ≤ C.
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The proof of theorem 2.3 is split into two parts. Given the partition π
and a corresponding discretization X(π) of X we define (Y (∞,π), Z(∞,π)) as the
solution of

Y
(∞,π)
tN

= ξ(π),

Z
(∞,π)
d,ti

= E

[
∆Wd,i

∆i
Y

(∞,π)
ti+1

∣∣∣∣Fti

]
,

Y
(∞,π)
ti

= E[Y
(∞,π)
ti+1

|Fti
] − f(ti,X

(π)
ti

, Y
(∞,π)
ti

, Z
(∞,π)
ti

)∆i.

It exists, when the mesh |π| of the partition π is sufficiently fine. Again, the
processes Y (∞,π) and Z(∞,π) are extended to RCLL processes by constant in-
terpolation. Note, (Y (∞,π), Z(∞,π)) is (up to the interpolation of the Z-part)
the backward scheme considered in Bouchard and Touzi (2004). We remark
that this backward scheme is still implicit, and inner iterations are required for
numerical implementation.

We shall separately consider the convergence of (Y (n,π), Z(n,π)) to
(Y (∞,π), Z(∞,π)) and of (Y (∞,π), Z(∞,π)) to (Y,Z).

Concerning the backward scheme we need an extension of the results by
Bouchard and Touzi (2004). The following variant of theorem 3.1 in Bouchard
and Touzi (2004) is a slight generalization concerning the assumptions on the
coefficients. Moreover, it allows for path-depending terminal data and the ap-
proximating processes are piecewise constant.

Theorem 2.5. Suppose Assumption 2.1 holds, and the discretization X(π) of

X satisfies

sup
0≤t≤T

E
[
|Xt − X

(π)
t |2

]
≤ C|π| (1)

for some constant C depending on the data. Then there is a constant C depend-

ing on the data such that

sup
0≤t≤T

E

[∣∣∣Yt − Y
(∞,π)
t

∣∣∣
2
]

+ E

∫ T

0

|Zt − Z
(∞,π)
t |2dt

≤ C
(
|π| + E[|ξ − ξ(π)|2]

)

provided |π| is sufficiently small.

The proof combines ideas of Bouchard and Touzi (2004) and Zhang (2004),
who suggests a different time discretization. For the reader’s convenience we
sketch the proof of Theorem 2.5 in the Appendix.

We now investigate the iteration for a fixed partition. Our aim is to derive
rates of convergence uniform in π.

Theorem 2.6. Under the assumptions of theorem 2.3 there are constants C1

and C2 depending on the data such that

max
0≤i≤N

E

[∣∣∣Y (∞,π)
ti

− Y
(n,π)
ti

∣∣∣
2
]

+

N−1∑

i=0

E

[∣∣∣Z(∞,π)
ti

− Z
(n,π)
ti

∣∣∣
2
]

∆i

≤ C1

(
1

2
+ C2|π|

)n

provided |π| is sufficiently small.
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Clearly, Theorem 2.3 follows from a straightforward combination of Theo-
rems 2.5 and 2.6.

Remark 2.7. Let K denote the Lipschitz constant of f . Then it follows from
the proof below that Theorem 2.6 holds, for instance, for |π| ≤ Γ with

C2 =
Γ

4
,

where
Γ = 16T (T + 1)2D2K4 + 4K(T + 1)K2.

We prepare the proof of Theorem 2.6 with some a priori estimates.

Lemma 2.8. Suppose Γ and γ are positive real numbers, ỹ(ι), z̃(ι), ι = 1, 2 are

adapted processes and

Ỹ
(ι)
ti

= E


ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, ỹ
(ι)
tj

, z̃
(ι)
tj

)∆j

∣∣∣∣∣∣
Fti


 ,

Z̃
(ι)
d,ti

= E


∆Wd,i

∆i


ξ(π) −

N−1∑

j=i+1

f(tj ,X
(π)
tj

, ỹ
(ι)
tj

, z̃
(ι)
tj

)∆j




∣∣∣∣∣∣
Fti


 .

Moreover, assume that f is Lipschitz in (y, z) uniformly in (t, x) with constant

K. Then:

max
0≤i≤N

λiE
[
|Ỹ (1)

ti
− Ỹ

(2)
ti

|2
]

+

N−1∑

i=0

λiE
[
|Z̃(1)

ti
− Z̃

(2)
ti

|2
]
∆i

≤ K2(T + 1)

((
|π| + Γ−1

)
(γDT + 1) +

D

γ

)

×
(

1

T

N−1∑

i=0

λiE
[
|ỹ(1)

ti
− ỹ

(2)
ti

|2
]
∆i +

N−1∑

i=0

λiE
[
|z̃(1)

ti
− z̃

(2)
ti

|2
]
∆i

)
,

where λ0 = 1 and λi = (1 + Γ∆i−1)λi−1.

Proof. The proof goes through several steps. For notational convenience let us
introduce

yti
= ỹ

(1)
ti

− ỹ
(2)
ti

,

zti
= z̃

(1)
ti

− z̃
(2)
ti

,

∆fi = f(ti,X
(π)
ti

, ỹ
(1)
ti

, z̃
(1)
ti

) − f(ti,X
(π)
ti

, ỹ
(2)
ti

, z̃
(2)
ti

).

First note that

Ỹ
(ι)
ti

= E[Ỹ
(ι)
ti+1

|Fti
] − f(ti,X

(π)
ti

, ỹ
(ι)
ti

, z̃
(ι)
ti

)∆i (2)

and, for the dth component of Z̃(ι),

Z̃
(ι)
d,ti

= E

[
∆Wd,i

∆i
Ỹ

(ι)
ti+1

∣∣∣∣Fti

]
. (3)
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Step 1: We prove that for any 1 ≤ d ≤ D

N−1∑

i=0

λiE

[∣∣∣Z̃(1)
d,ti

− Z̃
(2)
d,ti

∣∣∣
2
]

∆i

≤ γ

N−1∑

i=0

λiE

[∣∣∣Ỹ (1)
ti

− Ỹ
(2)
ti

∣∣∣
2
]

∆i +
(1 + T )K2

γ

N−1∑

i=0

λiE
[
|zti

|2
]
∆i

+
(1 + T )K2

Tγ

N−1∑

i=0

λiE
[
|yti

|2
]
∆i. (4)

First note that by (3) and Hölder’s inequality,

Z̃
(1)
d,ti

− Z̃
(2)
d,ti

= E

[
∆Wd,i

∆i

(
Ỹ

(1)
ti+1

− Ỹ
(2)
ti+1

)∣∣∣∣Fti

]

= E

[
∆Wd,i

∆i

(
Ỹ

(1)
ti+1

− Ỹ
(2)
ti+1

− E[Ỹ
(1)
ti+1

− Ỹ
(2)
ti+1

|Fti
]
)∣∣∣∣Fti

]

≤
√

1

∆i
E

[(
Ỹ

(1)
ti+1

− Ỹ
(2)
ti+1

− E[Ỹ
(1)
ti+1

− Ỹ
(2)
ti+1

|Fti
]
)2
∣∣∣∣Fti

]1/2

.

Thus, by (2),

E
[
|Z̃(1)

d,ti
− Z̃

(2)
d,ti

|2
]

≤ 1

∆i
E
[
|Ỹ (1)

ti+1
− Ỹ

(2)
ti+1

|2 − E[Ỹ
(1)
ti+1

− Ỹ
(2)
ti+1

|Fti
]2
]

=
1

∆i
E
[
|Ỹ (1)

ti+1
− Ỹ

(2)
ti+1

|2 − |Ỹ (1)
ti

− Ỹ
(2)
ti

+ ∆fi∆i|2
]

≤ 1

∆i
E
[
|Ỹ (1)

ti+1
− Ỹ

(2)
ti+1

|2 − |Ỹ (1)
ti

− Ỹ
(2)
ti

|2 − 2(Ỹ
(1)
ti

− Ỹ
(2)
ti

)∆fi∆i

]
.

Multiplying both sides with the weights λi∆i and summing from 0 to N − 1
yields for γ > 0,

N−1∑

i=0

λiE
[
|Z̃(1)

ti
− Z̃

(2)
ti

|2
]
∆i + λ0E

[
|Ỹ (1)

t0 − Ỹ
(2)
t0 |2

]

≤ λNE
[
|Ỹ (1)

tN
− Ỹ

(2)
tN

|2
]
− 2

N−1∑

i=0

λiE
[
(Ỹ

(1)
ti

− Ỹ
(2)
ti

)∆fi

]
∆i

≤ γ

N−1∑

i=0

λiE
[
|Ỹ (1)

ti
− Ỹ

(2)
ti

|2
]
∆i +

K2

γ

N−1∑

i=0

λiE
[
(|yti

| + |zti
|)2
]
∆i.

Here we used Ỹ
(1)
tN

− Ỹ
(2)
tN

= 0 and Young’s inequality. (4) may now be obtained
by another application of Young’s inequality.

Step 2: We show

max
0≤i≤N

λiE
[
|Ỹ (1)

ti
− Ỹ

(2)
ti

|2
]

≤ K2(T + 1)

(
|π| + 1

Γ

)(N−1∑

i=0

λiE
[
|zti

|2∆i

]
+

1

T

N−1∑

i=0

λiE
[
|yti

|2∆i

]
)

(5)
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By (2), Jensen’s inequality, and Young’s inequality we get

E
[
|Ỹ (1)

tj
− Ỹ

(2)
tj

|2
]

≤ (1 + Γ∆j)E
[
|Ỹ (1)

tj+1
− Ỹ

(2)
tj+1

|2
]

+ (∆j + Γ−1)E[(∆fj)
2]∆j

≤ (1 + Γ∆j)E
[
|Ỹ (1)

tj+1
− Ỹ

(2)
tj+1

|2
]

+
(
|π| + Γ−1

)
K2(T + 1)E[|ztj

|2]∆j

+
(
|π| + Γ−1

)
K2 T + 1

T
E[|ytj

|2]∆j .

Multiplying with λj and summing from j = i to N − 1 easily yields (5), since

Ỹ
(1)
tN

− Ỹ
(2)
tN

= 0.
Final Step: The assertion follows from a straightforward combination of

(4) and (5).

Proof of theorem 2.6. Denote,

y
(n+1,π)
ti

= Y
(n+1,π)
ti

− Y
(n,π)
ti

,

z
(n+1,π)
ti

= Z
(n+1,π)
ti

− Z
(n,π)
ti

.

By Lemma 2.8,

max
0≤i≤N

λiE
[
|y(n+1,π)

ti
|2
]

+

N−1∑

i=0

λiE
[
|z(n+1,π)

ti
|2
]
∆i

≤ K2(T + 1)

((
|π| + Γ−1

)
(γDT + 1) +

D

γ

)

×
(

max
0≤i≤N

λiE
[
|y(n,π)

ti
|2
]

+

N−1∑

i=0

λiE
[
|z(n,π)

ti
|2
]
∆i

)
.

We now choose γ = 4DK2(T + 1) and Γ = 4K2(T + 1)(γDT + 1) and iterate
the above inequality to obtain,

max
0≤i≤N

λiE
[
|y(n+1,π)

ti
|2
]

+
N−1∑

i=0

λiE
[
|z(n+1,π)

ti
|2
]
∆i

≤
(

Γ|π|
4

+
1

2

)n
(

max
0≤i≤N

λiE
[
|Y (1,π)

ti
|2
]

+

N−1∑

i=0

λiE
[
|Z(1,π)

ti
|2
]
∆i

)
.

Recalling the definition of λi from Lemma 2.8 we have,

max
0≤i≤N

E
[
|y(n+1,π)

ti
|2
]

+

N−1∑

i=0

E
[
|z(n+1,π)

ti
|2
]
∆i

≤ eΓT

(
Γ|π|
4

+
1

2

)n
(

max
0≤i≤N

E
[
|Y (1,π)

ti
|2
]

+
N−1∑

i=0

E
[
|Z(1,π)

ti
|2
]
∆i

)
.

Denote the square root of the right-hand side by A(π, n). Clearly the se-
ries

∑
n A(π, n) converges, when |π| is sufficiently small. This shows, that
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(Y (n,π), Z(n,π)) is a Cauchy sequence and thus converges to (Y (∞,π), Z(∞,π))
(when |π| is sufficiently small) by means of (2)–(3). Moreover, for n ∈ N,

max
0≤i≤N

E

[∣∣∣Y (∞,π)
ti

− Y
(n,π)
ti

∣∣∣
2
]

+
N−1∑

i=0

E

[∣∣∣Z(∞,π)
ti

− Z
(n,π)
ti

∣∣∣
2
]

∆i

≤
(

∞∑

ν=n

A(π, ν)

)2

≤ eΓT

(
max

0≤i≤N
E
[
|Y (1,π)

ti
|2
]

+

N−1∑

i=0

E
[
|Z(1,π)

ti
|2
]
∆i

)(
1 −

√
Γ|π|
4

+
1

2

)−2

×
(

Γ|π|
4

+
1

2

)n

.

It remains to prove a uniform bound for

(
max

0≤i≤N
E
[
|Y (1,π)

ti
|2
]

+

N−1∑

i=0

E
[
|Z(1,π)

ti
|2
]
∆i

)
,

which is given in the following lemma.

Lemma 2.9. Under the assumptions of theorem 2.3, there is a constant C
depending on the data only such that

max
0≤i≤N

E
[
|Y (1,π)

ti
|2
]

+

N−1∑

i=0

E
[
|Z(1,π)

ti
|2
]
∆i ≤ C

provided |π| ≤ 1 .

Proof. By Young’s and Hölder’s inequality we have

max
0≤i≤N

E
[
|Y (1,π)

ti
|2
]
≤ 2E[|ξ(π)|2] + 2T

N−1∑

j=0

E
[
|f(tj ,X

(π)
tj

, 0, 0)|2
]
∆j

The first term on the right hand side is bounded by a constant depending on
the data for |π| ≤ 1 by assumption. For the second term we observe

E
[
|f(tj ,X

(π)
tj

, 0, 0)|2
]

≤ 2E
[
|f(tj ,X

(π)
tj

, 0, 0) − f(tj , 0, 0, 0)|2
]

+ 2|f(tj , 0, 0, 0)|2

≤ 2K2

(
sup

0≤t≤T
E[|X(π)

t |2] + 1

)
.

Now, by assumption and a classical result on SDEs

sup
0≤t≤T

E[|X(π)
t |2] ≤ 2 sup

0≤t≤T
E[|X(π)

t − Xt|2] + 2 sup
0≤t≤T

E[|Xt|2]

≤ C|π| + C

(
|x|2 +

∫ T

0

|b(t, 0)|2 + |σ(t, 0)|2dt

)
≤ C(1 + |π|).

9



We have thus shown that for |π| ≤ 1,

max
0≤i≤N

E
[
|Y (1,π)

ti
|2
]

+ max
0≤i≤N

E
[
|f(tj ,X

(π)
tj

, 0, 0)|2
]
≤ C. (6)

Analogously to step 1 in Lemma 2.8 we obtain,

E
[
|Z(1,π)

d,ti
|2
]2

≤ 1

∆i
E
[
|Y (1,π)

ti+1
|2 − |Y (1,π)

ti
|2 − 2Y

(1,π)
ti

f(ti,X
(π)
ti

, 0, 0)∆i

]
.

Multiplying with ∆i and summing i from 0 to N − 1 easily gives the L2-bound
for Z(1,π) in view of (6).

As a corollary we obtain a uniform bound for the L2-norms:

Corollary 2.10. Under the assumptions of Theorem 2.3, there is a constant

C depending on the data only such that

max
0≤i≤N

E
[
|Y (n,π)

ti
|2
]

+
N−1∑

i=0

E
[
|Z(n,π)

ti
|2
]
∆i ≤ C

provided |π| is sufficiently small.

Proof. With the notation from the proof of theorem 2.6 we get for sufficiently
small |π|,

max
0≤i≤N

E
[
|Y (n,π)

ti
|2
]

+

N−1∑

i=0

E
[
|Z(n,π)

ti
|2
]
∆i

≤ max
0≤i≤N

n∑

ν=1

(
E

[∣∣∣y(n,π)
ti

∣∣∣
2
]

+

N−1∑

i=0

E

[∣∣∣z(n,π)
ti

∣∣∣
2
]

∆i

)

≤
(

∞∑

ν=1

A(π, ν)

)2

≤ C

(
max

0≤i≤N
E
[
|Y (1,π)

ti
|2
]

+

N−1∑

i=0

E
[
|Z(1,π)

ti
|2
]
∆i

)

with a constant C depending on the data only. Lemma 2.9 concludes.

3 Generic Analysis of the Error Propagation

For numerical implementation of the iteration proposed in the previous section,
one has to approximate the conditional expectations. This section is devoted to
an analysis of the error due to the replacement of the conditional expectation
by a generic estimator. It turns out that the error grows moderately when the
mesh of the partition goes to zero and the number of Picard iterations tends to
infinity. We believe, this is an important advantage over the backward scheme,
where the error explodes when the mesh tends to zero.

10



Suppose a generic estimator Êπ[·|Ft] of the conditional expectation is given.
We consider first the corresponding approximation of the backward scheme of
Bouchard and Touzi (2004), namely

Ŷ
(∞,π)
tN

= ξ(π),

Ẑ
(∞,π)
d,ti

= Êπ

[
∆Wd,i

∆i
Ŷ

(∞,π)
ti+1

∣∣∣∣Fti

]
,

Ŷ
(∞,π)
ti

= Êπ[Ŷ
(∞,π)
ti+1

|Fti
] − f(ti,X

(π)
ti

, Ŷ
(∞,π)
ti

, Ẑ
(∞,π)
ti

)∆i. (7)

Bouchard and Touzi (2004), Theorem 4.1, prove, under slightly stronger as-
sumptions than Assumption 2.1, that

max
0≤i≤N

E[|Ŷ (∞,π)
ti

− Y
(∞,π)
ti

|2]

≤ C

|π| max
0≤j≤N

E

(
|Êπ[Ŷ

(∞,π)
ti+1

|Fti
] − E[Ŷ

(∞,π)
ti+1

|Fti
]|2

+

∣∣∣∣Ê
π

[
Wti+1

− Wti

ti+1 − ti
Ŷ

(∞,π)
ti+1

∣∣∣∣Fti

]
− E

[
Wti+1

− Wti

ti+1 − ti
Ŷ

(∞,π)
ti+1

∣∣∣∣Fti

]∣∣∣∣
2
)

for some constant C depending on the data.
This means, given the same accuracy of the conditional expectation estima-

tor the error due to the approximation of the conditional expectation explodes
when the mesh of the partition tends to zero. Put differently, due to the nu-
merical approximation of the conditional expectation by a Monte-Carlo based
estimator one has to simulate the more paths the finer the partition. This
increases the computational costs. This effect is particularly unfavorable when
the constant in Theorem 2.5 is large (e.g. due to a large Lipschitz constant or

time horizon) and, thus, a fine mesh is needed for Y
(∞,π)
t to be a good approx-

imation of Yt. We note that the described effect has also been observed in the
numerical examples by Gobet et al. (2004).

We shall now show that the error due to the approximation of the conditional
expectation by its generic estimator does not explode for the discretized Picard
iteration. We define

b̂
(n,π)
i = ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Ŷ
(n−1,π)
tj

, Ẑ
(n−1,π)
tj

)∆j ,

Ŷ
(n,π)
ti

= Êπ [̂b
(n,π)
i |Fti

],

Ẑ
(n,π)
d,ti

= Êπ

[
∆Wd,i

∆i
b̂
(n,π)
i+1

∣∣∣∣Fti

]
,

initialized at (Ŷ (0,π), Ẑ(0,π)) = (0, 0).

Theorem 3.1. Under Assumption 2.1 there is a constant C depending on the
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data such that for any sufficiently fine partition π,

max
0≤i≤N

E[|Ŷ (n,π)
ti

− Y
(n,π)
ti

|2] +

N−1∑

i=0

E[|Ẑ(n,π)
ti

− Z
(n,π)
ti

|2]∆i

≤ C max
1≤ν≤n

(
max

0≤i≤N
E
[
|Êπ [̂b

(ν,π)
i |Fti

] − E [̂b
(ν,π)
i |Fti

]|2
]

+E

N−1∑

i=0

∣∣∣∣Ê
π

[
∆Wi

∆i
b̂
(ν,π)
i+1

∣∣∣∣Fti

]
− E

[
∆Wi

∆i
b̂
(ν,π)
i+1

∣∣∣∣Fti

]∣∣∣∣
2

∆i

)

holds for all n ∈ N.

Proof. Define,

b
(n,π)
i = ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Y
(n−1,π)
tj

, Z
(n−1,π)
tj

)∆j .

Then, by Young’s inequality, and with the notation from Lemma 2.9,

max
0≤i≤N

λiE[|Ŷ (n,π)
ti

− Y
(n,π)
ti

|2] +

N−1∑

i=0

λiE[|Ẑ(n,π)
ti

− Z
(n,π)
ti

|2]∆i

≤ 2

(
max

0≤i≤N
λiE

[
|Êπ [̂b

(n,π)
i |Fti

] − E [̂b
(n,π)
i |Fti

]|2
]

+E

N−1∑

i=0

λi

∣∣∣∣Ê
[

∆Wi

∆i
b̂
(n,π)
i+1

∣∣∣∣Fti

]
− E

[
∆Wi

∆i
b̂
(n,π)
i+1

∣∣∣∣Fti

]∣∣∣∣
2

∆i

)

+2

(
max

0≤i≤N
λiE

[
|E [̂b

(n,π)
i − b

(n,π)
i |Fti

]|2
]

+

N−1∑

i=0

λiE

[∣∣∣∣E
[

∆Wi

∆i
b̂
(n,π)
i+1 − ∆Wi

∆i
b
(n,π)
i+1

∣∣∣∣Fti

]∣∣∣∣
2
]

∆i

)
.

Lemma 2.9 can be applied to the second term. Hence, with a suitable choice of
Γ and γ,

max
0≤i≤N

λiE[|Ŷ (n,π)
ti

− Y
(n,π)
ti

|2] +
N−1∑

i=0

λiE[|Ẑ(n,π)
ti

− Z
(n,π)
ti

|2]∆i

≤ 2

(
max

0≤i≤N
λiE

[
|Êπ [̂b

(n,π)
i |Fti

] − E [̂b
(n,π)
i |Fti

]|2
]

+E

N−1∑

i=0

λi

∣∣∣∣Ê
π

[
∆Wi

∆i
b̂
(n,π)
i+1

∣∣∣∣Fti

]
− E

[
∆Wi

∆i
b̂
(n,π)
i+1

∣∣∣∣Fti

]∣∣∣∣
2

∆i

)

+

(
1

4
+ Γ|π|

)(
max

0≤i≤N
λiE[|Ŷ (n−1,π)

ti
− Y

(n−1,π)
ti

|2]

+

N−1∑

i=0

λiE[|Ẑ(n−1,π)
ti

− Z
(n−1,π)
ti

|2]∆i

)
.
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Now for |π| sufficiently small (e.g. less or equal (4Γ)−1) the above estimate can
be iterated to obtain the theorem. Note, 1 ≤ λi ≤ eΓT . Thus, we can choose
C = 2eΓT ∨ Γ.

4 A Numerical Forward Scheme

In this section we specify an estimator for the conditional expectation. We
shall utilize the so-called least-squares Monte-Carlo regression method, which
was introduced in Longstaff and Schwartz (2001) in the context of American
options and is also applied to the backward scheme in Gobet et al. (2004). The
approximation takes place in two steps. First, the conditional expectation is
replaced by an orthogonal projection on finite dimensional subspaces. Then,
the coefficients of the orthogonal projections are estimated from a sample of
independent simulations by the least squares method. Convergence of these two
steps will be analyzed in the following subsections. Subsection 4.3 summarizes
the results in a Markovian setting relevant for the practical implementation of
the numerical scheme.

4.1 Orthogonal Projection on Subspaces of L
2(Fti

)

We will first replace the conditional expectations E[·|Fti
] by orthogonal projec-

tions on subspaces of L2(Fti
). Precisely, we fix D+1 subspaces Λd,i, 0 ≤ d ≤ D,

of L2(Fti
) for each 0 ≤ i ≤ k. The orthogonal projection on Λd,i is denoted by

Pd,i.
We now consider the algorithm

Ŷ
(n,π)
ti

= P0,i


ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Ŷ
(n−1,π)
tj

, Ẑ
(n−1,π)
tj

)∆j


 ,

Ẑ
(n,π)
d,ti

= Pd,i


∆Wd,i

∆i


ξ(π) −

N−1∑

j=i+1

f(tj ,X
(π)
tj

, Ŷ
(n−1,π)
tj

, Ẑ
(n−1,π)
tj

)∆j




 ,

initialized at (Ŷ (0,π), Ẑ(0,π)) = 0.

Our aim is to analyze the error of (Ŷ (n,π), Ẑ(n,π)) as compared to

(Y (n,π), Z(n,π)) in terms of the projection errors |Y (n,π)
ti

− P0,i[Y
(n,π)
ti

]| and

|Z(n,π)
d,ti

− Pd,i[Z
(n,π)
d,ti

]|. The main feature of the algorithm – as can be expected
in view of Theorem 3.1 – is that the error does not propagate backwards in
time. Neither does it explode, when the number of iteration tends to infinity.
This is an important advantage compared to the scheme proposed in Gobet
et al. (2004) where the projection errors sum up over the time steps. Roughly
speaking, in the Gobet et al. (2004)-scheme the L2-error is bounded by

√
N

times a constant times the worst L2-projection error (see their Theorem 2).
The following theorem states that in our scheme the L2-error is bounded by a
constant times the worst L2-projection error.

Theorem 4.1. Suppose f is Lipschitz in (y, z) uniformly in (t, x) with constant
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K. Then there is a constant C depending on the data such that

max
0≤i≤N

E
[
|Ŷ (n,π)

ti
− Y

(n,π)
ti

|2
]

+

N−1∑

i=0

E
[
|Ẑ(n,π)

ti
− Z

(n,π)
ti

|2
]
∆i

≤ C

n∑

ν=0

(
1

2
+ C|π|

)n−ν
(

N−1∑

i=0

E
[
|Y (ν,π)

ti
− P0,i[Y

(ν,π)
ti

]|2
]
∆i

+

D∑

d=1

N−1∑

i=0

E
[
|Z(ν,π)

d,ti
− Pd,i[Z

(ν,π)
d,ti

]|2
]
∆i

)

for sufficiently small |π|. In particular, with a possibly different constant C,

max
0≤i≤N

E
[
|Ŷ (n,π)

ti
− Y

(n,π)
ti

|2
]

+

N−1∑

i=0

E
[
|Ẑ(n,π)

ti
− Z

(n,π)
ti

|2
]
∆i

≤ C max
0≤ν≤n

max
0≤i≤N

(
E
[
|Y (ν,π)

ti
− P0,i[Y

(ν,π)
ti

]|2
]

+

D∑

d=1

E
[
|Z(ν,π)

d,ti
− Pd,i[Z

(ν,π)
d,ti

]|2
])

.

Proof. We define

Y
(n,π)

ti
= E


ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Ŷ
(n−1,π)
tj

, Ẑ
(n−1,π)
tj

)∆j

∣∣∣∣∣∣
Fti


 ,

Z
(n,π)

d,ti
= E


∆Wd,i

∆i


ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Ŷ
(n−1,π)
tj

, Ẑ
(n−1,π)
tj

)∆j




∣∣∣∣∣∣
Fti


 .

Notice, that

P0,i

(
Y

(n,π)

ti
− Y

(n,π)
ti

)
= Ŷ

(n,π)
ti

− P0,i

(
Y

(n,π)
ti

)
,

Pd,i

(
Z

(n,π)

d,ti
− Z

(n,π)
d,ti

)
= Ẑ

(n,π)
d,ti

− Pd,i

(
Z

(n,π)
d,ti

)
.

Since the orthogonal projection has norm 1 and applying Lemma 2.8 with Ỹ (1) =

Y
(n,π)

, Z̃(1) = Z
(n,π)

, Ỹ (2) = Y (n,π), and Z̃(2) = Z(n,π), we obtain:

max
0≤i≤N

λiE
[
|Ŷ (n,π)

ti
− P0,i(Y

(n,π)
ti

)|2
]

+

D∑

d=1

N−1∑

i=0

λiE
[
|Ẑ(n,π)

d,ti
− Pd,i(Z

(n,π)
d,ti

)|2
]
∆i

≤ max
0≤i≤N

λiE
[
|Y (n,π)

ti
− Y

(n,π)
ti

|2
]

+

N−1∑

i=0

λiE
[
|Z(n,π)

ti
− Z

(n,π)
ti

|2
]
∆i

≤ K2(T + 1)

((
|π| + Γ−1

)
(γDT + 1) +

D

γ

)

×
(

1

T

N−1∑

i=0

λiE
[
|Ŷ (n−1,π)

ti
− Y

(n−1,π)
ti

|2
]

+

N−1∑

i=0

λiE
[
|Ẑ(n−1,π)

ti
− Z

(n−1,π)
ti

|2
]
∆i

)
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for any γ, Γ > 0 with λ0 = 1 and λi = (1 + Γ∆i−1)λi−1. The rest of the proof
now follows the same lines as the proof of Theorem 3.1 taking into account that,
due to the orthogonality of the orthogonal projection,

E
[
|Ŷ (ν,π)

ti
− Y

(ν,π)
ti

|2
]

= E
[
|Ŷ (ν,π)

ti
− P0,i[Y

(ν,π)
ti

]|2
]
+E

[
|Y (ν,π)

ti
− P0,i[Y

(ν,π)
ti

]|2
]
.

We also get uniform L2-bounds for Ŷ (n,π) and Ẑ(n,π).

Corollary 4.2. Under the assumptions of Theorem 2.3, there is a constant C
depending on the data only such that

max
0≤i≤N

E
[
|Ŷ (n,π)

ti
|2
]

+
N−1∑

i=0

E
[
|Ẑ(n,π)

ti
|2
]
∆i ≤ C

provided |π| is sufficiently small.

Proof. This assertion directly follows from Corollary 2.10 and Theorem 4.1,
because the orthogonal projection has norm 1.

4.2 A Monte-Carlo Least-Squares Method to Approxi-

mate Conditional Expectations

In a next step we replace the projection on subspaces by a simulation based
least-squares estimator.

To avoid an overload in notation and since the generalization is straightfor-
ward, we shall consider the case D = 1 only.

We now assume that the projection spaces from the previous section are all
finite-dimensional and denote by

{ηi
1, . . . , η

i
K(i)}, resp. {η̃i

1, . . . , η̃
i
K̃(i)

}

a basis of Λ0,i and Λ1,i, respectively. The inner-product-matrices associated to
these bases are denoted by

Bi =
(
E[ηi

kηi
l ]
)
k,l=0,···K(i)

, resp. B̃i =
(
E[η̃i

kη̃i
l ]
)
k,l=0,···K̃(i)

.

In this situation the processes Ŷ (n,π) and Ẑ(n,π) may be rewritten as

Ŷ
(n,π)
ti

=

K(i)∑

k=1

α
(n,π)
i,k ηi

k, (8)

Ẑ
(n,π)
ti

=

K̃(i)∑

k=1

α̃
(n,π)
i,k η̃i

k,

where, e.g. with ηi = (ηi
1, . . . , η

i
K(i))

∗,

α
(n,π)
i,· = B−1

i E


ηi


ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Ŷ
(n−1,π)
tj

, Ẑ
(n−1,π)
tj

)∆j




 , (9)

α̃
(n,π)
i,· = B̃i

−1
E


η̃i ∆Wi

∆i


ξ(π) −

N−1∑

j=i+1

f(tj ,X
(π)
tj

, Ŷ
(n−1,π)
tj

, Ẑ
(n−1,π)
tj

)∆j




 .

15



The expectations in (9) will be replaced by their simulation based estima-
tors. We shall therefore assume that we have L ≥ maxi{K(i) ∨ K̃(i)}
independent samples (∆W

(λ)
i , ξ(π,λ),X

(π,λ)
ti

, η
(i,λ)
k , η̃

(i,λ)
k ), λ = 1, . . . , L, of

(∆Wi, ξ
(π),X

(π)
ti

, ηi
k, η̃i

k). We define

AL
i =

1√
L

(
η
(i,λ)
k

)

λ=1,...,L,k=1,...,K(i)

and ÃL
i similarly. Note that

BL
i = (AL

i )∗AL
i =

1

L

(
L∑

λ=1

η
(i,λ)
k η

(i,λ)
l

)

k,l=1,...,K(i)

is the simulation based analogue of Bi. Since the inverse of BL
i need not exist, we

shall make use of the pseudo-inverses (AL
i )+, (ÃL

i )+ to define simulation-based
analogues of (9) recursively by the least squares method, i.e.

α
(0,π,L)
i,k = α̃

(0,π,L)
i,k = 0

Y
(n−1,π,λ)
ti

=

K(i)∑

k=1

α
(n−1,π,L)
i,k η

(i,λ)
k

Z
(n−1,π,λ)
ti

=

K̃(i)∑

k=1

α̃
(n−1,π,L)
i,k η̃

(i,λ)
k

α
(n,π,L)
i,· =

1√
L

(AL
i )+


ξ(π,·) −

N−1∑

j=i

f(tj ,X
(π,·)
tj

, Y
(n−1,π,·)
tj

, Z
(n−1,π,·)
tj

)∆j




α̃
(n,π,L)
i,· =

1√
L

(ÃL
i )+

×
(

∆W
(·)
i

∆i

(
ξ(π,·) −

N−1∑

j=i+1

f(tj ,X
(π,·)
tj

, Y
(n−1,π,·)
tj

, Z
(n−1,π,·)
tj

)∆j

))
.

The simulation based estimators are now defined by,

Y
(n,π,L,∗)
ti

=

K(i)∑

k=1

α
(n,π,L)
i,k ηi

k,

Z
(n,π,L,∗)
ti

=

K̃(i)∑

k=1

α̃
(n,π,L)
i,k η̃i

k.

Remark 4.3. For ti = t0 = 0 the only choice of the projection space is Λ0,0 = R.

Taking {1} as basis we observe that Y
(n,π,L,∗)
t0 reduces to the plain Monte-Carlo

estimator

Y
(n,π,L,∗)
t0 =

1

L

L∑

λ=1


ξ(π,λ) −

N−1∑

j=0

f(tj ,X
(π,λ)
tj

, Y
(n−1,π,λ)
tj

, Z
(n−1,π,λ)
tj

)∆j


 .

Of course, the same remark applies to Z
(n,π,L,∗)
t0 .
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We will next prove almost sure convergence of the simulation-based estima-
tors. To this end we first derive a lemma.

Lemma 4.4. Under the Lipschitz condition of Theorem 4.1 (α
(n,π,L)
i,k , α̃

(n,π,L)
i,k )

converges P -almost surely to (α
(n,π)
i,k , α̃

(n,π)
i,k ), when L tends to infinity.

Proof. We prove the claim by induction over n. The case n = 0 is trivial.
Suppose now the convergence is already proved for some n − 1 ∈ N. We show

the convergence of α̃
(n,π,L)
i,k , the argument for α

(n,π,L)
i,k is similar. First observe

that by the law of large numbers

lim
L→0

B̃L
i = B̃i; P -a.s. (10)

Since B̃i is invertible, the same holds for B̃L
i provided L is sufficiently large

(which we assume for the rest of the proof). In particular, ÃL
i then has full

rank, and consequently the pseudo-inverse may be rewritten as

(
ÃL

i

)+

=
(
B̃L

i

)−1 (
ÃL

i

)∗
.

Hence,

α̃
(n,π,L)
i,· = (B̃L

i )−1

(
1

L

L∑

λ=1

η̃(i,λ) ∆W
(λ)
i

∆i

(
ξ(π,λ)

−
N−1∑

j=i+1

f(tj ,X
(π,λ)
tj

, Y
(n−1,π,λ)
tj

, Z
(n−1,π,λ)
tj

)∆j

))
.

By (10) it suffices to prove that for all 1 ≤ l ≤ K̃(i),

1

L

LX
λ=1

eη(i,λ)
l

∆W
(λ)
i

∆i

 
ξ
(π,λ) −

N−1X
j=i+1

f(tj , X
(π,λ)
tj

, Y
(n−1,π,λ)

tj
, Z

(n−1,π,λ)
tj

)∆j

!
→ E

"
η̃

i
l
∆Wi

∆i

 
ξ
(π) −

N−1X
j=i+1

f(tj , X
(π)
tj

, bY (n−1,π)
tj

, bZ(n−1,π)
tj

)∆j

!#
; P -a.s. (11)

Define

Ŷ
(n−1,π,λ)
ti

=

K(i)∑

k=1

α
(n−1,π)
i,k η

(i,λ)
k ,

Ẑ
(n−1,π,λ)
ti

=

K̃(i)∑

k=1

α̃
(n−1,π)
i,k η̃

(i,λ)
k . (12)

By the law of large numbers,

1

L

LX
λ=1

eη(i,λ)
l

∆W
(λ)
i

∆i

 
ξ
(π,λ) −

N−1X
j=i+1

f(tj , X
(π,λ)
tj

, bY (n−1,π,λ)
tj

, bZ(n−1,π,λ)
tj

)∆j

!
→ E

"
η̃

i
l
∆Wi

∆i

 
ξ
(π) −

N−1X
j=i+1

f(tj , X
(π)
tj

, bY (n−1,π)
tj

, bZ(n−1,π)
tj

)∆j

!#
; P -a.s. (13)
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Moreover,����� 1L LX
λ=1

eη(i,λ)
l

∆W
(λ)
i

∆i

 
ξ
(π,λ) −

N−1X
j=i+1

f(tj , X
(π,λ)
tj

, Y
(n−1,π,λ)

tj
, Z

(n−1,π,λ)
tj

)∆j

!
− 1

L

LX
λ=1

eη(i,λ)
l

∆W
(λ)
i

∆i

 
ξ
(π,λ) −

N−1X
j=i+1

f(tj , X
(π,λ)
tj

, bY (n−1,π,λ)
tj

, bZ(n−1,π,λ)
tj

)∆j

!�����
≤ K

1

L

LX
λ=1

�����eη(i,λ)
l

∆W
(λ)
i

∆i

�����
×

N−1X
j=i+1

|Y (n−1,π,λ)
tj

− bY (n−1,π,λ)
tj

| + |Z(n−1,π,λ)
tj

− bZ(n−1,π,λ)
tj

|

≤ K
1

L

LX
λ=1

�����eη(i,λ)
l

∆W
(λ)
i

∆i

����� N−1X
j=i+1

 
K(j)X
k=1

|η(j,λ)
k ||α(n−1,π,L)

j,k − α
(n−1,π)
j,k |

+

K̃(j)X
k=1

|eη(j,λ)
k ||eα(n−1,π,L)

j,k − eα(n−1,π)
j,k |

!
≤ max

0≤j≤N−1

�
max

1≤k≤K(j)
|α(n−1,π,L)

j,k − α
(n−1,π)
j,k | + max

1≤k′≤K̃(j)
|eα(n−1,π,L)

j,k′ − eα(n−1,π)

j,k′ |
�

×K
1

L

LX
λ=1

�����eη(i,λ)
l

∆W
(λ)
i

∆i

����� N−1X
j=i+1

 
K(j)X
k=1

|η(j,λ)
k | +

K̃(j)X
k=1

|eη(j,λ)
k |

!
.

The right hand side tends to zero, since the first factor tends to zero by induction
hypothesis and the second converges to a finite number by the law of large
numbers. In view of (11)–(13) the proof is complete.

An immediate consequence is the convergence of the simulation-based esti-
mators:

Theorem 4.5. Under the Lipschitz condition of Theorem 4.1

(Y
(n,π,L,∗)
ti

, Z
(n,π,L,∗)
ti

) converges P -almost surely to (Ŷ
(n,π)
ti

, Ẑ
(n,π)
ti

), when

L tends to infinity.

To obtain L2-convergence we will introduce truncations of the estimators

(Y
(n,π,L,∗)
ti

, Z
(n,π,L,∗)
ti

). The following lemma prepares the construction. Here,
λmin(M) denotes the minimal eigenvalue of a symmetric matrix M.

Lemma 4.6. Under the conditions of theorem 2.3 there are positive constants

c
(n,π)
i , c̃

(n,π)
i , and a constant c depending on the data such that for sufficiently

small |π|

|Ŷ (n,π)
ti

| ≤ c
(n,π)
i λmin(Bi)

−1/2|ηi|,
|Ẑ(n,π)

ti
| ≤ c̃

(n,π)
i λmin(B̃i)

−1/2|η̃i|,

and

max
0≤i≤N

|c(n,π)
i |2 +

N−1∑

i=0

|c̃(n,π)
i |2∆i ≤ c.
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Proof. As in Gobet et al. (2004), by the Cauchy-Schwarz inequality, and since
the symmetric matrix Bi satisfies Bi ≥ λmin(Bi),

|Ŷ (n,π)
ti

|2 ≤ |α(n,π)
i |2|ηi|2 ≤ λmin(Bi)

−1〈α(n,π)
i ,Biα

(n,π)
i 〉|ηi|2

= λmin(Bi)
−1E

[
|Ŷ (n,π)

ti
|2
]
|ηi|2.

A similar estimate holds for |Ẑ(n,π)
ti

|2. Hence, in view of corollary 4.2, we can
choose

c
(n,π)
i =

(
E
[
|Ŷ (n,π)

ti
|2
])1/2

∨ 1,

c̃
(n,π)
i =

(
E
[
|Ẑ(n,π)

ti
|2
])1/2

∨ 1,

to obtain the assertion for some constant c depending on the data only.

Definition 4.7. We call a ((c
(n,π)
i ), (c̃

(n,π)
i ), c, ρ) a truncation tuple, if

((c
(n,π)
i ), (c̃

(n,π)
i ), c) satisfy the conditions and estimates of lemma 4.6, and

ρ : R → R is a Lipschitz continuous function with Lipschitz constant 1, bounded
by 2, which coincides with the identity on [−1, 1].

By lemma 4.6 we have for every truncation tuple,

Ŷ
(n,π)
ti

= c
(n,π)
i λmin(Bi)

−1/2|ηi|ρ
(

Ŷ
(n,π)
ti

c
(n,π)
i λmin(Bi)−1/2|ηi|

)
,

Ẑ
(n,π)
ti

= c̃
(n,π)
i λmin(B̃i)

−1/2|η̃i|ρ
(

Ẑ
(n,π)
ti

c̃
(n,π)
i λmin(B̃i)−1/2|η̃i|

)
. (14)

Suppose, a truncation tuple is given. Then a truncated version of the algo-
rithm is defined by

α
(0,π,L,ρ)
i,k = eα(0,π,L,ρ)

i,k = 0

Y
(n−1,π,λ,ρ)
ti

=

K(i)X
k=1

α
(n−1,π,L,ρ)
i,k η

(i,λ)
k

Z
(n−1,π,λ,ρ)
ti

=

K̃(i)X
k=1

eα(n−1,π,L,ρ)
i,k η̃

(i,λ)
k

Y
(n−1,π,λ,ρ)

ti
= c

(n−1,π)
i λmin(Bi)

−1/2|ηi|ρ
 

Y
(n−1,π,λ,ρ)
ti

c
(n−1,π)
i λmin(Bi)−1/2|ηi|

!
Z

(n−1,π,λ,ρ)
ti

= c̃
(n−1,π)
i λmin( eBi)

−1/2|eηi|ρ
 

Z
(n−1,π,λ,ρ)
ti

c̃
(n−1,π)
i λmin( eBi)−1/2|eηi|

!
α

(n,π,L,ρ)
i,· =

1√
L

(AL
i )+

 
ξ
(π,·) −

N−1X
j=i

f(tj , X
(π,·)
tj

, Y
(n−1,π,·,ρ)

tj
, Z

(n−1,π,·,ρ)
tj

)∆j

!eα(n,π,L,ρ)
i,· =

1√
L

( eAL
i )+

×
 

∆W
(·)
i

∆i

 
ξ
(π,·) −

N−1X
j=i+1

f(tj , X
(π,·)
tj

, Y
(n−1,π,·,ρ)

tj
, Z

(n−1,π,·,ρ)
tj

)∆j

!!
.
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Moreover, we define truncated versions of (Y
(n,π,L,∗)
ti

, Z
(n,π,L,∗)
ti

) by

Ŷ
(n,π,L,ρ)
ti

= c
(n,π)
i λmin(Bi)

−1/2|ηi|ρ
( ∑

k α
(n,π,L,ρ)
i,k ηi

k

c
(n,π)
i λmin(Bi)−1/2|ηi|

)
,

Ẑ
(n,π,L,ρ)
ti

= c̃
(n,π)
i λmin(B̃i)

−1/2|η̃i|ρ
( ∑

k α̃
(n,π,L,ρ)
i,k η̃i

k

c̃
(n,π)
i λmin(B̃i)−1/2|η̃i|

)
. (15)

We have,

Theorem 4.8. Under the assumptions of theorem 2.3 (Ŷ
(n,π,L,ρ)
ti

, Ẑ
(n,π,L,ρ)
ti

)

converges P -almost surely to (Ŷ
(n,π)
ti

, Ẑ
(n,π)
ti

), when L tends to infinity. More-

over,

lim
L→∞

(
max

0≤i≤N
E
[
|Ŷ (n,π,L,ρ)

ti
− Ŷ

(n,π)
ti

|2
]

+
N−1∑

i=0

E
[
|Ẑ(n,π,L,ρ)

ti
− Ẑ

(n,π)
ti

|2
]
∆i

)
= 0.

Proof. The Lipschitz condition on ρ yields in view of (14) and (15)

|Ŷ (n,π,L,ρ)
ti

− Ŷ
(n,π)
ti

| + |Ẑ(n,π,L,ρ)
ti

− Ẑ
(n,π)
ti

|
√

∆i

≤
∑

k

|α(n,π,L,ρ)
i,k − α

(n,π)
i,k ||ηi

k| +
√

∆i

∑

k

|α̃(n,π,L,ρ)
i,k − α̃

(n,π)
i,k ||η̃i

k|.

P -almost sure convergence of |α(n,π,L,ρ)
i,k −α

(n,π)
i,k | and |α̃(n,π,L,ρ)

i,k − α̃
(n,π)
i,k | to zero

follows basically with the same argument as in Lemma 4.4. This shows the
claimed almost sure convergence. Since ρ is bounded, the dominated conver-
gence theorem yields the L2-convergence.

Under some extra conditions on the basis, rates of the L2-convergence can
be derived.

Theorem 4.9. Suppose the bases (ηi), (η̃i) are orthonormal for all i and have

finite moments of order p ≥ 4. Moreover assume that

E[|ξ(π)|4] + max
i

E[|X(π)
ti

|4] < ∞.

Then there is a constant C depending on the data such that for |π| sufficiently

small

max
0≤i≤N

E
[
|Ŷ (n,π,L,ρ)

ti
− Ŷ

(n,π)
ti

|2
]

+
N−1∑

i=0

E
[
|Ẑ(n,π,L,ρ)

ti
− Ẑ

(n,π)
ti

|2
]
∆i

≤ C

L(p−2)/p

(
max

i
E[|ηi|p]2/p + max

i
E[|η̃i|p]2/p

)

×
(

8κ + 4 max
0≤i≤N

E[|ηi|44] + 4 max
0≤i≤N

E[|η̃i|44]
)(p−2)/p

+

(
C

L
max

i
E[|ηi|4]1/2 +

CN

L
max

i
E[|η̃i|4]1/2

)(
1 + E[|ξ(π)|4|]

+ max
0≤j≤N

E[|X(π)
tj

|4|] + max
0≤j≤N

E[|ηj |4|] + max
0≤j≤N

E[|η̃j |4|]
)1/2

+
C

L
(1 + κ)

(
2κ + max

0≤i≤N
E[|ηi|44] + max

0≤i≤N
E[|η̃i|44]

)
,
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where κ is the maximal length of the bases, i.e. κ = maxi{K(i)∨ K̃(i)} and | · |4
denotes the 4-norm on a Euclidean space.

The lengthy proof is given in the Appendix.

Remark 4.10. If X is discretized by the Euler scheme, then maxi E[|X(π)
ti

|4]
will be bounded by a constant depending on the data only, see, for instance,
Zhang (2004), Lemma 4.1.

Remark 4.11. (i) The convergence is of the best expected order 1/2 in L,
provided the elements of the basis are bounded.
(ii) Compared to the error estimates in Gobet et al. (2004), Theorem 3, the error
estimates for our scheme are of order 1/2 better in N than for their scheme.
This is in accordance with the discussion in Section 3 above.
(iii) After a first draft of this paper was finished we became aware of the recent
paper Lemor et al. (2005). In Lemor et al. (2005) the estimates of Theorem 3
in Gobet et al. (2004) are improved for a localized version of their algorithm.
We conjecture that the same techniques can be applied to a localized version of
our algorithm.

4.3 A Markovian Setting

Now the results from the previous sections can be put together and made more
explicit in a Markovian setting.

1. Discretization of X: We discretize X by the Euler scheme

X
(π)
0 = x

X
(π)
ti

= X
(π)
ti−1

+ b(ti−1,X
(π)
ti−1

)∆i−1 + σ(ti−1,X
(π)
ti−1

)∆Wi−1,

and extend X(π) to an RCLL process by piecewise constant interpolation.
When X is known to be strictly positive, it can be more convenient to
apply the Euler scheme to ln(X) instead of X, see Gobet et al. (2004).

Note that (X
(π)
ti

,Fti
) forms a Markov chain.

2. Terminal Condition ξ(π): The terminal condition ξ(π) is supposed to
be of the form

ξ(π) = Φ(π)(Ξ
(π)
tN

)

where (Ξ
(π)
ti

,Fti
) is an M ′-dimensional Markov chain with X

(π)
ti

as its

first M components and Φ(π) is a deterministic function

Typical extensions for the last components of Ξ
(π)
ti

are max0≤j≤i X
(π)
tj

,

min0≤j≤i X
(π)
tj

, or
∑i−1

j=0 X
(π)
tj

. These extensions are of crucial importance
for financial problems related to exotic options such as Asian options and
lookback options. We now give some convergence results for terminal con-
ditions ξ(π) of the above type, which are simple consequences of Corollary
4.4 in Zhang (2004).

Example 4.12. (i) Suppose φ : R
2M → R is Lipschitz-continuous. Then

E



∣∣∣∣∣φ
(

XT ,

∫ T

0

Xsds

)
− φ

(
X

(π)
T ,

N−1∑

i=0

Xπ
ti

∆i

)∣∣∣∣∣

2

 ≤ C|π|.
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(ii) Suppose φ : R
4M → R is Lipschitz-continuous. Then

E

[∣∣∣∣φ
(

XT ,

∫ T

0

Xsds, max
0≤t≤T

Xt, min
0≤t≤T

Xt

)

− φ

(
X

(π)
T ,

N−1∑

i=0

Xπ
ti

∆i, max
0≤j≤i

X
(π)
tj

, min
0≤j≤i

X
(π)
tj

)∣∣∣∣
2]

≤ C|π| ln
(

1

|π|

)
.

3. Choice of the basis: As for the basis on may choose a set of functions
{e1(x), . . . , eκ(x)} and define the basis via

ηi
k = ek(Ξ

(π)
ti

).

Typical choices are indicator functions or (exponentially damped) poly-
nomials. In principle the basis functions ek may depend on d, but for
simulations it might be more convenient to work with one set of functions
only.

In the situation described above it is easily checked, that

Y
(n,π)
ti

= E


ξ(π) −

N−1∑

j=i

f(tj ,X
(π)
tj

, Y
(n−1,π)
tj

, Z
(n−1,π)
tj

)∆j

∣∣∣∣∣∣
Ξ

(π)
ti


 ,

Z
(n,π)
d,ti

= E


∆Wd,i

∆i


ξ(π) −

N−1∑

j=i+1

f(tj ,X
(π)
tj

, Y
(n−1,π)
tj

, Z
(n−1,π)
tj

)∆j




∣∣∣∣∣∣
Ξ

(π)
ti


 .

Hence, if {e1(x), . . . , eκ(x)} are the initial elements of a sequence (ek)k∈N such
that

(ek(Ξ
(π)
ti

))k∈N

is total in L2(σ(Ξ
(π)
ti

)) and are linearly independent for all 0 ≤ i ≤ N − 1,

then, by virtue of Theorem 4.1, (Ŷ (n,π), Ẑ(n,π)) converges (in the L2-sense of
Theorem 4.1) to (Y (n,π), Z(n,π)) as κ tends to infinity. Hence, Theorems 2.3 and
4.8 provide L2-convergence of the truncated algorithm (15) in this situation.

5 Simulations

In this section we present some simulations of financial problems.
Throughout the section the process X is one-dimensional representing a

stock in the standard Black-Scholes model, i.e.

Xt = X0 exp{σWt + µt − 1/2σ2t}

It is discretized by the log-Euler scheme. In all cases we will apply an equidistant
partition of the interval [0, T ] with N + 1 points denoted by πN .
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5.1 Different Interest Rate for Borrowing

In the first example we numerically evaluate a straddle, i.e. the sum of a call
and a put option, under different rates for borrowing and investing in the money
market account. The rate for borrowing is denoted by R, the one for investing
by r. The fair price of a straddle in this model is given by Y0, where (Y,Z) is
the solution of the nonlinear BSDE

dYt =

[
rYt +

µ − r

σ
Zt − (R − r)

(
Yt −

Zt

σ

)

−

]
dt + ZtdWt

YT = |XT − K|,

see Bergman (1995). In the following we fix the parameters X0 = 100, σ = 0.2,
µ = 0.05, r = 0.01, R = 0.06, and the straddle is supposed to be at the
money, i.e. K = 100, with maturity T = 2 years. In the figures below this
situation is the ‘nonlinear case’, which will be compared with the standard
‘linear case’ where R = 0.01, i.e. the same interest rate is applied for borrowing
and investing. We stop the Picard iteration, when the distance of two subsequent
time-zero-values is less than 0.001. The total number of calculated iterations
is denoted by nstop. We compare two different bases. The first basis consists
of monomials and the straddle payoff, the second of characteristic functions.
Precisely,

e
(1)
1 (x) = |x − K|, e

(1)
k (x) = (x − X0)

k−2, 2 ≤ k ≤ κ,

e
(2)
1 (x) = 1[0,l)(x), e

(2)
2 (x) = 1[u,∞)(x),

e
(2)
k (x) = 1[l+(k−3)(u−l)/(κ−2)),l+(k−2)(u−l)/(κ−2))(x), 3 ≤ k ≤ κ.

Here, the lower bound l and the upper bound u depend on i and the simulations.

They are calculated as the empirical mean of X
(πN ,λ)
ti

minus (resp. plus) two
times their empirical standard deviation.

Figure 1 shows the simulated price of the straddle as a function of the number

of partition points for both bases. We choose κ = 7 for the basis (e
(1)
k )k,

respectively κ = 21 for (e
(2)
k )k. In both cases we simulate L = 100000 paths.

One can see from Figure 1 that there is a minimal number Nmin of time partition
points after which the computed price is independent from N ≥ Nmin. For
the linear case this Nmin is smaller as for the nonlinear case where Nmin is
in the range of 15 − 20. We remark that the number of iterations nstop are
about 5 − 6, so the computational costs are still relatively low. In the linear
case the computed value is quite close to the exact price of 22.32 computed
by the Black-Scholes formula. We also note that the relative standard error in

the calculation of Y
(nstop,πN ,100000,∗)
0 is about 0.28% for the nonlinear case and

0.29% for the linear case for both bases. The relative standard error does not
change significantly in the number of partition points N . Thus, the simulation
complements the assertion of Theorem 3.1.
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Figure 1: Y
(nstop,πN ,100000,∗)
0 as a function of N .

Figure 2 shows the empirical mean and the empirical standard deviation of the
simulated price calculated from 100 launches of the algorithm as a function
of the number of simulated paths L per launch. Here we choose N = 20.
The simulations have been performed with the monomial basis and κ = 5 for
the nonlinear case. One can see a small positive bias of the empirical mean
value which is decreasing with increasing number of paths. This bias will be
explained in the description of Figure 3 below, where it also appears. The
standard deviation as a function of L decreases like L−1/2 which is the expected
rate. Additionally, we launched a variance reduced variant of the algorithm.
Precisely, we replace

ξ(π,λ) −
N−1∑

j=i

f(tj ,X
(π,λ)
tj

, Y
(n−1,π,λ)
tj

, Z
(n−1,π,λ)
tj

)∆j

by

ξ(π,λ) −
N−1∑

j=i

(
f(tj ,X

(π,λ)
tj

, Y
(n−1,π,λ)
tj

, Z
(n−1,π,λ)
tj

)∆j + Z
(n−1,π,λ)
tj

∆W
(λ)
j

)
.

From Figure 2 we clearly see the effect of the variance reduction. However, now
there is a negative bias which is of order L−1. Note that both computed values
(with a positive and with a negative bias) are very close for, say, 300000 paths,
where the relative difference is less than 0.2%.

5.2 Constraints on Borrowing

The second example concerns borrowing constraints. Suppose an investor must
not borrow an arbitrary amount of money from the money market account
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Figure 2: Empirical mean and standard deviation of 100 launches as function
of L.

but a given fraction of his total wealth only. His goal is to super-replicate a
given contingent claim (in our case a call option) with minimal initial wealth.
This problem is known as superhedging problem. It is shown in Bender and
Kohlmann (2004), extending results of El Karoui et al. (1997), that for quite
general constraints the solution of the superhedging problem can be obtained
as a limit of the solution of a sequence of nonlinear BSDEs. This sequence has
an intuitive meaning: The investor is bound to yield an increasing penalization
payment when he fails to meet the constraint. In the simple borrowing con-
straint under consideration the optimal superhedging price can be obtained as
the limit of Y ǫ

0 (as ǫ tends to zero), where

dY ǫ
t =

[
rY ǫ

t +
µ − r

σ
Zǫ

t −
1

ǫ

(
Zǫ

t

σ
− ρY ǫ

t

)

+

]
dt + Zǫ

t dWt

Y ǫ
T = (XT − K)+.

Here ρ − 1 is the fraction of his total wealth, which the investor is allowed to
borrow. We consider the case ρ = 10 with the parameters σ = 0.2, µ = r = 0.05,
and X0 = K = 100. The maturity is T = 0.5 years. Note, in this example the
superhedging price can be determined analytically by calculating an equivalent
dominating, but unconstrained, claim, see Broadie et al. (1998). It is 8.06.

We compute numerical approximations for different values of ǫ. The stop-
ping criterion for the Picard iteration is 0.001 and we choose N = 40 and the
monomial basis with κ = 5, but the straddle payoff replaced by the call pay-
off. Figure 3 shows the corresponding approximation of Y ǫ

0 as function of ǫ for
different numbers of simulated paths.

We first explain, why the nonlinearity of the generator in the penalization
approach is generally expected to yield a positive bias which is increasing in
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Figure 3: ǫ-approximation of the superhedging price as function of ǫ−1.

the weight: Suppose violation of the constraint is penalized with a large weight.
Due to the penalization there will be more values of (Y ǫ, Zǫ) close to the area,
which is forbidden by the constraint, but outside this area than close to the
allowed area inside the forbidden one. This effect is more prominent the higher
the weight. Hence, by simulation errors supposedly more simulated paths are
wrongly penalized (and pushed upwards) than wrongly not penalized. This
causes a positive bias increasing in the weight. We remark, this also explains
the positive bias in Figure 2, since the higher interest rate for borrowing can be
interpreted as a slight penalization for borrowing.

This positive bias can clearly be seen in Figure 3. Indeed, the simulated
ǫ-approximation tend to merge into a straight line (as function of ǫ−1), when ǫ
(depending on the number of paths) is sufficient small. Note that the gradient
of this straight line is decreasing in the number of simulated path and is already
rather small for 100000 paths. Comparing with the simulation for 200000 paths
we may deduce that the curve does not become significantly flatter by solely
increasing the number of simulated paths. Indeed, in this simulation, the curve
with 100000 paths is even a little flatter than the one for 200000 paths. Admit-
tedly, given a number of simulated paths, it seems to be hard to identify the
exact weight, from which on the bias dominates. Nonetheless, as the example
shows, the penalization method can be applied to approximate the range of the
superhedging price. We emphasize that one is typically not interested in the
exact superhedging price but whether the difference between the superhedging
price and the non-penalized Black-Scholes price is big or not.
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A Appendix: Proof of Theorem 2.5

To ease the notation we only consider the case D = 1. The extension to the
general case is straightforward.

Proof of Theorem 2.5 . We recall that C denotes a constant depending on the
data, which may vary from line to line.
Step 1: Preliminary estimates:
We first introduce a process Z̃(π) by

Y
(∞,π)
ti+1

= E
[
Y

(∞,π)
ti+1

∣∣∣Fti

]
+

∫ ti+1

ti

Z̃(π)
s dWs (16)

via the martingale representation theorem. Then,

Y
(∞,π)
ti

− Yti
+

∫ ti+1

ti

(Z̃(π)
s − Zs)dWs

= Y
(∞,π)
ti+1

− Yti+1
−
∫ ti+1

ti

(
f(ti,X

(π)
ti

, Y
(∞,π)
ti

, Z
(∞,π)
ti

) − f(s,Xs, Ys, Zs)
)

ds.

Squaring and taking expectation yields,

E
[
|Y (∞,π)

ti
− Yti

|2
]

+ E

∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

= E

[(
−
∫ ti+1

ti

(
f(ti,X

(π)
ti

, Y
(∞,π)
ti

, Z
(∞,π)
ti

) − f(s,Xs, Ys, Zs)
)

ds

+Y
(∞,π)
ti+1

− Yti+1

)2
]

≤ E

[(
|Y (∞,π)

ti+1
− Yti+1

| + ∆
3/2
i + K∆i

(
|Xti

− X
(π)
ti

| + sup
ti≤t≤ti+1

|Xt − Xti
|
)

+K∆i

(
|Yti

− Y
(∞,π)
ti

| + sup
ti≤t≤ti+1

|Yt − Yti
|
)

+K

∫ ti+1

ti

|Zs − Z
(∞,π)
ti

|ds
)2
]
.

We can now apply Young’s inequality, (1), and Theorem 3.4.3 of Zhang (2001),
(see also Lemma 3.2 in Zhang (2004) and observe that no additional path reg-
ularity of Z is required for the proof), to get,

E
[
|Y (∞,π)

ti
− Yti

|2
]

+ E

∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

≤ (1 +
∆i

ǫ
)E
[
|Y (∞,π)

ti+1
− Yti+1

|2
]

+ C(1 +
ǫ

∆i
)∆3

i

+C(1 +
ǫ

∆i
)

(
∆2

i E
[
|Y (∞,π)

ti
− Yti

|2
]

+∆iE

∫ ti+1

ti

|Zs − Z
(∞,π)
ti

|2ds

)
. (17)
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We will next estimate the last term on the right hand side. To this end let us
introduce the random variables

Ẑ
(π)
ti

=
1

∆i
E

[∫ ti+1

ti

Zsds

∣∣∣∣Fti

]
. (18)

It is shown in Zhang (2001), Theorem 3.4.3, that

N−1∑

i=0

E

∫ ti+1

ti

|Zs − Ẑ
(π)
ti

|2ds ≤ C|π|. (19)

Note also that by (16) and Itô’s isometry,

Z
(∞,π)
ti

=
1

∆i
E

[∫ ti+1

ti

Z̃(π)
s ds

∣∣∣∣Fti

]
. (20)

The identities (18) and (20) can be easily combined to get,

E

∫ ti+1

ti

|Zs − Z
(∞,π)
ti

|2ds

≤ 2

(
E

∫ ti+1

ti

|Zs − Ẑ
(π)
ti

|2ds + E

∫ ti+1

ti

|Zs − Z̃(π)
s |2ds

)
. (21)

We can now fix ǫ sufficiently small such that for small |π| (combining (17) and
(21)),

(1 − ∆i

4
)E
[
|Y (∞,π)

ti
− Yti

|2
]

+
1

2
E

∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

≤ (1 +
∆i

ǫ
)E
[
|Y (∞,π)

ti+1
− Yti+1

|2
]

+ C∆2
i +

1

2
E

∫ ti+1

ti

|Zs − Ẑ
(π)
ti

|2ds.

Note that for sufficiently small |π|,

(1 +
∆i

ǫ
)(1 − ∆i

4
)−1 ≤ (1 +

∆i

ǫ
+

∆i

2
).

Thus,

E
[
|Y (∞,π)

ti
− Yti

|2
]

+
1

2
E

∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

≤ (1 + C∆i)E
[
|Y (∞,π)

ti+1
− Yti+1

|2
]

+ C∆2
i + CE

∫ ti+1

ti

|Zs − Ẑ
(π)
ti

|2ds.(22)

Step 2: Convergence of Y (∞,π):
We may now conclude from (22), the discrete Gronwall Lemma and (19) that

max
0≤i≤N

E
[
|Y (∞,π)

ti
− Yti

|2
]

≤ C

(
E[|ξ − ξ(π)|2] +

N−1∑

i=0

∆2
i + E

∫ ti+1

ti

|Zs − Ẑ
(π)
ti

|2
)

≤ C
(
E[|ξ − ξ(π)|2] + |π|

)
. (23)
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This shows the estimate for Y (∞,π) at the points of the partition. The extension
to the piecewise constant interpolation is rather straightforward and identical
to the argument in Theorem 5.6 of Zhang (2004).
Step 3: Convergence of Z(∞,π):
We sum (22) from 0 to N − 1 and obtain,

N−1∑

i=0

E

∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

≤ C

N−1∑

i=1

E
[
|Y (∞,π)

ti
− Yti

|2∆i

]
+ CE[|ξ − ξ(π)|2]

+C|π| + C
N−1∑

i=0

E

∫ ti+1

ti

|Ẑ(π)
ti

− Zs|2ds

≤ C
(
E[|ξ − ξ(π)|2] + |π|

)
(24)

due to (19) and (23). By (20) and the mean-square minimizing property of the
conditional expectation,

E

[(∫ ti+1

ti

(Z̃(π)
s − Z

(∞,π)
ti

)ds

)2
]
≤ E

[(∫ ti+1

ti

(Z̃(π)
s − Ẑ

(π)
ti

)ds

)2
]

.

Elementary manipulations show that this is equivalent to

E

[∫ ti+1

ti

(Z̃(π)
s − Z

(∞,π)
ti

)2ds

]
≤ E

[∫ ti+1

ti

(Z̃(π)
s − Ẑ

(π)
ti

)2ds

]
.

The estimate for Z(∞,π) may now be easily derived from (19) and (24).

B Appendix: Proof of Theorem 4.9

We first introduce the sets

ML
i =

{
‖BL

i − I‖ ≤ 1

2
∧ ‖B̃L

i − I‖ ≤ 1

2

}
,

where ‖ · ‖ denotes the operator norm with respect to the Euclidean norm, i.e.
the maximal eigenvalue of the matrix, and I is the unit matrix.

Lemma B.1. We have

max
0≤i≤N

E
[
‖BL

i − I‖2
]
+ max

0≤i≤N
E
[
‖B̃L

i − I‖2
]

≤ 1

L

(
2κ + max

0≤i≤N
E[|ηi|44] + max

0≤i≤N
E[|η̃i|44]

)
.

In particular,

P
(
(ML

i )c
)
≤ 4

L

(
2κ + max

0≤i≤N
E[|ηi|44] + max

0≤i≤N
E[|η̃i|44]

)
.
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Proof. We have, due to orthonormality and independence,

E
[
‖BL

i − I‖2
]

≤
K(i)∑

k,l=1

E



∣∣∣∣∣
1

L

L∑

λ=1

η
(i,λ)
k η

(i,λ)
l − δk,l

∣∣∣∣∣

2



=
1

L

K(i)∑

k,l=1

E
[∣∣ηi

kηi
l − δk,l

∣∣2
]

≤ 1

L

K(i)∑

k,l=1; k 6=l

1

2
E
[
|ηi

k|4 + |ηi
l |4
]
+

K(i)∑

k=1

E
[
|ηi

k|4
]
+ κ

=
κ

L
+

1

L

K(i)∑

k=1

E
[
|ηi

k|4
]

=
1

L

(
κ + E[|ηi|44]

)
.

The estimate for E
[
‖B̃L

i − I‖2
]

follows the same lines. The probability of

(ML
i )c can now be estimated by Chebyshev’s inequality.

We next give estimates concerning

bi = ξ(π) −
N−1∑

j=i

f(tj ,X
(π)
tj

, Ŷ
(n−1,π,L,ρ)
tj

, Ẑ
(n−1,π,L,ρ)
tj

)∆j .

Lemma B.2. There is a constant C depending on the data only such that

E
[
|bi|4

]
≤ C

(
1 + E[|ξ(π)|4|] + max

0≤j≤N
E[|X(π)

tj
|4|]

+ max
0≤j≤N

E[|ηj |4|] + max
0≤j≤N

E[|η̃j |4|]
)

, (25)

E
[
|bi|2

]
≤ C(1 + κ), (26)

and
N−1∑

i=0

E

[∣∣∣∣E
[

∆Wi

∆i
bi+1

∣∣∣∣Fti

]∣∣∣∣
2
]

∆i ≤ C(1 + κ). (27)

Proof. By the Lipschitz continuity of f we obtain,

|bi| ≤ |ξ(π)|+
N−1∑

j=0

|f(tj , 0, 0, 0)|+K
(
|X(π)

tj
| + |Ŷ (n−1,π,L,ρ)

tj
| + |Ẑ(n−1,π,L,ρ)

tj
|
)

∆j .

(28)
Note that by (15) and Hölder’s inequality




N−1∑

j=0

|Ẑ(n−1,π,L,ρ)
tj

|∆j




4

≤




N−1∑

j=0

|Ẑ(n−1,π,L,ρ)
tj

|2|η̃j |−2∆j




2


N−1∑

j=0

|η̃j |2∆j




2

≤ 16c2T
N−1∑

j=0

|η̃j |4∆j .
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Estimating the other terms in (28) in a similar but easier way we obtain, due
to Young’s inequality,

|bi|4 ≤ C

(
1 + |ξ(π)|4 + max

0≤j≤N
|X(π)

tj
|4 + max

0≤j≤N
|ηj |4 + max

0≤j≤N
|η̃j |4

)
,

whence (25). Along the same lines we obtain

|bi|2 ≤ C


1 + |ξ(π)|2 + max

0≤j≤N
|X(π)

tj
|2 +

N−1∑

j=0

|ηj |2∆j +

N−1∑

j=0

|η̃j |2∆j


 ,

which in view of the orthonormality of the bases yields (26). As in the proof of
lemma 2.8, step 1, we get,

N−1∑

i=0

E

[∣∣∣∣E
[

∆Wi

∆i
bi+1

∣∣∣∣Fti

]∣∣∣∣
2
]

∆i

≤ E[|ξ(π)|2] − 2
N−1∑

i=0

E
[
E[bi|Fi]f(ti,X

(π)
ti

, Ŷ
(n−1,π,L,ρ)
ti

, Ẑ
(n−1,π,L,ρ)
ti

)
]
∆i

≤ E[|ξ(π)|2] +

N−1∑

i=0

E
[
|bi|2

]
∆i

+CE

[
N−1∑

i=0

|f(ti, 0, 0, 0)|2 + |X(π)
ti

|2 + |Ŷ (n−1,π,L,ρ)
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|2 + |Ẑ(n−1,π,L,ρ)
ti

|2∆j

]
.

Estimate (27) now easily follows.

With these estimates at hand we can now give the

Proof of Theorem 4.9. Define λ0 = 1, λi+1 = λi(Γ∆i + 1) with a constant Γ
depending on the data only which is to be fixed later. We further introduce
simulation based analogues of bi, namely,

b
(λ)
i = ξ(π) −

N−1∑

j=i

f(tj ,X
(π,λ)
tj

, Y
(n−1,π,λ,ρ)
tj

, Z
(n−1,π,λ,ρ)
tj

)∆j ,

b̂
(λ)
i = ξ(π) −

N−1∑

j=i

f(tj ,X
(π,λ)
tj

, Ŷ
(n−1,π,λ)
tj

, Ẑ
(n−1,π,λ)
tj

)∆j ,
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where (Ŷ
(n−1,π,λ)
tj

, Ẑ
(n−1,π,λ)
tj

) are defined in (12). We decompose
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(n,π)
ti

|2
]

+
N−1∑

i=0

λiE
[
1ML

i
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We obtain from Lemma B.1,

(II) ≤ 16eΓT

(
max

i
E[(c

(n,π)
i )2|ηi|21(ML

i
)c ] +

∑

i

E[(c̃
(n,π)
i )2|η̃i|21(ML

i
)c ]∆i

)

≤ 16eΓT c
(
max

i
E[|ηi|21(ML

i
)c ] + max

i
E[|η̃i|21(ML

i
)c ]
)

≤ 16eΓT cmax
i

P ((ML
i )c)(p−2)/p

(
max

i
E[|ηi|p]2/p + max

i
E[|η̃i|p]2/p

)

≤ C

L(p−2)/p
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. (30)

We now turn to (I). By the Lipschitz property of ρ and since the bases (ηi), (η̃i)
are orthonormal,

(I) ≤ max
0≤i≤N

λiE


1ML
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Note now that
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and analogous expressions hold without the tilde. Hence,

(I) ≤ max
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=: (Ia) + (Ib).

We first estimate (Ia). On the set ML
i the pseudo-inverse may be rewritten as

(ÃL
i )+ = (B̃L

i )−1(ÃL
i )∗.

As in Gobet et al. (2004) we expand (B̃L
i )−1 − I in a von-Neumann series and

observe on ML
i
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)2 ≤ 1.

Hence,
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L
i )∗

(
∆W

(·)
i

∆i
b
(·)
i+1

)
− E

[
(ÃL
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16
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E
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[
(ÃL

i )∗

(
∆W

(·)
i

∆i
b
(·)
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)]∣∣∣∣∣

2

= (III) + (IV ).

To estimate (III) we first note that
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L
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∆i
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)
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= E


 1

L
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(λ)
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(λ)
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(λ)
i
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(λ)
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= E

[(
∆Wi
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bi+1η̃

i − E

[
∆Wi
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bi+1η̃

i

])2
]

≤ E[|bi+1|4]1/2E[|η̃i|4]1/2 1

∆i
E[|U |4]1/2
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where U is standard Gaussian. A similar estimate holds for the Y -part. Thus,
by lemma B.2

(III) ≤
(

C

L
max

i
E[|ηi|4]1/2 +

CN

L
max

i
E[|η̃i|4]1/2

)
max

i
E[|bi|4]1/2

≤
(

C

L
max

i
E[|ηi|4]1/2 +

CN

L
max

i
E[|η̃i|4]1/2

)(
1 + E[|ξ(π)|4|]

+ max
0≤j≤N

E[|X(π)
tj
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0≤j≤N
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E[|η̃j |4|]
)1/2

.(31)

Concerning (IV ) note,
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2
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2
]

and similarly for the Y -part. Thus, by Lemmas B.1 and B.2,

(IV ) ≤ C

L
(1 + κ)

(
2κ + max

0≤i≤N
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)
. (32)

We now decompose (Ib) as
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2

= (III) + (V ). (33)

Concerning (V ) we obtain
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and similarly for the Y -part. Hence, we can apply Lemma 2.8 and get, with an
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appropriate choice of γ and Γ, and provided |π| is sufficiently small,

(V ) ≤
(

1
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)
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λiE
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|2
]
∆i. (34)

Gathering (29)–(34) yields, for sufficiently small |π|,
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+
C
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i
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i
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×
(
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(
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)(
1 + E[|ξ(π)|4|]
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0≤j≤N

E[|X(π)
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0≤j≤N
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0≤j≤N
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+
C

L
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(
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.

The assertion now follows by iterating this inequality.
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Broadie, M., Cvitanić, J., Mete Soner, H. (1998) Optimal Replication of Con-
tingent Claims under Portfolio Constraints. Rev. of Financial Studies, 11,
59-79.

Chevance, D. (1997) Numerical Methods for Backward Stochastic Differential
Equations. In: Rogers, L. C. G., Talay, D. (eds.), Numerical Methods in

Finance, Cambridge: University Press, 232-244.

Douglas, J., Ma, J., Protter, P. (1996) Numerical Methods for Forwad Backward
Stochastic Differential Equations. Ann. Appl. Probab., 6, 940-968.

El Karoui, N., Peng, S., Quenez, M. C. (1997) Backward Stochastic Differential
Equations in Finance. Math. Finance, 7, 1-71.

Gobet, E., Lemor, J.-P., Warin, X. (2004) A Regression-Based Monte-Carlo
Method to Solve Backward Stochastic Differential Equations. Ann. Appl.

Probab., forthcoming.

Lemor, J.-P., Gobet, E., Warin, X. (2005) Rate of Convergence of an Empirical
Regression Method for Solving Generalized Backward Stochastic Differential
Equations. Preprint.

Longstaff, F. A., Schwartz, R. S. (2001) Valuing American Options by Simu-
lation: A Simple Least-Square Approach. Review of Financial Studies, 14,
113-147.

Ma, J., Protter, P. San Mart́ın, J., Soledad, S. (2002) Numerical Method for
Backward Stochastic Differential Equations. Ann. Appl. Probab., 12, 302-316.

Ma, J., Protter, P., Yong, J. (1994) Solving Forward-Backward Stochastic Dif-
ferential Equations Explicitly – a Four Step Scheme. Prob. Th. Rel. Fields,
98, 339-359.

Milstein, G. N., Tretyakov, M. V. (2004) Numerical Algorithms for Forward-
Backward Stochastic Differential Equations Connected with Semilinear
Parabolic Equations. Preprint.

Pardoux, E., Peng, S. (1990) Adapted Solutions of a Backward Stochastic Dif-
ferential Equation. Syst. Contr. Lett., 14, 55-61.

Yong, J., Zhou, X. Y. (2000) Stochastic Controls: Hamiltonian Systems and

HJB Equations. Berlin: Springer.

Zhang, J. (2001) Some Fine Properties of Backward Stochastic Differential

Equations. PhD Thesis, Purdue University.

Zhang, J. (2004) A Numerical Scheme for BSDEs. Ann. Appl. Prob., 14, 459-
488.

Christian Bender Robert Denk
Weierstrass Institute for Applied Department of Mathematics
Analysis and Stochastics and Statistics
Mohrenstr. 39 University of Konstanz
D-10117 Berlin D-78457 Konstanz
Germany Germany
bender@wias-berlin.de robert.denk@uni-konstanz.de

36


