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Abstract— We investigate the impact of link and path restora-
tion on the cost of telecommunication networks. The surprising
result is the following: the cost of an optimal network config-
uration is almost independent of the restoration concept if (i)
the installation of network elements (ADMs, DXCs, or routers)
and interface cards, (ii) link capacities, and (iii) working and
restoration routings are simultaneously optimized.

We present a mixed-integer programming model which in-
tegrates all these decisions. Using a branch-and-cut algorithm
(with column generation to deal with all potential routing paths),
we solve structurally different real-world problem instances and
show that the cost of optimal solutions is almost independent of
the used restoration concept.

In addition, we optimize spare capacities for given shortest
working paths which are predetermined with respect to different
link metrics. In comparison to simultaneous optimization of
working and restoration routings, it turns out that this approach
does not allow to obtain predictably good results.

Index Terms— survivable network design, link and path
restoration, branch-and-cut algorithm, hardware configuration,
routing

I. I NTRODUCTION

To secure a network against node and link failures, oper-
ators must pick from a variety of protection and restoration
concepts. Each of these has its assets and drawbacks with
respect to cost, ease of implementation, maintenance effort and
recovery time. A good planning decision has to be founded on
a thorough analysis of the trade-offs between these competing
features.

Based on optimal solutions with respect to a mathematical
model that integrates decisions about the topology, hardware
(network elements, interface cards), modular link capacities,
as well as working and failure routings, we compare the
influence of different restoration concepts on the total network
cost. We consider a generalization of link restoration (also
covering node failures) and path restoration with and without
stub release.

Using link restoration, information local to a failing com-
ponent is sufficient to restore affected traffic, which makes
it easier to implement than path restoration where traffic is
restored between the end nodes of each affected demand.
These two restoration concepts are illustrated in more detail
in Section II-B.

This work was supported by the DFG Research Center “Mathematics for
key technologies” (FZT86), Berlin,www.fzt86.de .

In our computational study on several real-world problem
instances stemming from structurally different planning sce-
narios of SDH-, WDM-, and leased line networks, we reveal
that the restoration concept has almost no influence on the total
cost of an optimal network configuration. This conclusion can
be drawn for single link failures, for single node failures and
for the combination of both. In other words, network costs can
be a minor criterion in the choice of the restoration concept.

Several authors already compared the influence of the
restoration concept on network cost and concluded with results
different from ours. Two categories of comparisons can be
distinguished: those which solely optimize spare capacity
based on predetermined working paths (usually some shortest
path between the demand end nodes) and those which jointly
optimize the working and failure routings. The following
literature review is restricted to cost comparisons between link
and path restoration and doesnot cover the numerous studies
for a particular restoration concept.

Kennington, Nair, Spiride [1], Poppe, Demeester [2] and
Doucette, Grover [3] compare the spare capacity requirements
for given working paths. In [1], modular link capacities and
single link failures are considered. The authors suggest a
branch-and-cut-approach based on an arc-flow formulation for
the failure routings. They report that for the eight problem
instances which could be solved to optimality (all of which
are artificial networks), link restoration requires on average
12% more spare capacity than path restoration without stub
release.

In [2], the problem of installing continuous spare capacities
is formulated with so-called metric inequalities. These inequal-
ities are generated at run-time using a path-flow formulation of
the restoration problem that is solved with a column generation
procedure. The presented formulation provides an abstraction
of the particular restoration concept and includes node failures.
The authors report on considerably different spare capacity
requirements for link and path restoration, and demonstrate
on three real-world networks (with two demand patterns each)
that node failures are less expensive than link failures.

A comparison of various protection and restoration mech-
anisms is given in [3]. While link restoration is considered
with and without given working paths, the path restoration
version (with stub release) relies on a predetermined shortest
path routing. The authors use a path-flow formulation with



arbitrary integer capacities and a predetermined set of paths.
In their comparison based on18 networks of different density,
all originating from the same master topology, they found
link restoration to be at least 10% more expensive than
path restoration with stub release (for given working paths),
independent of network density.

Contrary to the previously discussed papers, Murakami [4],
Xiong, Mason [5], Caenegem, Wauters, Demeester [6], and
Iraschko, MacGregor, Grover [7], perform a joint optimization
of the working and the failure routing.

In [4], a path-flow formulation with continuous link ca-
pacities is used. A column generation procedure for missing
routing paths is suggested as solution method. Based on com-
putational tests with four realistic and four artificial networks
and generated demand requirements, the author reports that
with predefined shortest working paths, optimal solutions are
5–25% more expensive than those where the working and
failure paths are jointly optimized. The additional cost for link
restoration compared to path restoration (with stub release)
varies widely but is beyond 10% of the path restoration cost
in most cases. With a predetermined shortest working path
routing, the advantages of path restoration are even higher. The
cost differences between path restoration and link restoration
as well as between joint and non-joint working and spare
capacity optimization are reported to be higher for the artificial
networks than for the real-world networks.

A similar model is presented in [5], but instead of using
column generation, a set of hop-limited path variables is
precalculated. The authors compare path restoration without
stub release and link restoration under a single link failure
scenario on one artificial and two realistic networks. With joint
working and spare capacity optimization, they obtain almost
the same network cost for link and path restoration in all three
test instances; with spare capacity optimization based on a
predetermined shortest working path routing, they found the
difference to be higher (about 5–10%). Both results coincide
with our observations.

In [6], path restoration without stub release and link restora-
tion of single link failures are compared for given shortest
working paths. In contrast to [4] and [5], the admissible link
capacities as well as the flow values are integers. The authors
suggest a simulated annealing algorithm to compute low cost
solutions. In order to avoid unacceptably long computation
times, the set of eligible restoration routes is restricted to
the 10 shortest paths for each demand. On one network with
two different demand patterns (uniform and estimated) this
heuristic yields results where link restoration is 20-25% more
expensive than path restoration.

In [7], the cost of link and path restoration (with or without
stub release) for single link failures is compared both with a
predefined shortest path routing and with joint working and
spare capacity optimization. Capacities and flow variables in
the path-flow model are allowed to take any integer value.
The authors present computational results on five (real-world
based and artificial) test instances using a predetermined path
set. With spare capacity optimization based on a predefined

routing, they obtain about 5–25% higher cost for link restora-
tion than for path restoration with stub release, whereas with
joint optimization, the differences are generally found to be
lower.

As already mentioned, most of these articles report on
substantial cost differences between the restoration concepts,
contrary to our results. There are several reasonable expla-
nations for this discrepancy. To our knowledge, there is no
comparison of restoration concepts yet which is based on an
accurate model for the modular cost and capacity structure of
nowadays hardware and, at the same time, a joint optimization
of working and failure routings. Furthermore, despite the
more complex mathematical model, we are still able to make
our comparison based on optimal solutions since the branch-
and-cut algorithm in conjunction with a column generation
procedure (both implemented in our network planning tool
DISCNET [8]) provides accurate lower bounds for the minimal
network costs.

An additional computational study presented in this article
reveals a slightly stronger influence of the restoration concept
on the network cost for the case of predefined working paths.
But also in this case, the cost difference between link and path
restoration rarely exceeds 10%.

However, the wayhow working paths are predefined has a
significant impact on the solution quality. In particular, upon
calculation of some shortest working paths, the results heavily
depend on the used link weights and on the implementation
of the shortest path algorithm. In the worst case, a feasible
restoration problem can be made infeasible by a wrong choice
of predefined working paths.

Since it is widespread in the literature to use some prede-
fined shortest path routing, we compare five different strategies
(including shortest hop and shortest length routing) to obtain
some rule of thumb for finding “good” working paths. Our
results reveal that joint optimization of working and failure
paths is a must: the additional cost of using a predefined
shortest path routing ranges between 0 and 164% and is thus
more or less unpredictable. Furthermore, none of the tested
link weights clearly outperforms all others.

This paper is organized as follows. In Section II, we present
a unifying mathematical model which covers the configuration
of hardware and link capacities and which abstracts from both
the restoration concepts and the considered failure scenarios.
Parameterizing this model appropriately, all mentioned restora-
tion concepts (and others like reservation [9] and meta-mesh
[10]) as well as arbitrary network component failures (link-,
node-, or multi-failures) can be formulated. In Section III, we
sketch our branch-and-cut algorithm and briefly describe a col-
umn generation procedure to implicitly deal withall potential
routing paths. In Section IV, we present our quantitative results
in more detail and eventually, we conclude with Section V.

II. PROBLEM AND MATHEMATICAL MODEL

We investigate network design problems dealing with an
integrated planning of

• a topology,
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Fig. 1. Hardware configuration example.

• a hardware configuration,
• modular link capacities,
• a routing during normal operation, and
• routings for all single link and node failure situations.

The survivable routing must respect one of the restoration
concepts under investigation. Our model consists of two parts,
connected by the link capacities: one comprising hardware
constraints (see Section II-A) and the other formulating routing
and restoration restrictions (see Section II-B). The objective
is to minimize the total cost of installing hardware and link
capacities (see Section II-C).

A. Topology, Hardware Configuration and Link Capacities

Given are all potential node locations and point-to-point
links which may be included in the final topology. For SDH
networks, these links are typically restricted to existing fiber
cables, while for leased line networks all point-to-point links
may be admissible. This potential network is modeled by an
undirectedsupply graphG = (V,E), whereV is the set of
node locations andE is the set of links.

For each node locationv ∈ V , a list of potentialnode
designsD(v) and a list of potentialinterface cardsM(v) can
be specified. Each node designd ∈ D(v) is characterized by
its maximum switching capacityCd

v and the number of slots
Sd for interface cards. At mostMd

m interface cards of type
m ∈ M(v) can be installed at node designd. Each interface
card m providesIm

i interfaces of typei ∈ I (the set of all
interfaces) and requiresSm many slots if used in some node
design.

Similarly, for each admissible linke ∈ E, a list of potential
link designsD(e) can be specified. Each link designd ∈ D(e)
consumes a capacityCd

e as well asId
i interfaces of typei ∈ I

at each end node of its link.
Example:Figure 1 shows an example of a link design with

a capacity of STM-1 which is attached to an interface card
providing 4 STM-1 interfaces. This card is plugged into one
out of 8 slots of the node design.

Although we have extended the following model to cope
with an existing hardware infrastructure in our network design
tool DISCNET [8], such enhancements are omitted in this paper
for the sake of simplicity.

Using decision variablesxd
v ∈ {0, 1} for all v ∈ V and all

node designsd ∈ D(v), non-negative integer variablesxm
v ∈

Z+ for the number of interface cardsm ∈ M(v) installed at

v, and decision variablesxd
e ∈ {0, 1} for all e ∈ E and all

link designsd ∈ D(e), the problem of selecting a topology,
including node and link designs, can be stated as follows:

HARDWARE: X
d∈D(v)

xd
v ≤ 1 v ∈ V (1)

X
d∈D(e)

xd
e ≤ 1 e ∈ E (2)

X
e∈δ(v)

X
d∈D(e)

Id
i xd

e −
X

m∈M(v)

Im
i xm

v ≤ 0
v ∈ V ,
i ∈ I (3)

X
e∈δ(v)

X
d∈D(e)

Cd
e xd

e −
X

d∈D(v)

Cd
vxd

v ≤ 0 v ∈ V (4)

X
m∈M(v)

Smxm
v −

X
d∈D(v)

Sdxd
v ≤ 0 v ∈ V (5)

xm
v −

X
d∈D(v)

Md
mxd

v ≤ 0
v ∈ V ,
m ∈M(v)

(6)

Inequalities (1) and (2) state that at most one design must be
chosen for each node and each link; the final topology consists
of those graph elements where exactly one design is chosen, all
other nodes and links are not included in the topology. A given
full or partial physical topology can be respected by forcing
equality in the respective inequalities (1) and (2). Inequalities
(3) and (4) ensure for each node that enough interfaces of
each type are available and that the switching capacity of the
selected node design is sufficient to attach the designs of the
incident links. Eventually, (5) and (6) ensure for each node
that the selected node design provides sufficiently many slots
and that the maximum number of admissible interface cards
is not exceeded.

B. Routing and Restoration

In addition to topology and hardware decisions, a feasible
survivable network design comprises a routing for every
considered operating state. The setS of operating states is
composed of thenormal operating state(NOS) and a subset
S∗ of all single node and single link failures, the so-called
failure states. We denote bys = 0 the normal operating state,
by s = v the failure of nodev ∈ V , and bys = e the failure of
link e ∈ E. Notice that the failure of a nodev ∈ V implicitly
induces the failure of all its incident linkse ∈ δ(v). The set
V s ⊆ V consists of all non-failing nodes in operating state
s ∈ S. Similarly, Es ⊆ E contains all usable links ins, where
a link is considered usable if neither the link itself nor one of
its end nodes fail.

For the normal operating state, a setD of communication
demands is given. With each demanduv ∈ D, two parameters
are associated: the demand valueduv which must be routed
between the end nodesu andv (assuming a bifurcated routing,
i.e., several paths may be used for one demand), and a path
length restriction (also called hop limit)̀uv which specifies
the maximum number of links of an admissible path between
u andv during normal operation.
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Fig. 2. Example NOS network.

Figure 2 shows the normal operating state routing subse-
quently used to illustrate the different restoration concepts. In
this example, one demand of value2 is routed on two paths.

Let P be the set of all simple paths inG and letPuv be the
subset ofadmissiblepaths to route the demanduv ∈ D in the
normal operating state. These are all paths betweenu and v
satisfying the path length restrictioǹuv. Using non-negative
continuous flow variablesfuv(P ) ∈ R+ for all demands
uv ∈ D and all pathsP ∈ Puv, the following capacity
constraints (7) and demand constraints (8) formulate a multi-
commodity flow problem with path length restrictions for the
normal operating state:

ROUTING (NOS):X
d∈D(e)

Cd
e xd

e −
X

uv∈D

X
P∈Puv

e∈P

fuv(P ) ≥ 0 e ∈ E (7)

X
P∈Puv

fuv(P ) = duv uv ∈ D (8)

We distinguish between three different restoration concepts
to protect the network against the failure of single network
components.

a) Link/Local restoration (LR):
Each failing path is locally restored. In case of a failing link,

each affected path is restored between the end nodes of the
link. In case of a node failure, each failing path which does not
start or terminate in the failing node is restored between the

1 1

NOS flow
Restoration flow

1 1

Restoration flow
NOS flow

Fig. 3. Link restoration, link and node failure.
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Fig. 4. Path restoration, link and node failure.

two nodes on the path which are adjacent to the failing node.
An example for both cases is provided in Figure 3. Notice
that this notion is slightly more general than the common link
restoration concept since node failures are covered as well.

b) Path restoration without stub release (PR-sr):
Each failing path is globally restored between its end nodes.

Link capacities reserved for normal operation are not released
and cannot be used for restoration flow. An example for path
restoration of a link and a node failure is shown in Figure 4.

c) Path restoration with stub release (PR+sr):
With stub release, capacity is released on the non-failing

parts (stubs) of failing working paths, and may be reused for
restoration flow.

Now, we present a generic mathematical formulation which
is able to cope with all three restoration concepts, if param-
eterized appropriately. Although we concentrate on failures
of single network components and on the three presented
restoration concepts in this paper, the model also allows to
formulate multiple link and node failures or other restoration
concepts likereservation(see [9], [11], [12]), where the NOS
routing is completely discarded and re-planned in case of a
failure, and mixtures of link and path restoration likemeta-
mesh[10].

For each failure states ∈ S∗, we introduce a setCs

of failure commodities. These are point-to-point demands to
be satisfied in failure states. Let Ps

c be the set of all
paths between the end nodes of failure commodityc ∈ Cs.
Furthermore, letIPs

c be the set of NOS paths which are to
be restored by failure commodityc ∈ Cs; these are the so-
called interrupted paths. See Table I for a precise definition
of failure commodities and interrupted paths for some failure
states. The stub release parameterγs(P ) ∈ {0, 1} indicates

TABLE I

RESTORATION DEPENDENT SETTINGS

Model Cs IPs
c, c ∈ Cs

LR (s = e) {uw : e = uw} {P ∈ P : e ∈ P}
LR (s = v) {uw : uv, vw ∈ δ(v)} {P ∈ P : u, v, w ∈ P}
PR-sr/PR+sr {uv : uv ∈ D, u, v ∈ V s} {P ∈ Puv : s ∈ P}



for every pathP ∈ P and every failure states ∈ S∗ whether
NOS capacity has to be reserved on the non-failing links of
P in s. Hence,γs(P ) is always 1 for LR and PR-sr, while for
PR+sr,γs(P ) = 1 if and only if P survives in failure states.

Using non-negative continuous flow variablesfs
c (P ) ∈ R+

for all failure statess ∈ S∗, all failure commoditiesc ∈ Cs

and all admissible restoration pathsP ∈ Ps
c , the following

capacity constraints (9) and restorability constraints (10) for-
mulate a restoration problem for all failure statess ∈ S∗:

ROUTING (failure states):X
d∈D(e)

Cd
e xd

e −
X

c∈Cs

X
P∈Ps

c :
e∈P

fs
c (P )

−
X

uv∈D

X
P∈P0

uv
e∈P

γs(P )fuv(P ) ≥ 0
s ∈ S∗,

e ∈ Es
(9)

X
P∈Ps

c

fs
c (P )−

X
uv∈D

X
P∈IPs

c

fuv(P ) ≥ 0
s ∈ S∗,

c ∈ Cs
(10)

Note that the model can easily be extended to partial
restoration of the failing flow by changing the coefficient of
the NOS flow variables in (10).

C. Cost Minimization

We aim at designing cost minimal survivable networks. For
each nodev ∈ V , the installation of node designd ∈ D(v)
incurs a cost ofKd

v and equipping this node design with an
interface cardm ∈M(v) incurs a cost ofKm

v . Similarly, for
each linke ∈ E, the installation of link designd ∈ D(e) incurs
a cost ofKd

e . Putting this together, the objective function is

min
X
v∈V

0@ X
d∈D(v)

Kd
vxd

v +
X

m∈M(v)

Km
v xm

v

1A +
X
e∈E

X
d∈D(e)

Kd
e xd

e .

Our branch-and-cut algorithm is able to compute optimal
solutions with respect to the objective of Section II-C and
constraints (1)–(10), simultaneously deciding the topology, the
hardware configuration, the link capacities and a routing for
the NOS and all failure states.

III. A B RANCH-AND-CUT ALGORITHM

Our solution approach is similar to Benders decomposition
[13]. The central procedure is a branch-and-cut algorithm
(see [14] for a detailed description) based on a relaxation of
the problem described in Section II, which consists of the
hardware configuration constraints (1)–(6).

To strengthen our formulation at each node of the branch-
and-cut tree, we try to separate valid inequalities violated
by the optimal solution of the current relaxation. As cutting
planes, we use band inequalities [9], GUB cover inequalities
[15], and generalizations [12], [16] of metric inequalities [17].

Each time an integer hardware configuration is identified
which is feasible for the relaxation, it is tested for feasi-
bility with respect to the (missing) routing constraints. If
the hardware configuration allows a feasible routing, one is
generated; otherwise, a violated metric inequality is added

to the relaxation in order to cut off the infeasible hardware
configuration.

The subroutine used to test feasibility of integer hardware
configurations and to separate metric inequalities is based on
a linear program consisting of constraints (7)–(10) with fixed
link capacities, see [9], [12], [16]. Since this formulation has
an exponential number of path variables, we apply a column
generation procedure, starting with a small subset of all pos-
sible variables. The initial paths are typically short paths with
respect to some link metric (hop count, length, etc.). Further
path variables (columns) are generated whenever necessary
by computing shortest (hop-limited) paths with respect to link
weights derived from an optimal dual solution of the linear
program.

For path restoration without stub release and link restora-
tion, the column generation problem can be solved exactly,
that is, path variables necessary to prove feasibility of some
link capacities can be identified in polynomial time. For path
restoration with stub release, this problem isNP-hard [16].
When solving the column generation problem approximately,
feasible capacity vectors may accidently be rejected. In a
thorough computational study, however, the best solution value
obtained has always been the same for various initializations
of the initial path set, heuristics to set up the link weights, and
algorithms to compute short paths. Consequently, even for path
restoration with stub release there is a high probability that
no optimal capacity vector has been rejected and a globally
optimal solution has been identified.

IV. COMPUTATIONAL RESULTS

In this section, we report on the results of numerical tests on
10 real-world based instances stemming from SDH-, WDM-,
and leased line planning problems. After a short presentation
of the test instances in Section IV-A, we provide a comparison
of optimal network costs using link or path restoration in
Section IV-B. Finally, Section IV-C shows our results using
predetermined shortest working paths with respect to different
link weights.

A. General

For each test instance, Table II shows the number of
potential nodes and links, the number of demands, together
with the average node degreēd = 2|E|/|V |, as well as the
number of available link designs (#ld) and node designs (#nd).
The number of designs is the same for all links and nodes of an
instance, respectively. The last column in the table shows the
hop limit `, which is the same for all demands of an instance.

The instances reflect the variety of capacity and cost struc-
tures of nowadays technologies. For optical networks, for
example, the modularities of WDMs and OXCs are consid-
ered; for SDH-networks, different interface cards (1xSTM1,
4xSTM1, 1xSTM4, or 1xSTM16) and DXCs are taken into
account. Eventually, the cost structures for leased line net-
works exhibit economies of scale with respect to capacity and
length of a link. Two particularities of the test instances are
worth mentioning. First, instance e6 is the same as e5 with six



TABLE II

CHARACTERISTICS OF THE TEST INSTANCES

Name |V | |E| |D| d̄ #ld #nd `

e1 10 25 29 5.0 2 1 4

e2 12 18 27 3.0 4 1 ∞
e3 15 21 13 2.8 3 1 ∞
e4 15 22 105 2.9 7 1 ∞
e5 18 21 62 2.3 9 1 5

e6 18 27 62 3.0 9 1 ∞
e7 20 28 119 2.8 6 2 6

e8 14 21 91 3.0 5 1 ∞
e9 12 18 27 3.0 9 6 ∞
e10 12 18 27 3.0 5 2 ∞

additional links but without hop limits, and second, instances
e9 and e10 have the same underlying planning topology and
demand pattern as e2, but significantly different cost and
capacity structures.

All numerical tests are performed on undirected networks,
assuming full restoration of all single node failures, all single
link failures, or both. To avoid side effects from a disproportion
between the demand values and the capacities of the available
node and link designs, three test series are performed, where
all demands are scaled by0.5, 1.0 or 2.0, respectively.

The computation times range between a few seconds and
several hours on a Linux machine with 1 Gigabyte of RAM
and a 1.7 Mhz processor; typically, the problems can be solved
to optimality within an hour.

B. Comparison of Optimal Network Costs

Table III shows the optimal network cost for all demand
scaling factors and for the three considered restoration con-
cepts: link restoration (LR), path restoration without stub
release (PR-sr) and path restoration with stub release (PR+sr).

For each demand scaling factor, three columns are pre-
sented: for all single node failures, all single link failures, and
both. All solution values are scaled such that 100 corresponds
to the optimal network cost without any survivability require-
ments and demand scaling factor1.0. Unless stated otherwise,
this scaling and rounding implies that two identical entries in
the table might actually differ up to 1%.

Table III allows several interesting observations:

1) The restoration concept has only minor influence on the
network cost: in 68 out of 90 cases (75%),the minimal
network cost is the same for all restoration concepts
(even before scaling and rounding). Furthermore, in only
six cases, the most cost-intensive restoration concept is
above 5% more expensive than the cheapest one, and in
only one out of 90 cases (e6 with scaling factor 1.0 and
all single failures), the difference exceeds 10%.

2) Securing a network only against singlelink failures
is often as expensive as securing it againstall single
failures, while singlenodefailures are cheapest in most
cases. In fact, single link failure solutions often turned

TABLE III

OPTIMAL COST USING DIFFERENT RESTORATION CONCEPTS

Name rest. factor 0.5 factor 1.0 factor 2.0

type node link both node link both node link both

LR 125 128 128 136 138 138 175 186 186

e1 PR-sr 125 128 128 136 136 136 175 180 180

PR+sr 125 128 128 136 136 136 172 177 177

LR 100 112 112 183 140 183 232 233 232

e2 PR-sr 100 112 112 183 140 183 232 233 232

PR+sr 100 112 112 183 140 183 232 233 232

LR 112 112 112 122 148 148 156 199 199

e3 PR-sr 112 112 112 122 139 139 156 217 217

PR+sr 112 112 112 122 139 139 156 199 199

LR 109 98 112 231 232 236 510 508 512

e4 PR-sr 109 96 111 231 232 236 510 508 512

PR+sr 107 96 111 231 232 235 510 508 512

LR 119 119 119 145 145 145 252 280 280

e5 PR-sr 119 119 119 145 145 145 252 280 280

PR+sr 119 119 119 145 145 145 251 280 280

LR 103 103 103 124 128 145 187 207 208

e6 PR-sr 103 103 103 124 128 129 187 207 208

PR+sr 103 103 103 124 125 125 183 207 208

LR 130 146 150 132 157 157 133 187 187

e7 PR-sr 130 146 150 132 157 157 133 187 187

PR+sr 130 146 150 132 157 157 133 187 187

LR 100 101 101 159 149 165 300 301 301

e8 PR-sr 100 101 101 154 147 163 300 301 301

PR+sr 100 101 101 154 147 163 300 301 301

LR 100 100 100 159 142 174 248 216 300

e9 PR-sr 100 100 100 159 142 174 248 216 296

PR+sr 100 100 100 159 142 174 248 216 300

LR 100 103 103 127 137 141 162 170 180

e10 PR-sr 100 103 103 127 137 141 162 170 180

PR+sr 100 103 103 127 137 141 162 170 180

out to be feasible for all single failures as well. Notice
that the cost relation between these failure scenarios may
change significantly with different demand values (see
e2, e4 and e8, for instance).

3) Given that 100 corresponds to the optimal network
cost without any survivability requirements and demand
scaling factor1.0, the additional cost to achieve full
restoration of single link failures ranges between 25%
(e6) and 132% (e4). Thus, it is difficult to estimate the
spare capacity cost relative to the working capacity cost
in advance. With slightly different percentages, the same
result applies to all failure scenarios.

4) A comparison of those instances with the same underly-
ing planning topology and demand patterns but different
capacity and cost structure (e2, e9 and e10) reveals that
the only common property is the invariance of network
cost with respect to the restoration concept. On the
contrary, the cheapest failure scenario, the increase in
network cost when scaling the demands, and the cost



incurred for full restoration vary significantly among
these instances.

5) In 4 instances (e2, e8, e9 and e10), the costs for node
failure restoration with demand factor0.5 appear to be
the same as for factor1.0 without restoration. However,
in 3 out of these 4 cases, the optimal costsbeforescaling
and rounding arenot identical but within the 1% range.

The second observation is in accordance with the results of
[2] who also observed node failures to be cheaper than link
failures in most cases. On the contrary, our first observation
is in contrast to many previously published comparisons, as
discussed in Section I. We see two main reasons for this
discrepancy:

1) As described in Section II, our mathematical model
covers hardware aspects with discrete capacity and cost
structures as well as joint optimization of working and
failure routings and topology planning.

2) We compareoptimal values computed by a branch-and-
cut algorithm, combined with column generation to deal
with all admissible routing paths, instead of using only
heuristics or fixing a small set of eligible routing paths
in advance. Although we do not know of any thorough
computational study on the influence of hop limits on
the cost of optimal solutions, we observed in practical
planning instances that it may be significant.

Some of the comparisons referenced in the introduction
explicitly note that part of the input is artificial. Even though
we are aware of the difficulties to judge from the description
of the problem instances used in any computational study
how realistic these are, we remark that another reason for the
discrepancy might be that all of our instances are based on
real-world planning instances. One might also suspect as a
reason that in our instances, node cost is largely dominating
total network cost. However, this is not the case. Node costs
occur in only 3 out of 10 instances, and for these 3 instances
(e7, e9, and e10), the ratios of total node costs to total link
costs are 10, 5, and 130 percent, respectively.

C. Shortest path NOS Routing

An analysis of the routings of the optimal solutions pre-
sented in Table III revealed that most demands are routed on
only one path, few demands on two paths, and almost none
on more than two paths. These paths were often shortest paths
with respect to the length in kilometers in the final topology of
an optimal network but not necessarily in the original planning
topology.

This observation raises the following question: does there
exist some link metric such that a shortest working path rout-
ing in theplanningtopology and a spare capacity optimization
based on this routing leads to reliably good solutions compared
to joint optimization of working and spare capacity?

An affirmative answer would have several nice implications.
First, such a link metric would give the planner a rule of thumb
how to define the working routing. Second, the computation
times for the spare capacity assignment are substantially
smaller than with joint optimization since the routing problem

TABLE IV

COST WITH PREDEFINED SHORTEST PATHNOS ROUTING

Name rest. ce := l(e) ce := 1 ce := (1 + l(e))2

type node link both node link both node link both

LR 360 360 360 296 296 296 189 184 189

e1 PR-sr 360 360 360 296 296 296 187 169 187

PR+sr 360 360 360 296 296 296 187 169 187

LR 206 152 206 195 161 206 199 156 199

e2 PR-sr 195 152 206 195 161 206 195 156 199

PR+sr 195 152 206 195 161 206 195 152 195

LR 129 167 167 152 184 184 145 163 177

e3 PR-sr 129 148 148 152 184 184 145 161 162

PR+sr 129 147 147 152 184 170 145 161 162

LR 249 261 266 240 264 250 274 285 285

e4 PR-sr 248 243 254 240 244 246 265 258 268

PR+sr 241 243 253 233 239 239 254 254 265

LR 145 159 159 145 151 151 150 170 170

e5 PR-sr 145 145 145 145 145 145 145 145 145

PR+sr 145 145 145 145 145 145 145 145 145

LR 173 174 174 172 172 172 156 166 166

e6 PR-sr 173 173 173 172 172 172 156 156 156

PR+sr 173 173 173 172 172 172 156 156 156

LR 165 165 178 162 169 169 176 176 188

e7 PR-sr 164 165 177 162 169 169 176 176 188

PR+sr 164 165 177 162 169 169 175 175 188

LR 178 162 178 178 162 178 178 162 178

e8 PR-sr 178 162 178 178 162 178 178 162 178

PR+sr 178 162 178 178 162 178 178 162 178

LR 159 142 174 172 162 186 160 156 188

e9 PR-sr 159 142 174 172 162 186 160 142 174

PR+sr 159 142 174 172 162 186 160 142 174

LR 129 140 142 139 142 145 128 142 144

e10 PR-sr 129 140 142 139 142 145 128 140 142

PR+sr 129 140 142 139 142 145 128 140 142

decomposes into one small subproblem for each considered
failure state. Therefore, much larger problem instances could
be solved close to optimality.

Trying to find such a link metric, we first compare link
weightsce proposed by other authors. We setce to either the
length in kilometersl(e) of a link (shortest length path) or to
uniform lengths1 (shortest hop path).

All values have been calculated with unscaled demands
(factor 1.0) and full failure path pricing, that is, the obtained
spare capacity assignment is optimal with respect to the given
NOS routing. The values in Table IV are scaled by the same
factors as in Table III, such that 100 is the minimal network
cost without survivability requirements.

As can be seen from Table IV, the quality of the solutions
obtained by fixing a shortest length or shortest hop routing
is often poor compared to the optimal values from Table III.
The additional cost from fixing a shortest working path routing
(defined as(shortest-path-result – joint) / joint) ranges from
0% (for e5, e9) up to 164% (for e1), with an average of 24%



(without e1: 11%). Otherwise stated, although it is possible
to obtain a globally optimal configuration with a predefined
shortest hop or shortest length routing, the results are far from
being predictable.

Instance e1 illustrates that this approach can yield almost
arbitrarily bad results: with both shortest hop and shortest
length routing, overall network cost is far more than twice
the optimal value using joint optimization! In this network,
only about half of the available links are actually needed in
a cost optimal solution. However, a shortest hop or shortest
length routing (as any other shortest path routing with respect
to link weights defining a metric on the nodes) always chooses
the direct link between two demand nodes if available, leading
to some positive capacity on every link. Similar observations
hold for e6.

Even though with our test instances, the cost of link and
path restoration is still the same in 50 out of 90 cases
with a predefined shortest path routing (and nearly the same
in another 12 cases), it is interesting to note that the cost
difference tends to be higher than with joint working and
spare capacity optimization. This confirms the corresponding
results of [5] and [7]; at the same time, it could explain why
other authors who optimized spare capacity with respect to a
given NOS routing found link restoration to be usually more
expensive than path restoration.

Given that the solution quality with a shortest hop or short-
est length routing is quite unpredictable, we now compare with
other (non-metric) link weights. Letavg := 1/|E|

∑
e∈E l(e)

be the average length of a link, and letM := 5 maxe∈E l(e).
With these definitions, we test the link weights

1) ce := (1 + l(e))2,
2) ce := (1 + l(e))3,
3) ce := M + l(e) if l(e) > avg, ce := l(e) else.

The first two choices are just meant to make the link weights
non-metric while still reflecting the length in kilometers of
a link. The choiceM + l(e) intends to make long links even
longer, in order to give the shortest path algorithm an incentive
to make a detour instead of using a long link.

In our computational studies, the link weights(1 + l(e))2,
l(e), and1 perform best on average. Hence, the third column
of Table IV shows the results force := (1 + l(e))2; the
values for the other link weights are omitted here. Even though
none of the three presented link weights clearly dominates the
others, the weightsl(e) performs quite well in 6 out of our
10 instances. Given the short computation times with a fixed
NOS routing, it is advisable to try different link weights and
to take the best one. However, none of the tested link weights
can be used to obtain predictably good solutions.

V. CONCLUSION

We have presented a mixed-integer programming model for
the network restoration problem which integrates topology,
hardware, capacity and routing decisions for all operating
states simultaneously. Based on a branch-and-cut algorithm
together with a column generation procedure, we have given a

comparison of optimal network cost for 10 real-world problem
instances using link or path restoration (with or without stub
release), for different failure scenarios.

Our main observation is that the optimal network cost is
almost independent of the restoration concept. From a practical
point of view, this implies that the technological decision for a
particular concept should be dominated by other criteria than
cost.

In addition, we optimized spare capacity based on a given
shortest working path routing with respect to different link
weights. However, none of the tested link weights led to
reliably good results compared to joint working and spare
capacity optimization.
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