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Abstract

In this paper a method for solving large-scale Sylvester equations is

presented. The method is based on the sign function iteration and is

particularly effective for Sylvester equations with factorized right-hand

side. In this case, the solution will be computed in factored form as it is

for instance required in model reduction. The hierarchical matrix format

and the corresponding formatted arithmetic is integrated in the iteration

scheme to make the method feasible for large-scale computations.

1 Introduction

This paper is concerned with the numerical solution of linear matrix equations
of the following form:

AX + XB + W = 0, (1)

with A ∈ R
n×n, B ∈ R

m×m, W ∈ R
n×m and a matrix X of n×m unknowns.

Equations of this type are called Sylvester equations. We get an equivalent
representation of (1) by using the Kronecker product and by introducing the
vec−operator,

vec : R
n×m → R

n·m : W → [w11, . . . , wn1, w12, . . . , wn2, . . . , wnm]T :

(Im ⊗A + BT ⊗ In) vec(X) = −vec(W ), (2)

where I denotes the identity matrix of suitable size. This vectorized represen-
tation immediately leads to some first solvability conditions. The coefficient
matrix in (2) is regular if and only if the spectra of A and −B are disjoint.
This, in turn, is equivalent to the existence and uniqueness of the solution X
of (1) [29]. Furthermore, if the two spectra are separated by a line, we get an
explicit solution formula [28]:

X =

∫ ∞

0

eAtWeBtdt.
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For stable Sylvester equations, where the spectra of A and B are both contained
in the open left half of the complex plane, these conditions are clearly fulfilled.
For the rest of this paper, we will assume stability of the Sylvester equation
under consideration.

We are interested in the numerical solution of Sylvester equations, where the
dimensions n and m are large. Sylvester equations with this property appear in
a wide range of practically relevant applications. For instance, circuit simulation
and the spatial discretization of time-dependent partial differential equations re-
sult in very large linear dynamical systems of order about O(105). For reducing
the dimension of such a system, several model reduction techniques are pro-
posed, see [7] for an overview. The widely used balanced truncation method [31]
requires the solution of two Lyapunov equations. These matrix equations are a
special symmetric variant of Sylvester equations with B = AT and symmetric
W . A slightly modified model reduction method, the cross-Gramian approach,
is based on the solution of one Sylvester equation with B = A [15]. As ex-
plained above, the matrix equations arising in model reduction methods are
typically large-scale. So we are interested in deriving solvers which are adapted
to large-scale computation.

There are several approaches to the numerical solution of Sylvester equa-
tions, which can be subdivided into direct and iterative methods. Direct ap-
proaches transform the coefficient matrices A and B to Schur [4] or Hessenberg
form [14, 16] and solve the resulting linear systems by a backsubstitution pro-
cess. If we assume that the size of the Sylvester equation is dominated by n,
these direct methods are of complexity O(n3) and have storage requirements of
order O(n2) [17, page 367]. Therefore, they are restricted to problems of smaller
sizes.

There are also several iterative schemes available, see e.g. [21, 27, 34]. We
will focus on the sign function method, published first in 1971 by Roberts [33],
which will be described in more detail in Section 2. We will use a special variant
of this iteration scheme to compute the solution in factored form X = Y Z, as
proposed in [6], based on a partitioning of the original sign function method.
This method is of particular interest in large-scale computations if the solution
X has low rank, rank(X) � n, m, or at least low numerical rank. In the first
case we obtain full-rank factors Y ∈ R

n×rank(X), Z ∈ R
rank(X)×m of X . The

latter case is of particular relevance; in many large-scale applications it can be
observed that the eigenvalues of X decay rapidly, see e.g. [2, 19, 32]. Then,
the memory requirements can be considerably reduced by computing low-rank
approximations to the full-rank factors directly. The modified sign function
method for computing approximate solution factors is described in Section 3.

In this paper we will propose a new method based on the sign function
method for computing low-rank factors of the solution. Despite the low mem-
ory requirements for the solution factors, the modified sign function iteration
in partitioned form still needs O(n2) storage. To make it applicable for larger
problems, say n = O(n6), we approximate the large-scale matrices A and B
during the iteration in a data-sparse format, as so called hierarchical matri-
ces (H-matrices). The H-matrix format is described, e.g., in [18, 20, 23, 24];
it allows data-sparse approximation for a wide, practically relevant class of
matrices, which, e.g., arise from boundary element or finite element methods.
In [22], Grasedyck, Hackbusch and Khoromskij combine the hierarchical matrix
(H-matrix) format with the sign function method for solving algebraic Riccati
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equations (AREs). The method computes the solution of an ARE in H-matrix
format with linear-polylogarithmic complexity. It can be adapted rather directly
to the solution of a Sylvester equation, but since we are interested in approx-
imating low rank factorizations of the solution, we propose a new H-matrix
arithmetic based iteration scheme. This approach is related to a new algorithm
for the solution of Lyapunov equations [5]. In Section 4.1 we give a short intro-
duction in the H-matrix format and the corresponding formatted arithmetic.
In Section 4.2 the new algorithm is presented which integrates the H-matrix
format and arithmetic in the partitioned iteration scheme of Section 3. Sev-
eral numerical experiments demonstrate the performance of the new algoritm
in Section 5.

2 The Sign Function Method

Consider the square matrix Z ∈ R
n×n in Jordan canonical form

Z = S−1

[
J+

` 0
0 J−

n−`

]

S,

where the upper block belongs to the eigenvalue of Z with positive real part
and J−

n−` contains the Jordan blocks belonging to the other eigenvalues. The
matrix sign function of a matrix Z with no eigenvalues on the imaginary axis is
defined as follows:

sign(Z) := S−1

[

I` 0

0 −In−`

]

S.

By applying a Newton iteration to the solution of Z2 − In = 0:

Z0 ← Z,

Zk+1 ← 1

2
(Zk + Z−1

k ), k = 0, 1, 2, . . . ,

we get sign(Z) = limk→∞Zk.
We will make use of some special decoupling property of the solution X of

the Sylvester equation (1) for computing the matrix sign function of a special
matrix Z. We consider the following block upper triangular matrix Z defined
by the coefficients of (1):

Z =

[

A W

0 −B

]

,

and a similarity transformation

T =

[

In X

0 Im

]

.

Then Z is block diagonalized by T ,

T−1ZT =

[

A AX + XB + W

0 −B

]

=

[

A 0

0 −B

]

,
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and the matrix sign function gives an expression for the solution of a Sylvester
equation:

sign(Z) = T sign

([

A 0

0 −B

])

T−1 = T

[

−In 0

0 Im

]

T−1 =

[

−In 2X

0 Im

]

.

By applying the Newton iteration to Z, an iterative scheme for computing the
solution of the Sylvester equation (1) is obtained:

Z0 ← Z,

Zk+1 ← 1

2
(Zk + Z−1

k ) (3)

=

[
1
2 (Ak + A−1

k ) 1
2 (Wk + A−1

k WkB−1
k )

0 − 1
2 (Bk + B−1

k )

]

, k = 0, 1, 2, . . . .

The solution X of (1) can simply be derived by

sign(Z) = lim
k→∞

Zk =

[
−In 2X
0 Im

]

as described in [33]. Since limk→∞ Ak = −In and limk→∞ Bk = −Im, we get a
simple stopping criterion for the iteration:

max
k
{‖Ak + In‖, ‖Bk + Im‖} ≤ tol,

with a user-defined tolerance tol. By an appropriate choice of norm and toler-
ance and by performing two additional iteration steps as proposed in [8], the
required accuracy is reached in general owing to the quadratic convergence of
the Newton iteration. To overcome slow initial convergence, some of the first
iterates can be scaled in the following way

Zk+1 ←
1

2
(ckZk +

1

ck

Z−1
k ),

where ck > 0 are suitably chosen parameters. Several choices for such parame-
ters can be found in, e.g., [3, 13, 25]. We will use a problem adapted variant of
the optimal norm scaling as suggested in [10]:

ck =

√

‖Z−1
k ‖2
‖Zk‖2

.

3 Factorized Solution of the Sylvester Equation

Many practical applications lead to a Sylvester equation

AX + XB + FG = 0, (4)

with the constant term in factored form, F ∈ R
n×p, G ∈ R

p×m and A, B stable.
For the construction of a well-suited algorithm for the solution of equations of
this type, we will make use of the following observation. Often, for large-scale
Sylvester equations, the solution X has a low numerical rank. In [19] it is
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shown that the singular values of X decay exponentially if the right-hand side
is of low rank and the spectra of A and −B are separated by a line. There
are several other papers which present eigenvalue decay bounds for Sylvester
equations of a certain structure, e.g. [2, 32]. Based on this observation, we
modify the iteration scheme as proposed in [6] for computing the solution X in
factored form, X = Y Z, with Y ∈ R

n×rank(X), Z ∈ R
rank(X)×m. The storage

requirements for X are reduced from O(n ×m) to O((n + m)× rank(X)). We
rewrite the Newton iteration (3) with A0 ← A, B0 ← B, F0 ← F, G0 ← G:

Ak+1 ← 1

2
(Ak + A−1

k ),

Bk+1 ← 1

2
(Bk + B−1

k ), (5)

Fk+1 ← 1√
2

[
Fk, A−1

k Fk

]
,

Gk+1 ← 1√
2

[
Gk

GkB−1
k

]

and get Y = 1√
2

limk→∞ Fk and Z = 1√
2

limk→∞ Gk as solution factors of (4).

This iteration scheme is less expensive during the first iteration steps, if we
assume that p � n, m. In the course of the iteration, this advantage gets
lost as pk, the number of columns of the F -iterates and the number of rows
of the G-iterates, is doubled in each step. As mentioned before, we expect
that the solution has low numerical rank; it can therefore be expected that the
iterates are also of low numerical rank. To exploit this property and to avoid
the exponential growth of the columns and rows, we apply a rank-revealing QR
factorization (RRQR) [17] to Fk+1 and Gk+1 in each iteration step.

For a given matrix M with singular values σ1 ≥ σ2 ≥ · · · ≥ 0 the RRQR
factorization is defined as

M = QRΠ = Q

[

R11 R12

0 R22

]

Π,

with a permutation matrix Π, an orthonormal matrix Q and an r × r matrix
R11. The order r of R11 denotes the numerical rank of the matrix M for a given
threshold τ . The numerical rank r is defined by the smallest singular value
which satisfies σr ≤ σ1 · τ . For an RRQR, the condition number κ of R11 can
be bounded by 1/τ ,

κ(R11) := ‖R11‖2 · ‖R−1
11 ‖2 ≈ σ1/σr ≤ 1/τ.

We compress the rows of M by only considering entries in the upper part of the
matrix R, that is the well-conditioned part of M .
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In our iteration scheme, the RRQR factorization is integrated as follows:

Fk+1Gk+1 =
1

2

[
Fk, A−1

k Fk

]
[

Gk

GkB−1
k

]

=
1

2

[
Fk, A−1

k Fk

]
UR ΠG (6)

=
1

2

[
Fk, A−1

k Fk

]
U

︸ ︷︷ ︸

V T ΠF

[

R11 R12

0 R22

]

ΠG

=
1

2
V

[
T11 T12

0 T22

]

ΠF

[

R11 R12

0 R22

]

ΠG.

ΠF and ΠG are permutation matrices, U and V have orthonormal columns,
R11 ∈ R

r×r, T11 ∈ R
t×t. The numerical rank of Gk+1 is denoted by r, t is

the numerical rank of Fk+1, both with respect to a given threshold τ . We get
approximate iterates F̃k+1 and G̃k+1 by truncating the matrices T and R, by a

partitioning of [ T11, T12 ] ΠF to
[

T̃11, T̃12

]

with T̃11 ∈ R
t×r to adapt the matrix

dimensions of the two factors and by a further partitioning of the orthonormal
matrix V = [ V1, V2 ] with V1 ∈ R

n×t:

G̃k+1 := [ R11, R12 ] ΠG,
[

T̃11, T̃12

]

:= [ T11, T12 ] ΠF , (7)

F̃k+1 := V1T̃11.

The iterates F̃k+1 and G̃k+1 have a reduced number of columns and rows, re-
spectively, pk+1 := r instead of 2pk, and we obtain approximate solution factors
Ỹ and Z̃ by

Ỹ =
1√
2

lim
k→∞

F̃k , Z̃ =
1√
2

lim
k→∞

G̃k.

4 H-Matrix Arithmetic based Sign Function It-

eration

In the previous section we considered a modified iteration scheme (5) with in-
tegrated RRQR factorization (7) for the computation of approximate full-rank
solution factors. Despite the low memory requirements for the solution, we still
have storage requirements of order O(n2 +m2) and O(n3 +m3) operations dur-
ing the Newton iteration for the iterates Ak and Bk. Therefore we will integrate
a data-sparse matrix format and the corresponding approximate arithmetic in
our iteration scheme to make it feasible for large-scale computations. In the
following, we will give a short introduction into this matrix format.

4.1 Short Introduction into H-Matrix Arithmetic

The H-matrix format is a data-sparse representation for a special class of matri-
ces, which often arise in applications. Matrices that belong to this class result,
for instance, from the discretization of partial differential or integral equations.
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Exploiting the special structure of these matrices in computational methods
yields decreased time and memory requirements. A detailed description of the
H-matrix format can be found, e.g. in [18, 20, 23, 24].

The basic idea of the H-matrix format is to partition a given matrix re-
cursively into submatrices that admit low-rank approximations. To determine
such a partitioning, we consider a product index set I × I , I = {1, . . . , n}. This
product index set is hierarchically partitioned into blocks r × s, which form a
so called H-tree TI×I . Each leaf of TI×I represents a low-rank approximation
of the corresponding submatrix M|r×s

, which is stored in factorized form with
low rank k:

M|r×s
= ABT , A ∈ R

t×k, B ∈ R
s×k. (8)

A matrix M ∈ R
n×n can be stored in H-matrix format (M ∈ MH,k(TI×I)), if

the rank of M restricted to a leaf can be bounded by k. The storage requirements
for a matrix M ∈MH,k(TI×I) are

NMH,kSt = O(n log(n)k)

instead of O(n2) for the original matrix. Note that it is also possible to choose
the rank adaptively for each matrix block instead of using a fixed rank k. De-
pending on a given approximation error ε, the approximate matrix operations
are exact up to ε in each block.

The approximate arithmetic is a means to close the set of matrices in M ∈
MH,k(TI×I) under addition, multiplication and inversion. The operations con-
sist of the exact arithmetic combined with some projection onto MH,k(TI×I).
This truncation operator, denoted by Tk, can be achieved by truncated sin-
gular value decompositions and results in the best Frobenius norm approx-
imation on MH,k(TI×I), see, e.g., [20] for more details. For two matrices
A, B ∈ MH,k(TI×I) and a vector v ∈ R

n we obtain the following formatted
arithmetic operations, which all have linear-polylogarithmic complexity:

v 7→ Av : O(n log(n)k),
A⊕B = Tk(A + B) : O(n log(n)k2),

A�B = Tk(AB) : O(n log2(n)k2),

InvH(A) = Tk(Ã−1) : O(n log2(n)k2).

Here, Ã−1 denotes the approximate inverse of A which is obtained by performing
block Gaussian elimination on A with formatted addition and multiplication.
In some situations it is recommended to compute the inverse V of a matrix A
using an approximate H-LU factorization A ≈ LHUH followed by an H-forward
(LHW = (I)H) and H- backward substitution (UHV = W ), see [20] for more
details.

In [22], the sign function method for solving the more general algebraic
Riccati equation is combined with a data-sparse matrix representation and a
corresponding approximate arithmetic. A method for the factorized solution of
Lyapunov equations based on the hierarchical matrix arithmetic is proposed in
[5]. Our approach also makes use of this H-matrix structure, as described in
the next section.

4.2 Algorithm

We consider the sign function iteration in the partitioned form (5) to compute
full-rank factors Y and Z of the solution X of the Sylvester equation (4).
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Even if the system matrices A and B in (4) are sparse, resulting, e.g., from
a finite element discretizations of elliptic partial differential operators, a large
amount of memory is required during the Newton iteration caused by fill-in
during the matrix inversion. To avoid this effect, the large-scale iterates Ak and
Bk are approximated in the data-sparse H-matrix format and the hierarchical
matrix arithmetic is used to reduce the computational cost in these iteration
parts (compare with Section 4.1). Instead of the formatted matrix inversion
we compute an LU decomposition of the matrices Ak and Bk and an H-based
forward/backward substitution to obtain approximate inverses VA and VB . This
has the advantage of lower storage requirements since approximate inversion
takes roughly three times the workspace occupied by the original matrix.

The matrices Fk and Gk, which yield the solution factors at the end of
the iteration, are stored in the usual ”full” format. In these iteration parts
arithmetic operations from standard linear algebra packages such as LAPACK
[1] and BLAS [30] can be used. We integrate the RRQR factorization in the
iteration scheme as described in Section 3 to limit the increasing number of
columns and rows of the two solution factors. Since limk→∞ Ak = −In and
limk→∞ Bk = −Im, as it was seen in Section 2, it is advised to choose

max
k
{‖Ak + In‖2, ‖Bk + Im‖2} ≤ tol, (9)

with a user-defined tolerance tol, as stopping criterion for the iteration, which
is easy to check.

We introduce scaling to accelerate the initial convergence. Due to error am-
plification during the sign function iteration with formatted arithmetic, scaling
is used only in the first iteration step as in [18]. We will use a problem adapted
variant of the optimal norm scaling to balance the norms of the summands in
line 10 and line 15 of Algorithm 1 as suggested in [10],

c =

√

‖Z−1
0 ‖2
‖Z0‖2

,

with the norm approximations

‖Z0‖2 ≈
√

‖A0||2‖B0‖2, ‖Z−1
0 ‖2 ≈

√

‖VA||2‖VB‖2.
In the partitioned iteration scheme of Algorithm 1 scaling is integrated in the
following way:

A1 ← 1

2
(cA0 ⊕

1

c
VA),

B1 ← 1

2
(cB0 ⊕

1

c
VB),

F1 ← 1√
2

[ √
cF0

1√
c
VAF0

]

,

G1 ← 1√
2

[ √
cG0

1√
c
G0VB

]

.

5 Numerical Experiments

All numerical experiments were performed on an SGI Altix 3700 (32 Itanium
II processors, 1300 MHz, 64 GBytes RAM). We made use of the LAPACK and
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Algorithm 1 Calculate full-rank factors Y , Z of X for AX + XB + FG = 0

INPUT: A ∈ R
n×n, B ∈ R

m×m, F ∈ R
n×p, G ∈ R

p×m, tol, τ
OUTPUT: Approximations Y and Z to full-rank factors of the solution X .
1: A0 ← (A)H
2: B0 ← (B)H
3: F0 ← F
4: G0 ← G
5: k = 0
6: while max{‖Ak + In‖, ‖Bk + Im‖} > tol do

7: [L, U ]← LUH(Ak)
8: Solve LW = (In)H by H-forward substitution.
9: Solve UVA = W by H-back substitution.

10: Ak+1 ← 1
2 (Ak ⊕ VA)

11: Fk+1 ← 1√
2

[
Fk VAFk

]

12: [L, U ]← LUH(Bk)
13: Solve LW = (Im)H by H-forward substitution.
14: Solve UVB = W by H-back substitution.
15: Bk+1 ← 1

2 (Bk ⊕ VB)

16: Gk+1 ← 1√
2

[
Gk

GkVB

]

17: Compress rows of Gk+1 to r using a RRQR with threshold τ (see (6),
(7)).

18: Compress rows of Fk+1U using a RRQR with threshold τ (see (6), (7)).
19: Cut off columns of Fk+1U to r (see (7)).
20: k = k + 1
21: end while

22: Y ← 1√
2
Fk, Z ← 1√

2
Gk

BLAS libraries for performing the standard dense matrix operations and include
the routine DGEQPX of the RRQR library [11] for computing the RRQR fac-
torization. For the H-matrix approximation we employ HLib 1.2 [12]. We use
the adaptive rank choice (see [18]) instead of a given fixed rank. The trunca-
tion operator of the approximate H-matrix arithmetic is then changed in the
following way:

Tε(A) = argmin

{

rank(R)

∣
∣
∣
∣

‖R−A‖2
‖A‖2

≤ ε

}

, (10)

where the parameter ε determines the desired accuracy in each matrix block.
For the stopping criterion (9) we take the threshold tol= 1.e− 04.

Example 5.1. In this example we consider a control problem for the two-
dimensional heat equation as described in [22]. We discretized the partial dif-
ferential equation with linear finite elements and n inner grid points. This
results in a linear time-invariant system

ẋ(t) = Ax(t) + Fu(t), t > 0, x(0) = x0,
y(t) = Gx(t), t ≥ 0,

(11)

with a stable matrix A ∈ R
n×n and F, GT ∈ R

n×1. Thus, we have system
with a single input and a single output (SISO). For reducing the oder n of
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Figure 1: Maximal storage requirements in logarithmic scale for Algorithm 1
in H-matrix arithmetic and in standard arithmetic compared to an O(n log2 n)
reference line.

this system we consider a variant of the classical balanced truncation model
reduction approach. This method requires the solution of a special Sylvester
equation

AX + XA + FG = 0, (12)

where the solution X ∈ R
n×n is called the cross-Gramian associated with the

system (11). In our example we test the iteration scheme for the cross-Gramian
of a SISO system. We vary the problem size from n = 256 to n = 262 144
and choose fixed values for the numerical rank decision in the RRQR factoriza-
tion: τ = 1.e − 04 and as approximation error in the adaptive rank choice of
the H-matrix arithmetic: ε = 1.e − 04. With our algorithm we compute the
approximate solutions factors Y and Z of the cross-Gramian X . We compare
the solution from the H-matrix arithmetic based sign function iteration with
the solution computed with the primary iteration scheme in Section 3. In the
latter scheme all matrices are stored in the usual ”full” format and the matrix
operations are performed in standard arithmetic. Due to the large memory re-
quirements (see Figure 1) these solutions are only computed up to a problem
size of n = 4096, larger results are extrapolated in the two figures or omitted in
Table 1. The results of this computation are depicted in columns with column
heading ”full”. In Figures 1 and 2 it is seen that the storage requirements as
well as the computational time for the algorithm in H-matrix arithmetic exhibit
almost linear growth. The ranks of the factors of the cross-Gramian and their
accuracy are plotted in Table 1. As a measure of accuracy we consider the
relative residual

‖AX + XA + FG‖2
2‖A‖2‖X‖2 + ‖F‖2‖G‖2

,

which could be considered as the backward error for an approximate solution of
the Sylvester equation (up to an amplification factor described in [26, Chapter
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Figure 2: CPU time in logarithmic scale for Algorithm 1 in H-matrix arithmetic
and in standard arithmetic compared to an O(n log2 n) reference line.

15]). It is computed up to a problem size of n = 16 384 due to storage require-
ments and seems to be bounded above for increasing problem size. For smaller

problems the relative errors ‖X∗−X‖2

‖X∗‖2

are computed with the reference solution

X∗ in ”full” format and with standard arithmetic.

n # iter. r time[sec] rel. residual rel. error
H full H full H full

256 10 12 12 2 1 9.3e-08 3.2e-08 7.43e-16
1024 11 13 13 39 73 1.1e-06 1.3e-08 3.92e-07
4096 12 14 14 459 4484 2.6e-06 7.0e-09 1.58e-06

16384 13 15 - 4124 - 5.4e-06 - -
65536 14 17 - 31454 - - - -

262144 15 17 - 261263 - - - -

Table 1: Accuracy and rank r of the computed solution factors of Algorithm 1
for different problem sizes.

It should be noted that the largest Sylvester equations solved, one with n =
262 144, is equivalent to a linear system of equations with about 34 billion
unknowns. For this problem size we get approximate full-rank factors Y, ZT ∈
R

n×17 and therefore need 8.5 MB memory to store the solution instead of 64
GB for the explicit solution X . �

Example 5.2. We tested the new algorithm with matrices A, B, F, G stem-
ming from a semi-discretization of the same control problem for the two-dimen-
sional heat equation as in Example 5.1. For the space discretization we consider
linear finite element ansatz spaces of different sizes n and m which results in
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different matrix dimensions of the square matrices A ∈ R
n×n, B ∈ R

m×m and of
F ∈ R

n, GT ∈ R
m. For a fixed size n = 4096 we vary the number of grid points

m from 256 to 65 536. We take the same stopping criterion as in Example 5.1
and also the same fixed choice of parameter values: ε = 1.e− 04, τ = 1.e− 04.

n m # r time[sec] rel. residuum rel error
H full H full H full

4096 256 13 11 11 383 2419 4.4e-06 2.0e-06 1.53e-06
4096 1024 13 13 13 268 2475 3.1e-06 3.4e-07 1.53e-06
4096 4096 12 14 14 459 4484 2.6e-06 7.0e-09 1.58e-06
4096 16384 14 15 - 2832 - 6.0e-06 - -
4096 65536 15 17 - 56346 - - - -

Table 2: Accuracy and rank r of the computed solution factors of Algorithm 1
for different problem sizes in m.

Again, we observe high accuracy in the solution factors computed with the
algorithm in H-matrix arithmetic. The relative residual as well as the relative
error are observed to remain bounded above for increasing problem size. The
execution time for the algorithm in H-matrix arithmetic is considerably lower
than the time needed by the algorithm in standard dense format. �

Example 5.3. Now we fix the problem size for the system described in Exam-
ple 5.2 by n = m = 4096. We test various parameter combinations of ε and τ ,
where τ is the threshold for the numerical rank decision in the rank-revealing
QR factorization, ε is the parameter for the adaptive choice of rank in an H-
matrix subblock. Previous results for the solution of Lyapunov equations and
an error analysis in [5] suggest that no accuracy improvements can be expected
by choosing the parameter τ smaller than ε; we therefore did not consider this
case. For the stopping criterion we take the threshold tol= 1.e− 04.

ε τ # r time[sec] rel. residuum rel error
H full H full H full

1.e-04 1.e-04 12 14 14 459 4563 2.6e-06 7.0e-09 1.58e-06
1.e-08 1.e-04 12 14 14 1805 4517 7.0e-09 7.0e-09 5.22e-11
1.e-08 1.e-08 12 30 30 1810 4492 2.0e-10 8.4e-16 5.22e-11
1.e-16 1.e-08 12 30 30 8703 4519 8.8e-16 8.4e-16 1.22e-15
1.e-16 1.e-16 12 69 75 8792 4335 6.4e-16 7.0e-16 1.22e-15

Table 3: Accuracy and rank r of the computed solution factors of Algorithm 1
for different parameter variations and n = 4096, m = 4096.

The results of the parameter variations show the expected behavior, we have
increasing accuracy as ε gets smaller. A choice of ε = 1.e− 16 results in large
computational time and large storage requirements since the local ranks in the
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matrix blocks have to be very large to fulfill the accuracy condition (10). There-
fore the benefits of the H-matrix approach from low-rank approximations of the
submatrices get lost. The storage requirements might get even larger than in
”full” format, compare (8), and it is consequently recommended to choose the
parameter ε of moderate size. The dimension of the solution factors increases
with τ getting smaller which has impact on the accuracy for the results in stan-
dard arithmetic. A decreasing of τ did not considerably improve the accuracy
in the H-matrix computation. This observation fits to a criterion presented in
[9, page 21], which suggests to choose the RRQR threshold τ of the same order
as the square root of the desired accuracy. �

6 Conclusions

In this paper a new algorithm for the solution of Sylvester equations in fac-
torized form is presented. This algorithm computes the factorized solution of
Sylvester equations arising from FEM/BEM discretizations of elliptic partial dif-
ferential operators. With the H-matrix based sign function approach we have
significant savings in computational time and memory requirements during the
iteration and due to the modified iteration scheme for computing the solution
factors directly we have additional savings in memory requirement for the ap-
proximate full-rank solution factors if the solution of the Sylvester equation has
low numerical rank. Therefore the algorithm is well-suited for model reduction
based on balanced truncation by using the cross-Gramian where we have to
solve large-scale Sylvester equations with factorized right-hand side.
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