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Abstract. Real polynomially normal matrices are studied, i.e., matrices whose adjoint with
respect to the indefinite inner product is a polynomial in the matrix. The set of these matrices is
a subset of indefinite inner product normal matrices that contains all selfadjoint, skew-adjoint, and
unitary matrices, but that is small enough such that all elements can be completely classified. The
essential decomposition of a real polynomially normal matrix is introduced. This is a decomposition
into three parts, one part having real spectrum only and two parts that can be described by two
complex matrices that are polynomially normal with respect to a sesquilinear and bilinear form,
respectively. In the paper, the essential decomposition is used as a tool in order to derive a sufficient
condition for existence of invariant semidefinite subspaces and to obtain canonical forms for real
polynomially normal matrices. In particular, canonical forms for real matrices that are selfadjoint,
skewadjoint, or unitary with respect to an indefinite inner product are recovered.
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1. Introduction. Let H ∈ R
n×n be invertible and (skew-)symmetric. Then H

induces a nondegenerate (skew-)symmetric bilinear form on R
n via [x, y] := yTHx for

x, y ∈ R
n. This form can be extended to C

n either as a (skew-)Hermitian sesquilinear
form via [x, y] := y∗Hx for x, y ∈ C

n or as a (skew-)symmetric bilinear form via
[x, y] := yT Hx for x, y ∈ C

n. In the paper, we will use both extensions in order to
obtain canonical forms for several classes of real matrices that are normal with respect
to the real indefinite inner product induces by H.

In the following let F denote one of the fields R or C, and for M ∈ F
m×n let M?

denote either MT , the transpose, or M∗, the conjugate transpose of M , respectively.
Moreover, let H ∈ F

n×n be invertible and satisfy H? = ±H. Then H induces a
nondegenerate (skew-)symmetric bilinear form (in the case ? = T ) or a nondegenerate
(skew-)Hermitian sesquilinear form (in the case ? = ∗) via [x, y] := y?Hx for x, y ∈ F

n.
For a matrix M ∈ F

n×n, the H-adjoint of M is defined to be the unique matrix M [?]

satisfying

[x,My] = [M [?]x, y] for all x, y ∈ F
n

The matrix M ∈ F
n×n is called H-selfadjoint, H-skew-adjoint, or H-unitary, respec-

tively, if M [?] = M , M [?] = −M , or M [?] = M−1, respectively. H-selfadjoint,
H-skewadjoint, and H-unitary matrices have been widely discussed in the literature,
see [1, 6, 7, 13, 18] and the references therein, both from the viewpoint of theory and
the viewpoint of numerical analysis. In particular the case F = R and

H := J :=

[
0 1
−1 0

]

has been intensively studied. Canonical forms for H-selfadjoint and H-skewadjoint
matrices have been developed in various sources, see [4, 6, 7, 13]) for the case F = C
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and H being Hermitian, and [4, 5, 6, 7, 13] for the case F = R and H being symmetric
or skew-symmetric. These canonical forms are obtained under transformations of the
form

(M,H) 7→ (P−1MP,P?HP ), P ∈ F
n×n nonsingular. (1.1)

that correspond to a change of bases x 7→ Px in the space F
n. It is easy to check that

M is H-selfadjoint, H-skewadjoint, or H-unitary, respectively, if and only if P−1MP
is P?HP -selfadjoint, P?HP -skewadjoint, or P?HP -unitary, respectively.

Canonical forms for the case F = C and H being symmetric or skew-symmetric
have been developed in [15], but have been implicitly known by the canonical forms
for pairs of complex symmetric or skew-symmetric matrices given in [22]. (Observe
that, for example, for symmetric H, a matrix M ∈ C

n×n is H-selfadjoint if and only if
HM is symmetric. Thus, a canonical form for the pair (M,H) under transformations
of the form (1.1) can be easily obtained from the canonical form for the pair (HM,H)
of symmetric matrices under simultaneous congruence.)

Canonical forms for H-unitary matrices have been developed in [9] for the case
of sesquilinear forms on C

n. For F = R and the case of skew-symmetric bilinear
forms, they can be obtained from [21, Theorem 5]. For the case F = R and symmetric
H, a canonical form is given in [20] in general and in [2] for the special case that
M is diagonalizable (over the complex field). In addition, canonical forms for H-
unitary matrices for some particular choices of H have been developed in [14, 19]
under similarity transformations that leave H invariant.

Also, attempts have been made to obtain a more general theory by investigating
H-normal matrices, i.e., matrices M satisfying M [?]M = MM [?]. (It is easy to
see that H-normality is invariant under transformations of the form (1.1) as well.)
However, it has been observed in [8] that the problem of classifying H-normal matrices
is wild and so far, canonical forms have been obtained for some special cases only, see
[8, 11, 12]. In [9] and [10], canonical forms for a subclass of H-normal matrices, the
so-called block-Toeplitz H-normal matrices, have been obtained for the case F = C

and H induces a sesquilinear form. However, it has been explained in [15] that it does
not make sense to generalize this concept to bilinear forms, because even H-selfadjoint
matrices fail to be block-Toeplitz H-normal in general.

Therefore, the class of polynomially H-normal matrices has been studied in [17]
and [15]. Recall that a matrix X ∈ F

n×n is polynomially H-normal if there exists a
polynomial p ∈ F[t] such that X? = p(X). It easy to check that H-selfadjoint, H-
skewadjoint, and H-unitary matrices are polynomially H-normal. For H-selfadjoint
and H-skewadjoint matrices this is trivial and for H-unitary matrices U , this follows
because the inverse of a matrix is a polynomial of the matrix, i.e., U? = U−1 = p(U)
for some polynomial p ∈ F[t]. On the other hand, polynomial H-normality implies
H-normality, because any square matrix M commutes with any polynomial of M . In
[15] canonical forms for complex polynomially H-normal matrices have been developed
both for the case of sesquilinear forms and bilinear forms.

It is the aim of this paper to extend the results of [15] to the real case. This could
be done by starting “from scratch”, i.e., decomposing polynomially H-normal matrices
into indecomposable blocks (for the concept of decomposability see Section 2) and
then reducing these blocks towards canonical form. Instead, we introduce a special
representation of real polynomially H-normal matrices in this paper, the so-called
essential decomposition. In this representation a real polynomially H-normal matrix
is decomposed into three parts: the real part, i.e., a part with real spectrum only, the
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complex sesquilinear part that can be described with the help of a complex matrix
that is polynomially H-normal matrix with respect to a sesquilinear form, and the
complex bilinear part that can be described with the help of a complex matrix that
is polynomially H-normal with respect to a bilinear form. It is then shown that
canonical forms can be obtained by computing canonical forms for all three parts of
the essential decomposition separately. In particular, the canonical forms of the two
latter parts are implicitly given by corresponding canonical forms for the complex
case.

Although the essential decomposition has been designed having in mind the com-
putation of canonical forms for real polynomially normal matrices in indefinite inner
products, it is of independent interest and appears to be a convenient tool in the inves-
tigation of real polynomially normal matrices. Instead of proving results by starting
from canonical forms, one may use the essential decomposition to “reduce” the prob-
lem to the corresponding problem in the complex cases. We give an example for this
strategy by using the essential decomposition for the proof of existence of semidefinite
invariant subspaces for polynomially normal matrices of special type.

The remainder of the paper is organized as follows. In Section 2, we discuss
some basic properties of real polynomially H-normal matrices. In Section 3, we re-
call the well-known algebra isomorphism that relates the complex numbers with a
set of particular 2 × 2-matrices and discuss several properties of this isomorphism.
In Section 4, we state and prove the main result of this paper, i.e., existence of the
essential decomposition. Then, we show in Section 5 how this result can be applied
to obtain canonical forms for real H-selfadjoint, H-skewadjoint, and H-unitary ma-
trices. In Section 6, the essential decomposition is used in order to prove existence of
semidefinite invariant subspaces for some polynomially H-normal matrices.

Throughout the paper, we use the following notation. If it is not explicitly stated
otherwise, H ∈ F

n×n always denotes an invertible matrix satisfying H? = ±H and
induces a bilinear, respectively, sesquilinear form [ ·, ·]. A matrix A = A1 ⊕ · · · ⊕ Ak

denotes a block diagonal matrix A with diagonal blocks A1, . . . , Ak (in that order).
ei is the i-th unit vector in F

n. The spectrum of a matrix A ∈ F
n×n is denoted

by σ(A). If A = [aij ]i,j ∈ F
n×m and B ∈ F

k×l, then A ⊗ B denotes the Kronecker
product

A ⊗ B := [aijB]i,j ∈ F
(nk)×(ml).

The symbols Rn, Σn, and Jn(λ) denote the n × n reverse identity, the n × n reverse
identity with alternating signs, and the Jordan block of size n associated with the
eigenvalue λ, respectively, i.e.,

Rn =




0 1

. .
.

1 0


 , Σn =




0 (−1)0

. .
.

(−1)n−1 0


 , Jn(λ) =




λ 1 0
. . .

. . .

. . . 1
0 λ




.

Finally, we use the abbreviation M−? := (M?)−1 = (M−1)?.

2. Preliminaries. In this section, we collect some basic results for polynomially
H-normal matrices. We start with the following proposition.

Proposition 2.1. Let X ∈ F
n×n be such that X [?] = p̃(X) for some p̃ ∈ F[t].

1) There is a unique polynomial p ∈ F[t] of minimal degree so that X [?] = p(X).
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2) p′(λ) 6= 0 for all eigenvalues λ ∈ C of X having partial multiplicities larger
than one.

3) p
(
p(λ)

)
= λ for all eigenvalues λ ∈ C of X.

Proof. See [15].
Definition 2.2. Let X ∈ F

n×n be such that X [?] = p̃(X) for some p̃ ∈ F[t].
Then the unique polynomial p ∈ F[t] of minimal degree such that X [?] = p(X) is called
the H-normality polynomial of X.

An important notion in the context of classification of matrices that are structured
with respect to indefinite inner products is the notion of H-decomposability. A matrix
X ∈ F

n×n is called H-decomposable if there exists a nonsingular matrix P ∈ F
n×n

such that

P−1XP = X1 ⊕ X2, P?HP = H1 ⊕ H2,

Clearly, any matrix X can always be decomposed as

P−1XP = X1 ⊕ · · · ⊕ Xk, P?HP = H1 ⊕ · · · ⊕ Hk, (2.1)

where Xj is Hj-indecomposable, j = 1, . . . , k. Thus, it remains to classify indecom-
posable matrices.

Proposition 2.3. Let H ∈ R
n×n be nonsingular and symmetric or skew-

symmetric. Furthermore, let X ∈ R
n×n be an H-indecomposable polynomially H-

normal matrix. Then σ(X) ⊆ R or σ(X) ∩ R = ∅.
Proof. Clearly, for any real matrix X there exists a similarity transformation with

a nonsingular transformation matrix P ∈ R
n×n such that X̃ := P−1XP = X1 ⊕ X2,

where σ(X1) ⊆ R and σ(X2)∩R = ∅, for instance, let X̃ be the real Jordan canonical
form of X (see, e.g., Section 3). Since X is polynomially H-normal, say with H-
normality polynomial p ∈ F[t], it follows that σ

(
p(X1)

)
⊆ R, because p has real

coefficients. We claim that σ
(
p(X2)

)
∩R = ∅. Indeed, assume that µ ∈ σ

(
p(X2)

)
∩R.

Then there exists an eigenvalue z ∈ C\R such that µ = p(z). But then, Proposition 2.1
item 3) implies z = p

(
p(z)

)
which identifies z as a real number, a contradiction. Hence,

the claim follows. Now set H̃ := PT HP . Then the identity

(
p(X1) ⊕ p(X2)

)T
H̃ = p(X̃)T H̃ = H̃X̃ = H̃(X1 ⊕ X2)

together with the information on the spectra of Xj and p(Xj), j = 1, 2 implies that

H̃ = H1 ⊕ H2 has a block structure conformable with X̃. (Here, we used that the
Sylvester equation AY = Y B has only the trivial solution Y = 0 if the spectra of
A and B are disjoint.) But then, the H-indecomposability assumption on X implies

X̃ = X1 or X̃ = X2 and the assertion follows.
In view of Proposition 2.3, it is sufficient to develop canonical forms for polyno-

mially H-normal matrices that have either real spectrum only or nonreal spectrum
only. We start with the case of a real spectrum. The following result has been proved
in [15].

Theorem 2.4. Let δ = ±1 be such that HT = δH and let X ∈ R
n×n be

polynomially H-normal with H-normality polynomial p ∈ R[t]. If σ(X) ⊆ R, then
there exists a nonsingular matrix P ∈ R

n×n such that

P−1XP = X1 ⊕ · · · ⊕ Xp, PT HP = H1 ⊕ · · · ⊕ Hp, (2.2)

where Xj is Hj-indecomposable, and Xj and Hj have one of the following forms:
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i) blocks associated with λj ∈ R satisfying p(λj) = λj and p′(λj) = 1 if nj > 1:

if δ = +1 : Xj = Jnj
(λj), Hj = εjRnj

, (2.3)

if δ = −1 : Xj =

[Jnj
(λj) 0

0 p
(
Jnj

(λj)
)T
]

, Hj =

[
0 Inj

−Inj
0

]
, (2.4)

where nj ∈ N and εj = ±1;
ii) blocks associated with λj ∈ R satisfying p(λj) = λj and p′(λj) = −1:

Xj =




λj 1 aj,2 . . . aj,nj−1

. . .
. . .

. . .
...

. . .
. . . aj,2

. . . 1
0 λj




, Hj = εjΣnj
, (2.5)

where nj > 1 is odd if δ = 1 and even if δ = −1; furthermore, we have
aj,2, . . . , aj,nj−1 ∈ R, aj,k = 0 for odd k, and εj = ±1;

iii) blocks associated with λj ∈ R satisfying p(λj) = λj and p′(λj) = −1 if nj > 1:

Xj =

[ Jnj
(λj) 0

0 p
(
Jnj

(λj)
)T

]
, Hj =

[
0 Inj

δInj
0

]
, (2.6)

where nj ∈ N is even if δ = +1 and odd if δ = −1;
iv) blocks associated with a pair (λj , µj) ∈ R

2 satisfying µj = p(λj) < λj = p(µj):

Xj =

[ Jnj
(λj) 0

0 p
(
Jnj

(λj)
)T

]
, Hj =

[
0 Inj

δInj
0

]
, (2.7)

where nj ∈ N.
Moreover, the form (2.2) is unique up to permutation of blocks and the nonzero pa-
rameters aj,k in (2.5) are uniquely determined by λj and the coefficients of p and can
be computed from the identity p

(
Xj

)
Hj = HjXj.

Thus, Theorem 2.4 settles case that the matrix under consideration has real spec-
trum only and it remains to investigate the case of nonreal spectrum only. This will
be done in the following sections.

3. Relating real and complex matrices. Assume that X ∈ R
n×n is a poly-

nomially H-normal matrix with nonreal spectrum. Instead of developing a canonical
form for such matrices directly, it is our aim to construct these forms by applying the
known results for the complex case obtained in [15]. As a tool, we use the well-known
algebra isomorphism that relates complex matrices with real matrices of double size
that have a special structure. Indeed, it is well known that the set

MC =

{[
α β
−β α

]
: α, β ∈ R

}

incorporated with the usual matrix addition and matrix multiplication is a field that
is isomorphic to the field C of complex numbers. The corresponding field isomorphism

φ : C → MC, (α + iβ) 7→
[

α β
−β α

]
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can easily be extended to an algebra isomorphism (that we will also denote by φ) from
the matrix algebra C

n×n onto the matrix algebra Mn×n
C

consisting of n× n matrices
with entries in MC by

φ
(
(zij)

)
:=
(
φ(zij)

)
=

([
Re zij Im zij

−Im zij Re zij

])n

j,k=1

, (zij) ∈ C
n×n.

If scalar multiplication in Mn×n
C

is restricted to scalar multiplication by diagonal
matrices from MC (which are images of real numbers under φ), then we can (and do)
canonically identify Mn×n

C
with a subalgebra of R

2n×2n.

With the help of the isomorphism φ the real Jordan canonical form of a real
matrix can be conveniently described. Indeed, recall that a Jordan block associated
with a pair of conjugate nonreal eigenvalues α ± iβ, α, β ∈ R has the form

Jn(α, β) := In ⊗
[

α β
−β α

]
+ Jn(0) ⊗ I2 =




α β 1 0 0
−β α 0 1

α β
. . .

−β α
. . . 1 0

0 1
α β

0 −β α




. (3.1)

Clearly Jn(α, β) is in the range of φ, because φ
(
Jn(α + iβ)

)
= Jn(α, β) for all

α, β ∈ R. Other properties of φ are listed in the following remark and can be verified
straight forward.

Remark 3.1. Let Z ∈ C
n×n and M ∈ Mn×n

C
.

a) If λ ∈ C is an eigenvalue of Z, then λ, λ are eigenvalues of φ(Z).
b) φ(Z)T = φ(Z∗) and φ−1(MT ) = φ−1(M)∗.
c) (In ⊗ R2)φ(Z)(In ⊗ R2) = φ

(
Z
)
.

d) φ
(
RnZRn

)
= R2n φ

(
Z
)
R2n.

e) If T ∈ C
n×n is upper triangular Toeplitz, then φ(T ) = R2n φ(T )T R2n .

f) p
(
φ(Z)

)
= φ

(
p(Z)

)
for any polynomial p ∈ R[t].

Note that each Jordan block Jn(α, β) = φ
(
Jn(α + iβ)

)
in (3.1) is similar to

the block Jn(α,−β) = φ
(
Jn(α − iβ)

)
and thus, Jn(α, β) can be represented by a

complex matrix either having the eigenvalue α+ iβ or α− iβ. This observation easily
generalizes to the following lemma.

Lemma 3.2. If X ∈ R
2n×2n has no real eigenvalues and if σ1 ⊆ σ(X) satisfies

σ1∩σ1 = ∅, then there exists a nonsingular P ∈ R
2n×2n and a matrix X ∈ C

n×n such
that σ(X ) = σ1 and P−1XP = φ(X ).

Let us assume that M ∈ Mn×n
C

is a polynomially H-normal matrix with H-
normality polynomial p, that is, the identity p(M)T H = HM holds true. By, Re-
mark 3.1 items b) and f), we immediately obtain that also p(M)T ∈ Mn×n

C
. The

question arises if also H is contained in Mn×n
C

, or, equivalently, if the Sylvester equa-
tion p(M)T H = HM has a solution in Mn×n

C
. A sufficient condition is given in the

following result.

Proposition 3.3. Let A,B ∈ C
n×n such that σ(A) ∩ σ(B) = ∅. If Y ∈ R

2n×2n

satisfies φ(A)Y = Y φ(B), then Y ∈ Mn×n
C

.
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Proof. Define the permutation matrix Π = [e1, en+1, e2, en+2, . . . , en, e2n], where
ej denotes the jth unit column vector of length 2n. Then for any Z ∈ C

n×n the
transformation with Π has the following effect:

Π−1φ(Z)Π =

[
Re(Z) Im(Z)
−Im(Z) Re(Z)

]
,

where Re(Z) := 1
2 (Z + Z) and Im(Z) := 1

2 (Z − Z). Moreover,

Q−1φ(Z)Q =

[
Z 0
0 Z

]
, where Q :=

1√
2

Π

[
−iIn In

In −iIn

]
.

Next consider

Π−1Y Π =

[
Y1 Y2

Y3 Y4

]
, (3.2)

where Yj ∈ R
n×n, j = 1, 2, 3, 4. Then

Q−1Y Q =

[
Y1 + Y4 + i(Y2 + Y3) Y2 + Y3 + i(Y1 − Y4)
Y2 + Y3 + i(Y4 − Y1) Y1 + Y4 + i(Y3 + Y2)

]

and φ(A)Y = Y φ(B) implies
[

A 0
0 A

]
Q−1Y Q = Q−1Y Q

[
B 0
0 B

]
(3.3)

Since σ(A)∩σ(B) = ∅, the Sylvester equation AX = XB only has the trivial solution
X = 0. Thus, we obtain from (3.3) that Y2+Y3+i(Y1−Y4) = 0 which implies Y3 = −Y2

and Y4 = Y1. Inserting this in (3.2), it follows that Y = φ(Y1 + iY2) ∈ Mn×n
C

.

4. Essential decomposition of polynomially H-normal matrices. In this
section, we prove the main result of the paper that shows the existence of a decompo-
sition of a real polynomially H-normal matrix X that we will call essential decomposi-
tion. As a first step, we recall that in view of Proposition 2.3, it remains to investigate
polynomially H-normal matrices X that have nonreal spectrum only. Since any real
matrix with nonreal spectrum only is similar to a matrix in Mn×n

C
, we may assume

without loss of generality that X = φ(X ), where X ∈ C
n
2
×n

2 . In addition, we know
that X is polynomially H-normal, i.e., p(X)T H = HX for some polynomial p ∈ F[t].
It is natural to ask if this property is inherited by X , i.e., we ask whether there exists
some complex (skew-)Hermitian matrix H such that p(X )∗H = HX . Since

φ
(
p(X )∗H

)
= φ

(
p(X )∗

)
φ(H) = φ

(
p(X )

)T
φ(H) = p

(
φ(X )

)T
φ(H) = p(X)T φ(H)

and φ(HX ) = φ(H)φ(X ) = φ(H)X,

we obtain that the answer is affirmative if H is in the range of φ, that is, H = φ(H)
for some H ∈ C

n×n. (It is easy to check that in this case H is (skew-)Hermitian if
and only if H is (skew-)symmetric.) By Proposition 3.3, we know that a sufficient
condition is given by σ(X )∩σ

(
p(X )

)
= ∅. The following example illustrates this fact.

Example 4.1. Let H ∈ R
4×4 be nonsingular and consider the matrix

S =

[
0 1
−1 0

]
⊕
[

0 1
−1 0

]
= φ

([
i 0
0 i

]

︸ ︷︷ ︸
=:S

)
.
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Assume that −ST H = HS, that is, S is H-skewadjoint, or, equivalently, S is polyno-
mially H-normal with H-normality polynomial p(t) = −t. Since the only eigenvalue
of S is i, we have σ(S) ∩ σ

(
p(S)

)
= ∅. Thus, H ∈ M2×2

C
by Proposition 3.3. Indeed,

a straight forward computation reveals that S is H-skewadjoint if and only if H has
the form

H =




h1 0 h3 h4

0 h1 −h4 h3

h3 −h4 h2 0
h4 h3 0 h2


 = φ

([
h1 h3 + ih4

h3 − ih4 h2

]

︸ ︷︷ ︸
=:H

)
,

where h1, h2, h3, h4 ∈ R. It is easy to check that S is skewadjoint with respect to the
sesquilinear form induced by the Hermitian matrix H.

Unfortunately, the trick in Example 4.1 does not work if σ(X ) ∩ σ
(
p(X )

)
6= ∅.

We illustrate this with the help of another example.
Example 4.2. Let H ∈ R

4×4 be nonsingular and consider the matrix

A =

[
0 1
−1 0

]
⊕
[

0 1
−1 0

]
= φ

([
i 0
0 i

]

︸ ︷︷ ︸
=:A

)
.

Assume that A is H-selfadjoint, or, equivalenty, that A is polynomially H-normal
with H-normality polynomial p(t) = t. Then a straight forward computation reveals
that this is the case if and only if H has the form

H =




h1 h2 h3 h4

h2 −h1 h4 −h3

h3 h4 h5 h6

h4 −h3 h6 −h5


 ,

where h1, h2, h3, h4, h5, h6 ∈ R. Thus, since H 6= 0, we obtain that H is not in the
range of φ. However, observe that

(I2 ⊗ R2)H =




h2 −h1 h4 −h3

h1 h2 h3 h4

h4 −h3 h6 −h5

h3 h4 h5 h6


 = φ

([
h2 − ih1 h4 − ih3

h4 − ih3 h6 − ih5

]

︸ ︷︷ ︸
=:H

)
,

It is interesting to note that H is not Hermitian, but complex symmetric, and that A
is selfadjoint with respect to the bilinear form induced by H as it follows easily from
a straight forward computation.

Examples 4.1 and 4.2 suggest the following strategy in order to compute the
canonical form for (X,H), where X = φ(X ). If σ(X )∩σ

(
p(X )

)
= ∅ then we interpret

X as a polynomially normal matrix with respect to a sesquilinear form. If this is not
the case, then we will try to interpret X as a polynomially normal matrix with respect
to a bilinear form along the lines of Example 4.2. This is the main idea that leads to
the essential decomposition of polynomially H-normal matrices.

Theorem 4.3 (Essential decomposition). Let δ = ±1 be such that HT = δH
and let X ∈ R

n×n be a polynomially H-normal matrix with H-normality polynomial
p ∈ R[t]. Then there exists a nonsingular matrix P ∈ R

n×n such that

P−1XP = X1 ⊕ X2 ⊕ X3, PT HP = H1 ⊕ H2 ⊕ H3, (4.1)
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where for j = 1, 2, 3 the matrices Xj and Hj have the same size nj × nj and satisfy
the following conditions:

(1) σ(X1) ⊆ R;
(2) X2 = φ(X2) and H2 = φ(H2), where H∗

2 = δH2 and where

p(X2)
∗H2 = H2X2,

i.e., X2 is polynomially H2-normal with respect to the sesquilinear form in-
duced by H2; moreover, X2 satisfies

σ(X2) ⊆ {λ ∈ C \ R | p(λ) 6= λ}, σ(X2) ∩ σ
(
p(X2)

)
= ∅,

(3) X3 = φ(X3) and (I ⊗ R2)H3 = φ(H3), where HT
3 = εH3 and where

p(X3)
TH3 = H3X3,

i.e., X3 is polynomially H3-normal with respect to the bilinear form induced
by H3; moreover, X3 satisfies

σ(X3) ⊆ {λ ∈ C \ R | p(λ) = λ}, σ(X3) ∩ σ
(
p(X3)

)
= ∅.

Furthermore, the decomposition (4.1) is unique up to equivalence of the factors Xj,
Hj in the sense (Xj , Hj) ∼ (P−1XjP, PT HjP ) for some nonsingular P ∈ R

nj×nj .
Proof. Clearly C = R ∪̇ {λ ∈ C \ R | p(λ) 6= λ} ∪̇ {λ ∈ C \ R | p(λ) = λ}. Thus,

the spectrum of X can analogously split into three disjoint parts and there exists a
nonsingular matrix P such that P−1XP = X1 ⊕ X̃2 ⊕ X̃3 where

σ(X1) ⊆ R, σ(X̃2) ⊆ {λ ∈ C\R | p(λ) 6= λ}, σ(X̃3) ⊆ {λ ∈ C\R | p(λ) = λ}. (4.2)

Observe that if λ ∈ σ(X) is from one of the spectra in (4.2), then p(λ) is from the
same spectrum. (This follows easily from p

(
p(λ)

)
= λ for all eigenvalues λ ∈ C of X.)

Consequently, the identity

p(X1 ⊕ X̃2 ⊕ X̃3)
T (PT HP ) = (P T HP )(X1 ⊕ X̃2 ⊕ X̃3)

implies that P T HP has a block structure H1 ⊕ H̃2 ⊕ H̃3 corresponding to P−1XP ,
where we used that the Sylverster equation AY = Y B only has the trivial solution
Y = 0 when the spectra of A and B are disjoint. Clearly, the decomposition of X
into the three parts X1, X̃2, and X̃3 is then unique in the sense of the theorem.

Next, we focus our attention on the blocks X̃2 and H̃2. Since X̃2 is polynomially
H̃2-normal and since X̃2 has no eigenvalues satisfying p(λ) = λ, it follows from Propo-

sition 2.1, item 3) that the eigenvalues of X̃2 occur in pairs (λ, µ), where p(λ) = µ and

p(µ) = λ. Since X̃2 is furthermore real and, hence, all eigenvalues occur in conjugate
pairs, we obtain that

σ(X̃2) =
m⋃

j=1

{λj , λj} ∪
r⋃

j=m+1

{λj , λj , µj , µj}, (4.3)

for some λj , µj ∈ C \ R, where p(λj) = λj for j = 1, . . . ,m and p(λj) = µj 6= λj for
j = m + 1, . . . , r, and λi 6= λj , λj for i 6= j. Setting

σ2 :=

m⋃

j=1

{λ1} ∪
r⋃

j=m+1

{λj , µj}, (4.4)
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we obtain that σ2 ∩ σ2 = ∅, and hence, by Lemma 3.2, there exists a nonsingular
matrix P̃2 such that X2 := P̃−1

2 X̃2P̃2 = φ(X2), where σ(X2) = σ2. Observe that by

construction, we also have σ(X2)∩σ
(
p(X2)

)
= ∅. Denote H2 := P̃T

2 H̃2P̃2. Then X2 is
polynomially H2-normal and in view of Proposition 3.3, we obtain from the identity

φ
(
p(X2)

T )
H2 = φ

(
p(X2)

)T
H2 = p(X2)

T H2 = H2X2 = H2 φ(X2) (4.5)

that H2 ∈ Mm2×m2

C
, where m2 = n2/2, i.e., there exists H2 ∈ C

m2×m2 such that
H2 = φ(H2). From HT

2 = εH2, we easily obtain H∗
2 = εH2. Moreover, identity (4.5)

implies that

φ
(
p(X2)

∗H2

)
= φ

(
p(X2)

∗
)
H2 = H2 φ(X2) = φ(H2X2),

and since φ is an isomorphism, it follows that p(X2)
∗H2 = H2X2.

Next, consider the blocks X̃3 and H̃3. Since the spectrum of X̃3 is nonreal, there
exists a nonsingular matrix P̃3 such that X3 := P̃−1

3 X̃3P̃3 = φ(X3) and where X3 is
chosen such that

σ(X3) ∩ σ(X3) = ∅. (4.6)

(For example, we may choose σ(X3) ⊆ {λ |Re(λ) > 0}.) Denote H3 := P̃T
3 H̃3P̃3.

Then X3 is polynomially H3-normal and from Remark 3.1, we obtain that

(I ⊗ R2)H3 φ(X3) = (I ⊗ R2) p
(
φ(X3)

)T
H3 = (I ⊗ R2)φ

(
p(X3)

∗
)
H3

= (I ⊗ R2)φ
(
p(X3)

∗
)
(I ⊗ R2)(I ⊗ R2)H3

= φ
(
p(X3)

T
)
(I ⊗ R2)H3.

Recall that all eigenvalues λ of X̃3 satisfy p(λ) = λ. Thus, in view of (4.6), we have
σ(X3) ∩ σ

(
p(X3)

)
= ∅. Then Proposition 3.3 implies (I ⊗ R2)H3 ∈ Mm3×m3

C
, where

m3 = n3/2, that is, (I ⊗ R2)H3 = φ(H3) for some H3 ∈ C
m3×m3 . Moreover, we

obtain from HT
3 = εH3 that

φ(H3) = (I ⊗ R2)H3 = ε(I ⊗ R2)H
T
3 = ε(I ⊗ R2)

(
(I ⊗ R2)H3

)T
(I ⊗ R2)

= ε(I ⊗ R2)φ(H3)
T (I ⊗ R2) = ε(I ⊗ R2)φ(H∗

3)(I ⊗ R2) = εφ(HT
3 ),

that is, HT
3 = εH3. Finally, we have that

φ
(
p(X3)

TH3

)
= φ

(
p(X3)

T
)
(I ⊗ R2)H3 = (I ⊗ R2)H3 φ(X3) = φ(H3X3)

which implies p(X3)
TH3 = H3X3 and concludes the proof.

The uniqueness property of Theorem 4.3 justifies the following definition.
Definition 4.4. Let X ∈ R

n×n be polynomially H-normal and let

P−1XP = X1 ⊕ X2 ⊕ X3, PT HP = H1 ⊕ H2 ⊕ H3,

be its essential decomposition. Then X1 is called the real part of X, X2 is called the
complex sesquilinear part of X, and X3 is called the complex bilinear part of X.

In view of Theorem 4.3, it seems natural to compute the canonical form for the
pair (X,H) by computing the canonical forms for the pairs (Xj , Hj) in the essen-
tial decomposition. The following theorem justifies that the combination of these
canonical forms does indeed yield a canonical form for the pair (X,H).
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Theorem 4.5. Let δ = ±1 be such that H, H̃ ∈ R
n×n satisfy HT = δH and

H̃T = δH̃. Moreover, let X ∈ R
n×n be polynomially H-normal and X̃ ∈ R

n×n be
polynomially H̃-normal such that the two pairs (X,H) and (X̃, H̃) are essentially
decomposed

X = X1 ⊕ X2 ⊕ X3, H = H1 ⊕ H2 ⊕ H3,

X̃ = X̃1 ⊕ X̃2 ⊕ X̃3, H̃ = H̃1 ⊕ H̃2 ⊕ H̃3,

in the sense of Theorem 4.3, in particular, X1, H1 ∈ R
n1×n1 , X̃1, H̃1 ∈ R

en1×en1 ,

X2 = φ(X2), H2 = φ(H2), X3 = φ(X3), H3 = (I ⊗ R2)φ(H3),

X̃2 = φ(X̃2), H̃2 = φ(H̃2), X̃3 = φ(X̃3), H̃3 = (I ⊗ R2)φ(H̃3),

where Xj ,Hj ∈ C
m2×m2 , X̃j , H̃j ∈ C

emj×emj , j = 2, 3 and where all blocks satisfy the

assumptions of Theorem 4.3. Assume further that the blocks M = X2, X̃2,X3, X̃3 have
been chosen such that their spectra satisfy the condition

λ ∈ σ(M) ⇒ λ 6∈ σ(M). (4.7)

Then the following conditions are equivalent.
(1) The identities n1 = ñ1, m2 = m̃2, m3 = m̃3 hold and there exists nonsingular

matrices P1 ∈ R
n1×n1 , Pj ∈ C

mj×mj , j = 2, 3 such that

(1a) P−1
1 X̃1P1 = X1 and PT

1 H̃1P1 = H1,

(1b) P−1
2 X̃2P2 = X2 and P∗

2 H̃2P2 = H2,

(1c) P−1
3 X̃3P3 = X3 and PT

3 H̃3P3 = H3.

(2) The identities σ(X2) = σ(X̃2), σ(X3) = σ(X̃3) hold and there exists a nonsin-

gular matrix P ∈ R
n×n such that P−1X̃P = X and P T H̃P = H.

Proof. ’(1) ⇒ (2)’: From (1b) and (1c), we immediately obtain σ(X2) = σ(X̃2)

and σ(X3) = σ(X̃3). Let P := P1 ⊕ φ(P2)⊕ φ(P3). Then P satisfies the requirements
of the theorem, because we clearly have

P−1
j X̃jPj = φ(Pj)

−1 φ(Xj)φ(Pj) = φ(P−1
j X̃jPj) = φ(Xj) = Xj for j = 2, 3,

PT
2 H̃2P2 = φ(P2)

T φ(H̃2)φ(P2) = φ(P∗
2 H̃2P2) = φ(H2) = H2, (4.8)

and PT
3 H̃3P3 = φ(P∗

3 )(I ⊗ R2)φ(H̃3)φ(P3) (4.9)

= (I ⊗ R2)φ(PT
3 )(I ⊗ R2)(I ⊗ R2)φ(H̃3)φ(P3)

= (I ⊗ R2)φ(PT
3 H̃3P3) = (I ⊗ R2)φ(H3) = H3.

’(2) ⇒ (1)’: Applying the uniqueness statement of Theorem 4.3, we obtain from
the existence of P as in (2) that n1 = ñ1, m2 = m̃2, and m3 = m̃3, and that
there exists nonsingular matrices P1 ∈ R

n1×n1 , Pj ∈ R
2mj×2mj , j = 2, 3 such that

P−1
j X̃jPj = Xj and PT

j H̃jPj = Hj for j = 1, 2, 3. In particular, this implies (1a).

Then from (4.7), from σ(Xj) = σ(X̃j), j = 2, 3, and from Proposition 3.3, we obtain

that Pj ∈ Mmj×mj

C
, j = 2, 3, that is, there exist (nonsingular) matrices Pj ∈ C

mj×mj

such that Pj = φ(Pj), j = 2, 3. Then analogously to the calculations in (4.8) and (4.9),
we show that

φ(P−1
j X̃jPj) = φ(Xj), j = 2, 3, φ(P∗

2 H̃2P2) = φ(H2), φ(PT
3 H̃3P3) = φ(H3).
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Then using the fact that φ is an isomorphism implies (1b) and (1c).
Remark 4.6. Combining Theorem 4.3 and Theorem 4.5, the problem of com-

puting a real canonical form for a real polynomially H-normal matrix X is finally
reduced to computing one real canonical form as in Theorem 2.4 and two complex
canonical forms as in [15, Theorem 6.1] and [15, Theorem 7.1]. Since these three
canonical forms are unique up to permutation of blocks, by Theorem 4.5 we obtain
an analogous uniqueness statement for the real canonical form of a real polynomially
H-normal matrix X once we have specified the spectra of the matrices X2 and X3 in
essential decomposition of X. For X3, this could be easily achieved, e.g., by requiring
that σ(X3) ⊆ {λ |Re(λ) > 0}. For X2 this is not as easy, because we have to choose

a subset σ2 as in (4.4) from a set σ(X̃2) as in (4.3). In general, we cannot require
σ(X2) ⊆ {λ |Re(λ) > 0}, because σ2 must contain pairs {λj , µj} = {λj , p(λj)} and

it is not guaranteed that with λj also µj = p(λj) is in the open upper half plane
of the complex numbers. However, we may specify the spectrum of X2 as follows.
Introducing the following relation of the complex numbers

c1 < c2 :⇔
(
|c1| < |c2| or

(
|c1| = |c2| and arg(c1) < arg(c2)

))
,

let the elements of the set in (4.3)

σ(X̃2) =
m⋃

j=1

{λj , λj} ∪
r⋃

j=m+1

{λj , λj , µj , µj}

be ordered such that λj < λj for j = 1, . . . ,m and λj < λj , µj , µj for j = m+1, . . . , r.
Then we choose

σ2 :=
m⋃

j=1

{λ1} ∪
r⋃

j=m+1

{λj , µj},

as the spectrum of X2. With this specification, the real canonical form for a real
polynomially H-normal matrix X is unique up to permutation of blocks.

5. H-selfadjoint, H-skewadjoint, and H-unitary matrices. In this section,
we derive real canonical forms for real H-selfadjoint, H-skewadjoint, and H-unitary
matrices by applying Theorem 4.3. As before, H ∈ R

n×n always denotes a symmetric
or skew-symmetric, nonsingular matrix.

Theorem 5.1 (Canonical forms for H-selfadjoint matrices, H symmetric). Let
HT = H and let A ∈ R

n×n be H-selfadjoint. Then there exists a nonsingular matrix
P ∈ R

n×n such that

P−1AP = A1 ⊕ · · · ⊕ Ap, PT HP = H1 ⊕ · · · ⊕ Hp, (5.1)

where Aj is Hj-indecomposable and where Aj and Hj have one of the following forms:
i) blocks associated with real eigenvalues λj ∈ R:

Aj = Jnj
(λj), Hj = εjRnj

, (5.2)

where nj ∈ N, εj = ±1;
ii) blocks associated with a pair αj ± iβj of conjugate complex eigenvalues:

Aj = Jmj
(αj , βj), Hj = R2mj

, (5.3)

where nj ∈ N, αj ∈ R, and βj > 0.
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Moreover, the form (5.1) is unique up to the permutation of blocks.
Theorem 5.2 (Canonical forms for H-selfadjoint matrices, H skew-symmetric).

Let HT = −H and let A ∈ R
n×n be H-selfadjoint. Then there exists a nonsingular

matrix P ∈ R
n×n such that

P−1AP = A1 ⊕ · · · ⊕ Ap, PT HP = H1 ⊕ · · · ⊕ Hp, (5.4)

where Aj is Hj-indecomposable and where Aj and Hj have one of the following forms:
i) paired blocks associated with real eigenvalues λj ∈ R:

Aj =

[
Jnj

(λj) 0
0 Jnj

(λj)
T

]
, Hj =

[
0 Inj

−Inj
0

]
, (5.5)

where nj ∈ N;
ii) blocks associated with a pair αj ± iβj of conjugate complex eigenvalues:

Aj =

[
Jmj

(αj , βj) 0
0 Jmj

(αj , βj)
T

]
, Hj =

[
0 Inj

−Inj
0

]
(5.6)

where nj ∈ N, αj ∈ R, and βj > 0.
Moreover, the form (5.4) is unique up to the permutation of blocks.

Proof. (of Theorem 5.1 and Theorem 5.2). Let δ = ±1 be such that HT = δH.
Since A is H-selfajoint, we have that A is polynomially H-normal with H-normality
polynomial p(t) = t. Without loss of generality, we may assume that A and H are
already essentially decomposed in the sense of Theorem 4.3. Observe that A has no
complex sesquilinear part, due to the special structure of the polynomial p. Thus, we
have

A = Ã1 ⊕ Ã3, H = H̃1 ⊕ H̃3,

where σ(Ã1) ⊆ R and Ã3 = φ(A3), H̃3 = (I ⊗ R2)φ(H3), and where A3 is H3-
selfadjoint with respect to the bilinear form induced by the complex (skew-)symmetric
matrix H3. For the sake of uniqueness, we choose the eigenvalues of A3 such that
σ(A3) ⊆ {λ ∈ C \ R | Im(λ) > 0}. In view of Theorem 4.5, we may furthermore

assume that the pairs (Ã1, H̃1) and (A3,H3) are in canonical form.

The canonical form of the pair (Ã1, H̃1) can be read off from Theorem 2.4. If
δ = 1 then only blocks of the form (2.3) occur. This gives blocks of the form (5.2)
in (5.1). On the other hand if δ = −1, then only blocks of the form (2.4) occur. This
gives blocks of the form (5.5) in (5.4).

The canonical form of the pair (A3,H3) in the case δ = 1 can be read off from
[15, Theorem 7.2] and is

A3 = Jm1
(α1 + iβ1) ⊕ · · · ⊕ Jmk

(αk + iβk), H3 = Rm1
⊕ · · · ⊕ Rmk

,

where mj ∈ N, αj ∈ R, and βj > 0 for j = 1, . . . , k. Using (I ⊗ R2)φ(Rmj
) = R2mj

this gives the blocks of the form (5.3) in (5.1) (after eventually renaming indices).
The canonical form of the pair (A3,H3) in the case δ = −1 can be read off from

[15, Theorem 8.2] and is block diagonal with diagonal blocks of the form

Aj =

[
Jmj

(αj + iβj) 0
0 Jmj

(αj + iβj)
T

]
, Hj =

[
0 Imj

−Imj
0

]
,
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where mj ∈ N, αj ∈ R, and βj > 0, or, equivalently,

Aj =

[
Jmj

(αj + iβj) 0
0 Jmj

(αj + iβj)

]
, Hj =

[
0 Rmj

−Rmj
0

]

which follows easily by applying a transformation with the transformation matrix
Imj

⊕ Rmj
. Using the fact that (I ⊗ R2)φ(Rmj

) = R2mj
this gives the blocks of the

form (5.6) in (5.4) (after renaming of indices and after applying a transformation with
the transformation matrix I2mj

⊕ R2mj
).

Remark 5.3. The results of Theorem 5.1 and Theorem 5.4 are well known.
Indeed, a version similar to Theorem 5.1 appeared in [13] while a version similar to
Theorem 5.4 appeared in [5].

Concerning the corresponding result for H-skewadjoint matrices, we will need
some additional notation. Let En denote the diagonal matrix with increasing powers
of i, that is, En := diag(1, i, i2, . . . , in−1). Observe that the following identities hold:

E−1
n Jn(iλ)En = iJn(λ), E−1

n RnEn = in−1Σn, EnRnE−1
n = (−i)n−1Σn.

Moreover, let Gn denote the 2n × 2n anti-diagonal matrix given by

Gn = diag
(
1, (−1)1I2, (−1)2I2, . . . , (−1)n−1I2, (−1)n

)
R2n

=




1
−1

−1
1

1

. .
.

(−1)n−1

(−1)n−1

(−1)n




.

Theorem 5.4 (Canonical forms for H-skewadjoint matrices). Let δ = ±1 be such
that HT = δH and let S ∈ R

n×n be H-skewadjoint. Then there exists a nonsingular
matrix P ∈ R

n×n such that

P−1SP = S1 ⊕ · · · ⊕ Sp, PT HP = H1 ⊕ · · · ⊕ Hp, (5.7)

where Sj is Hj-indecomposable and where Sj and Hj have one of the following forms:
i) Blocks associated with the eigenvalue λj = 0:

Sj = Jnj
(0), Hj = εjΣnj

, (5.8)

where εj = ±1 and where nj ∈ N is odd if δ = 1 and even if δ = −1;
ii) paired blocks associated with the eigenvalue λj = 0:

Sj =

[
Jmj

(0) 0
0 −Jmj

(0)T

]
, Hj =

[
0 Imj

δImj
0

]
, (5.9)

where mj ∈ N is even if δ = 1 and odd if δ = −1;
iii) blocks associated with a pair (λj ,−λj) ∈ R

2 of real nonzero eigenvalues:

Sj =

[
Jmj

(λj) 0
0 −Jmj

(λj)
T

]
, Hj =

[
0 Imj

δImj
0

]
, (5.10)

where mj ∈ N, and λj > 0.
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iv) blocks associated with a pair (iλj ,−iλ) ∈ iR2 of purely imaginary eigenvalues:

Sj = Jmj
(0, λ), Hj = εjRmj

⊗ I2, (5.11)

where mj ∈ N is odd if δ = 1 and even if δ = −1, and εj = ±1, and λ > 0;
or

Sj = Jmj
(0, λ), Hj = εjGmj

, (5.12)

where mj ∈ N is even if δ = 1 and odd if δ = −1, and εj = ±1, and λ > 0;
v) blocks associated with a quadruplet ±αj±iβj of nonreal, non purely imaginary

eigenvalues, where mj ∈ N and αj < 0 < βj:

Sj =

[
Jmj

(αj , βj) 0
0 −Jmj

(αj , βj)
T

]
, Hj =

[
0 I2mj

I2mj
0

]
, (5.13)

if δ = 1; and if δ = −1 then

Sj =

[
Jmj

(αj , βj) 0
0 −Jmj

(αj , βj)
T

]
, Hj = φ

([
0 Rmj

⊗ Σ2

Rmj
⊗ Σ2 0

])
.

(5.14)

Moreover, the form (5.7) is unique up to the permutation of blocks.

Proof. Since S is H-selfajoint, S is polynomially H-normal with H-normality
polynomial p(t) = −t. Without loss of generality, we may assume that S and H are
essentially decomposed in the sense of Theorem 4.3. Observe that the real number
λ = 0 is the only number satisfying λ = p(λ) (= −λ). Consequently, S has no complex
bilinear part. Thus, we have

S = S̃1 ⊕ S̃2, H = H̃1 ⊕ H̃2,

where σ(S̃1) ⊆ R and S̃2 = φ(S2), H̃2 = φ(H2), where S2 is H2-skewadjoint with
respect to the sesquilinear form induced by the complex (skew-)Hermitian matrix H2.
Here, we choose the eigenvalues of S2 such that σ(S2) ⊆ {λ ∈ C \ R | Im(λ) > 0}. In

view of Theorem 4.5, we may furthermore assume that the pairs (S̃1, H̃1) and (S2,H2)
are in canonical form.

The canonical form of the pair (S̃1, H̃1) can be read off from Theorem 2.4. If
δ = 1 then only blocks of the forms (2.5)–(2.7) and of the form (2.3) for nj = 1
occur. These give the blocks of the form (5.8)–(5.10) in (5.7). (Observe that the
parameters aj,2, . . . , aj,nj−1 in (2.5) are zero. This follows immediately from the

identity S̃T
1 H̃1 = −H̃1S̃1.) On the other hand if δ = −1, then only blocks of the

forms (2.5)–(2.7) occur. This gives again blocks of the form (5.8)–(5.10) in (5.7).
(Again, the parameters aj,2, . . . , aj,nj−1 in (2.5) are seen to be zero.)

The canonical form of the pair (S2,H2) in the case δ = 1 can be read off from
[15, Theorem 6.3]. (The canonical form is explicitly given for H-selfadjoints only, but
contains implicitly the canonical form of H-skewadjoint matrices, because multiplying
an H-selfadjoint matrix with the imaginary unit i results in an H-skewadjoint matrix.)
Having in mind that the spectrum of S2 is a subset of the open upper half plane, this
form consists of blocks of the form

Sj = iJmj
(λj), Hj = εjRmj
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where λj > 0 and εj = ±1, or

Sj =

[
iJmj

(βj + iαj) 0
0 iJmj

(βj + iαj)
∗

]
, Hj =

[
0 Imj

Imj
0

]
,

where αj , βj > 0. Applying a transformation with the matrix E−1
mj

or (Emj
⊕Emj

)−1,
respectively, we obtain the alternative representations

Sj = Jmj
(iλj), Hj = (−i)mj−1εjΣmj

, or (5.15)

Sj =

[
Jmj

(−αj + iβj) 0
0 −Jmj

(−αj + iβj)
∗

]
, Hj =

[
0 Imj

Imj
0

]
, (5.16)

respectively. Observe that

φ
(
(−i)mj−1Σmj

)
=

{
±Σmj

⊗ I2 if mj is odd
±Gmj

if mj is even

Thus, we obtain from (5.15) blocks of the forms (5.11) and (5.12), respectively, (after
eventually replacing εj with −εj and after possibly renaming some indices). Anal-
ogously, we obtain from (5.16) blocks of the forms (5.13) (after possibly renaming
some indices). The case δ = −1 is completely analogous and follows again from [15,
Theorem 6.3]. The only difference is that each block Hj has to be multiplied with
−i (because −iHj is skew-Hermitian if and only if Hj is Hermitian). This gives us
blocks of the forms (5.12)–(5.14), respectively (after replacing αj with −αj , eventually
replacing εj with −εj , and after possibly renaming some indices).

Remark 5.5. Again, the result of Theorem 5.4 is not new, but can be found, e.g.,
in [13]. It should also be noted that the results of this and the previous subsection are
related to canonical forms for pairs of real symmetric and skew-symmetric matrices
under simultaneous congruence that have been obtained by Weierstraß and Kronecker,
see [22] and the references therein.

In the following, let T (a0, a1, . . . , an−1) denote the upper triangular Toeplitz ma-
trix with first row

[
a0 a1 . . . an−1

]
, i.e.,

T (a0, . . . , an−1) =




a0 a1 . . . an−1

0 a0
. . .

...

0 0
. . . a1

0 0 0 a0




.

Theorem 5.6 (Canonical forms for H-unitary matrices). Let H ∈ R
n×n and

δ = ±1 such that HT = δH. Furthermore, let U ∈ R
n×n be H-unitary. Then there

exists a nonsingular matrix P ∈ R
n×n such that

P−1UP = U1 ⊕ · · · ⊕ Up, PT HP = H1 ⊕ · · · ⊕ Hp, (5.17)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:
i) blocks associated with λj = η = ±1:

Uj = T (η, 1, r2, . . . , rnj−1), Hj = εjΣnj
, (5.18)
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where nj ∈ N is odd if δ = 1 and even if δ = −1. Moreover, εj = ±1, rk = 0
for odd k and the parameters rk for even k are real and uniquely determined
by the recursive formula

r2 =
1

2
η, rk = −1

2
η




k
2
−1∑

ν=1

r2·νr2·( k
2
−ν)


 , 4 ≤ k ≤ nj ; (5.19)

ii) paired blocks associated with λj = ±1:

Uj =

[ Jmj
(λj) 0

0
(
Jmj

(λj)
)−T

]
, Hj =

[
0 Imj

δImj
0

]
, (5.20)

where mj ∈ N is even if δ = 1 and odd if δ = −1.
iii) blocks associated with a pair (λj , λ

−1
j ) ∈ R×R, where λj > λ−1

j and mj ∈ N:

Uj =

[ Jmj
(λj) 0

0
(
Jmj

(λj)
)−T

]
, Hj =

[
0 Imj

δImj
0

]
. (5.21)

iv) blocks associated with a pair (ωj , ωj) of nonreal unimodular eigenvalues:

Uj = φ
(
ωjInj

+ ei(arg(ωj)+η π
2
)T (0, 1, r2, . . . , rnj−1)

)
, Hj = εjφ(

√
δRnj

),
(5.22)

where |ωj | = 1, Im(ωj) > 0, nj ∈ N, εj = ±1, and

η =

{
1 for arg(ωj) ∈ (0, π

2 )

−1 for arg(ωj) ∈ [π
2 , π)

(5.23)

Moreover, rk = 0 for odd k and the parameters rk for even k are real and
uniquely determined by the recursive formula (5.19) (and η as in (5.23));

v) blocks associated with a quadruplet (λj , λj , λ
−1
j , λ

−1

j ) of nonreal, nonunimod-
ular eigenvalues:

Uj =

[
φ
(
Jmj

(λj)
)

0

0 φ
(
Jmj

(λj)
)−T

]
, Hj =

[
0 I2mj

δI2mj
0

]
, (5.24)

where |λj | > 1, Im(λj) > 0, and mj ∈ N.
Moreover, the form (5.17) is unique up to the permutation of blocks.

Proof. Since U is H-selfajoint, we have that U is polynomially H-normal with H-
normality polynomial p satisfying p(U) = U−1. In particular, this implies p(λ) = λ−1

for all eigenvalues λ ∈ C of U . Without loss of generality, we may assume that U
and H are already essentially decomposed in the sense of Theorem 4.3. Observe
that the real numbers λ = 1 and λ = −1 are the only numbers satisfying p(λ) = λ.
Consequently, U has no complex bilinear part. Thus, we have

U = Ũ1 ⊕ Ũ2, H = H̃1 ⊕ H̃2,

where σ(Ũ1) ⊆ R and Ũ2 = φ(U2), H̃2 = φ(H2), where U2 is H2-skewadjoint with
respect to the complex sesquilinear form induced by the complex (skew-)Hermitian
matrix H2. Here, we choose the eigenvalues of U2 such that

λ ∈ σ(U2) and |λ| ≥ 1 ⇒ Im(λ) > 0.
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Since the eigenvalues of U2 are either unimodular or occur in pairs (λ, λ
−1

), see, e.g.,
[15, Theorem 6.5], this implies in particular that Im(λ) < 0 for all eigenvalues λ of U2

with modulus smaller than one. In view of Theorem 4.5, we may furthermore assume
that the pairs (Ũ1, H̃1) and (U2,H2) are in canonical form.

The canonical form of the pair (Ũ1, H̃1) can be obtained from Theorem 2.4 giving
the blocks of the forms (5.18)–(5.21). The detailed argument follows exactly the lines
of the proof of Theorem 7.5 in [15] and will therefore not be repeated here. The
canonical form of the pair (S2,H2) in the case δ = ±1 can be read off from [15,
Theorem 6.5]. (The canonical form is explicitly given for Hermitian H2 only, but the
result for H2 skew-Hermitian can be obtained by considering the Hermitian matrix
iH2 =

√
δH2 instead.) This gives the blocks of the forms (5.22) and (5.24).

Remark 5.7. A result in the direction of Theorem 5.6 for the case δ = −1 has
been obtained in [21] concerning existence of a decomposition of H-unitary matrices
into indecomposable blocks. Also, the possible Jordan canonical forms of the inde-
composable blocks have been fully described. The part in what Theorem 5.6 differs
from the result in [21] is that not only the H-unitary matrix U , but also H has been
reduced to a canonical form and that the form of Theorem 5.6 is unique up to per-
mutation of blocks. Canonical forms for H-unitary matrices for the case δ = 1 have
been developed in [20] and for some special cases in [2].

Remark 5.8. We note that it follows from the proofs of the Theorems 5.1–
5.6 that H-selfadjoint matrices have no complex sesquilinear part and that H-skew-
adjoint and H-unitary matrices have no complex bilinear part.

6. Semidefinite invariant subspaces. In this section, we apply the essential
decomposition to prove existence of semidefinite invariant subspaces for polynomially
H-normal matrices. Let H ∈ F

n×n be Hermitian. A subspace S ⊆ F
n is called

H-nonnegative if

[x, x] ≥ 0 for all x ∈ S \ {0}.
An H-nonnegative subspace M ⊆ F

n is called maximal H-nonnegative if H is not
contained in a larger H-nonnegative subspace. It is well-known and easy to verify
that an H-nonnegative subspace M ⊆ F

n is maximal H-nonnegative if and only if
dimM = ν+(H), where ν+(H) is the number of positive eigenvalues of H, see, e.g.,
[16]. It is also well known that if X ∈ C

n×n is H-normal, then X has an invariant
subspace M that is also maximal H-nonnegative, see [3, Corollary 3.4.12] for a more
general result in Krein spaces or [16] for a proof depending on finite dimensionality.
However, the corresponding statement for the case F = R is not true as the following
example shows.

Example 6.1. Let α ∈ R and β ∈ R \ {0}, and consider the matrices

A =

[
α β
−β α

]
, H =

[
0 1
1 0

]
.

Then A is H-selfadjoint and H has one positive eigenvalue. However, A has no
real nontrivial invariant subspaces and thus, no invariant subspace that is also H-
nonnegative.

In the following, we give a sufficient condition for a polynomially H-normal matrix
to have an invariant subspace M ⊆ R

n that is also maximal H-nonnegative.
Theorem 6.2. Let H ∈ R

n×n be symmetric and let X ∈ R
n×n be polynomially

H-normal such that X has no complex bilinear part in its essential decomposition.
Then X has an invariant subspace M ⊆ R

n that is also maximal H-nonnegative.
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Proof. Without loss of generality, we may assume that X and H are in the
form (4.1). Thus, since X has no complex bilinear part, we find that

X = X̃1 ⊕ X̃2, H = H̃1 ⊕ H̃2,

where σ(X̃1) ⊆ R and X̃2 = φ(X2), H̃2 = φ(H2), where X2 is polynomially normal
with respect to the sesquilinear form induced by H2. In view of Theorem 4.5 we may
furthermore assume that X̃1 and H̃1 are in the canonical form (2.2). It is sufficient to

consider the case that X equals either X̃2 or one of the indecomposable blocks in (2.2),
because if each such block has an invariant subspace that is maximal H-nonnegative
then an invariant maximal H-nonnegative subspace for X can be obtained as the
direct some of all those subspaces.

If X and H are in the form (2.3) or (2.5), then we choose

M =





Span(e1, . . . , en
2
) if n is even

Span(e1, . . . , en+1

2

) if n is odd and ε = 1

Span(e1, . . . , en−1

2

) if n is odd and ε = −1
.

Indeed, it is easily seen that M is X-invariant and maximal H-nonnegative. If X and
H are in the form (2.6) or (2.7), then M = Span(e1, . . . , en

2
) is the desired invariant

subspace that is also maximal H-nonnegative.
Next consider the case that X = X̃2 = φ(X2) and H = H̃2 = φ(H2). Since

X2 is polynomially H2-normal (and thus, X2 is in particular H2-normal), X2 has
an invariant subspace MC that is maximal H2-nonnegative. Let k be the number
of positive eigenvalues of H2 and let MC be spanned by the columns of the matrix
T ∈ C

n×k. Then there exists a k×k matrix B ∈ C
k×k such that X2T = T B. Applying

φ to this identity, we obtain

X̃2 φ(T ) = φ(X2T ) = φ(T B) = φ(T )φ(B),

that is, M := Range φ(T ) is an invariant subspace for X̃2. The dimension of M is
2k, because φ doubles the rank of matrices. (This follows easily by considering the
singular value decomposition and using that φ is an isomorphism.) Finally, M is

H̃2-nonnegative (and, consequently, maximal H̃2-nonnegative, because H̃2 = φ(H2)
necessarily has 2k positive eigenvalues which follows by diagonalizing H2 and then
using that φ is an isomorphism), because

φ(T )T H̃2 φ(T ) = φ(T ∗H2T )

is positive semidefinite if and only if T ∗H2T is. (Again, diagonalize T ∗H2T and
use that φ is an isomorphism.) Thus, the H2-nonnegativity of Range T implies the

H̃2-nonnegativity of Range φ(T ).
In view of Remark 5.8, we immediately obtain the following corollary.
Corollary 6.3. Let X ∈ R

n×n be H-skew-adjoint or H-unitary. Then X has
an invariant subspace M ⊆ R

n that is also maximal H-nonnegative.
Remark 6.4. The hypothesis of X having no complex bilinear part is essential

in Theorem 6.2. Indeed, this fact is illustrated by Example 6.1. Thus, in contrast
to H-skewadjoint and H-unitary matrices, H-selfadjoint matrices need not have an
invariant maximal H-nonnegative subspace, because H-selfadjoint matrices may have
a non-vanishing complex bilinear part.
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7. Conclusions. We have introduced the essential decomposition of polyno-
mially H-normal matrices. With the help of this decomposition, real polynomially
H-normal matrices can be described by a polynomially H-normal matrix having real
spectrum only and two complex matrices that are polynomially normal with respect
to a sesquilinear form and bilinear form, respectively. The main motivation for the
development of the essential decomposition is the construction of canonical forms for
real polynomially H-normal matrices, but it is expected to be useful for the investiga-
tion of polynomially H-normal matrices in general, in particular, for the investiagion
of H-selfadjoint, H-skewadjoint, and H-unitary matrices, because the real part, the
complex sesquilinear part, and the complex bilinear part of a polynomially H-normal
matrix can be considered separately.
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