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Abstract

We present the mathematical theory of general over- and under-
determined hybrid (switched) systems of differential-algebraic equations
(HDAEs). We give a systematic formulation of HDAEs and discuss exis-
tence and uniqueness of solutions, the numerical computation of the switch
points and how to perform consistent initialization at switch points. We
show how numerical solution methods for DAEs can be adapted for HDAEs
and present a comparison of these methods for the real world example of
simulating an automatic gearbox.
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1 Introduction

A system of differential equations that switches between several modes of op-
eration is called hybrid system or switched system [2–4, 28, 42, 43, 50]. In this
paper, we consider constrained nonlinear dynamical systems that work in dif-
ferent modes that are described by differential-algebraic equations (DAEs).

Such hybrid systems of DAEs (HDAEs) connect the continuous dynamics
represented by different DAE models with the discontinuous mode changes that
are modeled by discrete transition functions. The different modes typically
result from a discrete control, where the transitions are reached when certain
thresholds are crossed.

It is the aim of this paper to provide the mathematical framework for
HDAEs, to discuss the analytical properties and to develop numerical meth-
ods that allow the simulation and control of HDAEs.

HDAEs arise in many different application areas, such as robot manipula-
tors, traffic systems, power systems, or biological systems, see e.g. [17] and the
references therein. Our motivation arises from the numerical simulation and
control of automatic gear boxes, which are modeled by mechanical multibody
systems that switch between different modes which describe the different oper-
ating conditions. A detailed description of the model of an automatic gear box
is given in the Appendix.

To illustrate our notation and concepts, we use a very simple hybrid multi-
body system of an accelerated pendulum, describing the mathematical model
of a rotating pendulum for which the string breaks [24].

Example 1 Consider a pendulum of length l, mass m under the influence of
gravity Fg = −mg, where g = 9.81 m

s2 is the gravitation constant. Furthermore,
assume that the pendulum is tangentially accelerated by a linearly increasing
force F , see Figure 1.
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Figure 1: Accelerated pendulum - scheme

Consider first the constrained motion of the pendulum. Using the classical
Euler-Lagrange formalism [19, 23] in Cartesian coordinates [x1, x2]

T = [x, y]T

and velocities [x3, x4]
T = [ẋ, ẏ]T and the acceleration forces F (x1, x2) =

Fx1(x1) + Fx2(x2), one obtains the following system of DAEs.

ẋ1 = x3, (1a)

ẋ2 = x4, (1b)

mẋ3 = −2x1λ + Fx1 , (1c)

mẋ4 = −mg − 2x2λ + Fx2 , (1d)

0 = x2
1 + x2

2 − l2. (1e)

Now suppose that when a certain centrifugal force Fcmax is reached, the
system changes from a pendulum to a flying mass point, i.e. the rope or rod is
cut. In this case the system is not constrained anymore and the equations of
motion are given by

ẋ1 = x3, (2a)

ẋ2 = x4, (2b)

mẋ3 = 0, (2c)

mẋ4 = −mg. (2d)

If we consider the complete system, then it consists of two (operating) modes
and it switches once between (1) and (2). A typical task would be to determine
the switching point, to simulate the movement of the mass point, or to control
the switching and the successive flight.

There exist many numerical solution methods and software for DAEs [8,18,
19, 23, 38, 40], but most of these cannot be directly applied to HDAEs and also
the analysis of HDAEs has not yet been investigated in detail, see [3,4,28,42,43]
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for such approaches. In practical applications the model is usually simulated in
one of the modes, the switching points are determined and then the system is
simulated in the next mode. For the active control of hybrid systems, however,
this mode-by-mode approach is typically not applicable, since the control may
influence the switching and, hence, the hybrid system has to be considered as
a whole.

It is therefore necessary to study HDAEs based on a general formulation
that enables a simulation and control of the system with all its possible modes
together. There exist different approaches of an abstract modeling with hybrid
systems, e.g. in [2, 3, 28, 42, 43]. But until now no formulation has established
itself as a standard. Furthermore, the mentioned approaches are formulated
from a view point of computer science and control theory. There, the general
idea is based on concepts of discrete state machines, to which dynamic com-
ponents are added, leading to so called hybrid automata. These formulations
serve to give predictions about reachability of certain states or about the order
of modes [42], but they do not contain a mathematical framework to analyze
the dynamical behavior of the complete system. In contrast to this, we base
the abstract modeling concept on the general theory of DAEs.

The paper is organized as follows. In Section 2 we give a formal definition
of HDAEs. In Section 3 we briefly discuss DAEs and the strangeness index
concept. This concept is applied in Section 4 to derive a strangeness-free for-
mulation of HDAEs. Index reduction and numerical integration of HDAEs is
discussed in Section 5 and a numerical comparison of different solution methods
on the basis of automatic gearbox model is presented in Section 6.

2 Formulation of HDAEs

We examine hybrid systems that are composed of different systems of DAEs
and transition conditions between these DAEs that are considered in the general
form

F (t, x, ẋ) = 0, (3)

with F ∈ C(I × Dx × Dẋ, Rm), I ⊆ R (compact) interval, Dx, Dẋ ⊆ R
n open.

Such systems include, in particular, nonlinear control problems

F (t, ξ, w, ξ̇) = 0, (4)

y = G(t, ξ).

Here ξ ∈ R
nξ is the state, w ∈ R

nw the input, and y ∈ R
ny the output of the

system. Control systems of the form (4) can be rewritten in the form (3) by
combining the vector functions as

x =





ξ
w
y



 ∈ R
n,

with n = nξ + nw + ny, see [34].
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The formulation (4) in the form (3) can be viewed as representing the system
via a behavior approach [44]. However, very often systems do not arise or are
not directly modeled as input-state-output systems in the form (4) but arise
in the general form (3) and it is an extra task to determine an input-state-
formulation from these general variables, see [26, 27].

Definition 2 (Mode of a HDAE) In a HDAE we will have several DAEs
that we call modes. Let F i(t, x, ẋ) = 0, i ∈ {1, . . . , NF } with F i : Di × R

ni ×
R

ni → R
mi, be the DAE that describes the dynamics of the hybrid system in

mode Mi. Here Di is a union of intervals Ik ⊂ R+, in which mode Mi describes
the system dynamics. The HDAE is said to be in mode Mi if t ∈ Di.

A certain mode Mi describes the system dynamics in different phases of the
process in an interval Ij, e.g. if mode Mi is active in intervals I1 and I3, then
the domain Di of mode Mi contains both these intervals. The intervals Ij

are defined as half open intervals [αj , βj) and it is assumed that
⋃

j Dj = I.
Furthermore, the system is not allowed to be in more than one mode at any
time, i.e.

⋂

j Dj = ∅. The closure of the set Dj is denoted by Dj .

For a certain time t̂ ∈ D`, the state of a HDAE is given by the solution of
the DAE at t̂, i.e. it satisfies the DAE F `(t̂, x`(t̂), ẋ`(t̂)) = 0.

While a classical DAE has only one mode M in which it lives exclusively,
HDAEs switch between different modes on the basis of switching or transition
conditions that are realized through threshold values.

Definition 3 (Transition condition) For a mode Mi of a HDAE a transi-
tion condition Si is defined as:

Si(t, xi, ẋi) =







Si
1
...

Si
NSi






(t, xi, ẋi). (5)

If Si
j(t̂, x, ẋ) > 0 for all j, then the integration process continues in the same

mode with the same DAE F i. If there exist an integer j and a time t̂, such
that Si

j(t̂, x, ẋ) ≤ 0, then the system is switched to another mode Mk where the

integer k that determines the new mode is determined by a trigger function S i
j.

The trigger functions Si
j are disjointly defined. This means that at no point

(t, xi, ẋi) more than one trigger function S i
j have a sign change. This is relatively

easy to realize combinatorially and is outlined in the next paragraph. In the
following Si ≤ 0 means that for exactly one j the condition S i

j ≤ 0 holds and

for all ` 6= j the other trigger functions satisfy S i
` > 0. Then a crossing of a

threshold in mode Mi can be characterized by a sign change, and initiates a
mode change to mode Mk.

To guarantee that these sign changes lead to a unique sequence of modes or
in other words that for all points (t, xi, ẋi) at most one trigger function has a
sign change, we use the following procedure.

Suppose that a transition condition S i is not unique. Let Si
j, S

i
k be two

conditions that are negative at the same time t̂, i.e. there exists a t̂ ∈ Di, where
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Si
j(t̂) ≤ 0 and Si

k(t̂) ≤ 0 holds. Assume w.l.o.g. that j < k. Then we modify

the transition condition Ŝi to

Ŝi =
(

Si
1, . . . , S

i
j\S

i
k, . . . , S

i
k\S

i
j , . . . , S

i
NSi

, Si
j ∧ Si

k

)

,

where Si
j\S

i
k denotes the logical difference between two trigger functions and

Si
j ∧ Si

k the intersection of these. Proceeding in this way for all non-unique
situations, the system, respectively its transition condition, can be preprocessed
so that a unique mode sequence can be guaranteed.

Remark 4 Theoretically, for a HDAE with NF modes Mi there are NF !
(NF−2)!

possible transitions. But out of these, usually only a small portion have a real
physical meaning. Therefore, it is important that the definition of the transition
conditions contains as much system information as possible, because otherwise
the majority of these conditions may in fact formulate only combinatorial but
not physically relevant possibilities. These considerations become especially im-
portant at implementation time, where by considering only physically relevant
switches the programming effort can be drastically reduced.

The transition conditions are associated with a table-like allocation function
H(i, j), which for a mode Mi and a transition condition Si

j ≤ 0 assigns the
successor mode k, with k 6= i.

H(i, j) = k, for Si
j ≤ 0, i, k ∈ {1, . . . , NF }, j ∈ {1, . . . , NSi

}. (6)

Furthermore, since in each mode we want the solution of the DAE to exist,
consistent initial conditions are needed at all possible mode changes, see [8].
In order to guarantee this, a HDAE must contain transition functions T i

j that
determine consistent initial values for the integration in mode Mj coming from
mode Mi.

Definition 5 (Transition function) Let xi be the state of a HDAE in mode
Mi in an integration interval Ik ∈ Di and let xi(βk) be the smooth extension
of xi to the interval border βk. The transition function T i

j translates xi to the
initial condition of mode Mj at the time αk+1 = βk of the integration interval
Ik+1 ∈ Dj by computing initial conditions for the DAE F j, i.e.

T i
j : R

ni → R
nj , (7)

with T i
j (xi(βk)) = x

αk+1

j at transition time βk = αk+1 ∈ Di ∩ Dj.

The new initial value vector obtained by the transition function may contain
variables of the predecessor mode. The remaining variables must be determined
from the last computed state.

After these preparations we are able to formally define HDAEs.

Definition 6 (HDAE) Let I ⊂ R with I =
⋃NI

i=1 Ii, NI ∈ N define an in-
tegration interval with subintervals Ii = [αi, βi) for i = 1, . . . , NI − 1 and
INI

= [αNI
, βNI

]. Suppose further, that βi = αi+1 for all i = 1, . . . , NI − 1
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and αi < βi for all i = 1, . . . , NI. The number of subintervals NI is not known
a priori, but is assumed to be finite.

A hybrid system of differential-algebraic equations (HDAE) F is defined as
a set of NF systems of differential-algebraic equations

F `(t, x`, ẋ`) = 0, F ` : D` × R
n` × R

n` → R
m` , ` = 1, . . . , NF , (8)

with sufficiently often differentiable functions F `. Each DAE F ` is only defined
on the union D` of certain integration intervals Ii. For each interval Ii we
assume that consistent initial values xαi

` for the currently valid mode M` exist,
such that the solution in Ii exist and, furthermore, we assume that transition
conditions Sl(t, x`, ẋ`), defined as in (5) are available. If these conditions cause
a mode change to mode Mk, then the successor mode is determined by the
allocation function H, as defined in (6), and we assume that new consistent
initial values for the next mode may be computed via the transition function T l

k

in (7).

Since the intervals Ii are defined as half open intervals [αi, βi), for i =
1, . . . , NI − 1, the HDAE can be seen as one system of DAEs with possible
discontinuities in a finite number of points given by the interval boundaries αi,
i = 1, . . . , NI − 1.

Remark 7 HDAEs that have been defined in this way have no limitations with
respect to the systems of DAEs F i = 0 in the different modes, as long as these
are solvable in the interval set Di, but there are restrictions concerning the
transition processes. The number of mode changes must be finite, as other-
wise no reasonable numerical integration is possible. Furthermore, we assume
that the integration intervals have a nonzero measure. This means that an
instantaneous multiple mode change is not possible.

Remark 8 In order to include descriptor control systems and standard DAEs
in the same framework we have only required that the solution in the subin-
tervals D` exists but not that it is unique. In a numerical solution and in the
active control of HDAES, however, a procedure that assigns the free variables
(controls) in a unique way has to be provided.

Example 9 Consider again the accelerated pendulum of Example 1. Obvi-
ously this is a HDAE with two different modes, where only one mode change is
possible. The exact computation of the switching point as well as the simulation
of the movement on the circular manifold in the pendulum phase heavily influ-
ences the simulation of the flying phase. Considering the equations of motion
in the two modes, according to Definition 6, the model contains the following
parts. The variables in mode Mi are summarized by zi. If mode M1 is defined
as the pendulum phase modeled by (1) and in the flying phase by (2) then the
HDAE is given by:

Pendulum phase: M1 : F 1(t, z1, ż1) = 0, with F 1 : D1 × R
5 × R

5 −→ R
5,

Flying phase: M2 : F 2(t, z2, ż2) = 0, with F 2 : D2 × R
4 × R

4 −→ R
4.

The integration interval is I = D1 ∪ D2. The only possible mode change
from M1 to M2 is described by:



3 DAES AND THE STRANGENESS INDEX 8

• a transition condition S1(t, z1, ż1) = Fcmax(t, z1, ż1),

• with allocation function H(1, 1) = 2,

• and transition function

T 1
2 (z1,1(β1), . . . , z1,5(β1)) =

[

z2,1(α2) . . . z2,4(α2)
]T

=
[

z1,1(β1) . . . z1,4(β1)
]T

,

where z1 = [z1,1, . . . , z1,5]
T , z2 = [z2,1, . . . , z2,4]

T and the mode change occurs
from M1 to M2 with D1 = [α1, β1), D2 = [α2, β2]. Furthermore, z1(β1) is the
smooth extension of the solution in D1 to the interval border.

So far we have not discussed the different types of DAEs that describe the
dynamics in the different subintervals Dj . This topic is briefly discussed in the
following section.

3 DAEs and the strangeness index

To describe the HDAE, we consider in each mode nonlinear DAEs of the form

F (t, x, ẋ) = 0 (9)

where F is a sufficiently smooth vector valued function F ∈ C(I × R
n) ×

R
n), Rm).

The analytical theory for differential-algebraic equations has been developed
quite far in the last two decades, and also a wide variety of numerical methods
is available, see [8, 12, 13, 21, 29–31, 33, 36, 38, 45–47]. Furthermore, the theory
and also numerical techniques have been extended to control problems [10, 15,
16, 26, 27, 34, 37, 48].

As in [33], we introduce a nonlinear derivative array, see also [11,14], of the
form

Fk(t, x, ẋ, . . . , x(k+1)) = 0, (10)

which stacks the original equation and all its derivatives up to level k in one
large system, i. e.,

Fk(t, x, ẋ, . . . , x(k+1)) =











F (t, x, ẋ)
d
dt

F (t, x, ẋ)
...

dk

dtk
F (t, x, ẋ)











. (11)

Partial derivatives of Fk with respect to selected variables p from
(t, x, ẋ, . . . , x(k+1)) are denoted by Fk;p, e. g.,

Fk;x =
∂

∂x
Fk, Fk;ẋ,...,x(k+1) = [

∂

∂ẋ
Fk . . .

∂

∂x(k+1)
Fk ].

To obtain an existence and uniqueness result for general DAEs, the following
hypothesis was introduced in [34].
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Hypothesis 10 Consider the general system of nonlinear DAEs (9). There
exist integers µ, r, a, d, and v such that the solution set

Lµ = {(t, x, ẋ, . . . , x(µ+1)) ∈ R
(µ+2)n+1 | Fµ(t, x, ẋ, . . . , x(µ+1)) = 0}

is not empty, and the following properties hold:

1. The set Lµ ⊆ R
(µ+2)n+1 forms a manifold of dimension (µ + 2)n + 1− r.

2. We have
rankFµ;x,ẋ,...,x(µ+1) = r (12)

on Lµ.

3. We have

corankFµ;x,ẋ,...,x(µ+1) − corank Fµ−1;x,ẋ,...,x(µ) = v (13)

on Lµ. (The corank is the dimension of the corange and we use the
convention that corankF−1;x = 0.)

4. We have
rankFµ;ẋ,...,x(µ+1) = r − a (14)

on Lµ such that there are smooth full rank matrix functions Z2 and T2

defined on Lµ of size ((µ + 1)m,a) and (n, n− a), respectively, satisfying

ZT
2 Fµ;ẋ,...,x(µ+1) = 0, rankZT

2 Fµ;x = a, ZT
2 Fµ;xT2 = 0 (15)

on Lµ.

5. We have
rankFẋT2 = d = m − a − v (16)

on Lµ.

A DAE that satisfies Hypothesis 10 with n = m = d + a is called regular.

Remark 11 It is not a simple task to verify the conditions in Hypothesis 10
in the context of finite precision arithmetic. Within the limits of numerical
procedures to determine the rank of a matrix (for example using singular value
decompositions) the conditions of Hypothesis 10 can be checked locally by de-
termining ranks and nullspaces of the Jacobians.

Note that this approach allows redundancies, under-determinedness and it is
not required that ranks are constant in a neighborhood of the solution in the
whole space but only on a submanifold.

As in [31, 33, 34], the smallest possible µ in Hypothesis 10 is called the
strangeness-index of (9). Systems with vanishing strangeness-index are called
strangeness-free. The strangeness-index generalizes the differentiation-index [8]
to over- and underdetermined systems, see [33], and in the case that the
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differentiation-index is defined, both indices are 0 for ordinary differential equa-
tions, while the strangeness-index is one less than the differentiation-index oth-
erwise.

In has been shown in [34] that Hypothesis 10 implies (locally) the existence
of a reduced system (in the original variables) of the form

(a) F̂ (t, x1, x2, x3, ẋ1, ẋ2, ẋ3) = 0,
(b) x3 −R(t, x1, x2) = 0,

(17)

with F̂ = ZT
1 F . An initial condition is consistent, if it satisfies the algebraic

equation x3 −R(t, x1, x2) = 0. Eliminating x3 and ẋ3 in (17a) with the help of
(17b) and its derivative, this leads to a system

F̂ (t, x1, x2,R(t, x1, x2), ẋ1, ẋ2,Rt(t, x1, x2)

+Rx1(t, x1, x2)ẋ1 + Rx2(t, x1, x2)ẋ2) = 0.

By part 5 of Hypothesis 10 we may assume w.l.o.g. that this system can (locally
via the implicit function theorem) be solved for ẋ1, leading to a system of the
form

ẋ1 = L(t, x1, x2, ẋ2),
x3 = R(t, x1, x2).

(18)

Obviously, in this system x2 ∈ C1(I, Ru), with u = n − d − a, can be chosen
arbitrarily (at least when staying in the domain of definition of R and L). When
x2 has been chosen, then the resulting system has (locally) a unique solution
for x1 and x3, provided that a consistent initial condition is given.

Remark 12 The system in the form (18) can be interpreted as a control sys-
tem, in which x3 plays the role of an output and x2 can be chosen freely, i.e.
may be considered as input.

Theorem 13 [34] Let F in (9) be sufficiently smooth and satisfy Hypothesis 10
with µ, r, a, d, v and u = n − d − a. Then every solution of (9) also solves
the reduced problems (17) and (18) consisting of d differential and a algebraic
equations.

Remark 14 In the reduced systems (17) and (18) we have not used the quan-
tity v. This quantity measures the number of equations in the original system
that give rise to trivial equations 0 = 0, i. e., it counts the number of redundan-
cies in the system. Together with a and d it gives a complete classification of
the m equations into d differential equations, a algebraic equations and v trivial
equations. Of course, trivial equations can be simply removed without altering
the solution set.

In Table 1 we summarize the notation that we use for HDAEs.
The simulation and control of HDAEs poses several difficulties when com-

pared to the simulation and control of standard DAEs. The reduction to a
strangeness-free system must be realized just as for conventional DAEs to be
able to apply specially suited numerical methods for the integration process.
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Notation Meaning

F hybrid systems of DAEs
F ` = F `(t, x`, ẋ`) DAE in mode M`

M` Mode l of the HDAE F ,
where the DAE F ` describes the dynamics

xαi

` Initial conditions for interval Ii in mode M`

1 × n` × n` Dimension of the space of definition of F `

m` Dimension of the space of values of F `

Fk Derivative array of HDAE F , where k ∈ N
NF
+

F `
k`

Derivative array of DAE F ` in mode ` up to order k`

I =
⋃

k Ik =
⋃

i Di Integration interval
Ik = [αk, βk) k-th integration interval, simulated in mode Mi,

xi(βk) is the solution smoothly extended to βk.
The last interval INI

= [αNI
, βNI

] is assumed closed.
D` =

⋃

k∈{1,...,NI}
Ik Domain of mode M`,

S` = (S`
1, . . . , S

`
NS`

)T Transition conditions for mode M`

H(l, j) allocation function that determines the successor
mode M`, where S`

j ≤ 0,

T i
j Transition function, that transfers the state at the

mode change from mode Mi to mode Mj

NF Number of modes of the HDAE F
NI Number of integration intervals
NS`

Number of transition conditions for mode M`

µ = (µ1, . . . , µNF
)T ∈ N

NF
+ vector of strangeness indices for F ,

a = (a1, . . . , aNF
)T ∈ N

NF
+ vector of number of algebraic equations for F ,

d = (d1, . . . , dNF
)T ∈ N

NF
+ vector of number of differential equations for F ,

v = (v1, . . . , vNF
)T ∈ N

NF
+ vector of number of vanishing equations for F ,

u = (u1, . . . , uNF
)T ∈ N

NF
+ vector of number of free variables (controls) for F ,

µmax maximal strangeness index, µmax = maxi=1,...,NF
µi.

Table 1: Variables and functions for HDAEs

But in hybrid systems this must possibly be done very often on (possibly) short
intervals, for every different DAEs associated with a different mode. Further-
more, the characteristic quantities µ, d, a, u, v may change in every mode, so
that it is possible that in some mode the systems behaves like a control system
and in others not.

For HDAEs, the values of the states x(t̂) at times t̂ of mode changes must
be determined very accurately, since the states of the integration process in
one mode form the basis for the computation of initial values for the successor
mode.

It also has to be assured that one obtains a reasonable mode sequence, which
means that a cyclic change between different modes must be prevented. This
special phenomena of hybrid systems, the so called chattering, may arise for
example, when nearly equal thresholds for mode changes of different modes are



4 STRANGENESS-FREE FORMULATION OF HDAES 12

given and the system starts to oscillate around these. These oscillations may
be real in the physical model but also may arise due to errors in the numerical
method.

Definition 15 (Numerical chattering) An HDAE F as in (8), chatters nu-
merically, if in the integration process a repeated p-cyclic sequence of mode
changes occurs through the modes Ms1 , . . . ,Msp with si ∈ {1, . . . , NF } on in-
tervals of length L ≤ Lmin, where Lmin is the length of the smallest interval
Ij.

An example of numerical chattering is discussed in section 6.
There are several possibilities to prevent numerical chattering, and this

should preferable already be done in the modeling phase. One possibility is the
introduction of hystereses such that the integration of each mode is done in an
interval of a length bounded from below [2,3,28,50]. A hysteresis approach is a
good choice when the danger of numerical chattering exists between two modes
Mi,Mj and these originally had transition conditions that contained thresholds

that differ only by their sign S i
k = −Sj

` . There, a hysteresis can be easily real-

ized by adding ε > 0 to the transition conditions Ŝi
k = Ŝi

k + ε, Ŝj
` = −Ŝi

k + ε.
But to ensure that the minimal interval length for the hybrid system is kept,
when introducing such a retarded chattering between the modes Mi, Mj is hard
to achieve.

For independent transition conditions between two modes Mi, Mj or a
numerical chattering between more than two modes the introduction of a hys-
teresis is not that intuitive. Furthermore, the correct switching points may be
important for the system behavior. In this case a hysteresis should not be arti-
ficially introduced. Under these circumstances a more sophisticated modeling
that includes these effects may be the only solution.

In our numerical method, we determine and observe the mode transitions
in detail. In the case of numerical chattering the numerical method sets flags
or even stops to allow the user to apply necessary system changes.

4 Strangeness-free formulation of HDAEs

We have developed a formulation of HDAEs that can be used to describe the
dynamics in the different modes. In this section we will describe the prerequi-
sites for a reasonable numerical integration of such systems. For this, several
concepts of the theory of DAEs [34] will be generalized to hybrid systems.

In the following, we consider HDAEs F that satisfy Hypothesis 10 in
every mode F `, and for which the dimensions m`, n` and the integers
µ`, r`, d`, a`, u`, v` are constant in each mode but may be different for differ-
ent modes. If the assumption that m`, n`, µ`, r`, d`, a`, u`, v` are constant in
mode M` is violated, then, as a long as it is violated only at a finite number of
points, for the analysis we may just introduce new modes and further switching
points. Thus, to assure a reasonable framework for the numerical integration
of HDAEs we introduce the following Hypothesis.
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Hypothesis 16 In each mode M`, and each domain D`, ` ∈ {1, . . . , NF }
the DAE F ` satisfies Hypothesis 10 with constant characteristic values
µ`, a`, d`, u`, v`.

If Hypothesis 16 holds, then the values µ`, a`, d`, u`, v` are well-defined for each
domain D` and therefore for each integration interval Ii. Hypothesis 16 implies
that for every time instance t ∈ D`, projection matrices Z`,1, Z`,2, T`,2 can be
computed which allow to construct a strangeness-free system with the same
solution set. By solving these transformed systems, the solution of the hybrid
system (8) can be computed for every time t.

Under Hypothesis 16, vectors of characteristic values µ ∈ N
NF
+ , a ∈ N

NF
+ ,

d ∈ N
NF
+ , u ∈ N

NF
+ and v ∈ N

NF
+ can be defined for a hybrid system, where

the `-th element of each vector contains the corresponding invariant for the
mode M`.

Another important assumption for the numerical simulation is to require
consistency for the initial values at the different transitions from one mode to
another.

Hypothesis 17 For the hybrid system F as in (8), in all integration intervals
Ii, i = 1, . . . , NI, the initial values xαi

` that are obtained by the transition func-
tion at a mode change are consistent with the integrated DAE F ` in the current
mode M`.

If an initial condition after a mode change is not consistent, then it is possible
to determine consistent initial conditions using the local representation of the
solution manifold. Different approaches for consistent initialization have been
implemented in the codes GELDA and GENDA, see [38–40].

Definition 18

(i) A hybrid system F as in (8) is called regular if for each mode M`, ` =
1, . . . , NF , the corresponding DAE F ` is regular.

(ii) For a hybrid system F , as in (8), which satisfies the Hypotheses 16 and
17, the maximal strangeness index µmax is defined as

µmax = max
`=1,...,NF

{µ`} , (19)

where µ` is the strangeness index of F ` on D`.

(iii) A hybrid system F is called strangeness-free, if µmax = 0.

5 Numerical integration of HDAEs

The numerical integration (or control) of HDAEs can be realized conceptually
like the numerical integration (or control) of general DAEs, see [32, 34, 38–40]
or by introducing appropriate new variables, as in [35]. For general DAEs the
numerical integration is realized by generating, locally in each integration step,
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projectors Z`,1, Z`,2 that would lead to a strangeness-free formulation in the
mode M`, if they were actually applied, see [40].

This integration (or computation of controls) is continued until one of the
transition conditions (5) gives a zero crossing, i.e. a crossing of a threshold oc-
curs. After determining this crossing point within a certain error tolerance, the
system is transferred to the next mode with help of the transition function (7),
and the numerical integration (or computation of controls) is continued in the
new mode. However, in order to deal with realistic hybrid systems, we allow
the possibility that in every mode the system may have different characteristic
values, and, in particular, we allow that the number v` of redundant equations
and the number u` of free variables (controls) may be different in each mode.

In the following, we consider the index reduction process and the integration
of regular HDAEs in more detail. For standard DAEs, the strangeness-index
represents an invariant that characterizes the potential difficulties in the numer-
ical solution of such systems, [32,34]. For HDAEs F as in (8), the strangeness-
index is considered separately in each mode. Accordingly, a strangeness-free
system with the same solution can be extracted in each mode and thus also
for the complete hybrid system F . In this way HDAEs with a given maximal
strangeness index µmax can be treated, if the Hypotheses 10, 16 and 17 are
fulfilled.

Analogous to handling regular nonlinear DAEs, one needs the corresponding
derivative arrays, which must be computed for each mode of the hybrid system.
This derivative array F ` of level j` in mode M` is defined for ` = 1, . . . , NF via

F `
j`

(t, x`, ẋ`, . . . , x
(j`+1)
` ) = 0, (20)

with

F `
j`

(t, xi, ẋi, . . . , x
(ji+1)
` ) =











F `(t, x`, ẋ`)
d
dt

F `(t, x`, ẋ`)
...

dj`

dtj`
F `(t, x`, ẋ`)











.

As in [34], the Jacobians for the derivative array Fj`
of a hybrid system F are

defined via the Jacobians for the different modes M`.
The projectors Z`,1, T`,2, Z`,2 are defined according to Hypothesis 10 for each

mode M`.
To discuss existence and uniqueness of solutions for a hybrid system F , the

solution set of the derivative array Fµ has to be defined, where µ ∈ N
NF
+ , µ` ∈ N

for ` = 1, . . . , NF . This solution set has the form:

Lµ =

{

(t, x`, ẋ`, . . . , x
(µ`+1)
` ) ∈ R

(µ`+2)n`+1 | F `
µ`

(t, x`, ẋ`, . . . , x
(µ`+1)
` ) = 0,

for ` = 1, . . . , NF .

}

.

(21)
It was shown in [34], that Hypothesis 10 is invariant under a number of

equivalence transformations for nonlinear differential-algebraic equations. Un-
der the given assumptions, this result holds in each mode of a hybrid system.

The steps to determine the strangeness-free form of a nonlinear DAE can be
carried out independently in each different mode. For the derivative array (20),
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in each integration interval I` for every mode M`, the initial values from Lµ

must be chosen in a consistent way, so that the solution in each of the modes
exists, and is unique if u` = 0.

Furthermore, in each mode M` one defines the functions F̂ `
2 = ZT

`,2F
`
µ`

and

F̂ `
1 = ZT

1 F `.
Then analogously to the construction for nonlinear DAEs in [33] the vari-

ables may be split as x` = (x`,1, x`,2, x`,3) and with F̂ `
2 , F̂ `

1 we (locally) ob-
tain functions R`(t, x`,1, x`,2) and L`(t, x`,1, x`,2) as in (18) such that for all
` = 1, . . . , NF the hybrid system in mode M` has the solution x` which satisfies
an equivalent strangeness-free system of the form

ẋ`,1 = L`(t, x`,1, x`,2), x`,3 = R`(t, x`,1, x`,2). (22)

Note that if u` = 0, then the free variables (controls) x`,2 do not occur.
Thus, if there exists a complete set of consistent initial values zα`

`,µ`
∈ Lµ

at each mode change, then from the derivative array F `
µ`

, we locally obtain a
strangeness-free system of the form (22) and thus, connecting all these systems
together, a strangeness-free hybrid system of the form

ẋ1 = L(t, x1, x2), x3 = R(t, x1, x2). (23)

It should be noted, however, that this choice of a hybrid system depends
strongly on the choice and the consistency of the initial values in each mode.
It is clear that if we want a continuous solution of the hybrid system, then the
transition function from one mode to the next must guarantee this. However,
if the number of equations, or the number of free variables changes at a mode
change, then this condition may be difficult to realize. In particular, we may
face the situation that after a mode change the solution is not unique.

Theorem 19 Let F be a regular hybrid system as in (8) and suppose that F is
sufficiently often differentiable and satisfies the Hypotheses 10, 16 and 17, with
vectors of characteristic values µ,a, d, u and v = 0. Then every sufficiently
smooth solution of (8) is a solution of (22) with vectors of characteristic values
a and d.

If at each mode change the transition function T is such that the resulting
initial condition is consistent, then in each mode there exist (control) functions
so that for this control function the solution exists and is unique.

Moreover, if also u = 0, and if at each mode change the transition function
T is such that the resulting initial condition is consistent, then the solution
exists and is unique.

Proof. If x?
` , ` = 1, . . . , NF describes a sufficiently smooth solution of F de-

termined from the DAEs F` in the modes M`, then it also solves the reduced
strangeness-free systems of DAEs (22), since for all ` = 1, . . . , NF , and all t ∈ D`

(t, x?
` (t), ẋ

?
` (t), . . . ,

(

d
dt

)µ`+1
x?

`(t)) ∈ L
`
µ`

.

Obviously, if there are no free solution components and the initial conditions
are consistent then in each mode the solution exists and is unique.
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For ordinary differential equations (ODEs) with switching conditions and
discontinuous right hand side, a so called switch algorithm was formulated in
[19]. We generalize this procedure here for hybrid systems of DAEs as in (8). Let
us first discuss the case of regular hybrid systems of DAEs. The time stepping
procedure in the numerical integration in each mode M` can be achieved via
any method for strangeness-free systems, e.g. by the version of a BDF method
suggested in [33] as it is implemented in the code GENDA, see [39, 40].

Let Dh denote a backward difference (BDF) operator, see [8], which is of
the form

Dhx`
i =

1

h

k
∑

j=0

αjx
`
i−j (24)

where h is the stepsize, x`
i denotes a numerical approximation to x`(ti), and αl

are the coefficients of the k-step BDF method. The only property of Dh that
we need is that it is linear with respect to the actual approximation x`

i with
nonzero derivative α0/h.

To proceed from ti−1 to ti = ti−1 + h then one solves the nonlinear system

(a) Fµ`
(ti, x

`
i , w

`
i ) = 0,

(b) Z̃T
1 F (ti, x

`
i , Dhx`

i) = 0
(25)

for (x`
i , w

`
i ) and takes the part x`

i as approximation to x`(t1). Here Z̃1 denotes
some fixed approximation (with orthonormal columns) to Z1 at the desired
solution.

Analogously, the time stepping procedure could be based on Runge-Kutta
methods [22] instead of the above mentioned BDF-methods. For an s-stage
Runge-Kutta-method the differential operator Dh would be replaced by

Dhx`
i = x`

i−1 + h

s
∑

j=0

βjX̂
`
i−1,j , (26)

where
X̂`

i−1,j = f(ti−1 + γjh,X`
i−1,j)

and the X`
i−1,j represent internal stages given by

X`
i−1,j = x`

i−1 + h
s
∑

k=1

αj,kX̂
`
i−1,k, for j = 1, . . . , s.

The nonlinear system (25) then can be solved as described above.
On the basis of these time stepping procedures we then have the following

switch algorithm.

Algorithm 20 (Switch algorithm for regular HDAEs) Let F be a given
regular HDAE. Then it can be integrated as follows.

1. After each time step of the numerical integration in mode M`, (which con-
sists in solving the nonlinear system (25)) check, whether discontinuities
or crossing of thresholds occurred, by testing of the transition conditions
Si(t, x`, ẋ`) for sign changes. Also, as in the code GENDA of [39, 40],
check the characteristic values µ`, a`, d`, u`, v`.
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2. If no sign change has occurred and the characteristic values have remained
constant, then continue the integration normally. Otherwise localize the
switch point exactly via the stepsize controller of the integrator as a root
of a transition condition.

3. If none of the characteristic values has changed, then determine the suc-
cessor mode Mj with the allocation function H from (6).

4. With the help of the transfer function T i
j compute the new initial values

for the mode Mj. Switch to the DAE F j.

5. Check the initial values for consistency, if necessary, determine new con-
sistent initial conditions, for example as in [9,38,40].

6. Restart the integration with consistent initial values from the time point
of the mode change.

7. If one or more of the characteristic values has changed, then it strongly
depends on this change how one proceeds, see the discussion below. How-
ever, since we have assumed regularity, the solution in the next mode will
be unique, once consistent initial conditions have been determined.

Thus, besides the pure integration process that may include an index re-
duction for simulating the hybrid system, we need a root finding procedure to
determine the switch points, a process to compute consistent initial values in
case of a mode change and, furthermore, an efficient organization of the differ-
ent systems of DAEs F`. As methods for the determination of switch points
we may use any root finding method like bisection, the secant method or the
Newton-Raphson-method [24, 52].

So far we have discussed regular systems for which the characteristic values
are constant in each mode. But in HDAEs it may happen that the characteristic
values change.

Example 21 (Example 1 continued) Consider again the example of the accel-
erated pendulum. There, the number of equations and characteristic values in
both modes are different.

Before the switch in the pendulum mode M1 we have µ1 = 2, d1 = 2 and
a1 = 3, but after the switch in the flying mode M2 we have µ2 = 0, d2 = 4 and
a2 = 0.

The transition condition on the accelerating force must be checked in each
integration step and if a sign change occurs, then the exact switching point
must be determined by one of the above mentioned methods. In this case in
the second phase the transfer of the conditions is easily obtained by extending
the values from mode M1 to the interval boundary, and using them as initial
values in mode M2.

But it may also happen that a system has free components (controls) before
a switch and is regular after the switch or vice versa, or that the number of
controls changes. Consider the following example.
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Example 22 A possible extension to the pendulum example could be flight
control of the flying mass point by some control u that results in forces in
horizontal and vertical direction to land at a predefined target point (x̂1, x̂2).
The control u could represent a thrust accelerating or decelerating with certain
limitations. In such a case, a third mode M3 of a flying phase with additional
thrust f?(u) would be defined as follows.

ẋ1 = x3, (27a)

ẋ2 = x4, (27b)

mẋ3 = fx(u), (27c)

mẋ4 = −mg + f?(u). (27d)

The new free component u can then be determined by some control al-
gorithm resulting in additional equations that together form the equations of
mode M3.

As a typical application of HDAEs the theory developed above may be ap-
plied to hybrid multibody systems. In this case the hybrid system contains NF

multibody systems, modeled with the DAEs F `, i = 1, . . . , NF , and it switches
between these at discrete times during a simulation. When the described the-
ory is restricted to multibody systems, then it simplifies especially for the mode
transitions.

As discussed for example in [23, 49], multibody systems can be modeled in
different ways. We use in each mode an equation of the form 0 = F `(p`, v`, λ`)
given by

0 = −ṗ` + v`, np`
equations

0 = −R`v̇` + f`(p`, v`) − gT
i,p`

(p`)λ`, np`
equations

0 = g`(p`), nλ`
equations,

(28)

where p, v, λ are the position, velocity constraints and Lagrange multipliers,
respectively, R` is the mass matrix, and f, g are external forces and algebraic
constraints, respectively. The index ` indicates the mode M`.

The maximal strangeness-index µmax of a hybrid multibody systems de-
pends on the formulation of the different models F ` of the constrained multi-
body systems. If in each mode M` the DAE represents a multibody system,
then µmax = 2, see [6].

When treating hybrid multibody systems, the transfer functions (7) T i
j for

mode changes turn out to be quite simple. If the hybrid multibody system F
is modeled throughout all modes M` by the same position variables p, see ex-
ample 1, then the DAEs F ` = F `(p, v, λ`) just differ in the number of Lagrange
multipliers λ`, depending on the number of holonomic algebraic constraints
g`(p). In this case it follows that via the transition functions T i

j only new initial
values for additional new Lagrange multipliers λ` must be computed.

More sophisticated multibody formalisms such as in [6, 49], however, in
general may lead to more complicated transition functions.
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In this section we have shown how methods for the integration of DAEs such
as the BDF and Runge-Kutta methods can be adapted to HDAEs. In the next
section we demonstrate this approach for the hybrid system of an automatic
gearbox.

6 Example - automatic gearbox

This section illustrates the presented concepts via the model of an electronically
controlled five gear automatic gearbox originating in the research department of
DaimlerChrysler RIC/EK in Berlin. There are three planetary gear sets which
can realize different transmission ratios. To adjust and switch between these
gears, three clutches and brakes are closed or opened, whereas two freewheels
additionally allow to block the shafts in one direction [1].

Figure 2 gives a schematic overview of the structure of the gearbox and the
variable numbering. For details see [24].

The system represents a hybrid system as the different gears as well as the
gear shifting phases define different modes. When operating without failure, the
brakes and clutches are closed, opened, or slipping and the freewheels may be in
closed or free position. Depending on the state of these switching components
the number of variables and equations change.

All components are modeled separately, as in [24] according to the Lagrange
formulism, the shafts, the gear sets, the engine and load, the clutches, brakes
and freewheels. The explicit model is presented in the appendix.

Each component was modeled in various different ways to compare simula-
tion results for different aspects of the model. For the simulation of each compo-
nent, all the algebraic constraints were used together with their first and second
derivative to generate different formulations of different strangeness-index, i.e.
models of strangeness-index µ = 2 like general multibody systems with holo-
nomic constraints on position level (EoM ), of strangeness-index µ = 1 like
multibody systems with constraints on velocity level (EoM2), the Gear-Gupta-
Leimkuhler form (GGL) [20] or the particular form that is necessary to apply
the solver MEXAX [41]. Furthermore, also strangeness-free multibody systems
with constraints on the acceleration level, the Baumgarte stabilization [7] as well
as the minimally extended formulation of [35] were implemented. See also [51]
for a detailed comparison of these different formulations.

Depending on the formulation, the model in the original form

ṗ = v (29a)

Rv̇ = f(p, v) − gT
p (p)λ (29b)

0 = g(p) (29c)

contains between 70 and 100 variables in the different modes. The variables
and parameters in (29) are denoted as in (28).

Figure 2 gives a schematic overview of the structure of the gearbox and the
variable numbering. For details see the Appendix
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Figure 2: Schematic overview of the gearbox structure

It was shown in [24] that for this real world example, chattering occurs if the
freewheels are contained in the different modes of the model. For the following
simulation results, the freewheels will be omitted as they have only a supporting
function when the gearbox is running.

The automatic gearbox was simulated with various standard integrators for
DAEs that were modified to be usable for HDAEs. For comparison, the results
of a DaimlerChrysler internal simulation, realized with the in-house solver ASIM
were used. For this reason, parameters and simulation settings were adapted
to the ones used in this simulation with ASIM. Further information about the
solver ASIM as well as detailed information on the simulation settings can be
found in [24].

The model together with these settings were simulated in different formu-
lations and with different integrators. In the first formulation all the con-
straints (29c) of the model were differentiated until the underlying ordinary
differential equation was determined. As the gearbox was modeled as pure
multibody system with holonomic constraints on position level, we get three
analytically equivalent model representations - two with nonholonomic con-
straints on velocity and acceleration level and one system that is just a system
of ordinary differential equations. The more the holonomic constraints are dif-
ferentiated and substituted, the more stable and easier the simulation is, as
the strangeness index decreases. But at the same time the omitted holonomic
constraints are more and more violated, see [24] and also [51].

We also simulated more sophisticated model representations that have
smaller strangeness index and better satisfaction of the constraints. These are
the Gear-Gupta-Leimkuhler form, an overdetermined form with all constraints
and its derivatives, the minimal extension to strangeness-free form [35] and the
complete derivative array.

As integrators we used the codes RADAU5, ODASSL, DASSL, MEXAX
and DGENDA, each for that model representation that it is constructed for.
As these solvers were designed to solve plain DAEs, they were enhanced for
solving HDAEs. This enhancement was needed for the computation of the
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mode transitions and the evaluation of new initial values at every possible mode
change. The main challenge, however, was to find the switching points by
finding roots of the switching conditions of the actual mode. Here, bisection on
the step size was used as simplest possibility. Another sometimes even easier
possibility is to use a continuous approximation of the solution achieved from
the last steps, which in the case of RADAU5 is an extra feature of the solver.

The main goal of the following simulations is to demonstrate the results for
HDAEs with small maximal strangeness index. Therefore, the simulation and
modeling techniques for hybrid multibody systems applied to the automatic
gearbox were more central than exact parameter studies. As an example we
compare the input and output angular velocity for the simulation of the minimal
extension strangeness-free form of the gearbox model using the code DASSL in
Figure 3 with those of the code ASIM. This minimal extension form includes
all the constraint equations as well as all the dynamic equations and therefore
all the necessary information to obtain accurate results.
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Figure 3: Simulation of the minimal extension form with DASSL

The results, in particular the difference to the ASIM simulation shows that
ASIM did not capture all the details and that the solution behavior may change
drastically after the switches when inappropriate solvers and tolerances are
used.

In the following comparison the main criteria for evaluating the simulation
results were the simulation time and the deviation from the solution mani-
fold spanned by the holonomic constraints and their derivatives. For this
the magnitude of the residual between solution and constraints was calcu-
lated. The results are summarized in Table 2 which uses the following notation.
“EoM” stands for a hybrid system with holonomic constraints for each DAE,
“EoM2(D)” for a hybrid system with constraints on velocity level for each DAE
with D as damping parameter and GGL denotes the Gear-Gupta-Leimkuhler-
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form of the hybrid system, i.e. for the DAE in each mode.
In the columns with Resi, i = 1, 2, 3, the magnitude of the residual in the

constraints on position, velocity and acceleration level are given. The bracketed
value gives the magnitude of the residual in the switching points if significantly
different. These indicate an insufficient determination of the switching points.
If these residuals are too large then they must be corrected by smaller tolerances
and more advanced strategies to find these points.

Integrator Form Tolerance Time Res1 Res2 Res3

RADAU5 EoM -6 0.9 -7 -5 -3 (2)
-3 0.7 -5 -4 (-2) -1 (4)
-1 0.4 -4 -3 (-1) 1 (8)

EoM2 -6 0.8 -8 -6 (-1) -3 (-2)
-3 1.5 -6 -5 (-1) -1 (1)
-1 0.7 -4 -4 (-2) -1 (2)

GGL -6 1.1 -7 -6 -3 (-1)
-3 1.0 -5 -4 -1 (1)
-1 0.7 -4 -3 1 (2)

ODASSL Over- -6 4.8 -8 -8 -8
determined
form

-4 1.3 -8 -8 -8

DASSL Minimal -6 5.1 -9 -8 -5 (-1)
extension -3 0.5 -7 -6 -2 (1)

MEXAX EoM2(20) -3 64.2 -11 -11 8
EoM2(30) -3 121.3 -11 -11 8
EoM2(50) -3 140.8 -12 -11 7

Table 2: Simulation results

Table 2 confirms the theoretical results for HDAEs and for the different
model representations achieved in section 3 and in [24]. The simulations with
MEXAX with strong damping significantly for example need a lot more com-
puting time and although they fulfil constraints on position and velocity level
very well, the constraints on acceleration level are neglected completely.

The more sophisticated model representations, i.e. the minimal extended
and the overdetermined form, guarantee that the residuals in all constraints
are satisfied to high order of magnitude with the cost of a slight increas in
computation time and higher modeling effort.

More comparisons and details can be found in [24].

7 Summary

We have shown how the theory for general systems of nonlinear differential
algebraic equations as it was derived in [33, 34] can be extended to hybrid sys-
tems of DAEs in a straightforward way, thus showing the high flexibility of this
approach. We have applied this approach to the model of a real world example
given by an automatic gearbox. We have demonstrated that this approach can
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be used in combination with different solution methods to obtain numerical
simulation results that also work well at switching points.
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A Automatic gearbox: Model

In this appendix we present the modeling details for the example of an au-
tomatic gearbox (in the following called NAG) that was used for numerical
comparison in section 6.

The gearbox is basically modeled as a multibody system which is then trans-
formed into various formulations for the comparison of different solvers for hy-
brid DAEs.

The main components of the automatic gearbox are planetary gearsets,
clutches, brakes, shafts, torque input and output. The system was modeled
according to the documentation of the NAG from DaimlerChrysler [1]. The
hybrid character of this system arises from system changes when the gear is
shifted by means of clutches and brakes. In this way, different parts of the
gearbox are included or excluded from the system dynamics.

The electro-hydraulic control of clutches and brakes was not modeled but
given by characteristics of pressures. A refinement of the model to include these
componets will make this a control system.

A.1 Model components

The usual approach to describe multibody systems in descriptor form is the La-
grange formalism, where the model equations in descriptor form are determined
from energy balances [25].

Engine and Load The engine was not modeled separately but an input
torque characteristic MM (t) and engine inertia JM were used.

Analogously, the load or gearbox output and the Kardan-shaft were simpli-
fied to the torque characteristic MB(t) and inertia JB .

Shafts Shafts connect components of the gearbox and transfer torques be-
tween those. They contain certain stiffness and damping characteristics sum-
marized in the stiffness constant D and the damping constant C.

If more components must be connected, an auxiliary shaft node is introduced
that has transmission rate one and a torque equilibrium describes the torque
flow. These auxiliary modes were modeled mass- and lossless.

For n shafts acting at a shaft node, the equations for the angle ϕ and the
angular velocities ω are

[

1 0
0 0

] [

ϕ̇
ω̇

]

=

[

ω
−
∑n

i=1 (Di(ϕ − ϕi) + Ci(ω − ωi))

]

,

where ϕi, ωi represents the ith shaft at the opposite end of the shaft. To obtain
a regular mass matrix the equations are transformed to:

ϕ̇ = −
1

∑n
j=1 Cj

(

n
∑

i=1

Di(ϕ − ϕi)

)

+
n
∑

i=1

ωi.

In Figure 4(b) a shaft node is schematically displayed.
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(a) Shaft node

φ1∗ φ1
D,C

D
,C

φ2∗

φ2

D,C
φ3 φ3∗

D
,C

φ4

φ4∗

(b) Scheme

Figure 4: Scheme of an shaft node

Planetary gearset Planetary gearsets are used in automatic gearboxes to
switch between different gears and transmissions without interrupting the trac-
tive force from engine to the wheels. A planetary gearset has at least two degrees
of freedom and it can realize different transmissions with different activations
of clutches and brakes.

A basic planetary gearset consists of a sun wheel, a carrier with three planets
and a ring wheel.

r3,J3
φ3

J4r4,

φ1

Ring

Planet

Carrier
r2,J2

φ2

φ4

Sun
r1,J1

Figure 5: Scheme of a planetary gearset

To achieve a deterministic transmission, one wheel must be blocked or two
wheels must be coupled. To describe the four rotations the following notation
was chosen: the angle ϕ1 of the sun, the angle ϕ2 of the carrier, the angle
ϕ3 of the ring and the angle ϕ4 of the planets. The radii ri, inertias Ji, and
torques Mi are denoted correspondingly. The angle at the opposite end of the
connected shaft is denoted by ϕi?.

The attached torques Mi are

Mi := −D(ϕi − ϕi?) − C(ωi − ωi?), where i = 1, 2, 3.
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The geometry of a planetary gearset leads to the following holonomic con-
straints g on position level [5, 24].

g(ϕ) :=

[

2r2ϕ2 − r3ϕ3 − r1ϕ1

2r4ϕ4 − r3ϕ3 + r1ϕ1

]

.

In these constraints the vector ϕ contains the variables that g? depends on,
where g? stands for the different constraints.

The constraints on velocity level then are obtained by differentiation and
the substitution ωi = ϕ̇i

gI(ϕ) :=

[

2r2ω2 − r3ω3 − r1ω1

2r4ω4 − r3ω3 + r1ω1

]

and on acceleration level correspondingly by twice differentiating

gII(ϕ)

:=

[ 2r2
J2

(−M2 − 2r2λ1) −
r3
J3

(−M3 + r3λ1 + r3λ2) −
r1
J1

(−M1 + r1λ1 − r1λ2)
2r4
J4

(−2r4λ2) −
r3
J3

(−M3 + r3λ1 + r3λ2) + r1
J1

(−M1 + r1λ1 − r1λ2)

]

.

The dynamics of a basic planetary gearset is then described by the system








J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4

















ϕ̈1

ϕ̈2

ϕ̈3

ϕ̈4









=









M1

M2

M3

0









−









−r1 r1

2r2 0
−r3 −r3

0 2r4









[

λ1

λ2

]

0 = g?(ϕ)

, (30)

where g? may be any of the constraints given above.

Clutches and brakes Clutches are used to connect or disconnect two shafts
of a gear box. To do this, the angular velocities have to be equalized which
is done by a pressure p on the clutch. The pressure p results in some friction
torque MR that can be modeled by a friction model such as

MR := cf ·















p(ϕ̇1 − ϕ̇2) linear damping,






p ϕ̇1 > ϕ̇2

−p ϕ̇1 < ϕ̇2

0 ϕ̇1 = ϕ̇2

constant damping.
(31)

The constant cf , describing properties of the clutch, gives the relation between
damping torque and pressure force. Each clutch disc has some inertia Ji and
its dynamical behavior is described by the angle ϕi, the angular velocity ϕ̇i and
the angular acceleration ϕ̈i. The attached shafts give the torques Mi.

The clutches have two operating modes, “Open/Sliding” and “Closed” and
make the model a hybrid system. Both modes must be modeled with differ-
ent systems of DAEs where the transition condition for the “Closed” mode is
|MR| > |M1 + M2| ∧ ω1 = ω2.

If we again let the variables at the opposite end of the shafts be denoted by
i?, then the torques Mi are given by

M1 := −D(ϕ1 − ϕ1?) − C(ω1 − ω1?),

M2 := −D(ϕ2 − ϕ2?) − C(ω2 − ω2?).
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Closed clutch If the clutched is closed with same angular velocities on
both sides and a sufficiently big friction torque MR, then the friction torque
MR just appears in the transition condition of the mode but does not influence
the dynamics.

The holonomic constraints on the angles of the clutch discs are:

g(ϕ) := ϕ1 − ϕ2 + 4(ϕ2(tk) − ϕ1(tk)),

where tk is the clutch closing time. The constraints on velocity level, therefore,
are

gI(ϕ) := ω1 − ω2

and on acceleration level

gII(ϕ) :=
1

J1
(M1 − λ) −

1

J2
(M2 + λ).

The dynamics of a clutch in closed mode is, thus, described by the system













1 0 0 0 0
0 1 0 0 0
0 0 J1 0 0
0 0 0 J2 0
0 0 0 0 0

























ϕ̇1

ϕ̇2

ω̇1

ω̇2

λ̇













=













ω1

ω2

M1

M2

g(ϕ)













−













0
0
1
−1
0













λ.

Open/Sliding clutch If a clutch is not closed, then the shafts are turning
with different angular velocities or the friction moment is to small to hold the
acting forces. In this mode no constraint exists but the friction torque MR itself
is influencing the dynamics.

These can be modeled by a system of the form









1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2

















ϕ̇1

ϕ̇2

ω̇1

ω̇2









=









ω1

ω2

M1 − MR

M2 + MR









.
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φ2 φ2∗φ1∗ φ1

p

F
R

J1 J2

D,C D,C

(a) Clutch

φ∗    φ

p

FR

 J

D,C

(b) Brake

Figure 6: Scheme of clutch and brake

Brakes are more or less special clutches, where the second disc is fastened at
the housing. The equations of motion then simplify as the rotational variables
at the housing side of the brake can be neglected.

Again there are the two modes “Sliding/Open” and “Closed” but the tran-
sition condition in the closed mode changes to |MR| > |M | ∧ ω = 0.

With a similar notation as for the clutch we obtain the following DAEs for
both modes. The torques acting from the shafts are given by

M := −D(ϕ − ϕ?) − C(ω − ω?). (32)

Closed brake The holonomic constraint is

g(ϕ) := ϕ + ϕ(tk),

where tk is the clutch closing time. The constraints on velocity level then are

gI(ϕ) := ω

and on acceleration level

gII(ϕ) :=
1

J
(M − λ).

The dynamics is then described by the system




1 0 0
0 J 0
0 0 0









ϕ̇
ω̇

λ̇



 =





ω
M

g(ϕ)



−





0
1
0



λ.

Sliding/Open brake The dynamics of a sliding or open brake are anal-
ogously described by the system

[

1 0
0 J

] [

ϕ̇
ω̇

]

=

[

ω
M − MR

]

.
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Free wheels For optimization reasons and to block the gearbox in certain
modes in one direction, free wheels are built into the gearbox. A free wheel
connects two shafts like a clutch. In one direction it blocks the motion, whereas
the other the shafts can move freely.

A scheme of functionality and structure is given in Figure 7.

φ1∗ φ1
D,C

φ2 φ2∗
D,C

(a) Scheme

φ1

φ2
Closed
Mode

Open
Mode

Clamping bodies

(b) Functionality

Figure 7: Schemes of a free wheel

The free wheels are modeled without inertias and are denoted similarly to
the clutches. The moments from the attached shafts then are

M1 := −D(ϕ1 − ϕ1?) − C(ω1 − ω1?),

M2 := −D(ϕ2 − ϕ2?) − C(ω2 − ω2?).

Closed free wheel In this case both shafts turn with equal angular ve-
locity but the transition condition is ω1 − ω2 > 0.

The holonomic constraint is

g(ϕ) := ϕ1 − ϕ2 + 4(ϕ2(tk) − ϕ1(tk)),

with tk as closing time. The constraints on velocity level then are

gI(ϕ) := ω1 − ω2

and on acceleration level:

gII(ϕ) := λ

(

1

J1
−

1

J2

)

.

The dynamics is described by the system













1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























ϕ̇1

ϕ̇2

ω̇1

ω̇2

λ̇













=













ω1

ω2

M1

M2

g(ϕ)













−













0
0
1
−1
0













λ,
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or in a more compact form





1 0 0
0 1 0
0 0 0









ϕ̇1

ϕ̇2

λ̇



 =





−D
C

(ϕ1 − ϕ1?) + ω1? −
1
C

λ

−D
C

(ϕ2 − ϕ2?) + ω2? + 1
C

λ
g(ϕ)



 .

Open free wheel If the condition ω1 − ω2 < 0 holds, then both shafts
may turn freely and no dynamic interaction or constraints hold. The dynamics
then can be described by the system









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

















ϕ̇1

ϕ̇2

ω̇1

ω̇2









=









ω1

ω2

M1

M2









,

which can be transformed to
[

1 0
0 1

] [

ϕ̇1

ϕ̇2

]

=

[

−D
C

(ϕ1 − ϕ1?) + ω1?

−D
C

(ϕ2 − ϕ2?) + ω2?

]

.

A.2 Hybrid multibody system automatic gearbox

This section summarizes the overall structure of the model of the automatic
gearbox NAG as a hybrid multibody system. To do this, the components of
the previous section are connected and complemented by inputs and outputs.

Different combinations of the different states of clutches, brakes and free-
wheels determine gears, gear changes, failure, safety or undetermined modes.
For simplicity we will just discuss the first gears and the interconnecting gear
changes here. A gear represents a certain transmission from input to output
revolutions and torques which decrease the more the higher the gear, to allow
higher velocities of the car.

In Figure 2 a scheme of the NAG mechanics is depicted, where M and A
represent engine and gearbox output, respectively. There are 6 shaft nodes that
distribute the torques, 30 angles ϕi denoted as the corresponding components
and the planetary gear sets with sun Pj .s, carrier Pj.t, ring Pj .h and planets Pj .p
with angles denoted by ϕi, ϕi+1, ϕi+2, ϕi+3 for i = 1, 5, 9, respectively.

Time dependent inputs to the mechanical system are engine torque, car
brake torque and the pressures at gearbox brakes and clutches.

The system dimension differs between the modes and the multibody mod-
eling technique but is on the order of 80. In the following sections these modes
and the used modeling techniques are presented. The freewheels f1, f2 were not
regarded in the simulations with its different modes as they serve mainly for
safety functionality [1] but they are kept always open. Furthermore, the sim-
ulation of the freewheels bears the problem of chattering and must be treated
carefully as was discussed in detail in [24].

Modes As mentioned before, the gearbox may be operated in different gears
that are roughly speaking represented by different modes of the hybrid system.
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These and the modes from switching phases between the gears are given here,
but of course one can refine the model to include many more operating modes.

The modes arising from the different gears are easily determined. They are
depicted in Table 3. Some of the additional modes arising from the switching
phases are depicted in Table 4. In the following the modes M` are denoted
according to this table. The notation of gears represents either a gear i or a
shift from a gear i to j denoted by ij. The total number of physically possible
modes of the system depends on the variety of direct mode shifts.

It is an important observation from Table 4 that if the model contains
switching freewheels, most modes corresponding to the different gears or the
transient phases allow both modes of the freewheel. Together with the natu-
ral modeling as done in [24], this is the reason for the possible occurence of
chattering which will disturb the simulation.

Gear Transmission b1 b2 b3 k1 k2 k3 f1 f2

1 3.59 • • • • •
2 2.19 • • • •
3 1.41 • • •
4 1 • • •
5 0.83 • • • •
N – • •
R1 -3.16 • • • •
R2 -1.93 • • •

Table 3: Gears and transmissions of the NAG [1].

Mode Gear b1 b2 b3 k1 k2 k3 f1 f2

1 1/12 • • • •/– •/–
12 12 • • •/– •/–
21 21 • • •/– •/–
2 2/21/23 • • • •/–
23 23 • • •/–
32 32 • • •/–

3 3/32/34 • • •
34 34 • •
43 43 • •
4 4/45/43 • • •
45 45 • •
54 54 • •
5 5/54 • • • •/–
N N • •

R1 R1 • • • •/–
R2 R2 • • •

Table 4: Some modes of the NAG

As an example, in the following the gear shift form gear one to gear two
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and its mode changes will be described.

Example 23 (Gear shift) Consider the system in mode M1 and gear one.
At a certain time t̂1, the control input gives the signal to change to gear two.
Therefore, the pressure at brake b1 falls and at clutch k1 rises. Although the
gear shift 12 is started, no mode change occurs until brake b1 starts slipping.
Say at the time t̂2 the brake b1 starts slipping and, therefore, still in the gear
shift 12 we proceed to mode M12. With further rising pressure in clutch k1, it
will close at a time t̂3 and finally the gear shift ends in gear two and mode M2.
It is assumed that clutch k1 will not close before brake b1 starts slipping as this
would represent a failure mode.

To illustrate the functionality of a gearbox we will take a closer look at the
first gear, i.e., at mode M1.

Example 24 (First Gear) To start a car the gearbox is set to the first gear,
where it transmits with a big transmission the engine torque and revolution to
the output shaft and overcomes the big inertia of the car.

To achieve this transmission rate, all planetary gear sets are involved.
Brake b1 fixes sun P1.s and the engine revolutions are transmitted from the
ring P1.h to the carrier P1.t directly. As the clutches k1, k2 are open, this
torque flows to ring P3.h. The suns P2.s, P3.s are connected by clutch k3 and
by brake b2 fixed to the housing. Therefore, the torque of ring P3.h is trans-
mitted to carrier P3.t, from there to ring P2.h and finally to carrier P2.t, whose
dynamics are equal to those of the output shaft. Thus, the output shaft is
turning in positive direction with reduced revolutions [1].

The first gear is used until a control signal starts a gear shift, for example
to switch to gear two as described above. This control signal depends on many
parameters as engine revolutions, vehicle velocity or driving strategy.

A.3 Model representations

There exist several modeling techniques for multibody systems with differential
algebraic equations, [24, 51]. These result in different model representations
with analytically equal solution but different numerical characteristics. For
completeness the model equations for each of the treated modeling technics are
given below.

To obtain the set of equations for the model of the NAG, the dynamics of
all components must be combined for each mode as listed in Table 4.

As this hybrid system of an automatic gearbox gets its hybridicity mainly
through additional or removed Lagrange multipliers, only mode M1 is given as
complete DAE system, whereas the others are represented by the differences to
this mode.

In the same manner, further model representations are characterized only
by its differences to the first modeling technique using holonomic constraints,
also called constraints on position level.
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A.3.1 Equations of motion with holonomic constraints (EoM)

The dynamics is described by the descriptor forms of the components combined
as stated above for the different modes. The systems are given in residual form
for the modes M1,M12,M21,M2,M23,M32 and M3.

Mode M1 The vector to describe a state of the NAG in mode M1 with con-
straints on position level is

x =





ϕ
ω
λ



 ∈ R
69,

with

ϕ =







ϕ1
...

ϕ30






, ω =







ω1
...

ω30






, λ =





















λP1.1

λP1.2

λP2.1

λP2.2

λP3.1

λP3.2

λ̂





















, λ̂ =





λk3

λb1

λb2



 . (33)

The first 30 equations are first-order differential equations

0 = −ϕ̇i + ωi i = 1, . . . , 30 (34)

The equations for the planetary gear sets P1, P2, P3 are

P1















0 = −JP1.sω̇1 + rP1.sλP1.1 − rP1.sλP1.2 − D(ϕ1 − ϕ27) − C(ω1 − ω27)
0 = −JP1.tω̇2 − 2rP1.tλP1.1 − D(ϕ2 − ϕ26) − C(ω2 − ω26)
0 = −JP1.hω̇3 + rP1.hλP1.1 + rP1.hλP1.2 − D(ϕ3 − ϕ25) − C(ω3 − ω25)
0 = −JP1.pω̇4 − 2rP1.pλP1.2

(35a)

P2















0 = −JP2.sω̇5 + rP2.sλP2.1 − rP2.sλP2.2 − D(ϕ5 − ϕ29) − C(ω5 − ω29)
0 = −JP2.tω̇6 − 2rP2.tλP2.1 − MB(t), with brake torque MB(t)
0 = −JP2.hω̇7 + rP2.hλP2.1 + rP2.hλP2.2 − D(ϕ7 − ϕ28) − C(ω7 − ω28)
0 = −JP2.pω̇8 − 2rP2.pλP2.2

(35b)

P3















0 = −JP3.sω̇9 + rP3.sλP3.1 − rP3.sλP3.2 − D(ϕ9 − ϕ30) − C(ω9 − ω30)
0 = −JP3.tω̇10 − 2rP3.tλP3.1 − D(ϕ10 − ϕ28) − C(ω10 − ω28)
0 = −JP3.hω̇11 + rP3.hλP3.1 + rP3.hλP3.2 − D(ϕ11 − ϕ26) − C(ω11 − ω26)
0 = −JP3.pω̇12 − 2rP3.pλP3.2

(35c)
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The clutches k1, k2, k3, brakes b1, b2, b3, and the free wheels in their open mode
f1, f2 are given by

k1

{

0 = −Jk1 ω̇13 − D(ϕ13 − ϕ27) − C(ω13 − ω27) − MR,k1

0 = −Jk1 ω̇14 − D(ϕ14 − ϕ26) − C(ω14 − ω26) + MR,k1

(36a)

k2

{

0 = −Jk2 ω̇15 − D(ϕ15 − ϕ25) − C(ω15 − ω25) − MR,k2

0 = −Jk2 ω̇16 − D(ϕ16 − ϕ28) − C(ω16 − ω28) + MR,k2

(36b)

k3

{

0 = −Jk3 ω̇17 − D(ϕ17 − ϕ29) − C(ω17 − ω29) − λk3

0 = −Jk3 ω̇18 − D(ϕ18 − ϕ30) − C(ω18 − ω30) + λk3

(36c)

b1 0 = −Jb1 ω̇19 − D(ϕ19 − ϕ27) − C(ω19 − ω27) − λb1 (36d)

b2 0 = −Jb2 ω̇20 − D(ϕ20 − ϕ29) − C(ω20 − ω29) − λb2 (36e)

b3 0 = −Jb3 ω̇21 − D(ϕ21 − ϕ28) − C(ω21 − ω28) − MR,b3 (36f)

f1 0 = −D(ϕ22 − ϕ27) − C(ω22 − ω27) (36g)

f2

{

0 = −D(ϕ23 − ϕ29) − C(ω23 − ω29)
0 = −D(ϕ24 − ϕ30) − C(ω24 − ω30),

(36h)

where friction torques MR,k1 ,MR,k2 ,MR,b3 in the normal mode are zero. For
simplicty of presentation, we have have omitted the dependence on the torque
parameters. For example MR,k1(t, ω13, ω14) is given as MR,k1 .

The six shaft nodes interconnecting the components are modeled by

0 = −D(ϕ25 − ϕ3) − C(ω25 − ω3) − D(ϕ25 − ϕ15) − C(ω25 − ω15) (37a)

+MM (t), with engine torque MM (t)

0 = −D(ϕ26 − ϕ2) − C(ω26 − ω2) − D(ϕ26 − ϕ11) − C(ω26 − ω11) (37b)

−D(ϕ26 − ϕ14) − C(ω26 − ω14)

0 = −D(ϕ27 − ϕ1) − C(ω27 − ω1) − D(ϕ27 − ϕ13) − C(ω27 − ω13) (37c)

−D(ϕ27 − ϕ19) − C(ω27 − ω19) − D(ϕ27 − ϕ22) − C(ω27 − ω22)

0 = −D(ϕ28 − ϕ7) − C(ω28 − ω7) − D(ϕ28 − ϕ10) − C(ω28 − ω10) (37d)

−D(ϕ28 − ϕ16) − C(ω28 − ω16) − D(ϕ28 − ϕ21) − C(ω28 − ω21)

0 = −D(ϕ29 − ϕ5) − C(ω29 − ω5) − D(ϕ29 − ϕ17) − C(ω29 − ω17) (37e)

−D(ϕ29 − ϕ20) − C(ω29 − ω20) − D(ϕ29 − ϕ23) − C(ω29 − ω23)

0 = −D(ϕ30 − ϕ9) − C(ω30 − ω9) − D(ϕ30 − ϕ18) − C(ω30 − ω18) (37f)

−D(ϕ30 − ϕ24) − C(ω30 − ω24).
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The constraints on position level in mode M1 are

0 = 2rP1.tϕ2 − rP1.sϕ1 − rP1.hϕ3 (38a)

0 = 2rP1.pϕ4 + rP1.sϕ1 − rP1.hϕ3 (38b)

0 = 2rP2.tϕ6 − rP2.sϕ5 − rP2.hϕ7 (38c)

0 = 2rP2.pϕ8 + rP2.sϕ5 − rP2.hϕ7 (38d)

0 = 2rP3.tϕ10 − rP3.sϕ9 − rP3.hϕ11 (38e)

0 = 2rP3.pϕ12 + rP3.sϕ9 − rP3.hϕ11 (38f)

0 = ϕ17 − ϕ18 − ∆k3 (38g)

0 = ϕ19 − ∆b1 (38h)

0 = ϕ20 − ∆b2 , (38i)

Modes M12 and M21 In mode M12 and M21 the friction torques MR,k1 ,MR,b1

are developing differently but otherwise the dynamics can be described by the
same equations. In comparison to mode M1, (36d) is changed to

0 = −Jb1 ω̇19 − D(ϕ19 − ϕ27) − C(ω19 − ω27) − MR,b1

In addition, equation (38h) and the corresponding Lagrange multiplier λb1 do
not occur.

The state vector, therefore, is (33) x = [ϕT , ωT , λT ]T ∈ R
68 with λ̂ =

[λT
k3

, λT
b2

]T .

Mode M2

In mode M2 the state vector is x = [ϕT , ωT , λT ]T ∈ R
69 with λ̂ =

[λT
k1

, λT
k3

, λT
b2

]T . The new Lagrange multiplier λk1 is coupled to clutch k1. Corre-
spondingly, the equations changed in comparison to M12,M21 are (36a), which
must be changed to

0 = −Jk1 ω̇13 − D(ϕ13 − ϕ27) − C(ω13 − ω27) − λk1 ,

0 = −Jk1 ω̇14 − D(ϕ14 − ϕ26) − C(ω14 − ω26) + λk1 .

The new constraint then is

0 = ϕ13 − ϕ14 − ∆k1 . (39)

Mode M23 and M32

As the modes M12,M21, the modes M23,M32 contain the same system of
DAEs except for certain temporal development of some friction torques, which
are denoted by MR,k2 ,MR,k3 .

The changes to mode M2 affect (36c) which is given by

0 = −Jk3 ω̇17 − D(ϕ17 − ϕ29) − C(ω17 − ω29) − MR,k3 ,

0 = −Jk3 ω̇18 − D(ϕ18 − ϕ30) − C(ω18 − ω30) + MR,k3 .

Furthermore, equation (38g) and its Lagrange multiplier λk3 are omitted. The
state vector now is (33), x = [ϕT , ωT , λT ]T ∈ R

68 with λ̂ = [λT
k1

, λT
b2

]T .
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Mode M3

In mode M3 we have the state vector x = [ϕT , ωT , λT ]T ∈ R
69 with

λ̂ = [λT
k1

, λT
k2

, λT
b2

]T . The new Lagrange multiplier λk2 is bound to clutch k2.
According to this, the equations (36b) are changed, which is the only difference
to modes M23,M32

0 = −Jk2 ω̇15 − D(ϕ15 − ϕ25) − C(ω15 − ω25) − λk2 ,

0 = −Jk2 ω̇16 − D(ϕ16 − ϕ28) − C(ω16 − ω28) + λk2 .

The new constraint then is

0 = ϕ15 − ϕ16 − ∆k2 . (40)

A.3.2 Dynamical systems with constraints on vleocity or accelera-
tion level (EoM2,EoM1)

Instead of modeling multibody systems with holonomic constraints, it is also
possible to replace them by their derivatives.

As the strangeness index changes through these differentiations, the DAE
system will be denoted by EoM2 and EoM1, respectively.

The DAE structure in all modes stays the same, so just the derivatives of
equations (38), (39) and (40) are given here.

Constraints on velocity level (EoM2) For the EoM2 formulation of the
NAG dynamics, the holonomic constraints (38) are replaced by the following
derivatives

0 = 2rP1.tω2 − rP1.sω1 − rP1.hω3 (41a)

0 = 2rP1.pω4 + rP1.sω1 − rP1.hω3 (41b)

0 = 2rP2.tω6 − rP2.sω5 − rP2.hω7 (41c)

0 = 2rP2.pω8 + rP2.sω5 − rP2.hω7 (41d)

0 = 2rP3.tω10 − rP3.sω9 − rP3.hω11 (41e)

0 = 2rP3.pω12 + rP3.sω9 − rP3.hω11 (41f)

0 = ω17 − ω18 (41g)

0 = ω19 (41h)

0 = ω20. (41i)

Furthermore, in the modes M2,M3, the constraints (39) and (40) must be
replaced by

0 = ω13 − ω14, (42a)

0 = ω15 − ω16. (42b)

Constraints on acceleration level (EoM1) In the EoM1 formulation, the
second derivatives replace the holonomic constraints from A.3.1.



A AUTOMATIC GEARBOX: MODEL 40

The variables ω̇i in the derivatives actually can be expressed directly via
(35) and (36).The second derivatives of (38) are

0 = 2rP1.tω̇2 − rP1.sω̇1 − rP1.hω̇3 (43a)

0 = 2rP1.pω̇4 + rP1.sω̇1 − rP1.hω̇3 (43b)

0 = 2rP2.tω̇6 − rP2.sω̇5 − rP2.hω̇7 (43c)

0 = 2rP2.pω̇8 + rP2.sω̇5 − rP2.hω̇7 (43d)

0 = 2rP3.tω̇10 − rP3.sω̇9 − rP3.hω̇11 (43e)

0 = 2rP3.pω̇12 + rP3.sω̇9 − rP3.hω̇11 (43f)

0 = ω̇17 − ω̇18 (43g)

0 = ω̇19 (43h)

0 = ω̇20. (43i)

In mode M2,M3 we need to replace again (39) and (40) by

0 = ω̇13 − ω̇14, (44a)

0 = ω̇15 − ω̇16. (44b)

A.3.3 Overdeterminded strangeness-free form

As described in [19], a numerically more stable form for modeling multibody
systems is the overdetermined form. It is strangeness-free and contains the
holonomic constraints and their first and second derivatives.

Therefore, the constraints and its derivatives are added to the equations
of motion as given in the previous sections. The resulting system of DAEs in
mode M1 has 87 equations in 69 variables.

A.3.4 Gear-Gupta-Leimkuhler form (GGL)

The Gear-Gupta-Leimkuhler form, see [20], combines holonomic and constraints
on vleocity level. It does not result in an overdetermined system, because the
constraints on velocity level are added to the equations of motion via further
Lagrange multipliers η.

This results in a bigger state vector. For example in mode M1, the new
state x has the following form

x =









ϕ
ω
λ
η









∈ R
78, ϕ, ω as before, κ =





















κP1.1

κP1.2

κP2.1

κP2.2

κP3.1

κP3.2

κ̂





















, κ̂ =





κk3

κb1

κb2



 with κ ∈ {λ, η}.

(45)
The DAE in mode M1 accordingly contains the already given equations (35),
(36), (37), (38) and (41) together with equations (34) modified to the GGL
form.
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The equations (34) change for those components that are constrained. Again
as an example, the modified equations for mode M1 are listed. In all the other
modes the equations must be adjusted accordingly

0 = −ϕ̇1 + ω̇1 + (rP1.sηP1.1 − rP1.sηP1.2)/JP1.s

0 = −ϕ̇2 + ω̇2 − 2rP1.tηP1.1/JP1.t

0 = −ϕ̇3 + ω̇3 + (rP1.hηP1.1 + rP1.hηP1.2)/JP1.h

0 = −ϕ̇4 + ω̇4 − 2rP1.pηP1.2/JP1 .p

0 = −ϕ̇5 + ω̇5 + (rP2.sηP2.1 − rP2.sηP2.2)/JP2.s

0 = −ϕ̇6 + ω̇6 − 2rP2.tηP2.1/JP2.t

0 = −ϕ̇7 + ω̇7 + (rP2.hηP2.1 + rP2.hηP2.2)/JP2.h

0 = −ϕ̇8 + ω̇8 − 2rP2.pηP2.2/JP2 .p

0 = −ϕ̇9 + ω̇9 + (rP3.sηP3.1 − rP3.sηP3.1)/JP3.s

0 = −ϕ̇10 + ω̇10 − 2rP3,tηP3.1/JP3.t

0 = −ϕ̇11 + ω̇11 + (rP3.hηP3.1 + rP3.hηP3.2)/JP3 .h

0 = −ϕ̇12 + ω̇12 − 2rP3,pηP3.2/JP3.p

0 = −ϕ̇17 + ω̇17 − ηk3/Jk3

0 = −ϕ̇18 + ω̇18 + ηk3/Jk3

0 = −ϕ̇19 + ω̇19 − ηb1/Jb1

0 = −ϕ̇21 + ω̇21 − ηb2/Jb2 .

A.3.5 Minimal extension to a strangeness-free form

To achieve a minimal extension to a strangeness free model as described in [35],
some transformations in the different modes are necessary. As the minimal
extensions differ from mode to mode they will be given for each mode seperately.

The models for the free wheels without mode changes as treated here and
the shaft nodes must be given in a form with regular mass matrix. Therefore,
the angles ϕ22, ϕ23, ϕ24 describe the free wheels, but the corresponding angular
velocities ωi are calculated directly via ωi = fi(t, x, ẋ) and ϕ̇i = fi(t, x, ẋ), i =
22, 23, 24. Similarly, this is done for the angles of the shaft nodes ϕ25, . . . , ϕ30.

Minimal extensions for a model are not unique. For the NAG we have
chosen the one that was easiest to implement. As before, the model equations
of mode M1 are given in detail, whereas in the further modes just the differences
are presented. Again the same scheme as in A.3.1 is used.
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Mode M1 In mode M1 there are nine constraints (38) resulting in an exten-
sion of nine new variables. We have chosen vi, wi, as:





























v1

v2

v3

v4

v5

v6

v7

v8

v9





























:=





























ϕ̇2

ϕ̇4

ϕ̇6

ϕ̇8

ϕ̇10

ϕ̇12

ϕ̇17

ϕ̇19

ϕ̇20





























,





























w1

w2

w3

w4

w5

w6

w7

w8

w9





























:=





























ω̇2

ω̇4

ω̇6

ω̇8

ω̇10

ω̇12

ω̇17

ω̇19

ω̇20





























. (46)

Of the first 30 equations (34) of the EoM form, those containing the new
variables (46) must be changed. This results in

0 = −vi + ωj , i = 1, . . . , 9

for the pairs

(i, j) ∈ {(1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12), (7, 17), (8, 19), (9, 20)}.

Additionally the equations for free wheels and shaft nodes must be adjusted,

0 = −ϕ̇22 + ω27 −
D

C
(ϕ22 − ϕ27) (47a)

0 = −ϕ̇23 + ω29 −
D

C
(ϕ23 − ϕ29) (47b)

0 = −ϕ̇24 + ω30 −
D

C
(ϕ24 − ϕ30) (47c)

0 = −ϕ̇25 +
1

2
(ω3 + ω15) +

D

2C

(

MM (t)

D
− 2ϕ25 + ϕ3 + ϕ15

)

(47d)

0 = −ϕ̇26 +
1

3
(ω2 + ω11 + ω14) −

D

3C
(3ϕ26 − ϕ2 − ϕ11 − ϕ14) (47e)

0 = −ϕ̇27 +
1

4
(ω1 + ω13 + ω19 + ω22) −

D

4C
(4ϕ27 − ϕ1 − ϕ13 − ϕ19 − ϕ22) (47f)

0 = −ϕ̇28 +
1

4
(ω7 + ω10 + ω16 + ω21) −

D

4C
(4ϕ28 − ϕ7 − ϕ10 − ϕ16 − ϕ21) (47g)

0 = −ϕ̇29 +
1

4
(ω5 + ω17 + ω20 + ω23) −

D

4C
(4ϕ29 − ϕ5 − ϕ17 − ϕ20 − ϕ23) (47h)

0 = −ϕ̇30 +
1

3
(ω9 + ω18 + ω24) −

D

3C
(3ϕ30 − ϕ9 − ϕ18 − ϕ24) , (47i)

with ω22, . . . , ω30 computed as stated above.
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Similarily, the equations for angular velocities for planetary gear sets (35),
clutches and brakes (36a) to (36f) must be adapted. Again, just those containing
new variables are changed. For the planetary gear sets these are

P1

{

0 = −JP1.tw1 − 2rP1.tλP1.1 − D(ϕ2 − ϕ26) − C(ω2 − ω26)
0 = −JP1.pw2 − 2rP1.pλP1.2

P2

{

0 = −JP2.tw3 − 2rP2.tλP2.1 − MB(t) with brake torque MB(t)
0 = −JP2.pw4 − 2rP2.pλP2.2

P3

{

0 = −JP3.tw5 − 2rP3.tλP3.1 − D(ϕ10 − ϕ28) − C(ω10 − ω28)
0 = −JP3.pw6 − 2rP3.pλP3.2,

and for the clutches k1, k2, k3 and brakes b1, b2, b3

k3 0 = −Jk3w7 − D(ϕ17 − ϕ29) − C(ω17 − ω29) − λk3

b1 0 = −Jb1w8 − D(ϕ19 − ϕ27) − C(ω19 − ω27) − λb1

b2 0 = −Jb2w9 − D(ϕ20 − ϕ29) − C(ω20 − ω29) − λb2 .

The equations (36g) to (36h) and (37) no longer belong to the system.
The minimal extension contains all possible constraints, i.e. which are added

without changes to the system. In mode M1 we add (38), (41) and (43).
The state vector x for the minimal extension in mode M1 according to (33)

then is

x =













ϕ
ω
λ
v
w













∈ R
78, ϕ, λ as before and ω =







ω1
...

ω21






, v =







v1
...
v9






, w =







w1
...

w9






.

Modes M12 and M21 As for the EoM form, in comparison to mode M1,
equation (48) changes to

0 = −Jb1 ω̇19 − D(ϕ19 − ϕ27) − C(ω19 − ω27) − MR,b1

and additionally we have the differential equation

0 = −ϕ̇19 + ω19.

As before, the constraint (38h) is omitted and also the Lagrange multi-
plier λb1 . Therefore the corresponding derivatives (41h), (43h) are not part of
the model either and the resulting minimal extension has the form

























v1

v2

v3

v4

v5

v6

v7

v8

























:=

























ϕ̇2

ϕ̇4

ϕ̇6

ϕ̇8

ϕ̇10

ϕ̇12

ϕ̇17

ϕ̇20

























,

























w1

w2

w3

w4

w5

w6

w7

w8

























:=

























ω̇2

ω̇4

ω̇6

ω̇8

ω̇10

ω̇12

ω̇17

ω̇20

























.

Here the numbering of the newly introduced variables changes but it will not
be given here explicitly. Then we have a new state vector x ∈ R

75.
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Mode M2 In mode M2 the state vector has dimension x ∈ R
78. Again the

Lagrange multiplier λk1 and the constraint on clutch k1 belong to the system.
In comparison to the modes M12,M21 the equations (36a) must be changed to

0 = −Jk1w7 − D(ϕ13 − ϕ27) − C(ω13 − ω27) − λk1 ,

0 = −Jk1ω̇14 − D(ϕ14 − ϕ26) − C(ω14 − ω26) + λk1 .

The new constraint is
0 = ϕ13 − ϕ14 − ∆k1 ,

and with correspondingly minimally extended variables we get

0 = −v7 + ω13.

The minimal extension for mode M2, omitting again renumbering of variables,
then is





























v1

v2

v3

v4

v5

v6

v7

v8

v9





























:=





























ϕ̇2

ϕ̇4

ϕ̇6

ϕ̇8

ϕ̇10

ϕ̇12

ϕ̇13

ϕ̇17

ϕ̇20





























,





























w1

w2

w3

w4

w5

w6

w7

w8

w9





























:=





























ω̇2

ω̇4

ω̇6

ω̇8

ω̇10

ω̇12

ϕ̇13

ω̇17

ω̇20





























.

Modes M23,M32 As before, compared to mode M2 the equations (48), (36c)
change to

0 = −Jk3 ω̇17 − D(ϕ17 − ϕ29) − C(ω17 − ω29) − MR,k3 ,

0 = −Jk3 ω̇18 − D(ϕ18 − ϕ30) − C(ω18 − ω30) + MR,k3 ,

and we have again the differential equation

0 = −ϕ̇17 + ω17.

The constraint (38g) and its Lagrange multiplier λk3 are omitted and also
its derivatives (41g), (43g). The minimal extension then has the form

























v1

v2

v3

v4

v5

v6

v7

v8

























:=

























ϕ̇2

ϕ̇4

ϕ̇6

ϕ̇8

ϕ̇10

ϕ̇12

ϕ̇13

ϕ̇20

























,

























w1

w2

w3

w4

w5

w6

w7

w8

























:=

























ω̇2

ω̇4

ω̇6

ω̇8

ω̇10

ω̇12

ω̇13

ω̇20

























.

The state vector x in these modes is x ∈ R
75.
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Mode M3 In mode M3 the state vector is of dimension x ∈ R
78. The La-

grange multiplier λk2 returns to the DAE system and connects the constraint
of clutch k2. In comparison to the modes M23,M32 the equations (36b) are
changed to

0 = −Jk2w8 − D(ϕ15 − ϕ25) − C(ω15 − ω25) − λk2 ,

0 = −Jk2ω̇16 − D(ϕ16 − ϕ28) − C(ω16 − ω28) + λk2 ,

the new constraint is added

0 = ϕ15 − ϕ16 − ∆k2 ,

and finally with newly minimal extended variables we get

0 = −v8 + ω15.

The minimal extension in mode M3 without explicitly stating the renumbering
then is





























v1

v2

v3

v4

v5

v6

v7

v8

v9





























:=





























ϕ̇2

ϕ̇4

ϕ̇6

ϕ̇8
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ϕ̇20





























,














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










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



























:=





























ω̇2

ω̇4

ω̇6

ω̇8

ω̇10

ω̇12

ϕ̇13

ω̇15

ω̇20





























.

A.4 Mode transition conditions for the NAG

Joining the models for each mode and the connection between these will result
in the hybrid system of the gearbox NAG. These connections consist of mode
transition conditions and transition functions to continue the solution in the
following mode.

The mode transition conditions for the mode changes occuring in our sim-
ulations are given in Table 5.

For the hybrid multibody system NAG, as described in [24], the mode trans-
fer functions are quite easy as mainly new Lagrange multipliers λi must be
introduced or omitted. The Gear-Gupta-Leimkuhler form additionally needs
initial values for the ηi coupling the constraints on velocity level to the DAE
system. Similarily, for the minimal extension the extended variables must be
initialized for each mode.

In the following, the initial values for the Lagrange multipliers λ are given,
where the switching time is t̂. In the Gear-Gupta-Leimkuhler form the ηi are
trivially initially zero and the initial values for the minimal extension are ob-
tained trivially as well and not given here.

In mode M1, the Lagrange multiplier λb1 on the constraint for brake b1 is
initialized by λb1 = MR,b1(t̂).
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In mode M2 the Lagrange multiplier λk1 on the constraint for clutch k1 is
added, when coming from mode M1. Its initial value is λk1 = MR,k1(t̂).

From the other direction, to mode M2 from M3, a Lagrange multiplier λk3

for the constraint on clutch k3 is initialized by λk3 = MR,k3(t̂).
In mode M3 the Lagrange multiplier λk2 on the constraint on clutch k2 is

finally initialized by λk2 = MR,k2(t̂).

Switch Mode transition condition and meaning

M1 → M12 S1
1(t, x1, ẋ1) = MR,b1 − (D(ϕ19 − ϕ27) + C(ω19 − ω27))

Meaning: Opening of brake b1

M12 → M2 S12
1 (t, x12, ẋ12) = ω13 − ω14

if MR,k1 > D(ϕ13 −ϕ27 +ϕ14 −ϕ26) + C(ω13 −ω27 + ω14 −ω26)
Meaning: Closing of clutch k1

M2 → M23 S2
1(t, x2, ẋ2) = MR,k3 − (D(ϕ17 − ϕ29 + ϕ18 − ϕ30)

+ C(ω17 − ω29 + ω18 − ω30))
Meaning: Opening of clutch k3

M2 → M21 S2
2(t, x2, ẋ2) = MR,k1 − (D(ϕ13 − ϕ27 + ϕ14 − ϕ26)

+ C(ω13 − ω27 + ω14 − ω26))
Meaning: Opening of clutch k1

M23 → M3 S23
1 (t, x23, ẋ23) = ω15 − ω16

if MR,k2 > D(ϕ15 −ϕ25 +ϕ16 −ϕ28) + C(ω15 −ω25 + ω16 −ω28)
Meaning: Closing of clutch k2

M3 → M34 S3
1(t, x3, ẋ3) = MR,b2 − (D(ϕ20 − ϕ29) + C(ω20 − ω29))

Meaning: Opening of brake b2

M3 → M32 S3
2(t, x3, ẋ3) = MR,k2 − (D(ϕ15 − ϕ25 + ϕ16 − ϕ28)

+ C(ω15 − ω25 + ω16 − ω28))
Meaning: Opening of clutch k2

M21 → M1 S21
1 (t, x21, ẋ21) = ω19

if MR,b1 > D(ϕ19 − ϕ27) + C(ω19 − ω27)
Meaning: Closing of brake b1

Table 5: Mode transition condition for the simulation of the NAG

A.5 Simulation settings

For comparison reasons a standard parameter and input specification, based
on a DaimlerChrysler simulation with the in-house code ASIM, was used for
the simulation of the NAG with different hybrid system models and different
solvers.

Simulation procedure

• The time interval [0, 7] was used.

• The start of the simulation was done in gear 1 and mode M1 at time
t0 = 0 at rest. All angles, velocities and accelerations were initialized to
zero.
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• At time t1 = 2, externally a switch to gear 2 is started. When gear 2 and,
therefore, mode M2 is reached, it is integrated until time t2 = 4 At this
time it is switched to gear 3. There in gear 3 and mode M3 the integration
is continued until time t3 = 6, where is finally switched down to gear 2.

• Engine torque and brake torque are fixed according to the specifications
of the ASIM simulation.

Pressure and interfaces to the hydraulics For the brakes and clutches a
fixed loading and opening interval was set as follows

Component Parameter Value

Clutch Loading time 0.2
Opening time 0.1

Brake Loading time 0.2
Opening time 0.1

Table 6: Loading and opening times for hydraulic components of the NAG

In Figure 8 loading and opening of clutch k2 for the mode chain
M2,M23,M3,M32,M2 is presented.
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Figure 8: Pressure at clutch k2

The friction torque on the clutches and brakes is modeled by linear and
constant damping as

MR(t, ω1, ω2) = C1FR(t, ω1, ω2)

= C1p(t)

(

2θ(ω1 − ω2)

1 + (θ(ω1 − ω2))
2 +

2

π
atan (θ(ω1 − ω2))

)

.

For a nonzero difference of angular velocities, this means an almost constant
torque MR = ±C1p(t) with component dependent constant C1. If a zero cross-
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ing occurs, then the duration of the change of the friction torque MR depends
on the parameter θ.
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Figure 9: Friction torque on clutches and brakes

In Figure 9 the pressure evolution is given

p(t) =







0 for t < 4
t − 4 for 4 ≤ t ≤ 5
1 for t > 5

,

where a zero crossing of ω1, ω2 occurs at t = 10 as an example for a loading of
a clutch.


