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Abstract

This paper deals with the efficient numerical solution of the two–dimensional one–
way Helmholtz equation posed on an unbounded domain. In this case one has to
introduce artificial boundary conditions to confine the computational domain. The
main topic of this work is the construction of so–called discrete transparent bound-
ary conditions for state-of-the-art parabolic equations methods, namely a split–step
discretization of the high–order parabolic approximation and the split–step Padé
algorithm of Collins. Finally, several numerical examples arising in optics and un-
derwater acoustics illustrate the efficiency and accuracy of our approach.
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1 Introduction

In this work we study two numerical methods for two–dimensional scalar wave
propagation problems. These problems are usually modeled by the Helmholtz
equation posed on an unbounded domain in R2 and typical applications are
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integrated optics [46], seismic migration [9] and underwater acoustics [28]. E.g.
in seismology images of geological formations are constructed by the downward
computation of sound wave reflection data measured at the surface. Generally
the full Helmholtz equation in R2 is solved as a boundary value problem
with radiation boundary conditions [30]. Alternative strategies are boundary
integral methods (BIM) [1], infinite elements (IFE) [21] and perfectly matched
layer (PML) [6] approaches. We note that the same strategies are used if the
governing equation has an extended length scale in one spatial direction. This
is the case e.g. in integrated optics [46] where the numerical solution is seeked
for photonic devices with a propagation distance of some millimeters whereas
the transverse length scale is typically only a few micrometers.

However, in many situations one can distinguish a main propagation direction
and factorize the Helmholtz equation if the wavenumber is assumed to be
constant. This procedure leads to the one–way Helmholtz equation. Different
one–way approximations yield various so–called Beam Propagation Methods
(BPM) in optics [18] or Parabolic Equation (PE) methods in (underwater
and aero) acoustics [44]. In the sequel we will use a notation common to the
application in underwater acoustics. Nevertheless our approach is generally
applicable to all one–way wave propagation problems in 2D and we will discuss
a numerical example from optics in §7.

In underwater acoustics one wants to calculate the underwater acoustic pres-
sure p(z, r) emerging from a time–harmonic point source of time dependence
exp(−i2πft) located in the water at (zs, 0). Here, r > 0 denotes the radial
range variable, 0 < z < zb the depth variable and f denotes the (usually
low) frequency of the emitted sound. The water surface is at z = 0, and the
(horizontal) sea bottom at z = zb. We denote the local sound speed by c(z, r),
the density by ρ(z, r), and the attenuation by α(z, r) ≥ 0. n(z, r) = c0/c(z, r)
is the refractive index, with a reference sound speed c0 (usually the small-
est sound speed in the model). The environmental layout of the problem is
illustrated in Figure 1.

The starting point of our consideration is the Helmholtz equation (‘far–field
equation’) for a variable–density medium and a time–harmonic point source
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with the complex refractive index

N(z, r) = n(z, r) + iα(z, r)/k0,

and the reference wave number k0 = 2πf/c0. In the far–field approximation
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Fig. 1. Time–harmonic acoustic waves are emitted from the source at depth zs and
measured/numerically simulated at a receiver at depth zr.

(k0r�1) the (complex valued) outgoing acoustic field

ψ(z, r) =
√
k0r p(z, r) e

−ik0r (2)

satisfies the one–way Helmholtz equation:

ψr = ik0

(
−1 +

√
1 − L

)
ψ, r > 0. (3)

Here,
√

1 − L is a pseudo–differential operator, and L the Schrödinger operator
(‘depth operator’)

L = −k−2
0 ρ ∂z(ρ

−1∂z) + V (z, r) (4)

with the complex valued “potential” V (z, r) = 1 −N 2(z, r).

The evolution equation (3) is much easier to solve numerically and requires
far less memory than the elliptic Helmholtz equation (1). Hence, (3) forms the
basis for all standard linear models in underwater acoustics (normal mode,
ray representation, parabolic equation). Strictly speaking, (3) is only valid
for horizontally stratified oceans, i.e. for range–independent parameters c, ρ,
and α. In practice, however, it is still used in situations with weak range
dependence, and backscatter is neglected.

An efficient solution method for (3) is the split–step Fourier method [26], [19]
which computes the square root operator directly in the transformed Fourier
space and allows large range and depth steps. However, Higher–order PEs han-
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dle wide propagation angles and variations of the refractive index (especially
at the water–bottom interface) more accurately than the split–step Fourier
solution. These Padé “Parabolic” approximations of the one–way Helmholtz
equation (3) consist in formally approximating the pseudo–differential square
root operator

√
1 − L by a (`,m)–Padé approximant:

ψr = ik0

(
P`(L)

Qm(L)
− 1

)
ψ, r > 0. (5)

Here P`, Qm denote polynomials of degree `, m, respectively. While the Padé
approximation is the most usual method, it is inaccurate near the singularity of
the square root operator. Other reasonable candidates for the approximation
are the Chebyshev (L∞) approximation, the least squares (L2) approximation
and the Chebyshev–Padé approximation [22]. Standard numerical solution
methods for (5) uses finite differences or finite elements and are relatively
inefficient since they tend to require a rather small grid spacing (compared
to the split–step Fourier method). The split–step Padé method combines both
benefits: the efficiency of the split–step Fourier method and the accuracy of the
higher–order PEs. This algorithm is orders of magnitudes faster than standard
finite difference methods and includes higher–order asymptotics. Furthermore,
it allows for a powerful parallel implementation.

In this article we shall focus on adequate boundary conditions (BCs) at the
sea–bottom for finite difference discretizations of equations of the form (5)
and for the split–step Padé method to solve (3). The presented approach gen-
eralizes our previously obtained results for the special case of a (1,1)–Padé
approximant [3]. At the free water surface one usually employs a Dirichlet
(“pressure release”) BC: ψ(z = 0, r) = 0. At the sea bottom the wave prop-
agation in water has to be coupled to the wave propagation in the sediments
of the bottom. The bottom will be modeled as the homogeneous half–space
region z > zb with constant parameters cb, ρb, and αb.

In practical simulations one is only interested in the acoustic field ψ(z, r)
in the water, i.e. for 0 < z < zb. While the physical problem is posed on
the unbounded z–interval (0,∞), one wishes to restrict the computational
domain in the z–direction by introducing an artificial boundary at or shortly
below the sea bottom. This artificial BC should of course change the model as
little as possible. Hitherto, the standard strategy was to introduce rather thick
absorbing layers below the sea bottom and then to limit the z–range by again
imposing a Dirichlet BC [28]. With a carefully designed absorption profile and
layer thickness [7] this technique produces accurate results at the expense of
an increased computational domain. Absorbing layer strategies increase the
computational costs, for PE simulations typically by a factor around 2 [32].
However, in simulations without attenuation (“false absorbing layer method”)
[32] much thicker absorbing layers have been used to ensure accuracy and,
respectively, numerical stability.
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Papadakis derived in [39], [40] impedance BCs or transparent boundary con-
ditions (TBCs) for the (1,0) and (1,1)–Padé approximant which completely
solves the problem of restricting the z–domain without changing the physi-
cal model: complementing the PE with a TBC at zb allows to recover — on
the finite computational domain (0, zb) — the exact half–space solution on
0 < z < ∞. As the (1,0)–Padé approximant is a Schrödinger equation, simi-
lar strategies have been developed independently for various application fields
[2], [5], [27], [35], [43]. While these early TBCs assumed a homogeneous region
behind the artificial boundary, recently TBCs for a media with linear depth
dependence of the refraction index [16], [29], [34], [12] were obtained.

Towards the end of this introduction we shall now turn to the main motivation
of this paper. While TBCs fully solve the problem of cutting off the z–domain
for the analytical equation, their numerical discretization is far from trivial.
Indeed, all available discretizations are less accurate than the discretized half–
space problem and they render the overall numerical scheme only conditionally
stable [36]. Additionally, all available TBCs are derived for low–order PEs
which have very limited wide–angle capabilities and are insufficient for many
shallow–water problems. In [41] a TBC was derived for the one–way Helmholtz
equation (3) which has (formally) unlimited wide–angle capability. This TBC
(in a similar formulation) was implemented by Brooke and Thomson [8] and
exposed computational instabilities.

The object of this paper is to construct exact discrete transparent boundary
conditions (DTBCs) for state-of-the-art PE models, namely a split–step dis-
cretization of the high–order parabolic equations (5) and the split–step Padé
solution method of Collins [10]. With these DTBCs the overall scheme is as
accurate as the discretized half–space problem (up to some very small round–
off errors and evanescent errors in the numerical inverse Z–transformation).
We remark that a similar approach for the OWWE (one–way wave equation)
of Godin [24] was done by Mikhin [38] and also refer the reader to a semi–
discrete TBC by Schmidt et al. [42] based on a Laplace–transformation in the
depth variable.

The paper is organized as follows: we will review in §2 the high–order PEs and
propose in §3 a semi–discrete evolution equation. Alternatively, we present in
§4 the well–known split–step Padé algorithm of Collins [10]. To solve the result-
ing schemes numerically it remains to discretize adequately the Schrödinger
operator L in depth (transverse) direction in §5. In §6 the DTBCs are derived
directly for the proposed numerical methods of §3, §4. Finally, we conclude
in §7 with several numerical examples from optics and underwater acoustics
showing the effectiveness and accuracy of our DTBCs. In our numerical tests of
DTBCs (in §7) we will only deal with horizontal bottoms. However, irregular
bottom surfaces and sub–bottom layers can be included by simply extending
the range of z.
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2 The Higher–Order Parabolic Equations

Padé “Parabolic” approximations of (3) consist in formally approximating the
pseudo–differential square root operator

√
1 − L by rational functions of L:

√
1 − λ ≈ p0 − p1λ+ p2λ

2 − ...+ plλ
l

1 − q1λ+ q2λ2 − ...+ qmλm
=:

P`(λ)

Qm(λ)
. (6)

This approach yields a PDE that is easier to discretize than the pseudo–
differential equation (3). The coefficients above can be easily determined using
a symbolic mathematical software, e.g. in the MAPLE package the function
call

l:=2; m:=2;

with(numapprox):pade(sqrt(1-lambda), lambda, [l,m]);

yields the desired values for the (l, m)–Padé approximant (6). We remark
that the most accurate of these approximations are obtained from l = m or
l = m+ 1, cf. [45].

Let us briefly review the well–known low–order PEs. The linear approximation
of

√
1 − λ by 1− λ/2 gives the narrow angle or standard “parabolic” equation

of Tappert [44]

ψr = − ik0

2
Lψ, r > 0.

This Schrödinger equation is a reasonable description of waves with a propa-
gation direction within about 10–15◦ off the horizontal. We note that this PE
was introduced by Leontovich and Fock [33] in 1946 to the problem of radio
wave propagation in the atmosphere. Rational approximations of the form

√
1 − λ ≈ p0 − p1λ

1 − q1λ
,

with real p0, p1, q1 yield the wide angle “parabolic” equations (WAPE)

ψr = ik0

(
p0 − p1L

1 − q1L
− 1

)
ψ, r > 0. (7)

With the special choice p0 = 1, p1 = 3
4
, q1 = 1

4
((1,1)–Padé approximant of√

1 − λ) one obtains the WAPE of Claerbout (“standard 40◦ equation”) [9].
In [23] Greene determines these coefficients by minimizing the approximation
error of

√
1 − λ over suitable λ–intervals

√
1 − λ ≈ 0.99987 − 0.79624λ

1 − 0.30102λ
.
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These WAPE models furnish a much better description of the wave propaga-
tion up to angles of about 40◦. Applying a (2,2)–Padé approximant

√
1 − λ ≈ 1 − 5

4
λ + 5

16
λ2

1 − 3
4
λ + 1

16
λ2

yields a wider–angle PE valid to nearly 55◦ from the main propagation di-
rection. An overview of several approximations is given in [25]. For a concise
discussion of possible numerical instabilities associated with evanescent modes
that are exited when approximating a range–dependent medium by a piece-
wise uniform waveguide structures (‘staircase approximation’) we refer to [47]
and the references therein.

3 The semi–discrete evolution equation

First we discretize in range (which is the principal propagation direction) using
a Crank–Nicolson type (i.e. implicit midpoint) second–order discretization:

D+

kψ
n(z) = ik0

(
−1 +

√
1 − L

)
ψn+1/2(z), n ≥ 0, (8)

with the usual forward difference operator D+

kψ
n(z) = (ψn+1(z) − ψn(z))/k

and the average ψn+1/2(z) := (ψn+1(z) + ψn(z))/2. Here, ψn(z) ∼ ψ(z, rn),
with the uniform range grid rn = nk, (k = ∆r). This discretization results in

(
1 +

ik0

2
k
(
1 −

√
1 − L

))
ψn+1(z) =

(
1 − ik0

2
k
(
1 −

√
1 − L

))
ψn(z), n ≥ 0.

Now using the Padé approximant (6) of the square root operator yields

((
1 +

ik0

2
k
)
Qm(L) − ik0

2
kP`(L)

)
ψn+1(z)

=
((

1 − ik0

2
k
)
Qm(L) +

ik0

2
kP`(L)

)
ψn(z), n ≥ 0,

which can be written as the semi–discrete evolution equation

ψn+1(z) =
U(L)

W (L)
ψn(z), n ≥ 0, (9)

with the polynomials U(L), W (L) of degree p = max(`,m):

U(L) =
(
1 − ik0

2
k
)
Qm(L) +

ik0

2
kP`(L),

W (L) =
(
1 +

ik0

2
k
)
Qm(L) − ik0

2
kP`(L).
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Using this ratio of polynomials as a higher–order parabolic equation (as it was
done in [31]) is difficult to implement because powers of L are involved. Thus
we introduce a multiplicative splitting (like in [42]) and write the evolution
equation (9) in the following form (involving only first powers of L):

ψn+1(z) =
cU
cW

p∏

l=1

1 − al,pL

1 − bl,pL
ψn(z), n ≥ 0, (10)

once the polynomials U , W are factorized as

U(L) = cU

p∏

l=1

(1 − al,pL), W (L) = cW

p∏

l=1

(1 − bl,pL),

with some constants cU , cW .

The next step is to rewrite equation (10) of order 2p as a system of p second
order differential equations. To do so, we introduce the intermediate functions
ϕn+1

1 (z), . . . , ϕn+1
p−1(z) that fulfill

ϕn+1
1 (z) =

1 − a1,pL

1 − b1,pL
ψn(z),

ϕn+1
l (z) =

1 − al,pL

1 − bl,pL
ϕn+1

l−1 (z), l = 2, . . . , p− 1,

ψn+1(z) =
cU
cW

1 − ap,pL

1 − bp,pL
ϕn+1

p−1(z).

Thus, the system of p second order differential equations reads

a1,pLψ
n(z) − b1,pLϕ

n+1
1 (z) = ψn(z) − ϕn+1

1 (z),

al,pLϕ
n+1
l−1 (z) − bl,pLϕ

n+1
l (z) = ϕn+1

l−1 (z) − ϕn+1
l (z), l = 2, . . . , p− 1,

(11)
cU
cW

ap,pLϕ
n+1
p−1(z) − bp,pLψ

n+1(z) =
cU
cW

ϕn+1
p−1(z) − ψn+1(z).

4 The Split–Step Padé solution method

In [10] Collins proposed the split–step Padé algorithm. The idea is to inter-
change the two steps of using the Padé approximation and solving the one–way
Helmholtz equation (3). Thus, we first solve formally the one–way Helmholtz
equation (3): if the field is known at the range rn = nk then the solution of
(3) at range rn+1 is given by

ψn+1 = exp
{
ik0∆r

(
−1 +

√
1 − L

)}
ψn, n ≥ 0. (12)
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Afterwards we apply the Padé approximation to the operator that propagates
the solution in range (’propagator’):

exp
{
ik0∆r

(
−1 +

√
1 − L

)}
≈ 1 +

p∑

l=1

al,pL

1 + bl,pL
=

n∏

l=1

1 + λl,pL

1 + µl,pL
. (13)

Inserting (13) into (12) we get the split–step Padé solution

ψn+1 = ψn +
p∑

l=1

al,pL

1 + bl,pL
ψn, n ≥ 0. (14)

Remark 1 The product formulation in (13):

ψn+1 =
p∏

l=1

1 + λl,pL

1 + µl,pL
ψn, n ≥ 0. (15)

does not allow for parallel computations and hence we will focus in the sequel
on the common additive formulation (14). The coefficients λl,p and µl,p are
complex conjugate (see [4]).

5 The depth discretization

To solve (14) numerically it remains to discretize the depth operator L (4)
w.r.t. the depth variable z (denoted by Lh). This is done using the approach
of [3]:

Lhψ
n
j = −k−2

0 ρjD
0
h
2

(ρ−1
j D0

h
2

)ψn
j + V n

j ψ
n
j . (16)

Here, we used the notation ψn
j ∼ ψn(zj), zj = jh, (h = ∆z) and the centered

difference quotient

D0
h
2

ψn
j =

ψn
j+ 1

2

− ψn
j− 1

2

h
.

In a homogeneous waveguide (i.e. ρ = const., c ≡ c0) without attenuation the
discrete depth operator reduces to Lh = −k−2

0 D2

h, with the standard second
order difference quotient

D2

hψ
n
j =

ψn
j+1 − 2ψn

j + ψn
j−1

h2
= ∂2

zψ
n(zj) + O(h2).

Collins showed in [10] how to adapt the split–step Padé technique for the
discretized depth operator Lh. In the sequel we briefly review this idea.

We obtain formally from the taylor series

ψn(zj±1) = exp(±h∂z)ψ
n(zj) = exp

(
∓hk0L

1/2
)
ψn(zj)
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the expression

Lh = 2
cosh

(
τL1/2

)
− 1

τ 2
, τ = hk0. (17)

Using the inverse function of cosh we obtain L as a function of Lh:

L = Γ(Lh) = τ−2 log2
[
1 +

τ 2

2
Lh +

√
(
1 +

τ 2

2
Lh

)2 − 1
]
, (18)

and inserting (18) into (12) gives

ψn+1
j = exp

{
ik0∆r

(
−1 +

√
1 − Γ(Lh)

)}
ψn

j , n > 0. (19)

We proceed analogously to (13) and apply the Padé approximation

exp
{
ik0∆r

(
−1 +

√
1 − Γ(Lh)

)}
≈ 1 +

p∑

l=1

ãl,pLh

1 + b̃l,pLh

. (20)

Finally, inserting (20) into (19) we get

ψn+1
j = ψn

j +
p∑

l=1

ãl,pLh

1 + b̃l,pLh

ψn
j , n > 0. (21)

In order to compute the coefficients ãl,p, b̃l,p, l = 1, . . . , p we compare the of
both sides of (20). Therefore, we use the the taylor series

Γ(Lh) =
∞∑

l=1

γ−1
l τ 2l−2Ll

h, (22)

and obtain a system of nonlinear equations, that we solve by the MATLAB
routine fsolve. In preparation therefore the coefficients γl and the taylor
expansion of the l.h.s. in (20) were calculated using the symbolic package
MAPLE.

6 The Discrete Transparent Boundary Conditions

In this section we will construct the discrete transparent boundary condi-
tions (DTBCs) for the high–order PE and for the split-step Padé algorithm.
The DTBCs are obtained by Z–transformation of the fully discrete numerical
schemes in the (homogeneous) fluid bottom region j ≥ J . For the following
derivations we make the basic assumption that the initial data ψI = ψ(z, 0),
which models a point source located at (zs, 0), is supported in the interior
domain 0 < z < zb, i.e. suppψI ⊂ (0, zb). Approaches to overcome this re-
striction can be found in [17], [38].
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6.1 The DTBC for the High–Order PE

We consider the system (11) with L replaced by Lh from (16) and drop for
simplicity the second index p. In the exterior domain (j ≥ J) the density is
constant and we denote the constant potential in the bottom region with Vb.
Thus the discrete depth operator Lh simplifies to Lhψ

n
j = −k−2

0 D2

hψ
n
j + Vbψ

n
j ,

j ≥ J . Hence, the discrete system of p second order difference equations reads
for j ≥ J :

−a1D
2

hψ
n
j + b1D

2

hϕ
n+1
1,j = k2

0(1 − a1Vb)ψ
n
j − k2

0(1 − b1Vb)ϕ
n+1
1,j ,

−alD
2

hϕ
n+1
l−1,j + blD

2

hϕ
n+1
l,j = k2

0(1 − alVb)ϕ
n+1
l−1,j − k2

0(1 − b1Vb)ϕ
n+1
l,j ,

l = 2, . . . , p− 1,

− cU
cW

apD
2

hϕ
n+1
p−1,j + bpD

2

hψ
n+1
j =

cU
cW

k2
0(1 − apVb)ϕ

n+1
p−1,j − k2

0(1 − bpVb)ψ
n+1
j .

To solve this system we use the Z–transformation [13]

Z{ϕn
j } = ϕ̂j(z) :=

∞∑

n=0

ζ−nϕn
j , ζ ∈ C, |ζ| > Rϕj

, (23)

where Rϕj
denotes the convergence radius of this Laurent series. Note that we

denoted in (23) the transformation variable with ζ in order to assign z for the
depth variable. This yields the following Z–transformed system

−a1D
2

hψ̂j + ζb1D
2

hϕ̂1,j = k2
0(1 − a1Vb)ψ̂j − ζk2

0(1 − b1Vb)ϕ̂1,j ,

−alD
2

hϕ̂l−1,j + blD
2

hϕ̂l,j = k2
0(1 − alVb)ϕ̂l−1,j − k2

0(1 − b1Vb)ϕ̂l,j,

l = 2, . . . , p− 1, (24)

− cU
cW

apD
2

hϕ̂p−1,j + bpD
2

hψ̂j =
cU
cW

k2
0(1 − apVb)ϕ̂p−1,j − k2

0(1 − bpVb)ψ̂j.

We rewrite the transformed system (24) in matrix notation as

X∆+∆−ψ̂j = Yψ̂j, j ≥ J, (25)

where we defined the vector ψ̂j := (ψ̂, ϕ̂1, . . . , ϕ̂p−1)
>
j ∈ Cp and the complex

p× p–matrices

X :=




−a1 ζb1

−a2 b2
. . .

. . .

−ap−1 bp−1

bp − cU

cW
ap
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and

Y := h2k2
0




1 − a1Vb −ζ(1 − b1Vb)

1 − a2Vb −(1 − b2Vb)
. . .

. . .

1 − ap−1Vb −(1 − bp−1Vb)

−(1 − bpVb)
cU

cW
(1 − apVb)




.

Here, ∆+, ∆− denote the standard forward and backward difference operators

∆+ψ̂j = ψ̂j+1 − ψ̂j, ∆−ψ̂j = ψ̂j − ψ̂j−1.

By introducing ξ̂j := ∆−ψ̂j we rewrite (25) as a system of 2p first order
difference equations



0 X

I −I




︸ ︷︷ ︸
A

∆+



ψ̂j

ξ̂j


 =



Y 0

0 I




︸ ︷︷ ︸
B



ψ̂j

ξ̂j


 ,

i.e.



∆+ψ̂j

∆+ξ̂j


 = A−1B



ψ̂j

ξ̂j


 or



ψ̂j+1

ξ̂j+1


 = (A−1B + I)



ψ̂j

ξ̂j


 , j ≥ J .

Let us briefly comment of the regularity of A, i.e. of X. One easily computes

detX = (−1)p cU
cW

p∏

l=1

al − ζ
p∏

l=1

bl

which vanishes for exactly one value of ζ. Hence A−1 =
(

X−1 I

X
−1

0

)
exists for ζ

chosen sufficiently large.

We split the Jordan form J = diag(J1,J2) of A−1B+I , J1 ∈ C
p×p containing

the Jordan blocks corresponding to solutions decaying for j → ∞ and J2 ∈
Cp×p those which increase. With the matrix of left eigenvectors P−1 =

(
P1 P2

P3 P4

)

the equation

P−1



ψ̂j+1

ξ̂j+1


 = P−1(A−1B + I)



ψ̂j

ξ̂j


 = P−1P



J1 0

0 J2






P1 P2

P3 P4






ψ̂j

ξ̂j




=



J1 0

0 J2






P1ψ̂j + P2ξ̂j

P3ψ̂j + P4ξ̂j
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holds and thus the transformed DTBC reads

P3ψ̂J + P4ξ̂J = 0.

For a regular matrix P4 the Z–transformed DTBC can be written in Dirichlet-
to-Neumann form

∆−ψ̂J = D̂ψ̂J ,

where D̂ = −(P4)
−1P3. Finally, an inverse Z–transformation yields the DTBC

ψn+1
J −ψn+1

J−1 − D0ψn+1
J =

n∑

l=1

Dn+1−lψl
J . (26)

with the convolution coefficients given by the Cauchy integral formula

Dn = Z−1{D̂(z)} =
τn

2π

2π∫

0

D̂(τeiϕ)einϕ dϕ, n ∈ Z0, τ > 0.

Since this inverse Z-transformation cannot be done explicitly, we use a nu-
merical inversion technique based on FFT (cf. [14]); for details of this routine
(especially the choice of the inversion radius τ) we refer the reader to [48].

So far we did not consider the (typical) density jump at the sea bottom at
z = zb. In the following we review a possible discretization of the water–bottom
interface. For our grid zj, j ∈ N0 with Jh = zb the discontinuity of ρ is located
at the grid point zJ . In this case it is a standard practice [37] to use (16) with

ρj =





ρw, j < J,
2 ρbρw

ρb+ρw
, j = J,

ρb, j > J.

(27)

and apply the DTBC (26) in the sea bottom at the grid points zJ+2, zJ+3

(instead of zJ−1, zJ). For a detailed discussion of various strategies of an
adequate discrete treatment of the density shock at z = zb we refer to [3].

6.2 The DTBC for the split–step Padé algorithm

Now let us describe briefly the differences in the derivation of the DTBC for
the split–step Padé algorithm. To do so, we consider the scheme (14) with the
depth discretization from §5 (or simply (16)) in the exterior domain j ≥ J
and drop for convenience the second index p:

ψn+1
j =

(
1 +

p∑

l=1

alLh

1 + blLh

)
ψn

j , n ≥ 0.
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Next we introduce the intermediate functions ϕn+1
1 (z), . . . , ϕn+1

p−1(z) that fulfill

ϕn+1
l,j =

alLh

1 + blLh
ψn

j , l = 1, . . . , p− 1,

ψn+1
j −

p−1∑

l=1

ϕn+1
l,j =

(
1 +

apLh

1 + bpLh

)
ψn

j .

We apply the Z–transformation (23) which yields the following Z–transformed
system

X∆+∆−ψ̂j = Yψ̂j, j ≥ J,

where we defined the vector ψ̂j = (ψ̂, ϕ̂1, . . . , ϕ̂p−1)
>
j ∈ Cp and the complex

p× p–matrices

X :=




−a1

ζ
b1

...
. . .

−ap−1

ζ
bp−1

bp − ap

ζ−1
− ζbp

ζ−1
. . . − ζbp

ζ−1




and

Y := h2k2
0




−a1Vb

ζ
b1Vb + 1

...
. . .

−ap−1Vb

ζ
bp−1Vb + 1

1 + (bp − ap

ζ−1
)Vb

−ζ
ζ−1

(1 + bpVb) . . .
−ζ
ζ−1

(1 + bpVb)




.

The invertibility of X follows from

detX = (−1)p+1
p∏

l=1

bl +
1

ζ − 1

p∑

l=1

(−1)ql(p)al

p∏

m=1
m6=l

bm

(with some signature function ql(p)) for ζ chosen sufficiently large. The re-
maining part of the construction is completely analogous to the preceding
§6.1.

7 Numerical Examples

In our examples we shall consider higher–order approximants to the one–way
Helmholtz equation illustrating the numerical results when using the discrete
TBCs of §6. We emphasize that, due to its construction, our discrete TBC
yields exactly (up to round–off errors and evanescent errors in the numerical

14



inverse Z–transformation) the numerical solution on the unbounded domain
restricted to the finite computational interval.

7.1 Example 1

In the first example we choose the benchmark data arising in optics from [20],
[42] to duplicate and compare the numerical results with our method. The
computational domain is Ω = (−50, 50) × (0, 400)µm2. As a starting field we
use a Gaussian input beam of the form

ψI(z) = ψ(z, 0) = exp{ik0z sin φ− (z/10)2}, |z| < 50µm,

where φ denotes the angle between propagation direction and the r–axis. We
consider two dimensional plain wave propagation in a homogeneous medium,
i.e. the potential term is zero: V ≡ 0 and k0 = 2π/λ with the free space
wavelength λ = 1.55µm. We compute the field from r = 0 to r = 400µm using
the propagation step size k = ∆r = 0.4µm (i.e. 1000 steps). The transverse
grid spacing is taken to be h = ∆z = 0.2µm. In this example we need two
DTBCs at the left and right endpoint of the computational z-interval. The
DTBC at the left endpoint zL = −50µm is derived analogously.

In our first numerical example we add two Gaussian beams with the propa-
gation angles φ = π/4 and φ = −π/4 and normalize the initial data ψ0

j =
ψI(zL + jh), j = 0, 1 . . . , J , (with Jh = zR = 50µm), such that ‖ψ0‖2 = 1.
Here the discrete `2–norm on the computational interval is defined by

‖ψn‖2
2 = h

J−1∑

j=1

|ψn
j |2, n ≥ 0. (28)

This propagation experiment of two beams with a relative angle of π/2 needs
essentially the wide–angle property of higher–order approximants since other-
wise considerable phase errors are induced (cf. the detailed analysis in [42]).

7.1.1 The Split–Step High–Order PE Method

We consider the split–step algorithm (11) with the discrete depth operator
(16) for solving the high–order parabolic equations of §2. To treat the wide–
angle propagation we use a (4,4)–Padé approximation (the same was done in
[42]). Fig. 2 shows the solution with the high–order PE method and expresses
the fact that this very wide–angle propagation problem can be solved with the
proposed method.

Next we want to draw the readers’s attention to the high accuracy of the
discrete TBCs. In Fig. 3 we display the discrete `2–norm of the solution as a

15



0
20

40
60

80
100

−50

0

50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

r / µmz / µm

Fig. 2. Propagation of two Gaussian beams at a relative angle of π/2.

function of r and varying step sizes h. We point out that in all our simulations
unphysical numerical plateaus (like in [42]) do not appear (independent from
the chosen transverse step size h). Hence our fully discrete approach for de-
riving TBCs seems to be more appropriate (at about the same computational
costs) for pure wave propagation problems than the semi–discrete approach
of [42].

0 10 20 30 40 50 60 70 80 90 100
10−5

10−4

10−3

10−2

10−1

100

||u
||

r / µm

dz =0.01µm

dz = 0.025µm

dz = 0.05µm

dz = 0.1µm

dz = 0.2µm

Fig. 3. The discrete `2–norm (28) of the solution for the propagation range
0 ≤ r ≤ 400µm and varying transverse step sizes ∆z.
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In Fig. 4 we consider an (8,8)–Padé approximation, enlarged the propagation
range up to 400µm and used the coarse transverse step size h = 0.2µm in
order to investigate the long range behaviour and thus the stability of our
algorithm. Again, one observes no reflected fields (i.e. plateaus) in the curve.
After the wave packet has left the computational domain only some numerical
’noise’ of magnitude 10−12 remains.

0 50 100 150 200 250 300 350 400
10−12

10−10

10−8

10−6

10−4

10−2

100

r / µm

||u
||

Fig. 4. The discrete `2–norm of the solution of (8,8)–propagator for 0 ≤ r ≤ 400µm
and ∆z = 0.2µm.

To obtain a more quantitative result about the error induced by the DTBCs
we compute a reference solution on a three times larger z–domain and plot
the discrete `2–norm of the error in Fig. 5. The order of magnitude of the
error is 10−14 which is around the order of the roundoff error and is orders of
magnitudes smaller than the order of the discretization error.

7.1.2 The Split–Step Padé Method

Now we turn to the second presented numerical scheme, the split–step Padé
method of §4 with the depth operator from §5, and repeat the calculations.
We use the same discretization parameters as before and choose p = 4 in (14).
Fig. 6 shows the solution and one can recognize that the phase error is smaller
than using the method of §7.1.1 since the peak of the wave should leave the
computational domain at zR = 50µm. We turn to the accuracy of the discrete
TBC for the Split–Step Padé method and plot in Fig. 7 the discrete `2–norm
of the solution for the same step sizes h as in Fig. 3. Again no numerical
plateaus emerged and the curves for the different transverse step sizes ∆z are
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Fig. 5. The discrete `2–norm of the error (observe the scaling!)
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Fig. 6. Split–Step Padé method: Propagation of two Gaussian beams at a relative
angle of π/2.

indistinguishable. In Fig. 8 we computed the solution up to 400µm with the
coarse transverse step size h = 0.2µm and the curve reveals no numerical
plateaus. The discrete `2–norm of the error due to the DTBC in Fig. 9 is even
smaller than the error in Fig. 5.
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Fig. 7. Split–Step Padé method: The discrete `2–norm of the solution for
0 ≤ r ≤ 400µm and varying step sizes ∆z.
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Fig. 8. Split–Step Padé method: The discrete `2–norm of the solution for
0 ≤ r ≤ 400µm and ∆z = 0.2µm.

Finally, we compare directly the results using the split–step algorithm (11)
and split–step Padé method of Collins with the depth operator from §5 and
the standard transverse operator (16). In Fig. 10 we plot again the discrete `2–
norm of the solution and it is apparent that one has to use a small transverse
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Fig. 9. Split–Step Padé method: The discrete `2–norm of the error.

step size in the first method (11) to obtain results comparable to the split–step
Padé method. Thus the split–step Padé solution method (14) with the depth
operator of §5 gives the best results for this example.
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split−step, dz = 0.01 µm

Fig. 10. Comparison of the discrete `2–norm of the solution for both approaches
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7.2 Example 2

This example from underwater acoustics is closely related to the example A
of [10]. In this example the ocean region (0 < z < 200 m) with the uniform
density ρw = 1.0 gcm−3 is modeled by the one–way Helmholtz equation (3).
It contains no attenuation in the water αw = 0 dB /λ, and the attenuation
in the bottom is αb = 0.5 dB /λ, λ = c(z)/f . There is a large density jump
(ρb = 1.5 gcm−3) at the water–bottom interface at zb = 200 m.

The source of f = 25 Hz is located at a water depth zs = 100 m and the receiver
depth is at zr = 30 m. For the sound speed in the water we assume c(z) ≡
c0 = 1500 ms−1 and the sound speed in the bottom is cb = 1700 ms−1. For
our calculations with the split–step Padé method of Collins up to a maximum
range of 10 km we used a uniform computational grid with depth step h =
∆z = 2 m and different range steps k = ∆r. Here we employ the Gaussian
beam from [32] as a starting field ψI = ψ(z, 0).

Below we present the so–called transmission loss TL(r) := −10 log10 |p(zr, r)|2,
where the acoustic pressure p is calculated from (2). We computed a densely
sampled comparison solution using the range step k = 50 m and sparsely sam-
pled solutions for p = 4, k = 200 m and for p = 8 k = 400 m. In Fig. 11
and Fig. 12 one observes that both of the sparsely sampled split–step Padé
solutions are in good agreement with the dense solutions and thus in many
applications are large a range step can be used with this method.

0 1 2 3 4 5 6 7 8 9 10

30

35

40

45

50

55

60

65

70

75

80

range (km)

tra
ns

m
is

si
on

 lo
ss

dr = 50  m

dr = 200 m

Fig. 11. Transmission loss at zr = 30m: densely sampled comparison solution and
sparsely sampled solution for p = 4 and k = 200m.
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Fig. 12. Transmission loss at zr = 30m: densely sampled comparison solution and
sparsely sampled solution for p = 8 and k = 400m.

Finally we compute a solution for p = 8 and k = 400 m on a three times larger
z–domain confined with the DTBC and determined the discrete `2–norm of
the error in Fig. 13. The order of magnitude of the error due to the DTBC
is 10−12 (for p = 4 and k = 400 m it is 10−15) which is negligible compared
to the discretization error. We remark that the residuals when computing the
Padé coefficients in (20) with the MATLAB routine fsolve are 10−6 for p = 8,
k = 400 m and 10−12 for p = 4, k = 200 m.

Conclusions

We have derived exact discrete transparent boundary conditions for different
rational approximations to the one–way Helmholtz equation. This approach
generalizes substantially our work [3] for the case of a (1,1)–Padé approximant.
In the numerical example without potential term our DTBC for the split–step
algorithm for the high–order PE outperformed the previously derived semi–
discrete TBC [42] and showed no numerical plateaus. It turned out that the
split–step Padé solution method of Collins [10] with the depth operator of
§5 provided the most accurate results for this example. However, it is un-
clear how to generalize this depth operator to the case of a non–zero potential
term. We believe that this general approach will be valuable for many appli-
cations arising in two–dimensional scalar wave propagation problems, e.g. it
can implemented into the Range–dependent Acoustic Model (RAM) code [11].
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Fig. 13. The discrete `2–norm of the error for the case p = 8 and k = 400m .

Future work will be concerned with the stability proofs of the two presented
methods and the implementation and analysis of the sum–of–exponentials ap-
proximation [15] to the discrete convolution–type transparent boundary con-
dition in order to further improve the efficiency of our approach.
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[6] J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic

waves, J. Comp. Phys. 114 (1994), 185–200.

23



[7] H.K. Brock, The AESD parabolic equation model, Report TN–12, Naval Ocean
Research and Development Activity, Stennis Space Center, MS, 1978.

[8] G.H. Brooke and D.J. Thomson, Non–local boundary conditions for high–order

parabolic equation algorithms, Wave Motion 31 (2000), 117–129.

[9] J.F. Claerbout, Coarse grid calculation of waves in inhomogeneous media

with application to delineation of complicated seismic structure, Geophysics 35

(1970), 407–418.
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