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Abstract

We investigate the problem of maximizing the robust utility functional infQ∈QEQu(X).

We give the dual characterization for its solution for both a complete and an incomplete

market model. To this end, we introduce the new notion of reverse f -projections and

use techniques developed for f -divergences. This is a suitable tool to reduce the robust

problem to the classical problem of utility maximization under a certain measure: the

reverse f -projection. Furthermore, we give the dual characterization for a closely related

problem, the minimization of expenditures given a minimum level of expected utility in
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1 Introduction

A standard problem in the theory of incomplete financial markets consists in maximizing the

utility of payoffs. But how do we measure utility?

The usual approach goes back to von Neumann-Morgenstern and Savage. It provides con-

ditions on an investor’s preferences which guarantee that the utility of a contingent claim is

given by the expectation EQu(X) for some measure Q and a utility function u. The problem

of utility maximization with the initial endowment x can then be formulated as

Maximize EQ[u(X)] over all X with sup
P∈PQ

EP X ≤ x (1)

for some set of reasonable equivalent local martingale measures PQ. This problem is well

understood, in particular due to articles by Kramkov and Schachermayer [13] and Goll and

Rüschendorf [10].

However, both from a normative and a descriptive point of view, there are good reasons

to consider alternative utility functionals. In 1989, Gilboa and Schmeidler [9] proposed a

more flexible set of axioms for preference orders on payoff profiles. It led to a numerical

representation by a robust utility functional of the form

U(X) := inf
Q∈Q

EQu(X)

for some set of subjective measures Q. This approach covers the uncertainty about the

probabilities of market events: The agent has in mind a whole set of possible probability

distributions and takes a worst case approach in evaluating the expected utility of a payoff.

For an overview and more details on such robust representations of preferences, see Föllmer

and Schied [6].

In this article we deal with the robust utility maximization problem

Maximize inf
Q∈Q

EQ[u(X)] over all X with sup
P∈P̃

EP X ≤ x (2)

for some convex set P̃ of reasonable equivalent local martingale measures. We do not require

the payoffs to be obtainable from dynamic trading in the underlying assets. However, Goll and

Rüschendorf [10] showed that the optimal claim for (1) is replicable by trading in these assets.

Furthermore they show that the solution to (1) coincides with the solution to the problem of

maximizing portfolios that can be obtained from dynamic trading in the underlying assets (see
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[10], Theorem 5.1). It follows immediately from the form of the optimal payoff in our Theorem

2 that these results are carried forward to the problem of robust utility maximization.

In 2002, Baudoin [2] solved Problem (2) for a complete market model of “weak information”,

which means that QP is the set of measures under which some given random variable has a

specific law. In 2003, Schied [19] solved it with methods from robust statistics, again for a

complete market model and under the condition that there exists a “least favorable measure”

which is for example the case if Q is the core of a convex capacity.

Using a similar approach as Goll and Rüschendorf [10] we give a dual characterization for the

general solution to (2) for both a complete and an incomplete market model. Furthermore, we

give a dual characterization for a closely related problem, the minimization of expenditures

given a miminum level w of robust expected utility:

Minimize sup
P∈P̃

EP [X] over all X with inf
Q∈Q

EQu(X) ≥ w. (3)

The main idea is to identify a measure Q∗ such that the robust utility maximization problem

(2) is equivalent to the standard problem (1) corresponding to Q∗. Goll and Rüschendorf

[10] solve the standard problem by means of its dual problem, the minimization of the f -

divergence

f(P |Q) := EQf

(
dP

dQ

)

over the set of equivalent local martingale measures. In our approach we turn things round:

For a given equivalent local martingale measure P , we minimize the f -divergence f(P |Q)

over the set Q. This minimizing measure QP , which we call the reverse f-projection, has the

property that for a complete market, problem (1) with Q = QP is equivalent to our problem

(2). With the aid of a characterization of the reverse f -projections QP it is then possible to

give the dual characterization of the solution to the robust utility maximization problem for

both a complete and an incomplete market model.

The paper is organized as follows. After giving some definitions in Section 2 we introduce

reverse f -projections in Section 3 and identify those measures QP under which for a complete

market, problem (1) is equivalent to (2). In Sections 4 and 5 we give the dual characterizations

for a complete and for an incomplete market model. Here, we combine the idea of reverse f -

projections with techniques developed in [10] by Goll and Rüschendorf. In Section 6 we discuss

uniqueness and existence of the robust f -projection. In order to illustrate our approach we
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discuss a specific diffusion model in Section 7. In Section 8 we show how the introduction

of reverse f -projections allows us to easily solve a related problem: the minimization of

expenditures given a minimum level of robust expected utility.

2 Preliminaries

Let (Ω,F , (Ft)0≤t≤T , Q0) be a filtered probability space where Ω is Polish and F = FT is

the Borel σ-field. For a Rd-valued semimartingale S, let P 6= ∅ be the set of all equivalent

local martingale measures for S. Let us also fix a set Q, the set of subjective measures, which

are equivalent to Q0. We assume that Q is convex and compact with respect to the weak

topology for measures.

Definition 1 Let P ∈ P, Q ∈ Q, and let f : (0,∞) → R be strictly convex. The f -divergence

of P with respect to Q is defined as

f(P |Q) :=
∫

f

(
dP

dQ

)
dQ ∈ (−∞,∞].

PQ ∈ P is called the f -projection of Q on P if it minimizes the f -divergence:

f(PQ|Q) = f(P|Q) := inf
P∈P

f(P |Q).

P ∗ ∈ P is called the robust f -projection of Q on P if it minimizes the robust f -divergence

infQ∈Q f(P |Q):

inf
Q∈Q

f(P ∗|Q) = f(P|Q) := inf
P∈P

inf
Q∈Q

f(P |Q).

Example 1 For f(x) = xp (p < 0 or p > 1), we obtain the p-distance EQ

[(
dP
dQ

)p]
, for

f(x) = x log x, the relative entropy EQ

[
dP
dQ log

(
dP
dQ

)]
= EP

[
log

(
dP
dQ

)]
, and for f(x) =

− log x, the reverse relative entropy EQ

[
− log

(
dP
dQ

)]
.

The following basic result about f -projections was proved by Rüschendorf [18]:

Theorem 1 ([18], Thm. 5) Let f be differentiable, Q ∈ Q, and PQ ∈ P with f(PQ|Q) <

∞. Then PQ is the f -projection of Q on P if and only if

∫
f ′

(
dPQ

dQ

)
dPQ ≤

∫
f ′

(
dPQ

dQ

)
dP for all P ∈ P with f(P |Q) < ∞.
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As Goll and Rüschendorf remark in [10] the condition f ′(dPQ

dQ ) ∈ L1(PQ) assumed in [18] is

not used in the proof of this theorem.

In this article, a utility function is defined as a function u : R→ R ∪ {−∞} which is strictly

increasing, strictly concave, continuously differentiable in dom(u) := {x ∈ R : u(x) > −∞},
and satisfies

u′(∞) = lim
x→∞u′(x) = 0, (U1)

u′(x̄) = lim
x→x̄

u′(x) = ∞ (U2)

for x̄ := inf{x ∈ R : u(x) > −∞}.

Let I := (u′)−1. The convex conjugate function v : R+ → R of a utility function u is defined

by

v(y) := sup
x∈R

(u(x)− xy) = u(I(y))− yI(y).

Let us first formulate the problem of robust utility maximization for a complete market

model. For an incomplete market model, this formulation will be part of our results. For

P ∈ P, we want to maximize

U(X) := inf
Q∈QP

EQu(X)

where QP ⊆ Q is some set of “reasonable” subjective measures. We will consider the set

XP (x) := {X : X ∈ L1(P ), EP X ≤ x, and EQ[u(X)−] < ∞ ∀ Q ∈ QP }

of contingent claims that are affordable under P . Hence, the problem of utility maximization

in a complete market can be formulated as

Maximize inf
Q∈QP

EQu(X) over all X ∈ XP (x).

Our aim is to find a characterization of the solution to this problem for complete and incom-

plete market models.

3 Reverse f-Projections

In this section we fix an equivalent local martingale measure P ∈ P. We then want to

characterize the measure QP that minimizes the f -divergence f(P |Q) over all Q ∈ Q.

For a strictly convex, differentiable function f : (0,∞) → R, we define

f̂(x) := xf

(
1
x

)
. (4)
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Lemma 1 f̂ : (0,∞) → R is also a strictly convex, differentiable function, and we have
ˆ̂
f = f .

Proof Differentiability and the relation ˆ̂
f = f are obvious. For α ∈ (0, 1) and x, y > 0, x 6= y,

we define

γ :=
αx

αx + (1− α)y
.

Then we have 0 < γ < 1, and

f̂(αx + (1− α)y) = (αx + (1− α)y)f
(

1
αx + (1− α)y

)

= (αx + (1− α)y)f
(

γ
1
x

+ (1− γ)
1
y

)

< (αx + (1− α)y)
(

γf

(
1
x

)
+ (1− γ)f

(
1
y

))

= αxf

(
1
x

)
+ (1− α)yf

(
1
y

)

= αf̂(x) + (1− α)f̂(y).

Thus, f̂ is strictly convex. ¤

For Q ∈ Q, we have the following relation between f and f̂ -divergences:

f(P |Q) := EQ

[
f

(
dP

dQ

)]
= EP

[
dQ

dP
f

(
dP

dQ

)]

= EP

[
f̂

(
dQ

dP

)]
=: f̂(Q|P ).

Hence, the f -divergence of P with respect to Q is equal to the f̂ -divergence of Q with respect

to P . This symmetry was already observed by Liese and Vaja [14] in Theorem 1.13.

Definition 2 Let QP ∈ Q satisfy

f(P |QP ) = f(P |Q) := inf
Q∈Q

f(P |Q).

Then QP is called the reverse f -projection of P on Q .

Of course, the reverse f -projection coincides with the f̂ -projection. Since Q is weakly com-

pact, by Liese and Vajda [14], Proposition 8.4, the reverse f -projection always exists.

Example 2 For f(x) = xp (p < 0 or p > 1), we have f̂(x) = x1−p. Hence the class of p-

distances is invariant under this transformation. For f(x) = x log x, we have f̂(x) = − log x.

Thus, the relative entropy is transformed into the reverse relative entropy and vice versa.
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Applying Theorem 1 to the f̂ -projection we see that a measure QP ∈ Q with f̂(QP |P ) < ∞
is the reverse f -projection of P on Q if and only if

∫
f̂ ′

(
dQP

dP

)
dQP ≤

∫
f̂ ′

(
dQP

dP

)
dQ ∀Q ∈ Q with f̂(Q|P ) < ∞. (5)

Let u be a utility function as defined in Section 2, and let v denote its convex conjugate

function. For λ > 0, we define vλ and v̂λ by vλ(x) := v(λx), resp. v̂λ(x) := xvλ(1/x). We

want to characterize the reverse vλ-projection QP . To this end, observe that

(v̂λ)′(x) = v

(
λ

x

)
− λ

x
v′

(
λ

x

)
= v

(
λ

x

)
+

λ

x
I

(
λ

x

)
= u

(
I

(
λ

x

))
.

Applying (5) to f̂ = v̂λ now leads to

Proposition 1 Let λ > 0 and QP (λ) ∈ QP (λ) := {Q ∈ Q : vλ(P |Q) < ∞}. Then QP (λ) is

the reverse vλ-projection if and only if the following holds:

EQP (λ)u

(
I

(
λ

dP

dQP (λ)

))
= inf

Q∈QP (λ)
EQu

(
I

(
λ

dP

dQP (λ)

))
. (6)

With this result we can now address the problem of robust utility maximization.

4 Duality Results for a Complete Market Model

In this section let us consider a market with a unique equivalent local martingale measure P

which means that the market is complete. Denote by QP (λ) the reverse vλ-projection of P

on Q and QP (λ) := {Q ∈ Q : vλ(P |Q) < ∞}. We will need the following two assumptions:

vµ(P |QP (λ)) < ∞ for all λ, µ > 0, (A1)

and

EQu

(
I

(
λ

dP

dQP (λ)

))−
< ∞ for all Q ∈ QP (λ) for all λ > 0. (A2)

The following lemma provides some technicalities.

Lemma 2 Assume that (A1) holds.
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(i) For λ > 0,

H(λ) := inf
Q∈Q

vλ (P |Q)

is a finite, convex function.

(ii) Let Q ∈ Q. If vλ(P |Q) < ∞ for all λ > 0, then I
(
λdP

dQ

)
∈ L1(P ) for all λ > 0.

Proof (i) The convexity of H(λ) can be shown with exactly the same argument as in the

proof of Theorem 2. Finiteness follows from (A1).

(ii) Let us define the function g(x) := v(x)− v(1)− v′(1)(x− 1) which is convex and positive

due to the convexity of v. Furthermore, we have I(x) = −v′(x) = −g′(x)− v′(1), and hence

I
(
λdP

dQ

)
∈ L1(P ) if and only if g′

(
λdP

dQ

)
∈ L1(P ).

Since g is convex we have for 0 < y < x,

g(x)− g(x− y) ≤ yg′(x) ≤ g(x + y)− g(x).

Therefore,

y|g′(x)| ≤ max{g(x + y), g(x− y)} − g(x) ≤ g(x + y) + g(x− y)− g(x)

If we set x := λdP
dQ and y := µdP

dQ for 0 < µ < λ, then we get

µEP

∣∣∣∣g′
(

λ
dP

dQ

)∣∣∣∣ ≤ EQg

(
(λ + µ)

dP

dQ

)
+ EQg

(
(λ− µ)

dP

dQ

)
−EQg

(
λ

dP

dQ

)
.

Since EQg
(
λdP

dQ

)
> −∞ for all λ > 0, and since EQg

(
λ̃dP

dQ

)
= EQv

(
λ̃dP

dQ

)
−v(1)−v′(1)(λ̃−

1) < ∞ for all λ̃ > 0 by assumption, we have proved (ii). ¤

For x > x̄, we define

VP (x) := inf
λ>0

{
inf

Q∈Q
EQv

(
λ

dP

dQ

)
+ λx

}
.

VP as the concave conjugate to H is a concave function of x, and we denote by ∂VP (x) the

superdifferential of VP in x.

Now we are ready to prove the main result of this section.

Proposition 2 Assume that (A1) and (A2) hold and let x > x̄.

(i) We have the following equivalence:

λ ∈ ∂VP (x) ⇐⇒ x = EP I

(
λ

dP

dQP (λ)

)
.
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(ii) Let λP (x) ∈ ∂VP (x), QP := QP (λP (x)), and denote by QP the reverse vλP (x)-projection

of P on Q. Then

sup
X∈XP (x)

inf
Q∈QP

EQu(X) = inf
Q∈QP

sup
X∈XP (x)

EQu(X)

= sup
X∈XP (x)

EQP
u(X)

= inf
λ>0

{
inf

Q∈Q
vλ(P |Q) + λx

}

= inf
Q∈Q

vλP (x)(P |Q) + λP (x)x

= EQP
u

(
I

(
λP (x)

dP

dQP

))

= inf
Q∈QP

EQu

(
I

(
λP (x)

dP

dQP

))
.

Remark 1 The proposition shows that I
(
λP (x) dP

dQP

)
can be interpreted as the optimal claim

that is affordable under P . Under QP the expected utility of this claim is minimal. It may

therefore be considered as a worst case measure for the robust utility maximization. Further-

more, it follows from the second equality that the maximization of the robust utility functional

is equivalent to the standard problem of utility maximization under QP . However, in general

QP differs for different P .

Proof First step. By Lemma 2(i) the function H(λ) := infQ∈QEQv
(
λdP

dQ

)
is convex. By

Rockafellar [17], Theorem 23.5, infλ>0 (H(λ) + λx) achieves its infimum in λ = λP (x) if and

only if −x ∈ ∂H(λP (x)) which is by [17], Theorem 7.4 and Corollary 23.5.1, equivalent to

λP (x) ∈ ∂VP (x). In this case, we have

VP (x) = inf
Q∈Q

EQv

(
λP (x)

dP

dQ

)
+ λP (x)x

= EQP
v

(
λP (x)

dP

dQP

)
+ λP (x)x

= inf
λ>0

{
EQP

v

(
λ

dP

dQP

)
+ λx

}
.
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Second step. For all X ∈ L1(P ) with EP X ≤ x and for all λ > 0, we have

EQP
u(X) ≤ EQP

u(X) + λ(x−EP X)

≤ EQP
v

(
λ

dP

dQP

)
+ λx

= EQP
u

(
I

(
λ

dP

dQP

))
+ λ

(
x−EP I

(
λ

dP

dQP

))
(7)

where the second inequality and the equality follow from the definition of v. Due to Assump-

tions (U1) and (U2) the function I is decreasing with range (x̄,∞). By Lemma 2(ii) and As-

sumption (A1), I
(
λ dP

dQP

)
∈ L1(P ) for all λ > 0. Therefore, the function g(λ) := EP I

(
λ dP

dQP

)

is continuous and decreasing with range (x̄,∞). Hence, for every x > x̄, there exists λP (x) > 0

such that x = g(λP (x)). Thus, the above inequalities hold as equalities with λ = λP (x) if

and only if x = EP I
(
λP (x) dP

dQP

)
and X = I

(
λP (x) dP

dQP

)
. In this case, we have

sup
X∈XP (x)

EQP
u(X) = inf

λ>0

{
EQP

v

(
λ

dP

dQP

)
+ λx

}

= EQP
v

(
λP (x)

dP

dQP

)
+ λP (x)x

= EQP
u

(
I

(
λP (x)

dP

dQP

))
.

(8)

Thus, by our results from the first step we have proved (i).

Third step. We know from Proposition 1 that

EQP
u

(
I

(
λP (x)

dP

dQP

))
= inf

Q∈QP

EQu

(
I

(
λP (x)

dP

dQP

))
.
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Putting everything together we now have

sup
X∈XP (x)

inf
Q∈QP

EQu(X) ≤ inf
Q∈QP

sup
X∈XP (x)

EQu(X)

≤ sup
X∈XP (x)

EQP
u(X)

= inf
λ>0

{
inf

Q∈Q
EQv

(
λ

dP

dQ

)
+ λx

}

= inf
λ>0

{
EQP

v

(
λ

dP

dQP

)
+ λx

}

= inf
Q∈Q

EQv

(
λP (x)

dP

dQ

)
+ λP (x)x

= EQP
u

(
I

(
λP (x)

dP

dQP

))

= inf
Q∈QP

EQu

(
I

(
λP (x)

dP

dQP

))
.

Now Assumption (A2) guarantees that I
(
λP (x) dP

dQP

)
∈ XP (x), which completes the proof.

¤

Remark 2 Using methods from robust statistics Schied [19] obtains the corresponding result

in the form of Kramkov and Schachermayer [13] for the complete market case under the

condition that there exists a measure QP which is the reverse f-projection for every convex

function f .

For obtaining a nicer interpretation of our results, we state the following

Lemma 3 Assume that

I

(
λ

dP

dQ

)
∈ L1(P ) for all Q ∈ Q and all λ > 0. (A3)

Then we have for λ > 0 and x > x̄,

QP (λ) : = {Q ∈ Q : vλ(P |Q) < ∞}
= {Q ∈ Q : sup

X∈XP (x)
EQu(X) < ∞},

and QP (λ) is independent of λ and x.

Proof Under Assumption (A3), (7) and (8) in the proof of the last proposition hold with

the corresponding λP (x) for all Q ∈ Q (instead of QP ). Therefore, we get the following

implications for Q ∈ Q:
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1. If supX∈XP (x) EQu(X) < ∞ for some x > x̄, then by (8) vλ(P |Q) < ∞ for some λ > 0.

2. If vλ(P |Q) < ∞ for some λ > 0, then by (7) supX∈XP (x) EQu(X) < ∞ for all x > x̄.

3. If supX∈XP (x) EQu(X) < ∞ for all x > x̄, then, since for all λ > 0, we have EP I
(
λdP

dQ

)
=

x ∈ (x̄,∞) and hence, λ = λP (x) for some x > x̄, we now get from (8) that vλ(P |Q) <

∞ for all λ > 0.

4. From vλ(P |Q) < ∞ for all λ > 0 follows, of course, that supX∈XP (x) EQu(X) < ∞ for

some x > x̄.

Thus, we have proved the lemma. ¤

Remark 3 (i) If (A3) holds, then the representation of the set QP (λ) in Lemma 3 leads

to the following interpretation of the utility maximization problem: The agent consid-

ers only those subjective measures Q that generate a finite maximum expected util-

ity supX∈XP (x) EQu(X) and therefore wants to maximize infQ∈QP
EQu(X) and not

infQ∈QEQu(X).

(ii) Condition (A3) is always satisfied for the logarithmic utility function. Indeed, for

u(x) = log x, we have I(x) = 1/x and hence, EP I
(
λdP

dQ

)
= 1/λ.

For the exponential utility function, u(x) = 1 − e−x, we have I(x) = − log x and

v(x) := 1 − x + x log x and hence, EP I
(
λdP

dQ

)
= − log λ − v(P |Q). Thus, (A3) is

satisfied if and only if v(P |Q) < ∞ for all Q ∈ Q.

For the power utility function with u(x) = xp

p , p ∈ (0, 1), we have x̄ = 0, I(x) = x
1

p−1 ,

and v(x) = 1−p
p x

p
p−1 . Hence, EP I

(
λdP

dQ

)
= λ

1
1−p p

1−pv(P |Q), and we see that (A3) is

satisfied if and only if v(P |Q) < ∞ for all Q ∈ Q.

So in the latter two cases, we could replace Q by the convex subset {Q ∈ Q : v(P |Q) <

∞}. Then, for the common utility functions, we may always interpret the set QP (λ)

as in Lemma 3.

(iii) As Goll and Rüschendorf [10] remark, the vλ-projections are independent of λ for the

latter three utility functions. It is obvious from the expressions in (ii) that also the

reverse vλ-projections are independent of λ in these cases.

5 Duality Results for an Incomplete Market Model

In this section we assume that the market model is incomplete. This means that, instead of

a single measure P , we have a whole set P of equivalent local martingale measures. We start
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with a definition of a minimax measure in our robust setting. We define

UP (x) := sup
X∈XP (x)

inf
Q∈QP

EQu(X)

where QP := QP (λP (x)) as in Proposition 2.

Definition 3 A measure P ∗ = P ∗(x) ∈ P is called a robust minimax measure for x if

UP ∗(x) = U(x) := inf
P∈P

sup
X∈XP (x)

inf
Q∈QP

EQu(X).

Theorem 2 Let x > x̄ and assume that (A1) and (A2) hold for all P ∈ P.

(i) If λ(x) ∈ ∂U(x), then

U(x) := inf
P∈P

sup
X∈XP (x)

inf
Q∈QP

EQu(X) = vλ(x)(P|Q) + λ(x)x.

(ii) P ∗ ∈ P is a robust vλ(x)-projection on P for some λ(x) ∈ ∂U(x) if and only if P ∗ is a

robust minimax measure.

(iii) If a robust minimax measure P ∗ exists, then we have EP ∗I
(
λ(x)dP ∗

dQ∗

)
= x, and the

solution to the robust utility maximization problem is

X∗ := I

(
λ(x)

dP ∗

dQ∗

)

where Q∗ := QP ∗ is the reverse vλ(x)-projection of P ∗.

(iv) If a robust minimax measure P ∗ exists, then

inf
P∈P

sup
X∈XP (x)

inf
Q∈QP

EQu(X) = sup

{
inf

Q∈QP∗
EQu(X) : sup

P∈PQ∗
EP X ≤ x

}

where

PQ∗ := {P ∈ P : vλ(x)(P |Q∗) < ∞}

and

QP ∗ := {Q ∈ Q : vλ(x)(P
∗|Q) < ∞}.

If furthermore, Assumption (A3) holds for all P ∈ P, then

PQ∗ = {P ∈ P : sup
X∈XP (x)

EQ∗u(X) < ∞}
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and

QP ∗ = {Q ∈ Q : sup
X∈XP∗ (x)

EQu(X) < ∞},

and the two sets are independent of λ and x.

Remark 4 (i) Q∗ is the measure that minimizes infP∈P vλ(x)(P |Q) over all Q ∈ Q. Max-

imizing the utility functional EQ∗u(X) is equivalent to maximizing infQ∈QP∗ EQu(X).

By (ii) the incomplete market case is reducible to the complete market case under the

measure P ∗. Hence, the robust utility maximization problem in an incomplete mar-

ket can be reduced to the standard problem under Q∗ in a complete market with the

equivalent local martingale measure P ∗.
(ii) The representation of the utility maximization problem in (iv) shows that under Condi-

tion (A3), if we price contingent claims under the robust vλ(x)-projection P ∗ we make

sure that the optimal claim is affordable under all measures that are contained in the

set PQ∗, i.e., that generate a finite maximum expected utility under Q∗.

Proof (i) From Proposition 2 we get

U(x) := inf
P∈P

sup
X∈XP (x)

inf
Q∈QP

EQX

= inf
P∈P

inf
λ>0

{
inf

Q∈Q
EQv

(
λ

dP

dQ

)
+ λx

}

= inf
λ>0

{
inf

P∈P
inf

Q∈Q
EQv

(
λ

dP

dQ

)
+ λx

}

= inf
λ>0

{vλ(P|Q) + λx} .

Let us define

H(λ) := vλ(P|Q).

We now want to show that H is convex. To this end, let ε > 0 be fixed and choose λ1, λ2 > 0,

P1, P2 ∈ P, and Q1, Q2 ∈ Q such that

H(λi) + ε ≥ EQiv

(
λi

dPi

dQi

)

for i = 1, 2. For γ ∈ (0, 1), define Q̃ := γQ1 + (1− γ)Q2 ∈ Q. Then

dQ1

dQ̃
=

(
γ + (1− γ)

dQ2

dQ1

)−1

,

dQ2

dQ̃
=

(
1− γ + γ

dQ1

dQ2

)−1

,
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and

γ
dQ1

dQ̃
+ (1− γ)

dQ2

dQ̃
= 1.

Therefore,

γH(λ1) + (1− γ)H(λ2) + 2ε

≥ γEQ1v

(
λ1

dP1

dQ1

)
+ (1− γ)EQ2v

(
λ2

dP2

dQ2

)

= EQ̃

[
γ

dQ1

dQ̃
v

(
λ1

dP1

dQ1

)
+ (1− γ)

dQ2

dQ̃
v

(
λ2

dP2

dQ2

)]

v convex≥ EQ̃v

(
λ1γ

dQ1

dQ̃

dP1

dQ1
+ λ2(1− γ)

dQ2

dQ̃

dP2

dQ2

)

= EQ̃v

(
λ1γ

dP1

dQ̃
+ λ2(1− γ)

dP2

dQ̃

)

P convex≥ inf
P∈P

EQ̃v

(
(λ1γ + λ2(1− γ))

dP

dQ̃

)

≥ inf
Q∈Q

inf
P∈P

EQv

(
(λ1γ + λ2(1− γ))

dP

dQ

)

= H(γλ1 + (1− γ)λ2).

Statement (i) now follows from results due to Rockafellar: By [17], Theorem 23.5, infλ>0{H(λ)+

λx} achieves its infimum in λ = λ(x) if and only if −x ∈ ∂H(λ(x)) which is by [17], Theorem

7.4 and Corollary 23.5.1, equivalent to λ(x) ∈ ∂U(x).

(ii) By Proposition 2 we have for all P ∈ P,

inf
λ>0

{
inf

Q∈Q
EQv

(
λ

dP

dQ

)
+ λx

}
= sup

X∈XP (x)
inf

Q∈QP

EQu(X).

Thus, the robust minimax measure coincides with the robust vλ(x)-projection where λ(x) ∈
∂U(x) minimizes H(λ) + λx = vλ(P|Q) + λx.

Statement (iii) now follows from Proposition 2.

To prove (iv) we apply Theorem 1: P ∗ is an infQ∈Q vλ(x)-projection if and only if

∫
I

(
λ(x)

dP ∗

dQ∗

)
(dP ∗ − dP ) ≥ 0 ∀P ∈ P with vλ(x)(P |Q∗) < ∞.
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(Recall that v′(x) = −I(x).) By (ii) and Proposition 2(i) EP ∗I
(
λ(x)dP ∗

dQ∗

)
= x. Thus, we

have

EP I

(
λ(x)

dP ∗

dQ∗

)
≤ x ∀P ∈ P with vλ(x)(P |Q∗) < ∞.

Since I
(
λ(x)dP ∗

dQ∗

)
is the optimal claim it follows that

inf
P∈P

sup
X∈XP (x)

inf
Q∈QP

EQu(X) = sup

{
inf

Q∈QP∗
EQu(X) : sup

P∈PQ∗
EP X ≤ x

}

where

PQ∗ : = {P ∈ P : vλ(x)(P |Q∗) < ∞}

and

QP ∗ := {Q ∈ Q : vλ(x)(P
∗|Q) < ∞}.

The interpretation of the set PQ∗ follows from the inequalities in the proof of Lemma 2 in

exactly the same way as the interpretation of the set QP . ¤

Remark 5 We did not use the fact that P is the set of equivalent local martingale measures.

Hence, P could be any set of equivalent measures.

6 Existence and Uniqueness of the Robust Minimax Measure

In this section we want to discuss the existence of the robust minimax measure or v-projection

and show that there is at most one such measure.

Let us start with the problem of uniqueness. In order to keep notations simpler, we will

replace f by v and consider v-projections in this section. If v is strictly convex, then so is v̂.

Hence, for every Q ∈ Q there is at most one v-projection PQ of Q on P, and for every P ∈ P
there is at most one reverse v-projection QP of P on Q. For the robust v-projection, this

does not necessarily hold true. However, in our setting where Q is weakly compact by Liese

and Vajda [14], Proposition 8.4, there exists a reverse v-projection QP ∈ Q to every P ∈ P,

and we get

Proposition 3 If a robust v-projection P ∗ ∈ P exists, let Q∗ be its reverse v-projection.

Then the density dP ∗
dQ∗ is Q0-almost surely unique.
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Proof Assume that P1 and P2 ∈ P are two robust v-projections with reverse v-projections

QP1 and QP2 . Then we have

γ inf
Q∈Q

v(P1|Q) + (1− γ) inf
Q∈Q

v(P2|Q) = inf
Q∈Q

v(P1|Q)

≤ inf
Q∈Q

v(γP1 + (1− γ)P2|Q).
(9)

On the other hand we get with the same arguments and definition of Q̃ as in the proof of

Theorem 2

γ inf
Q∈Q

v(P1|Q) + (1− γ) inf
Q∈Q

v(P2|Q) = γv(P1|QP1) + (1− γ)v(P2|QP2)

≥ EQ̃v

(
γ

dP1

dQ̃
+ (1− γ)

dP2

dQ̃

)

≥ inf
Q∈Q

v(γP1 + (1− γ)P2|Q).

The first inequality holds as equality if and only if dP1
dQP1

= dP2
dQP2

Q̃- and hence also Q0-almost

surely. Thus, by (9) the density is Q0-almost surely unique. ¤

Let us now turn to the problem of existence. As shown by Kramkov and Schachermayer [13],

the robust minimax measure P ∗ does not necessarily exist even in the classical setting with

Q = {Q}. In one of their counterexamples, they show that even for a bounded price process

the infimum of v(P |Q) may not be attained in P if the utility function is logarithmic ([13],

Example 5.1 BIS). On the other hand, they show in the classical setting Q = {Q} that even if

there is no minimax measure, a solution of the utility maximization problem may still exist.

Let Y := {Y ≥ 0 : Y0 = 1 and XY is a supermartingale for all X ≥ 0 that are stochastic

integrals of the underlying semimartingale} and let x̄ = 0. Kramkov and Schachermayer [13]

prove that a solution X∗
Q to the utility maximization problem exists if the asymptotic elasticity

of the utility function, lim supx→∞ xu′(x)/u(x), is strictly less than one. Furthermore, they

show that in this case we have V (λ) := infY ∈Y EQv(λY ) = infP∈P EQv
(
λdP

dQ

)
, but there

does not necessarily exist a vλ-projection. Schied and Wu [20] extend these results to the

robust setting and obtain existence of the solution to the robust utility maximization problem

under the condition that the asymptotic elasticity is strictly less than one.

In our paper however, the focus is on the representation of the optimal claim in terms of

martingale measures. In this section we will specify conditions which guarantee that the

infimum of infQ∈Q v(P |Q) over P is indeed attained by some measure P ∈ P.

For a certain class of utility functions, existence results for the classical case Q = {Q} can
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be found in the literature. In 1975, Csiszár [1] showed existence for the case where the set

of local equivalent martingale measures P is closed in variation and v(x) = x log x which is

equivalent to u(x) = −e−x. In 1987, Liese and Vajda [14] considered the case where P is

closed in variation and limx→∞ v(x)/x = ∞. In 2000, Frittelli [8] proved existence for the

case where the semimartingale is locally bounded and u(x) = −e−x. As he remarks, if the

semimartingale is locally bounded, then the set P is closed in variation. In 2002, Bellini

and Frittelli [3] showed existence under the assumption that the semimartingale is locally

bounded and the domain of the utility function is R. The last condition means that x̄ = −∞,

and it is easily checked that this is equivalent to the condition limx→∞ v(x)/x = ∞.

Here we will consider the existence problem for robust v-projections. Let M1(Ω) be the set

of all probability measures on (Ω,F). In the general setting where Q does not only consist

of one measure, we obtain the following result:

Proposition 4 Let g : [0,∞) → R satisfy limx→∞ g(x)/x = ∞. Assume that P is closed in

variation and that there exist Q0 ∈ Q and constants c0, c1 > 0 such that for P ∈ P,

inf
Q∈Q

v(P |Q) ≤ c0 =⇒ g(P |Q0) ≤ c1. (10)

Then there exists a robust v-projection P ∗ on P.

Proof We will first show that under Condition (10), the closure of the set

P0 :=
{

P ∈ P : inf
Q∈Q

v(P |Q) ≤ c0

}
(11)

is compact in the weak topology for measures. Since EQ0g
(

dP
dQ0

)
≤ c1 if infQ∈Q v(P |Q) ≤ c0,

the set K :=
{

dP
dQ0

: P ∈ P0

}
is uniformly integrable due to the de la Vallée-Poussin criterion.

Hence, by Dunford and Schwartz [4], Corollary IV.8.11, K is weakly sequentially compact on

L1(Q0). By [4], Theorem V.6.1, the weak closure of the set K is weakly compact. By [4],

Theorem V.3.13, it is contained in the convex and strongly closed set of densities of measures

is P with respect to Q0. Hence, the closure P̄0 of P0 is weakly compact in the topology on

M1(Ω) that corresponds to the weak topology on L1(Q0), and it is contained in P. Since this

topology is stronger than the weak topology for measures (cf. Liese and Vajda [14], Lemma

1.46), P̄0 is compact with respect to the weak topology for measures.

Now, by [14], Theorem 1.47, v(·|·) is lower semicontinuous on the space M1(Ω) ×M1(Ω)

endowed with the weak product topology. Since by Tychonov’s theorem P̄0 × Q is weakly

compact, v achieves its infimum (P ∗, Q∗) on P̄0 ×Q ⊆ P ×Q. ¤
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Let us illustrate the application of Proposition 4 in the case where Q is a weakly compact

set such that

sup
Q∈Q

EQ0

[(
dQ

dQ0

)β
]

< ∞ (12)

for some β > 1, and where

lim
x→∞

v(x)
xp

= ∞ (13)

for some p > 1. The following lemma shows that Condition (10) is satisfied with g(x) = xα

for some α > 1. Recall that the reverse v-projection exists for every P ∈ P due to Liese and

Vajda [14] because Q is weakly compact.

Lemma 4 Under Assumptions (12) and (13), there is an α > 1 such that

sup
{

EQ0

[(
dP

dQ0

)α]
: v(P |QP ) = inf

Q∈Q
v(P |Q) ≤ c

}
< ∞

for any constant c > 0.

Proof Define α := βp
p−1+β . Then α > 1 and β = 1 + (α−1)p

p−α . Due to Assumption (13) there

are constants a0 ∈ R, a1 > 0 such that v(x) ≥ a0 + a1x
p for x ≥ 0. Let p̃ := p/α and

q̃ = p/(p− α). Then 1/p̃ + 1/q̃ = 1, and by Hölder’s inequality we have

EQ0

[(
dP

dQ0

)α]
= EQP

[(
dP

dQP

)α (
dQP

dQ0

)α−1
]

≤ EQP

[(
dP

dQP

)αp̃
]1/p̃

EQP

[(
dQP

dQ0

)(α−1)q̃
]1/q̃

= EQP

[(
dP

dQP

)p]α/p

EQ0

[(
dQP

dQ0

)β
](p−α)/p

≤
(

1
a1

v(P |QP )− a0

a1

)α/p

EQ0

[(
dQP

dQ0

)β
](p−α)/p

≤
(

c− a0

a1

)α/p

c
(p−α)/p
1

if v(P |QP ) ≤ c and c1 := supQ∈QEQ0

[(
dQ
dQ0

)β
]
. ¤
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Remark 6 Similar to the equivalence of the two conditions x̄ = −∞ and limx→∞ v(x)/x =

∞ above, (13) is equivalent to the condition that the utility function u satisfies u(x) ≥
−c|x| p

p−1
−ε for some ε > 0 and for x < 0. In fact, sufficiency of the condition on u fol-

lows from the estimate

lim inf
x→∞

v(x)
xp

= lim inf
x→∞ sup

y∈R

(
u(y)
xp

− yx1−p

)

= lim inf
x→∞ sup

y∈R

(
u(yx)

xp/(p−1)
− y

)

≥ sup
y∈R

(
lim inf
x→∞

u(yx)
xp/(p−1)

− y

)

= sup
y∈R

(−y) = ∞.

The necessity can be shown in a similar way. Hence, the utility function must decrease slower

than some power function. An example for such a utility function is

u(x) =





1
q (x + c)q − cq

q for x ≥ 0

−q(c−q − x)1/q + q
c for x < 0

for some constant c > 0 and 0 < q < 1.

The following general result is shown in Föllmer and Gundel [5]. It includes all utility

functions that are defined on the whole real line, thus also the case of exponential utility

functions. The proof is more involved; instead of Hölder’s inequality it uses Young’s inequality

for certain Orlicz spaces.

Theorem 3 Assume that P is closed in variation, that

lim
x→∞

v(x)
x

= ∞,

and that {
dQ

dQ0
: Q ∈ Q

}

is weakly compact in L1(Q0) for some measure Q0 ∈ Q. Then there exists a robust v-

projection P ∗ on P.

Remark 7 In the classical setting with Q = {Q}, Condition (10) is trivially satisfied for

g = v and hence by Lemma 4, the v-projection exists if limx→∞ v(x)/x = ∞. This is also

shown by Liese and Vajda [14] in Proposition 8.5. Theorem 3 provides the natural extension

to the robust setting.
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7 An Example

There are, in certain situations, means of determining the f -projection PQ explicitly. This

suggests the following method for finding the robust f -projection P ∗: First calculate PQ for

each Q and then find the pair (PQ, Q) that has the smallest f -divergence. Here, we want to

give an example for this approach.

In diffusion models for financial markets it is feasible to estimate the volatility of assets using

historical data. However, estimations of the drift are much less reliable. Let us consider an

example of a model in which the volatility and the structure of the drift are known, but there

is uncertainty about the size of the drift.

Let (Ω,F , (Ft)0≤t≤T , Q0) be a two-dimensional Wiener space on which we are given two

independent Brownian motions B = (Bt)0≤t≤T and W = (Wt)0≤t≤T with B0 = W0 = 0. We

assume that F = FT and that (Ft)0≤t≤T is the smallest filtration that contains the filtration

which is generated by the two Brownian motions and that satisfies the usual condition (see

[12]). The price process of an asset is modelled by

dSt = St(σtdBt + µtdt) (0 ≤ t ≤ T ).

Finding equivalent local martingale measures for this model is equivalent to determining them

for the model

S̃t := Bt +
∫ t

0
αsds (0 ≤ t ≤ T )

with α = µ/σ. We assume that the process α = (αt)0≤t≤T is B-integrable and predictable

with respect to the filtration (FW
t )0≤t≤T that is generated by W .

For some interval [b1, b2] ⊆ R+, we define Q as the set of measures under which S has a drift

of bµ, or S̃ has a drift of bα for some b ∈ [b1, b2], i.e.,

Q :=
{

Qb :
dQb

dQ0
= E

(
(b− 1)

∫ T

0
αsdBs

)
for some b ∈ [b1, b2]

}
,

where E is the Itô exponential

E
(

(b− 1)
∫ T

0
αsdBs

)
= exp

(
(b− 1)

∫ T

0
αsdBs − (b− 1)2

2

∫ T

0
α2

sds

)
.

We are considering the three utility functions log x, −e−x, and xp for 0 < p < 1. To solve

the dual problems we have to deal with the f -divergences − log x, x log x, and xq where

q := p
p−1 < 0. We assume that suitable integrability conditions are satisfied for each of the
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utility functions such that the densities in the following define equivalent measures and hence,

the f -projections exist.

(i) f(x) = − log x. For each Qb ∈ Q, the f -projection PQb
has the density

dPQb

dQb
= E

(
−

∫ T

0
bαsdB(b)

s

)
,

i.e., PQb
coincides with the minimal martingale measure (see Föllmer and Schweizer

[7]). B(b) is the Brownian motion under the measure Qb. This result was proved by

Schweizer [21] for general α. The f -divergence becomes

f(PQb
|Qb) = EQb

[
b2

2

∫ T

0
α2

sds

]

= EQ0

[
EQ0

[
E

(
(b− 1)

∫ T

0
αsdBs

)∣∣∣∣FW
T

]
b2

2

∫ T

0
α2

sds

]

=
b2

2
EQ0

[∫ T

0
α2

sds

]
.

The second equality holds due to the FW
T -measurability of

∫ T
0 α2

sds and the last equality

holds because E[E((b− 1)
∫ T
0 α2

sdBs)|FW
T ] = 1 due to the independence of B from FW

T .

(ii) f(x) = x log x. For each Qb ∈ Q, the f -projection PQb
has the density

dPQb

dQb
= Cb exp

(
−

∫ T

0
bαsdSs

)

with Cb := EQb

[
exp

(
− b2

2

∫ T
0 α2

sds
)]−1

. This result is due to Grandits and Rheinländer

[11]. We have

f(PQb
|Qb) = − log

(
EQb

[
exp

(
−b2

2

∫ T

0
α2

sds

)])

= − log
(

EQ0

[
exp

(
−b2

2

∫ T

0
α2

sds

)])
.

The second equality holds for the same reasons as above.

(iii) f(x) = xq. For each Qb ∈ Q, the f -projection PQb
has the density

dPQb

dQb
= Cb exp

(
−

∫ T

0
bαsdSs − q − 1

2
b2

∫ T

0
α2

sds

)
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with Cb := EQb

[
exp

(
−q b2

2

∫ T
0 α2

sds
)]−1

. This result was also shown in [11]. We have

f(PQb
|Qb) =

(
EQb

[
exp

(
−q

b2

2

∫ T

0
α2

sds

)])(1−q)

=
(

EQ0

[
exp

(
−q

b2

2

∫ T

0
α2

sds

)])(1−q)

.

Now we see that in any case, the pair of measures that generates the smallest f -divergence is

the one with b = b1. In this model, Q∗ := Qb1 is the measure that is closest to a martingale

measure in the sense that it has the smallest drift.

Further interesting examples can be found in the paper [19] by Schied.

8 Expenditure Minimization

A problem that is closely related to the one of utility maximization is the minimization of

expenditures given the agent has a minimum level w of expected utility. That is, given her

subjective probability measure Q and the equivalent local martingale measure P , she wants

to solve the problem

Minimize EP Y under the constraint EQu(Y ) ≥ w. (14)

The key idea for solving this is to define the reverse utility function û by the concave conjugate

of v̂:

û(x) := inf
y>0
{v̂(y) + xy} (15)

for −x ∈ U := (infx u(x), supx u(x)) and to apply Theorem 2 to these transforms. We have

Î

(
1
x

)
:= −v̂′

(
1
x

)
= (û′)−1

(
1
x

)
= −u(I(x)),

û(x) = −u−1(−x), and

û

(
Î

(
1
x

))
= −I(x).

(16)

We can replace Y in (14) by −û(X) and hence u(Y ) by −X to see that, by interchanging

the roles of the sets Q and P, we can apply Theorem 2 to the transforms û and v̂ to solve

the expenditure minimization problem.
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Note that û is also a utility function as defined in Section 2 with

û′(x) → 0 as x → − inf
x∈R

u(x)

and

û′(x) →∞ as x → − sup
x∈R

u(x).

Remark 8 It might not be possible to define the function û for arbitrarily large x. This is,

for example, the case if u(x) = xp for 0 < p < 1, where U = (0,∞). But as long as the

latter two conditions on û′ are satisfied, the range of Î is −U . This is sufficient to guarantee

the existence of λP (x) in the second step of the proof of Proposition 2, the only point where

Conditions (U1) and (U2) were used. So this proof still works and hence, Theorem 2 is valid

for the utility function û.

We need to assume that (A1), (A2), and (A3) hold for the transforms û, Î, and v̂ with the

roles of P and Q interchanged. Define PQ(λ) := {P ∈ P : vλ(P |Q) < ∞} and assume that

the vλ-projection PQ(λ) of Q on P exists for every Q ∈ Q and λ > 0. Replacing Î and û ◦ Î

by the terms in (16) and v̂ by xv(1/x) this leads to the following assumptions for all Q ∈ Q,

vµ(PQ(λ)|Q) < ∞ for all λ, µ > 0, (A4)

EP I

(
λ

dPQ(λ)
dQ

)+

< ∞ for all P ∈ PQ(λ) for all λ > 0, (A5)

and

u

(
I

(
λ

dP

dQ

))
∈ L1(Q) for all P ∈ P and all λ > 0. (A6)

The last assumption is, as (A3), only needed for reasons of economical interpretation in the

following. But since this is our aim in this section, we will assume that (A6) holds.

We set

V̂Q(w) := − inf
λ>0

{
inf

P∈P
EP v̂

(
λ

dQ

dP

)
− λw

}
.

For λ̂Q(w) ∈ ∂V̂Q(w), we define PQ := PQ(λ̂Q(w)),

YQ(w) := {Y : u(Y ) ∈ L1(Q), EQu(Y ) ≥ w, EP Y + < ∞ ∀P ∈ PQ},

and

Û(w) := sup
Q∈Q

inf
Y ∈YQ(w)

sup
P∈PQ

EP Y.

Our aim is to find a contingent claim Y ∗ that achieves this infimum.
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Proposition 5 Let Assumptions (A4), (A5), and (A6) hold and let w ∈ U and λ̂(w) ∈
∂Û(w). We assume the existence of a measure P̂ ∗ ∈ P that minimizes infQ∈Q vλ̂(w)(P |Q)

over all P ∈ P. We denote by Q̂∗ ∈ Q the measure that minimizes vλ̂(w)(P̂
∗|Q) over all

Q ∈ Q.

(i) We have the following representation of the expenditure minimization problem in an

incomplete market:

Û(w) : = sup
Q∈Q

inf
Y ∈YQ(w)

sup
P∈PQ

EP Y

= inf

{
sup

P∈PQ̂∗
EP [Y ] : inf

Q∈QP̂∗
EQu(Y ) ≥ w

}

= −
{

inf
P∈P

inf
Q∈Q

EP v̂

(
λ̂(w)

dQ

dP

)
− λ̂(w)w

}

where

QP̂ ∗ = {Q ∈ Q : sup
EQu(Y )≥w

EP̂ ∗Y > −∞}

and

PQ̂∗ = {P ∈ P : sup
EQ̂∗u(Y )≥w

EP Y > −∞}.

(ii) The solution to the expenditure minimization problem in an incomplete market is given

by

Y ∗ = I

(
1

λ̂(w)

dP̂ ∗

dQ̂∗

)
.

(iii) Let I
(
λ(x)dP ∗

dQ∗

)
be the solution to the robust utility maximization problem as in The-

orem 2 where λ(x) ∈ ∂U(x), P ∗ is the robust vλ(x)-projection, and Q∗ is the reverse

vλ(x)-projection of P ∗. If w = EQ∗u
(
I

(
λ(x)dP ∗

dQ∗

))
, then I

(
λ(x)dP ∗

dQ∗

)
is also the solu-

tion to the expenditure minimization problem.

(iv) Let I
(

1
λ̂(w)

dP̂ ∗
dQ̂∗

)
be the solution to the expenditure minimization problem as in (ii). If

x = −EP̂ ∗ û
(
Î

(
λ̂(w)dQ̂∗

dP̂ ∗

))
= EP̂ ∗I

(
1

λ̂(w)
dP̂ ∗
dQ̂∗

)
, then I

(
1

λ̂(w)
dP̂ ∗
dQ̂∗

)
is also the solution

to the robust utility maximization problem.

Remark 9 (i) If P̂ ∗ exists, then the measure Q̂∗ always exists since Q is weakly compact.

(ii) The middle term in (i) has a nice interpretation: The agent wants to minimize her

costs supP∈PQ̂∗
EP Y under the condition that her utility measured by the robust utility

functional is w at least.
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(iii) The last two statements of this proposition that describe the relationship between the

problems of utility maximization and expenditure minimization are a well-known result

for the case of non-random payoffs (see, e.g., Mas-Colell et al. [15], Prop. 3.E.1).

Proof (i) Since we want to apply Theorem 2 we set y := −w and define

Ũ(y) := −Û(−y) = inf
Q∈Q

sup
Y ∈YQ(−y)

inf
P∈PQ

EP [−Y ]

Then ∂Û(w) = ∂Ũ(y). Hence, instead of minimizing EP Y we will consider the equivalent

problem of maximizing EP [−Y ]. In order to avoid a too complicated description we write

the constraint simply as EQu(Y ) ≥ w instead of Y ∈ YQ(w).

Define X := −u(Y ) and replace Y by u−1(−X) = −û(X) in the equation above. We get

Ũ(y) = inf
Q∈Q

sup
EQX≤y

inf
P∈PQ

EP û(X).

Now we can apply Theorem 2 to obtain

Ũ(y) = inf
λ>0

{
inf

P∈P
inf

Q∈Q
EP v̂

(
λ

dQ

dP

)
+ λy

}

= inf
P∈P

inf
Q∈Q

EP v̂

(
λ̂(−y)

dQ

dP

)
+ λ̂(−y)y

= sup

{
inf

P∈PQ̂∗
EP û(X) : sup

Q∈QP̂∗
EQX ≤ y

}

where

QP̂ ∗ : = {Q ∈ Q : v̂λ̂(−y)(Q|P̂ ∗) < ∞}

= {Q ∈ Q : sup
EQX≤y

EP̂ ∗ û(X) < ∞}

and

PQ̂∗ : = {P ∈ P : v̂λ̂(−y)(Q̂
∗|P ) < ∞}

= {P ∈ P : sup
EQ̂∗X≤y

EP û(X) < ∞}

and λ̂(−y) ∈ ∂Ũ(y). Replacing −y by w, X by −u(Y ), and û(X) by −Y completes the proof

of (i).
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(ii) We get from Theorem 2 that for

X∗ := Î

(
λ̂(w)

dQ̂∗

dP̂ ∗

)
,

we have

sup

{
inf

P∈PQ̂∗
EP û(X) : sup

Q∈QP̂∗
EQX ≤ y

}
= inf

P∈PQ̂∗
EP û(X∗).

Hence, it follows from the proof of (i) that

Y ∗ := u−1(−X∗) = −û(X∗) = I

(
1

λ̂(w)

dP̂ ∗

dQ̂∗

)

is the solution to the expenditure minimization problem. The last equality follows from

û(Î(1/y)) = −I(y).

(iii) Let now I
(
λ(x)dP ∗

dQ∗

)
be the solution to the robust utility maximization problem. We

want to show that for w = −y = EQP∗u
(
I

(
λ(x) dP ∗

dQP∗

))
, we have

inf
λ>0

{
inf

P∈P
inf

Q∈Q
EP v̂

(
λ

dQ

dP

)
+ λy

}
= inf

P∈P
inf

Q∈Q
EP v̂

(
1

λ(x)
dQ

dP

)
+

y

λ(x)
. (17)

Then, according to (i) and (ii), I
(
λ(x)dP ∗

dQ∗

)
would also be the solution to the problem of

expenditure minimization with the minimum utility level w.

We define the two convex functions

H(λ) := inf
P∈P

inf
Q∈Q

EQv

(
λ

dP

dQ

)

and

Ĥ(λ) := inf
P∈P

inf
Q∈Q

EP v̂

(
λ

dQ

dP

)
.

Then H(λ) = λĤ(1/λ).

By Rockafellar [17], Theorem 23.5, Equation (17) is equivalent to −y ∈ ∂(Ĥ(1/λ(x))) which

is equivalent to
y

λ(x)
+ Ĥ

(
1

λ(x)

)
≤ y

λ
+ Ĥ

(
1
λ

)
∀λ > 0. (18)

So we will now show that (18) holds. With the definition of U as in Section 5 we have by

[17], Theorem 7.4 and Corollary 23.5.1, that λ(x) ∈ ∂U(x) if and only if −x ∈ ∂H(λ(x)).

This is equivalent to

xλ(x) + H (λ(x)) ≤ xλ + H (λ) ∀λ > 0. (19)
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By Theorem 2(iii) we have x = EP ∗I
(
λ(x)dP ∗

dQ∗

)
. Hence

y = −w = −EQ∗u

(
I

(
λ(x)

dP ∗

dQ∗

))

= −EQ∗v

(
λ(x)

dP ∗

dQ∗

)
− λ(x)EP ∗I

(
λ(x)

dP ∗

dQ∗

)

= − inf
P∈P

inf
Q∈Q

EQv

(
λ(x)

dP

dQ

)
− λ(x)x

= −H(λ(x))− λ(x)x.

Replacing x in (19) by (−H(λ(x))− y)/λ(x) leads to (18) which completes the proof.

(iv) now follows from (iii) by interchanging u, I, and v and its transforms and Q and P. ¤
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