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1 Introduction

Risk management and financial regulation relies on the proper assessment of the downside risk of

financial positions. Traditional approaches – such as value at risk – do (in general) neither encourage

diversification nor account for the size of extremely large losses. These drawbacks motivated an

axiomatic analysis of risk measures with desirable properties. Robust representations of static risk

measures are a consequence of convex analysis and have been considered in several articles, see

e.g. Artzner, Delbaen, Eber & Heath (1999), Jaschke & Küchler (2001), Föllmer & Schied (2002a),

Föllmer & Schied (2002b), Delbaen (2002) and Frittelli & Rosazza (2002). An excellent summary of

these results can be found in Föllmer & Schied (2004).

While the temporal setting in all these approaches is static, realistic risk management and finan-

cial regulation requires dynamic risk measures for financial positions. When assessing the riskiness of

cash flows as time evolves, two issues have to be taken into consideration: the risk measurements must

consistently be updated, as new information becomes available, and intermediate cash flows must

be taken into account, cf. Wang (1996), Wang (1999), Riedel (2004), Artzner, Delbaen, Eber, Heath

& Ku (2003), Detlefsen (2003), Scandolo (2003), Cheridito, Delbaen & Kupper (2004a), Cheridito,

Delbaen & Kupper (2004b), Cheridito, Delbaen & Kupper (2004c), and Föllmer & Penner (2004).

The current article contributes to both the theory of static and dynamic risk measures. In

Sections 2 and 3 we investigate static distribution-invariant risk measures. Since these risk measures

depend only on the distribution of financial positions, they can either be considered as functionals

on spaces of random variables or spaces of distributions. In the first case, the convexity of the risk

measures or, equivalently, their acceptance sets leads to refined robust representation theorems, cf.

Kusuoka (2001), Carlier & Dana (2003), and Kunze (2003). In the current paper we consider the

second perspective, i.e. the interpretation of risk measures as functionals of distributions. Convexity

of acceptance and rejection sets on the level of laws of financial positions has a natural economic

interpretation. If the acceptance set (resp. rejection set) is convex on the level of distributions,
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then any randomization over two acceptable (resp. rejected) positions is again acceptable (resp.

rejected). Under additional topological conditions, we prove in Section 3 that risk measures with

convex acceptance and rejection sets on the level of distributions coincide with utility-based shortfall

risk. It turns out that this result is related to dynamic risk measures.

In Section 4 we propose a notion of distribution-invariant dynamic risk measures. We concentrate

on the issue of updating, as new information becomes available; an extension to intermediate cash

flows can be found in Weber (2004). The suggested dynamic risk measures can be represented by

a vector of static distribution-invariant risk measures. The main focus of Section 4 is the issue of

dynamic consistency. We propose two notions of dynamic consistency for dynamic risk measures,

namely acceptance and rejection consistency. We call a dynamic risk measure acceptance consistent

(resp. rejection consistent), if any position which is acceptable (resp. not acceptable) for sure in the

future is already acceptable (resp. not acceptable) today. We show that a distribution-invariant risk

measure which is both acceptance and rejection consistent can be represented by a single unique

static distribution-invariant risk measure.

Conversely, we investigate when dynamic risk measures represented by a single static risk mea-

sure are acceptance and rejection consistent. Dynamic consistency is closely related to properties of

the acceptance and rejection sets of the representing static risk measures. The concept of measure

convex sets known from Choquet theory (see Winkler (1985)) leads to a complete characterization of

the class of static risk measures that corresponds to consistent dynamic risk measures. In connection

with the characterization theorem on static risk measures in Section 3 we can show that dynamically

consistent, convex risk measures are represented by utility-based shortfall risk.

The paper is organized as follows. In Section 2 and 3 we investigate static distribution-invariant

risk measures. Section 2 provides basic definitions and properties. In Section 3 we derive the main

characterization theorem. Section 4 investigates distribution-invariant dynamic risk measures. Section

4.1 presents the simple representation in terms of static risk measures. Section 4.2 and 4.3 introduce
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the notions of dynamic consistency and investigate both its implications and connection to measure

convexity. Section 4.4 relates these results to the characterization theorem of Section 3.

2 Static Risk Measures – Basic Definitions and Properties

Distribution-invariant risk measures are usually introduced as functionals on a space of random

variables. They are characterized by three properties: inverse monotonicity, the translation property,

and distribution-invariance; see e.g. Chapter 4 in Föllmer & Schied (2002c). For convenience, we

recall the standard definition.

Definition 2.1. Let (Ω,F , P ) be some probability space. A mapping Ψ : L∞(Ω) → R is called

a distribution-invariant classical risk measure if it satisfies the following conditions for all X, Y ∈

L∞(Ω):

• Inverse Monotonicity: If X ≤ Y , then Ψ(X) ≥ Ψ(Y ).

• Translation Property: If m ∈ R, then Ψ(X + m) = Ψ(X)−m.

• Distribution-invariance: If the distributions of X and Y under P are equal, then Ψ(X) = Ψ(Y ).

Monotonicity refers to the property that risk decreases if the payoff profile is increased. The

translation property formalizes that risk is measured on a monetary scale: if a monetary amount

m ∈ R is added to a position X, then the risk of X is reduced by m. Distribution-invariance refers

to the fact that the functional takes the same value for random variables which have the same

distribution; that is, the risk measure depends on the distribution only.

Due to distribution-invariance, any distribution-invariant risk measure (originally defined on a

space of random variables) may also be interpreted as a functional on a space of distributions. This

interpretation is very useful in the context of compound lotteries. For illustration, suppose X, Y ∈ L∞

are two financial positions with known risk. Now choose (independently of X and Y ) position X with

probability α ∈ [0, 1], and Y with probability 1 − α. It is a natural question to ask how the risk of
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the resulting compound lottery and the risks of X and Y are related to each other. An answer can

be obtained in terms of functionals defined on a space of laws. For this reason we start with the

following alternative definition of a risk measure.

Let M1,c(R) be the space of probability measures on the real line with compact support. A

partial order ≤ on M1,c(R) is given by stochastic dominance, i.e. µ ≤ ν if µ(−∞, x] ≥ ν(−∞, x] for

all x ∈ R.

Definition 2.2. A mapping Θ : M1,c(R) → R is called a risk measure if it satisfies the following

conditions for all µ, ν ∈M1,c(R):

• Inverse Monotonicity: If µ ≤ ν, then Θ(µ) ≥ Θ(ν).

• Translation Property: If m ∈ R, then Θ(T̃m µ) = Θ(µ)−m.

Here, for m ∈ R the translation operator T̃m is given by (T̃mµ)(·) = µ(· −m).

Remark 2.3. Definition 2.2 introduces risk measures as functionals on the space of probability

measures on the real line, while the classical literature investigates functionals on spaces of random

variables. Both concepts can easily be translated into each other by the following construction. Via

this correspondence we will later derive properties of risk measures on M1,c(R) from the classical

case.

Suppose that (Ω′,F ′, P ′) is an atomless probability space. If Θ : M1,c(R) → R is a risk measure

in the sense of Definition 2.2, then Ψ(X) := Θ(L(X)) defines a distribution-invariant risk measure

Ψ on L∞(Ω′,F ′, P ′), cf. Definition 2.1. Here, L(X) designates the distribution of X under P . For

convenience, we will denote by Θ′ the risk measure Ψ induced by Θ.

Conversely, if Ψ is a distribution-invariant risk measure on L∞(Ω′,F ′, P ′) according to Defini-

tion 2.1, then Θ(µ) := Ψ(X) for some X ∼ µ defines a risk measure on M1,c(R) in the sense of

Definition 2.2. If Ψ = Θ′, we recover by this procedure the original risk measure Θ.

As a basis for the analysis we need to investigate technical properties like continuity and mea-
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surability. Classical risk measures are Lipschitz continuous on L∞. This translates to Vasserstein

continuity of risk measures which are defined on spaces of distributions. An interpretation of this

notion in terms of quantile functions is given in Remark 2.5 below. As a direct consequence we obtain

measurability with respect to the standard σ-algebra on the space of distributions, cf. Corollary 2.6.

Lemma 2.4. Any risk measure Θ : M1,c(R) → R is Lipschitz continuous with respect to the Vasser-

stein distance V∞, that is |Θ(µ)−Θ(ν)| ≤ V∞(µ, ν). Here, for µ, ν ∈M1,c(R) the Vasserstein distance

is defined by V∞(µ, ν) = inf ‖X −Y ‖, where ‖ · ‖ denotes the essential supremum and the infimum is

taken over all pairs of random variables X ∼ µ and Y ∼ ν on some atomless probability space.

Proof. The Lipschitz continuity is a simple consequence of Lemma 4.3 in Föllmer & Schied (2002c),

see Weber (2004).

Remark 2.5. The Vasserstein metric V∞ can be represented in terms of the inverse of the distribution

functions (i.e. the quantile functions) of the measures µ, ν ∈ M1,c(R), cf. Owen (1987). We denote

by F−1
µ and F−1

ν the right-continuous inverse of the distribution function of µ and ν, respectively. It

holds that

(2.1) V∞(µ, ν) = sup
0<u<1

|F−1
µ (u)− F−1

ν (u)|.

Corollary 2.6. A risk measure Θ : M1,c(R) → R is measurable with respect to the Borel-σ-algebra

on M1,c(R) generated by the weak topology.

Proof. The V∞-metric generates the Borel-σ-algebra on M1,c(R) induced by the weak topology, see

e.g. Weber (2004).

Associated with any risk measure are the sets of financial positions with strictly positive or non

positive risk. Positions with non positive risk are usually interpreted as acceptable. On the contrary,

positions with positive risk are interpreted as not acceptable. This leads to the following definition

of acceptance and rejection sets.
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Definition 2.7. Let Θ be a risk measure. Its acceptance set (resp. rejection set) on the level of

probability distributions is defined by NΘ = {µ ∈M1,c(R) : Θ(µ) ≤ 0} (resp. by N c
Θ).

For any given risk measure, the acceptance set consists of all probability distributions with non

positive risk; the rejection set is defined as its complement. Risk measures define uniquely their

acceptance and rejection sets. Conversely, starting with a candidate acceptance set, a corresponding

risk measure can be defined as a capital requirement, i.e. the minimal monetary amount that makes

a position acceptable. The following lemma formalizes this idea and is obtained as an immediate

corollary of the corresponding well-known result on classical risk measures, see e.g. Propositions 4.5

and 4.6 in Föllmer & Schied (2002c).

Lemma 2.8. Assume that N ⊆M1,c(R) is non-empty, and satisfies the following two conditions:

(2.2) inf {m ∈ R : δm ∈ N} > −∞.

(2.3) µ ∈ N , ν ∈M1,c(R), ν ≥ µ ⇒ ν ∈ N .

Then N induces a risk measure Θ by

(2.4) Θ(µ) = inf{m ∈ R : Tm(µ) ∈ N}.

N is included in the acceptance set of Θ. If N is the acceptance set of a risk measure Θ, then Θ can

be recovered from N by (2.4).

Finally, we translate the standard notion of “convexity” of risk measures to our setting. Convexity

gives a precise meaning to the idea that diversification should not increase risk, see Section 4.1. in

Föllmer & Schied (2002c). A classical risk measure Ψ : L∞ → R is convex, if

Ψ(αX + (1− α)Y ) ≤ αΨ(X) + (1− α)Ψ(Y )

for all X,Y ∈ L∞, α ∈ [0, 1].
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In addition to convexity, we recall the following two concepts. Ψ is positively homogenous, if

Ψ(λX) = λΨ(X) for all X ∈ L∞ and λ ≥ 0. The risk measure is coherent, if it is both convex and

positively homogenous.

Via their correspondence to classical risk measures, the notions of convexity and coherence are

also well-defined for risk measures on M1,c(R).

Definition 2.9. Let Θ : M1,c(R) → R and Θ′ : L∞ → R be risk measures as in Remark 2.3. We say

that Θ is convex (resp. coherent) if Θ′ is convex (resp. coherent).

Remark 2.10. Suppose an atomless probability space (Ω′,F ′, P ′) is given. Then a risk measure

Θ : M1,c(R) → R defines a unique classical risk measure Θ′ : L∞(Ω′,F ′, P ′) → R, see Remark 2.3.

It is not difficult to show that the notions of convexity and coherence do not depend on the choice

of the atomless probability space (Ω′,F ′, P ′), see Weber (2004).

3 Static Risk Measures, Compound Lotteries, and Shortfall Risk

Distribution-invariant risk measure can either be interpreted as classical risk measures defined on a

space of random variables or as functionals on a space of probability distributions. As we have seen

in Remark 2.3, the two notion can easily be translated into each other. Using the notation introduced

there, “convexity” refers to the convexity of Θ′ : L∞ → R. In geometric terms, it can be restated as

the convexity of the acceptance set on the level of random variables,

{X ∈ L∞ : Θ′(X) ≤ 0}.

This type of convexity formalizes that a risk measure behaves sensible if positions are diversified.

A different type of convexity of risk measures is convexity on the level of distributions which

can be formalized in terms of the functional Θ : M1,c(R) → R. Suppose that the risk measure’s

acceptance set on the level of probability distributions,

NΘ = {µ ∈M1,c(R) : Θ(µ) ≤ 0},
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is convex. A natural interpretation of this property in terms of compound lotteries is the following.

Whenever two probability measures µ and ν are acceptable and α ∈ [0, 1] is some probability, then

the compound lottery αµ + (1− α)ν, that randomizes over µ and ν, is also acceptable. Analogously,

convexity of the rejection set, N c
Θ, can be interpreted.

In this section we characterize risk measures with convex acceptance and rejection sets on the

level of probability distributions. While these properties have a clear economic meaning in the context

of the static risk measure, Section 4 demonstrates their relevance for the analysis of dynamic risk

measures.

3.1 Technical Tools

We need to introduce weak topologies on M1,c(R) that allow us to deal with integrals against un-

bounded test functions. For a fixed continuous function

ψ : R→ [1,∞)

we denote by Cψ the vector space of all continuous functions f : R → R for which we can find a

constant c ∈ R such that for all x ∈ R,

|f(x)| ≤ c · ψ(x).

ψ is called a gauge function. M+
c (R) designates the space of finite measures with compact support.

Definition 3.1. The ψ-weak topology on the set M+
c (R) is the initial topology of the family µ 7→

∫
f(x)µ(dx) (µ ∈M+

c (R), f ∈ Cψ).

In other words, the ψ-weak topology is the weakest topology on M+
c (R) for which all mappings

µ 7→ ∫
f(x)µ(dx) (µ ∈ Mc(R)) with f ∈ Cψ are continuous. It is finer than the weak topology.

Convergence of sequences of measures can be characterized as follows, see Corollary A.29 in Föllmer

& Schied (2002c).
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Lemma 3.2. A sequence of measures (µn)n∈N in M+
c (R) converges ψ-weakly to µ ∈M+

c (R) if and

only if
∫

fdµn −→
∫

fdµ

for every measurable function f which is µ-almost everywhere continuous and for which exists a

constant c ∈ R such that |f | ≤ c · ψ µ-almost everywhere.

3.2 A Characterization Theorem

Under weak technical condition, risk measures with convex acceptance and rejection sets on the

level of distributions can be characterized via a loss function. This implies that they are closely

connected to von Neumann-Morgenstern utility theory and the particular risk measure shortfall risk,

see Remark 3.4 and Example 3.8 below. The exact characterization is provided by the following

theorem. Recall that a loss function is a non decreasing function which is not identically constant.

Theorem 3.3. Let Θ be a risk measure on M1,c(R), and let N be its acceptance set on the level of

probability distributions. Assume that there exists x ∈ R with δx ∈ N such that for y ∈ R, δy ∈ N c,

(3.1) (1− α)δx + αδy ∈ N

for sufficiently small α > 0. Then the following statements are equivalent:

(1) Both the acceptance set N and the rejection set N c of Θ are convex, and N is ψ-weakly closed

for some gauge function ψ : R→ [1,∞).

(2) There exists a left-continuous loss function ` : R→ R and a scalar z ∈ R in the interior of the

convex hull of the range of ` such that

N =
{

µ ∈M1,c(R) :
∫

`(−x)µ(dx) ≤ z

}
.

Remark 3.4. Before proving this theorem, let us emphasize that the risk measures characterized

in Theorem 3.3 are closely connected to classical utility theory of von Neumann and Morgenstern.
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Setting u(x) := − `(− x), we can interpret u as a Bernoulli utility function. A financial position

µ ∈ M1,c(R) is thus considered acceptable, if its expected utility is larger than −z,

U(µ) :=
∫

u(x)µ(dx) ≥ −z.

The remaining part of this section is devoted to two issues: the proof of the main theorem and

a short investigation of continuity properties of the functional µ 7→ ∫
`(−x)µ(dx). A discussion of

examples and consequences is deferred to Sections 3.3 and 3.4.

Proof of Theorem 3.3. (1) ⇒ (2): The proof of this implication can be outlined as follows. In a first

step we define an appropriate candidate loss function ` and a threshold level z. In a second step, a

finite-dimensional separation argument allows us to verify that this function represents the acceptance

set, if we focus on simple probability measures only. Third, we prove the left-continuity of `. Finally,

the general case can be derived by an approximation argument.

We choose x1 ∈ R with δx1 ∈ N according to (3.1), and let x2 ∈ R, δx2 ∈ N c. These numbers

are fixed for all parts of the proof.

a) Definition of the loss function ` and level z : For convenience, we define a function g : R → R

with `(−x) = g(x). We set

(3.2) g(x1) := 0,

(3.3) g(x2) := 1.

Let z := sup{0 ≤ α ≤ 1 : αδx2 + (1 − α)δx1 ∈ N}. Since N is ψ-weakly closed, the supremum is

actually a maximum. Thus, z 6= 1, since δx2 6∈ N . By (3.1) z > 0, hence z ∈ (0, 1). Hence, z is in the

interior of the convex hull of the range of g.

Since N is ψ-weakly closed, it follows from inverse monotonicity that there exists a threshold

level r ∈ R such that [r,∞) = {y ∈ R : δy ∈ N}, (−∞, r) = {y ∈ R : δy ∈ N c}.
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If y ∈ [r,∞), define

(3.4) ᾱ(y) := sup{0 ≤ α ≤ 1 : αδx2 + (1− α)δy ∈ N}.

Since N is ψ-weakly closed, the supremum is actually a maximum. Thus ᾱ(y) 6= 1, since δx2 6∈ N .

Hence, 1− ᾱ(y) 6= 0, and we may define

(3.5) g(y) :=
z − ᾱ(y)
1− ᾱ(y)

.

Inverse monotonicity implies additionally that y 7→ ᾱ(y) is increasing on [r,∞). Hence, y 7→ g(y) =

1 + z−1
1−ᾱ(y) is decreasing on [r,∞), since z − 1 < 0.

If y ∈ (−∞, r), define

(3.6) ᾱ(y) := sup{0 ≤ α ≤ 1 : αδy + (1− α)δx1 ∈ N}.

Observe that ᾱ(y) 6= 1, since δy 6∈ N . By (3.1) we have ᾱ(y) 6= 0. We let

(3.7) g(y) :=
z

ᾱ(y)
.

Inverse monotonicity implies that y 7→ ᾱ(y) is increasing on (−∞, r). Hence y 7→ g(y) is decreasing

on (−∞, r).

Moreover, note that on the one hand g(y) > z for y ∈ (−∞, r). On the other hand, g(y) =

z + (z − 1) ᾱ(y)
1−ᾱ(y) ≤ z for y ∈ [r,∞), since z − 1 < 0. Hence, g : R→ R is a decreasing function, thus

` increasing.

b) Simple probability measures: For probability measures of the form µ =
∑n

i=1 βi · δxi with βi ≥ 0,

xi ∈ R (i = 3, . . . , n),
∑n

i=1 βi = 1, n ∈ N, and x1, x2 as chosen above, we will show that

µ ∈ N ⇔
∫

g(x)µ(dx) ≤ z.

Let µ =
∑n

i=1 βi · δxi be given. We denote by M the convex hull of {δxi : i = 1, 2, . . . , n}. The

simplex M is a convex subset of the n-dimensional vector space spanned by {δxi : i = 1, 2, . . . , n}.

Let A := N ∩M, B = N c ∩M. Then M = A ∪ B, A ∩ B = ∅, the sets A and B are both convex,
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and A is closed in the Euclidian topology. We can therefore find an affine functional h : M→ R and

q ∈ R such that

h(µ) ≤ q, µ ∈ A,

h(µ) > q, µ ∈ B.

We define a function k by

k :=
h− h(δx1)

h(δx2)− h(δx1)
.

Then

k(µ) ≤ q − h(δx1)
h(δx2)− h(δx1)

, µ ∈ A,

k(µ) >
q − h(δx1)

h(δx2)− h(δx1)
, µ ∈ B.

We show now that g(xi) = k(δxi). For i = 1, 2 the claim is immediate from the definition of k.

This implies for α ∈ (0, 1) that

k(αδx2 + (1− α)δx1) = α.

Hence,

z = sup{0 ≤ α ≤ 1 : αδx2 + (1− α)δx1 ∈ N}

= sup
{

0 ≤ α ≤ 1 : α ≤ q − h(δx1)
h(δx2)− h(δx1)

}
=

q − h(δx1)
h(δx2)− h(δx1)

.

Let now i 6= 1, 2, and ᾱ : R → R as defined in (3.4) and (3.6). Assume first that xi ∈ [r,∞) with r

as chosen in part a). This implies that

ᾱ(xi) = sup{0 ≤ α ≤ 1 : αδx2 + (1− α)δxi ∈ N}

= sup{0 ≤ α ≤ 1 : α + (1− α)k(δxi) ≤ z}.

Observe that ᾱ(xi) 6= 1 and that α 7→ α + (1 − α)k(δxi) is continuous. Hence, the last equation is

satisfied, if and only if ᾱ(xi) + (1− ᾱ(xi))k(δxi) = z, i.e.

k(δxi) =
z − ᾱ(xi)
1− ᾱ(xi)

= g(xi).

13



Second, consider the case xi ∈ (−∞, r). Then

ᾱ(xi) = sup{0 ≤ α ≤ 1 : αδxi + (1− α)δx1 ∈ N}

= sup{0 ≤ α ≤ 1 : αk(δxi) ≤ z}.

Observe that ᾱ(xi) 6= 1 and that α 7→ αk(δxi) is continuous. Hence, the last equation is satisfied, if

and only if ᾱ(xi)k(δxi) = z, i.e.

k(δxi) =
z

ᾱ(xi)
= g(xi).

Finally, we obtain for µ =
∑n

i=1 βiδxi that

µ ∈ N ⇔ k(µ) ≤ z ⇔
n∑

i=1

βig(xi) ≤ z ⇔
∫

g(x)µ(dx) ≤ z.

c) Left-continuity of `: Next we prove that g is right-continuous, thus ` left-continuous. Since g is

decreasing, g(x+) exists for each x ∈ R. We have already shown that g(x1) < z, g(x2) > z. This

implies that for given x ∈ R we can find α ∈ (0, 1] and w ∈ R such that

αg(x+) + (1− α)g(w) = z.

Let xn ↘ x. Since g is decreasing, we obtain αδxn +(1−α)δw ∈ N (n ∈ N). Moreover, αδxn +(1−α)δw

converges ψ-weakly to αδx + (1 − α)δw. It follows that αδx + (1 − α)δw ∈ N , since N is ψ-weakly

closed. Thus,

z ≥ αg(x) + (1− α)g(w) ≥ αg(x+) + (1− α)g(w) = z.

Therefore, g(x) = g(x+).

d) General probability measures: Finally, we will show that the representation of N via the function g

is not restricted to simple probability measures. First, let µ ∈ N . There exists a decreasing sequence

of simple probability measures (µn)n ⊆ M1,c(R) converging to µ ψ-weakly from above. By inverse

monotonicity, (µn)n ⊆ N , thus z ≥ ∫
g(x)µn(dx). Letting (Yn)n resp. Y be the quantile functions

of the measures (µn)n resp. µ, we obtain that Yn ↘ Y Lebesgue-a.e. By the right-continuity of g,
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g(Yn) → g(Y ) Lebesgue-a.e. Thus, by Lebesgue’s dominated convergence theorem,

∫
g(x)µn(dx) =

∫ 1

0
g(Yn(s))ds −→

∫ 1

0
g(Y (s))ds =

∫
g(x)µ(dx).

Conversely, let z ≥ ∫
g(x)µ(dx). Then there exists a decreasing sequence of simple probability mea-

sures (µn)n ⊆ M1,c(R) converging ψ-weakly to µ from above. Since g is decreasing, we obtain

z ≥ ∫
g(x)µn(dx), thus (µn)n ⊆ N . Since N is ψ-weakly closed, we obtain µ ∈ N .

(2) ⇒ (1): The convexity of the acceptance and rejection sets of Θ is immediate. We need to show

that the acceptance set is ψ-weakly closed for some suitable gauge function ψ.

Let ψ ∈ C(R), ψ ≥ |g| + 1 with g(x) = `(−x) (x ∈ R). We show that the functional µ 7→
∫

g(x)µ(dx) is lower semicontinuous with respect to the ψ-weak topology. Since the ψ-weak topology

on M1,c(R) is metrizable, we employ the sequential characterization of closed sets. Let z ∈ R be

given, and let (µn)n ⊆M1,c(R), µn → µ ∈M1,c(R) ψ-weakly, where
∫

g(x)µn(dx) ≤ z for n ∈ N.

By Skorohod coupling we can find bounded random variables (Xn)n, X on some probability

space (Ω,F , P ) such that Xn ∼ µn (n ∈ N), X ∼ µ, Xn → X P -a.s.

We have limψ(Xn) = ψ(X) P -almost surely, and lim
∫

ψ(Xn)dP =
∫

ψ(X)dP . Observe that

ψ(Xn) + g(Xn) ≥ 0 (n ∈ N). By Fatou’s Lemma we obtain that

∫
ψ(X)dP + z ≥

∫
ψ(X)dP + lim inf

n

∫
g(Xn)dP

= lim inf
n

∫
(ψ(Xn) + g(Xn))dP ≥

∫
lim inf

n
(ψ(Xn) + g(Xn))dP

=
∫

ψ(X)dP +
∫

lim inf
n

g(Xn)dP ≥
∫

ψ(X)dP +
∫

g(X)dP.

The last inequality follows from the fact that g is decreasing and right-continuous, since Xn → X

P-almost surely. Hence, z ≥ ∫
g(X)dP =

∫
g(x)µ(dx).

The functional µ 7→ ∫
`(−x)µ(dx) together with the threshold level z defines the acceptance set

in Theorem 3.3(2). Let us finally discuss the topological properties of this functional.

Remark 3.5. The acceptance setN is ψ-weakly closed for some gauge function ψ. Thus, any position

which is approximated by acceptable positions in this topology is again acceptable. However, the
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functional µ 7→ ∫
`(−x)µ(dx) might possibly not be ψ-weakly continuous for any gauge function ψ.

To be more precise, it is ψ-weakly continuous for some gauge function ψ, if and only if ` is continuous.

This follows from the representation of the dual space ofM1,c(R) endowed with the ψ-weak topology,

cf. Lemma 3.6.

Instead of continuity, a weaker property is always satisfied, namely lower semicontinuity. Letting

ψ ∈ C(R), ψ ≥ |g| + 1 with g(x) = `(−x) (x ∈ R), the functional µ 7→ ∫
`(−x)µ(dx) is lower

semicontinuous for the ψ-weak topology (see the proof of Theorem 3.3).

Lemma 3.6. Let I : M1,c(R) → R be an affine, ψ-weakly continuous functional. Then there exists

g ∈ Cψ such that

I(µ) =
∫

g(x)µ(dx) (µ ∈M1,c(R)).

Proof. The result is immediate from duality theory, see Chapter VIII in Werner (2002); alternatively,

a direct construction can be found in Weber (2004).

3.3 Examples

Theorem 3.3 characterizes the class of risk measures whose acceptance set is defined in terms of a

loss function. A necessary and sufficient condition can be phrased in terms of compound lotteries:

compound lotteries of acceptable positions are acceptable, while compound lotteries of rejected po-

sitions are rejected. The additional topological condition is weak and requires only that positions

which can be approximated in a rather fine topology are again acceptable. The overall assumption

(3.1) requires that for some (large) monetary amount, any loss is acceptable, as long as its probability

is sufficiently small.

Example 3.7. While property (3.1) is satisfied by many examples, it is not shared by the worst

case measure. Modulo null sets, the worst case measure is the least upper bound for the potential

loss which can occur for any potential outcome. To be more precise, condition (3.1) excludes that Θ
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equals the worst case measure plus some constant (say r), i.e.

Θ(µ) = r − ess inf µ (µ ∈M1,c(R)).

In contrast the following risk measures satisfy the conditions of Theorem 3.3 .

Example 3.8. (1) For the negative expected value, Θ(µ) = − ∫
xµ(dx), the loss function is given

by `(x) = x with threshold z = 0.

(2) For value at risk at level λ ∈ (0, 1), defined as

VaRλ(µ) = − inf {y ∈ R : µ(−∞, y] > λ}

= − sup {y ∈ R : µ(−∞, y) ≤ λ}

= inf {y ∈ R : µ(−∞,−y) ≤ λ},

the loss function equals `(x) = 1(0,∞) with threshold z = λ.

(3) If the loss function ` is convex, the associated convex risk measure is called (utility-based)

shortfall risk. Then ` is continuous and the level z belongs to the interior of the range of `. An

exponential loss function `(x) = exp(ax), a > 0, leads to the special case of the entropic risk

measure

Θ(µ) =
1
a

(
log

∫
exp(−ax)µ(dx)− log z

)
.

Another risk measure is average value at risk which appears in the literature also under the

names worst conditional expectation, conditional value at risk, and expected shortfall. It does not

satisfy the hypotheses of Theorem 3.3.

Example 3.9. For a given level x ∈ (0, 1), let VaRx be value at risk at level x as defined in

Example 3.8. For λ ∈ (0, 1) average value at risk at level λ is defined by

AVaRλ(µ) =
1
λ

∫ λ

0
VaRx(µ)dx, µ ∈M1,c(R).
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As the next example will show, the acceptance set of AVaRλ (λ ∈ (0, 1)) is not a convex subset of

the space of probability measures. Hence, AVaRλ does not satisfy condition (1) of Theorem 3.3, and

its acceptance set cannot be represented in terms of a loss function.

Example 3.10. The acceptance set of AVaRλ (λ ∈ (0, 1)) is not a convex subset of the space of

probability measures. For each λ ∈ (0, 1) this can be demonstrated by the following counterexample.

We let µ = λ ·unif [−1, 1] + (1−λ) ·unif [1, 2], ν = δ0. Then we obtain for the quantile function

of µ that

qµ(γ) =
2γ

λ
− 1, (γ ≤ λ).

Hence, AVaRλ(µ) = 0. Moreover, AVaRλ(ν) = 0. This implies µ, ν ∈ N . Let α = λ
2−λ . Then

qαν+(1−α)µ(λ) = 0. But

qαν+(1−α)µ(γ) =





2γ
(1−α)λ − 1 < 0 if γ < (1−α)λ

2

0 if (1−α)λ
2 ≤ γ ≤ λ

Hence, AVaRλ(αν + (1 − α)µ) > 0. This implies that αν + (1 − α)µ 6∈ N . The acceptance set of

AVaRλ is therefore not a convex subset of the space of probability measures.

3.4 Convex and Coherent Risk Measures

The following corollary connects the preceding characterization theorem with the classical theory of

convex risk measures, cf. Chapter 4.6. in Föllmer & Schied (2002c).

Corollary 3.11. Let Θ : M1,c(R) → R be a risk measure, and assume that its acceptance set N

satisfies condition (2) of Theorem 3.3. Then Θ is convex, if and only if the loss function ` is convex.

Proof. If ` is convex, the corresponding risk measure is clearly convex. We only have to prove the

other direction. Assume thus that ` is not convex. Set g(x) = `(−x). Then g is not convex, and we

can find x, y ∈ R, x < y, such that

g(x) + g(y)
2

< g

(
x + y

2

)
.
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Because z is in the interior of the convex hull of the range of g, we can always find w ∈ R and

α ∈ [0, 1) such that

αg(w) + (1− α) ·
(

g(x) + g(y)
2

)
≤ z < αg(w) + (1− α) · g

(
x + y

2

)
.

We define the following random variables on (0, 1) with Lebesgue measure λ:

Z1 = w · 1(0,α) + x · 1[α,(1+α)/2) + y · 1[(1+α)/2,1)

Z2 = w · 1(0,α) + y · 1[α,(1+α)/2) + x · 1[(1+α)/2,1)

Then Z1 and Z2 are both acceptable, since for i = 1, 2,

∫
g(Zi)dλ = αg(w) + (1− α)

(
g(x) + g(y)

2

)
≤ z.

We define Z := Z1+Z2
2 = w · 1(0,α) + x+y

2 · 1[α,1), and obtain

∫
g(Z)dλ = αg(w) + (1− α) · g

(
x + y

2

)
> z.

Hence, Z is not acceptable, contradicting the convexity of Θ.

Theorem 3.3 and Corollary 3.11 imply that any convex risk measure Θ on M1,c(R) with convex

acceptance and rejection set can be represented as shortfall risk, if the acceptance set is ψ-weakly

closed for some gauge function. Shortfall risk allows a robust representation in terms of the Fenchel-

Legendre transform of the associated loss function.

Lemma 3.12. Let Θ be shortfall risk associated with a convex and continuous loss function `. We

denote the Fenchel-Legendre transform of ` by

`∗(y) := sup
x∈R

(yx− `(x)).

A robust representation of the risk measure is given by

Θ(µ) = max
ν∈M1(µ)

(
−

∫
xν(dx)− α(ν|µ)

)
(µ ∈M1,c(R)).
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Here, M1(µ) is the set of probability measures which are absolutely continuous with respect to µ. The

penalty function α is given by

α(ν|µ) = inf
λ>0

1
λ

(
z +

∫
`∗

(
λ

dν

dµ

)
dµ

)
(ν ∈M1(µ)).

Proof. We apply Theorem 4.61 of Föllmer & Schied (2002c). For µ ∈ M1,c(R), let P := µ and

X := id. By X we denote the class of all bounded measurable functions. Of course, (R,B, P ) is

not necessarily atomless. Nevertheless, if L(Y ) (Y ∈ X ) denotes the distribution of Y under P ,

then Y 7→ Θ(L(Y )) (Y ∈ X ) defines a convex risk measure on X which satisfies the conditions of

Proposition 4.59 and Theorem 4.61 of Föllmer & Schied (2002c). This implies Lemma 3.12.

Example 3.13. In the case of the entropic risk measure with loss function `(x) = exp(a · x), a > 0,

a penalty function can be defined in terms of the relative entropy:

α(ν|µ) =
1
a

(H(ν|µ)− log z) (ν ∈M1(µ)).

Here, the relative entropy is given by

H(ν|µ) =





∫
dν
dµ log

(
dν
dµ

)
dµ if ν ¿ µ,

∞ else.

Example 3.14. Another example that allows explicit calculations is given by the convex loss func-

tional

`(x) =





1
p xp if x ≥ 0,

0 otherwise,

where p > 1 (see e.g. Föllmer & Schied (2002c), Example 4.64). Denoting by q = p/(p− 1) the dual

coefficient, the Legendre-Fenchel transform is calculated as

`∗(y) =





1
q yq if y ≥ 0,

∞ otherwise.

A penalty function is then given by

αp(ν|µ) = (p · z)1/p

(∫ (
dν

dµ

)q

dµ

)1/q

(ν ∈M1(µ)).
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The case of classical expected shortfall risk `(x) = x+ is obtained for p ↘ 1. A penalty function can

be calculated as

α(ν|µ) = z ·
∥∥∥∥

dν

dµ

∥∥∥∥ (ν ∈M1(µ)).

Finally we consider the case of coherent risk measures. In this case, the convex loss function ` is

piecewise linear with a kink at 0.

Corollary 3.15. Let Θ : M1,c(R) → R be a risk measure, and assume that its acceptance set N

satisfies condition (2) of Theorem 3.3. Then Θ is coherent, if and only if `(x) = z + αx+ − βx− for

α ≥ β > 0.

Proof. First, let `(x) = z + αx+ − βx− be given. Since α ≥ β > 0, the loss function ` is convex.

Hence, ` induces a convex risk measure. Let µ ∈ N , and let X ∼ µ be a random variable on some

atomless probability space (Ω,F , P ). Then for λ ≥ 0,

∫
`(−λX)dP = z + λ

∫
(`(−X)− z)dP = (1− λ)z + λ

∫
`(−X)dP ≤ z.

This implies that L(λX) ∈ N . Hence, Θ is positively homogeneous.

Conversely, let Θ be a coherent risk measure that satisfies the hypotheses. Then Θ can be

represented by a continuous and convex loss function ` and a threshold level z ∈ R in the interior

of the range of `. Since Θ is positively homogeneous, δy ∈ N for y ∈ [0,∞) and δy ∈ N c for

y ∈ (−∞, 0). This implies that `(0) = z. Subtracting z, we may w.l.o.g. assume that z = 0 and

`(0) = 0. Let g(x) := `(−x).

Suppose that there exist x′ ∈ R, λ′ ≥ 0 such that g(λ′x′) 6= λ′g(x′). Since g is convex and

g(0) = 0, this implies that there exist x ∈ R and λ > 1 such that g(λx) > λg(x). Since z = 0 lies in

the interior of the range of g, we can find w1, w2 ∈ R such that g(w1) < 0 < g(w2). Therefore there

exist w ∈ R and α ∈ (0, 1] such that

αg(x) + (1− α)g(w) = 0.
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Hence, αδx + (1− α)δw ∈ N . Since g is convex with g(0) = 0, g(λw) ≥ λg(w). Since g(λx) > λg(x),

we obtain

αg(λx) + (1− α)g(λw) > 0.

This implies that αδλx +(1−α)δλw 6∈ N – contradicting the assumption of coherence. Altogether we

obtain that for x ∈ R, λ ≥ 0 it holds that λg(x) = g(λx). This implies that g is of the form

g(x) = αx− − βx+

for α, β ∈ R. α, β ≥ 0, since g is decreasing. The inequality α ≥ β follows from the convexity of g.

Finally, α, β > 0, because 0 lies in the interior of the range of g.

For coherent measures of risk that satisfy the assumptions of Theorem 3.3 a position is accept-

able, if a suitable weighted average of expected gains and expected losses is sufficiently large. Gains

and losses can be weighted differently, but the weight on the losses must not be smaller than the

weight on the gains.

The class of coherent shortfall risk measures is characterized by the three parameters (z, α, β).

The parameter z which equals both the threshold level and `(0) is not essential, since modifying

it does not change the risk measure. Thus, coherent shortfall risk measures form a two parameter

family.

4 Dynamic Risk Measures

Consider time steps t = 0, 1, . . . , T with T ≥ 2 and a standard Borel probability space (Ω,F , P ). T

is a fixed time horizon, at which all payments of financial positions are made. (Ft)t=0,1,...,T denotes

a filtration. We assume that F0 = {∅,Ω} and FT = F . By P T
t we denote the price of a zero-coupon

bond at time t = 0, 1, .., T − 1 with face value 1 maturing at final time T . To be more precise: we

assume that P T
t , t = 0, 1, .., T − 1, is a Ft-measurable random variable which is bounded in [ε, c] for

some 0 < ε < c.
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Definition 4.1. For t = 0, 1, ..., T − 1 let ρt : L∞(Ω,F , P ) × Ω → R be a functional. The sequence

ρ := (ρt)t=0,1,...,T−1 is called a dynamic risk measure if the following axioms are satisfied for D, D′ ∈

L∞(Ω,F , P ):

(A1) Adaptedness and Boundedness:

ρt(D) ∈ L∞(Ω,Ft, P )

(A2) Inverse Monotonicity :

If D ≥ D′ P -almost surely, then ρt(D) ≤ ρt(D′) P -almost surely.

(A3) Translation Property :

If Z ∈ L∞(Ω,Ft, P ), then P -a.s.

ρt

(
D +

Z

P T
t

)
= ρt(D)− Z.

Remark 4.2. D ∈ L∞(Ω,F , P ) is interpreted as a cash flow at the terminal date T . A1 ensures

that the risk ρt(D) of the position D evaluated at time t depends only on information available at

time t (adaptedness). Since the position D is bounded, it is reasonable that its risk is also bounded.

A2 states that the downside risk of a position decreases, if the payoff of the position increases P -a.s.

The translation property, A3, formalizes the idea that ρt(D) is a capital requirement. If an

investor invests an amount of Z at time t in a risk-free way until maturity T , her risk is reduced

exactly by Z. In particular, A3 implies that P -a.s.

ρt

(
D +

ρt(D)
P T

t

)
= 0.

We will interpret ρt(D) as the monetary amount that should be added to D at time t and invested

in risk-free bonds until the final date to make the position acceptable from the point of view of an

investor or regulator, given the information at time t. A position D is acceptable at time t, iff its

risk ρt(D) ≤ 0. In this case, no positive monetary amount has to be added to the position to make

it acceptable.
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Definition 4.3. Let ρ be a dynamic risk measure. The acceptance indicator a = (at)t=0,1,...,T−1 of ρ

is defined by

at(D) := 1{ρt(D)≤0}.

Clearly, the acceptance indicator at(D)(ω) equals 1, iff D is acceptable at time t in scenario

ω ∈ Ω. Otherwise, it takes the value 0. The acceptance indicator allows us to introduce the notion

of distribution-invariant dynamic risk measures.

We denote by M1,c(R) the space of probability measures on the real line with compact support.

If Y is a measurable function defined on (Ω,F , P ) into any standard Borel space (S,B), we denote

by L(Y |Ft) a regular conditional distribution of Y given Ft, see Section 10.2 in Dudley (2002).

Letting M1(S) be the space of probability measures on S endowed with the σ-algebra induced by

the mappings πB : µ 7→ µ(B) (B ∈ B), the mapping Ω → M1(S), ω 7→ L(Y |Ft)(ω) is measurable,

see Chapter 1 in Kallenberg (1997).

Definition 4.4. The dynamic risk measure ρ is called distribution-invariant, if there exists a mea-

surable mapping Ht : M1,c(R) → {0, 1} such that for all D ∈ L∞,

at(D) = Ht(L(DT |Ft)) P -almost surely.

Remark 4.5. Distribution-invariance of dynamic risk measures formalizes the idea that whether or

not a financial position is acceptable at date t depends only on its conditional distribution.

4.1 A Simple Representation Theorem

The following representation characterizes distribution-invariant dynamic risk measures in terms of

static risk measures. It states that any distribution-invariant dynamic risk measure can be represented

by a vector of static risk measures.

Theorem 4.6. Assume that the filtered probability space is rich in the sense that there exists a

unif(0, 1)-distributed random variable independent of FT−1. Then any distribution-invariant dynamic
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risk measure ρ can be represented by a sequence (Θt)t=0,1,...,T−1 of static risk measures Θt : M1,c(R) →

R, t = 0, 1, . . . T − 1, i.e. for all D ∈ L∞(Ω,F , P )

(4.1) ρt(D) = P T
t ·Θt (L(D|Ft)) P -almost surely.

The risk measures Θt in the representation are unique, and the acceptance set of Θt is given by

(4.2) Nt = {µ ∈M1,c(R) : Ht(µ) = 1}.

Ht : M1,c → {0, 1} is the mapping introduced in Definition 4.4.

Before proving this theorem, let us state that also the converse statement holds.

Lemma 4.7. Let (Θt)t=0,1,...,T−1 be a sequence of static risk measures as introduced in Definition 2.2.

Then (4.1) defines a distribution-invariant dynamic risk measure.

The remainder of this section is devoted to the proofs of Theorem 4.6 and Lemma 4.7 which

link static and dynamic risk measures.

Proof of Theorem 4.6. For t = 0, 1, . . . , T − 1 we define the sets Nt = {µ ∈ M1,c(R) : Ht(µ) = 1}.

We show that Nt induces a static risk measure. First, we prove that property (2.2) holds: Letting

M ′ ∈ L∞(Ω,F , P ) be arbitrary, we define

M := M ′ +
ρt(M ′)− 1

P T
t

.

By assumption, P T
t is bounded away from zero and ρt(M ′) ∈ L∞(Ω,F , P ). Thus, M ∈ L∞(Ω,F , P ).

By the translation property,

ρt(M) = ρt

(
M ′ +

ρt(M ′)− 1
P T

t

)
= ρt(M ′)− ρt(M ′) + 1 > 0.

Let m ∈ R, m ≤ −‖M‖∞. By inverse monotonicity, ρt(m) ≥ ρt(M) > 0. Hence,

Ht(δm) = at(m) = 0.

This implies that inf{m ∈ R : δm ∈ Nt} > −∞.
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Second, we prove property (2.3): Let µ ∈ Nt, ν ∈M1,c(R), and ν ≥ µ. Since the filtered proba-

bility space is rich, there exists a random variable Z uniformly distributed on (0, 1) and independent

of FT−1. Define M := qµ(Z) ∼ µ and N := qν(Z) ∼ ν, where qµ and qν are the quantile functions

of µ and ν, respectively. Since ν stochastically dominates µ, we have N ≥ M . By monotonicity,

ρt(N) ≤ ρt(M). This implies Ht(ν) = 1, since Ht(µ) = 1 by assumption. Hence, ν ∈ Nt.

We denote the static risk measure induced by the set Nt by Θt and have to show that for given

D ∈ L∞(Ω,F , P ) P -almost surely

ρt(D) = P T
t ·Θt(L(D|Ft)).

By T̃ : R×M1,c(R) →M1,c(R) we denote the translation operator, i.e. T̃rµ(A) = µ(A−r) for r ∈ R,

µ ∈M1,c(R) and measurable A ⊆ R.

Since ρt(D) · (P T
t

)−1 is Ft-measurable and bounded, we get P -almost surely

ρt(D)
P T

t

= ess inf
{

m ∈ L∞(Ω,Ft, P ) :
ρt(D)
P T

t

≤ m P − almost surely
}

Now let m ∈ L∞(Ω,Ft, P ) be arbitrary. By the translation property, ρt(D)

P T
t

− m = ρt(D+m)

P T
t

. Thus,

P -almost surely

ρt(D)
P T

t

≤ m ⇔ ρt(D + m) ≤ 0 ⇔ L(D + m|Ft) ∈ Nt ⇔ T̃mL(D|Ft) ∈ Nt.

This implies that P -a.s.

ρt(D)
P T

t

= ess inf
{

m ∈ L∞(Ω,Ft, P ) : T̃m(ω)L(D|Ft)(ω) ∈ Nt for P−a.a. ω ∈ Ω
}

We have to show that the right hand side equals P -a.s. Θt(L(D|Ft)):

First, observe that Θt : M1,c(R) → R is Lipschitz continuous with respect to the Vasserstein metric

V∞. This implies that m̂ := Θt(L(D|Ft)) ∈ L∞(Ω,Ft, P ). Clearly, T̃m̂(ω)L(D|Ft)(ω) ∈ Nt for P-a.a.

ω ∈ Ω. Thus, m̂ ≥ ρt(D)

P T
t

P -a.s.

Second, let m ∈ L∞(Ω,Ft, P ) such that T̃m(ω)L(D|Ft)(ω) ∈ Nt for P-a.a. ω ∈ Ω. Since

m̂(ω) = Θt(L(D|Ft)(ω)) = inf{r ∈ R : T̃rL(D|Ft)(ω) ∈ Nt},

26



we obtain in particular m̂(ω) ≤ m(ω) for P -a.a. ω ∈ Ω. Hence m̂ ≤ ρt(D)

P T
t

P -a.s.

Finally, we show that Nt is indeed the acceptance set of Θt and that the representation is

unique. Since the filtered probability space is rich, for µ we can find M ∈ L∞ with L(M |Ft) = µ

P -a.s. Uniqueness is implied by the equality

Θt(µ) =
ρt(M)
P T

t

P -almost surely.

Moreover, if Θt(µ) ≤ 0, then Ht(µ) = 1, thus µ ∈ Nt. This implies that Nt is indeed the acceptance

set of Θt.

Proof of Lemma 4.7. Adaptedness and inverse monotonicity are immediate. Boundedness follows

from the boundedness assumptions on the bond prices and the Lipschitz continuity of static risk

measures with respect to the Vasserstein metric V∞.

The translation property can be verified as follows. Denote by T̃ : R×M1,c(R) →M1,c(R) the

translation operator, and let D ∈ L∞(Ω,F , P ), Z ∈ L∞(Ω,Ft, P ). Then P -almost surely

ρt

(
D +

Z

P T
t

)
= P T

t ·Θt

(
L

(
D +

Z

P T
t

∣∣∣∣Ft

))
= P T

t ·Θt

(
T̃ Z

PT
t

L (D| Ft)
)

= P T
t ·Θt (L (D| Ft))− Z = ρt(D)− Z

4.2 Dynamic Consistency

Theorem 4.6 shows that any distribution-invariant risk measure can be represented by a vector of

static risk measures. Since every such vector defines a proper dynamic risk measure according to

Lemma 4.7, risk measurements at different points in time need not be related to each other. From

an economic point of view this is certainly problematic and some consistency across time seems

appropriate. In the current section, we will suggest two notions of time consistency of dynamic

risk measures. In the remaining part of the article, we are going to discuss the consequences of these
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requirements. It turns out that these are closely connected to convexity properties of the representing

static risk measures.

Definition 4.8. A distribution-invariant dynamic risk measure ρ is

• acceptance consistent, if for all t = 0, 1, . . . , T − 2 and all D ∈ L∞(Ω,F , P ),

at+1(D) = 1 P -almost surely =⇒ at(D) = 1 P -almost surely;

• rejection consistent, if for all t = 0, 1, . . . , T − 2 and all D ∈ L∞(Ω,F , P ),

at+1(D) = 0 P -almost surely =⇒ at(D) = 0 P -almost surely.

Remark 4.9. Acceptance consistency captures the following intuition. If a position D is acceptable

at the date t + 1 irrespectively of actual scenario ω ∈ Ω (modulo nullsets), then D should also be

accepted at the earlier time t. In other words: “Why should we reject a position today, if we accept it

tomorrow anyway?” Rejection consistency states the idea that a position should already be rejected

at time t, if it is rejected at the later date t + 1 for P -almost all scenarios ω ∈ Ω: “Why should we

accept a position today, if we reject it tomorrow anyway?”

These dynamic consistency conditions have strong implications for the representation of a

distribution-invariant dynamic risk measure in terms of static risk measures. In particular, if a dy-

namic risk measure is both acceptance and rejection consistent, all components of the vector of

representing static risk measures are equal. Thus, the dynamic risk measure is represented by a

single static risk measure. This fact is stated in the following corollary.

Corollary 4.10. Assume that the filtered probability space is rich in the sense that there exists a

unif(0, 1)-distributed random variable independent of FT−1. Let ρ be a distribution-invariant dynamic

risk measure, and let Θt : M1,c(R) → R be the representing static risk measures with acceptance sets

Nt, t = 0, 1, . . . T − 1.

28



(1) If ρ is acceptance consistent, then Nt+1 ⊆ Nt, t = 0, 1, . . . T − 2.

(2) If ρ is rejection consistent, then Nt+1 ⊇ Nt, t = 0, 1, . . . T − 2.

(3) If ρ is both acceptance and rejection consistent, then Θ0 = Θt for all t = 1, 2, . . . , T − 1, and ρ

can be represented by the single static risk measure Θ := Θ0, i.e. for D ∈ L∞(Ω,F , P ),

(4.3) ρt(D) = P T
t ·Θ(L(D|Ft)) P -almost surely.

Proof. Assume that ρ is acceptance consistent. Let µ ∈ Nt+1. Since the probability space is rich,

there exists a random variable Z ∼ unif(0, 1) independent of FT−1. We define D = qµ(Z) where qµ

is the quantile function of µ. Observe that L(D|Ft) = L(D|Ft+1) = µ. We obtain that

1 = Ht+1(µ) = at+1(D) = at(D) = Ht(µ).

Hence, µ ∈ Nt. If ρ is rejection consistent, the proof is analogous.

4.3 Consistency and Mixtures of Distributions

According to Corollary 4.10 a dynamic risk measure can be represented by one universal static

risk measure, if it is both acceptance and rejection consistent. Conversely, one may ask: under which

conditions is a distribution-invariant risk measure of the form (4.3) acceptance or rejection consistent?

Necessary and sufficient conditions are closely connected to the convexity of acceptance and rejection

sets on the level of distributions.

Definition 4.11. Let C be a measurable subset of M1,c(R). We say that C is locally measure convex

if for all c ∈ R and any probability measure γ on C ∩M1([−c, c]) the mixture
∫

νγ(dν) is again an

element of C where M1([−c, c]) denotes the set of probability measures supported in the interval

[−c, c].

The last definition provides a localization of the notion of measure convex sets (see Winkler

(1985)) which is appropriate in the context of probability measures with compact support.
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Theorem 4.12. Let Θ be a static risk measure, N ⊆ M1,c(R) be its acceptance set, and ρ be the

distribution-invariant dynamic risk measure defined by

(4.4) ρt(D) = P T
t ·Θ(L(D|Ft)) P -almost surely.

If N is locally measure convex, then ρ is acceptance consistent. If N c is locally measure convex, then

ρ is rejection consistent.

Proof. We prove that ρ is acceptance consistent, if N is locally measure convex. The case of rejection

consistency can be derived similarly.

Let t ∈ {0, 1, . . . , T − 2}, D ∈ L∞(Ω,F , P ), and c ∈ R such that D ∈ [−c, c] P -almost surely.

Define now a kernel Qt from (Ω,Ft) to (Ω,F) such that for measurable A ⊆ Ω,

Qt(ω,A) = P (A|Ft)(ω)

Set µs := L(D|Fs) (s = t, t + 1). Then we obtain by disintegration for P -almost every ω ∈ Ω that

µt(ω, ·) =
∫

µt+1(ω′, ·)Qt(ω, dω′)

Suppose that at+1(D) = 1 P -a.s. Then µt+1(ω′, ·) ∈ N ∩M1([−c, c]) for P -almost all ω′ ∈ Ω. Hence

for P -almost all ω ∈ Ω,

µt(ω, ·) =
∫

µt+1(ω′, ·)Qt(ω, dω′) ∈ N ,

sinceN is locally measure convex. This implies at(D) = 1 P -a.s. Therefore, ρ is acceptance consistent.

The characterization of consistency in terms of the acceptance sets of the representing risk mea-

sure and mixtures of probability measures can be strengthened if the underlying filtered probability

space is rich enough.

Definition 4.13. The filtered probability space is called sequentially rich if there exist both a

unif(0, 1)-distributed random variable independent ofFT−1, and a unif(0, 1)-distributed, FT−1−measurable

random variable independent of FT−2.
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Theorem 4.14. Let the underlying probability space be sequentially rich, and assume that the dy-

namic risk measure ρ is represented as in Theorem 4.12.

Then ρ is acceptance consistent, if and only if N is locally measure convex. Analogously, ρ is

rejection consistent, if and only if N c is locally measure convex.

Proof. We have already proven one direction in Theorem 4.12. Thus, we only need to show that

‘consistency’ implies ‘measure convexity’. We will focus on the case of acceptance consistency. The

case of rejection consistency works analogously.

Let ρ be a distribution-invariant dynamic risk measure, and let N be the corresponding accep-

tance set of the representing static risk measure Θ. Observe that N is measurable by definition of

the functions Ht. Let c ∈ R be given, and let γ be a probability measure on N ∩M([−c, c]). Let

Z ∼ unif(0, 1) be a random variable independent of FT−1, and let U ∼ unif(0, 1) be a FT−1- mea-

surable random variable independent of FT−2. By Borel’s theorem (see Theorem 2.19 in Kallenberg

(1997)) there exists a measurable function µ : [0, 1] → N such that µ(U) ∼ γ. We define a kernel

from M1(R) to R by 



M1(R)× B(R) → [0, 1]

(ν,A) 7→ ν(A)

By the kernel randomization lemma (see Lemma 2.22 in Kallenberg (1997)) there exists a measurable

function

q : M1(R)× [0, 1] → R

such that qν(Z) = q(ν, Z) ∼ ν. Clearly, the composite function qµ(·)(·) : [0, 1]2 → R is measurable.

We define the random variable D := qµ(U)(Z) ∈ [−c, c]. We obtain that for P -almost all ω ∈ Ω,

(4.5) L(D|FT−1)(ω) = µ(U(ω)) ∈ N ,

(4.6) L(D|FT−2) = L(D) =
∫

N
νγ(dν).

Equation (4.5) implies aT−1(D) = 1 P -a.s. From acceptance consistence follows aT−2(D) = 1 P -a.s.

Thus,
∫
N νγ(dν)

(4.6)
= L(D|FT−2) ∈ N .
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4.4 Dynamic Risk Measures and Shortfall Risk

The results of the Section 3 can be applied to dynamic risk measures. Recall that under weak addi-

tional conditions any static risk measure which is distribution-invariant and convex can be represented

by shortfall risk, if both acceptance and rejection set are convex on the level of distributions. For the

precise statement we refer to Theorem 3.3 and its Corollary 3.11. Dynamic consistency, convexity and

a weak closure property imply that a dynamic risk measure can be represented in terms of shortfall

risk.

Theorem 4.15. Assume that the filtered probability space is sequentially rich. Let ρ be a distribution-

invariant dynamic risk measure. We make the following assumptions:

(1) ρ is acceptance and rejection consistent.

(2) ρ is convex in the sense that for t = 0, 1, . . . , T − 1, α ∈ (0, 1), D, G ∈ D,

ρt(αD + (1− α)G) ≤ αρt(D) + (1− α)ρt(G).

(3) The set N = {µ ∈ M1,c(R) : Ht(µ) = 1} (t = 0, 1, . . . , T − 1) is ψ-weakly closed for some

gauge function ψ : R→ [1,∞).

(4) Assume that there exists x ∈ R with δx ∈ N such that for y ∈ R, δy ∈ N c,

(1− α)δx + αδy ∈ N

for sufficiently small α > 0.

Then there exists a convex loss function ` : R → R with associated shortfall risk measure Θ on

M1,c(R) such that ρ can be represented by Θ, i.e. for D ∈ L∞(Ω,F , P ),

(4.7) ρt(D) = P T
t ·Θ(L(D|Ft)) P -almost surely

Proof. By Corollary 4.10 there exists a unique risk measure Θ such that ρ can be represented ac-

cording to (4.7). By Theorem 4.14 the acceptance set N and the rejection set N c are locally measure
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convex, thus convex. Hence, N can be represented according to Theorem 3.3 for some loss function

` : R→ R. The convexity of ρ implies the convexity of Θ. It follows by Corollary 3.11 that ` is convex

and therefore continuous. Hence, Θ is the shortfall risk measure associated with the continuous and

convex loss function `.

Remark 4.16. If a dynamic risk measure is distribution-invariant and satisfies at the same time

conditions (1) – (4), then it can be represented by utility-based shortfall risk. Let us finally discuss

these assumptions.

Distribution-invariance refers to the fact that risk measurements rely on the conditional distribu-

tions of financial positions only and not on the specific mechanism that generates them. In particular,

dependence with other economic variables is neglected.

Assumption (1) specifies that risk measurements at different points in time should not contradict

each other, see Definition 4.8 and the subsequent remark. Assumption (2) formalizes the idea that

diversification should not increase risk.

The interpretation of assumption (3) and (4) is closely related to assumption (1). Due to time

consistency, the dynamic risk measure ρ can be represented by a single static risk measure Θ with

acceptance set N on the level of distributions. This allows us to rephrase assumptions (3) and (4) in

terms of the initial date t = 0.

Assumption (3) is equivalent to the following condition: if the distribution of a position D ∈ D

can be approximated in a rather fine topology by a sequence of positions acceptable at time 0, then D

is also acceptable at time 0. Finally, assumption (4) requires that at time 0 any loss is acceptable for a

position paying some large monetary amount otherwise, as long as the loss probability is sufficiently

small.

From the point of view of an investor or regulator, distribution-invariance, convexity, and dy-

namic consistency might be desirable properties of a dynamic risk measure. The additional require-

ment on N to be ψ-weakly closed for some gauge function ψ is very weak and is even economically
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meaningful: terminal positions which can be approximated by acceptable positions in a rather fine

topology are again acceptable. Also, requiring a tradeoff of large losses against arbitrarily small prob-

abilities does not seem to be a very strong assumption. We argue therefore that static shortfall risk

provides a good basis for the dynamic evaluation of financial positions.
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K. Sandmann & P. J. Schönbucher, eds, ‘Advances in Finance and Stochastics’, Springer-Verlag

Berlin, pp. 39–56.
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Föllmer, Hans & Irina Penner (2004), Convex risk measures and the dynamics of their penalty

functions. Working paper, Humboldt-Universität zu Berlin.

Frittelli, Marco & Gianin E. Rosazza (2002), ‘Putting order in risk measures’, Journal of Banking

and Finance 26(7), 1473–1486.
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