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Abstract. We consider a control constrained optimal control problem governed by a semilinear
elliptic equation with nonlocal interface conditions. These conditions occur during the modeling of
diffuse-gray conductive-radiative heat transfer. After stating first-order necessary conditions, second-
order sufficient conditions are derived that account for strongly active sets. These conditions ensure
local optimality in a L

s-neighborhood whereby the underlying analysis allows to use weaker norms
than L

∞.
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1. Introduction. In this paper, we investigate an optimal control problem that
arises from the sublimation growth of semiconductor single crystals by the physical
vapor transport (PVT) method. Possible semiconductor materials, produced with
this method, are silicon carbide (SiC) or aluminum nitrite (AlN). They are used in
numerous industrial applications, e.g. the production of optoelectronic devices such
as blue and green LEDs and lasers. For the PVT method, polycrystalline powder is
placed under a low-pressure inert gas atmosphere at the bottom of a cavity inside
a crucible. The crucible is heated up to 2000 till 3000 K by induction. Due to the
high temperatures and the low pressure, the powder sublimates and crystallizes at a
single-crystalline seed located at the cooled top of the cavity, such that the desired
single crystal grows into the reaction chamber. See [6] for more details.

Here, we focus on the conductive-radiative heat transfer in the growth apparatus.
Therefore, we consider a simplified setup of the growth apparatus, shown in Fig. 1.1,
where Ωs denotes the domain of the solid graphite crucible, whereas Ωg is the domain
of gas phase inside.
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Fig. 1.1. Exemplary domain for nonlocal radiative heat transfer.

A very important determining factor for the crystal’s quality and growth rate is the
temperature gradient inside the gas phase [9]. Since we do not consider the electro-
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2 C. MEYER

magnetic induction, we will optimize the temperature gradient in the gas phase Ωg

by directly controlling the heat source u in Ωs.

The temperature y inside the growth apparatus arises as the solution of the con-
ductive-radiative heat transfer problem in the growth apparatus. Accounting for
radiative contributions is essential owing to the high temperatures. Thus, the problem
is described by the stationary heat equation with radiation interface and boundary
conditions on Γr and Γ0, respectively. We take Ωs to be entirely opaque, whereas Ωg

represents a transparent medium which does not interact with radiation. Furthermore,
the radiative surfaces Γ0 := ∂Ω and Γr := Ωs ∩ Ωg are presumed to be diffuse-gray,
i.e. the emissivity ε is independent of both the direction and the wavelength of the
radiation. In particular, the local radiative heat exchange on Γ0 can be modeled by
the Boltzmann radiation condition with an external temperature y0. Due to the heat
exchange between points on Γr, we obtain an additional radiative heat flux on Γr,
denoted by qr.
In addition to the stationary semilinear heat equation with radiation interface and
boundary conditions, we consider box constraints for the control function u. Thus,
the optimal control problem, considered here, reads as follows:
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minimize J(y, u) :=
1

2

∫

Ωg

|∇y − z|2 dx +
ν

2

∫

Ωs

u2 dx

subject to −div(κs ∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(

∂y

∂nr

)

g

− κs

(

∂y

∂nr

)

s

= qr on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0

and ua ≤ u(x) ≤ ub a.e. in Ωs,

where n0 is the outward unit normal on Γ0, and nr is the unit normal on Γr facing
outward with respect to Ωs (cf. Fig. 1.1). Furthermore, z denotes the desired tem-
perature gradient and ν > 0 is a Tikhonov regularization parameter. In the state
equation, σ represents the Boltzmann radiation constant, and κs, κg denote the ther-
mal conductivities in Ωs, Ωg, respectively.

In contrast to the boundary condition on Γ0, the radiative heat transfer on Γr is
nonlocal. The corresponding mathematical model used here is described in detail in
[10]. It provides the additional radiative heat flux qr on Γr given by

qr = (I − K)(I − (1 − ε)K)−1ε σ|y|3y := G σ|y|3y, (1.1)

where K is an integral operator representing the irradiation on Γr. The nonlocal
operators K and G will be specified in Section 3. The nonlocal radiation on Γr

represents the main characteristic of the problem, since the nonlinearity in the state
equation in (P) is in general not monotone due to nonpositivity of G (see [10]).

Problem (P) has already been investigated by Meyer, Philip, and Tröltzsch in [8],
where first-order necessary conditions are proved. Based on these results, we establish
second-order sufficient optimality conditions for (P). Due to the nonlinear interface
and boundary conditions on Γr and Γ0, (P) belongs to the class of semilinear elliptic
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optimal control problems. There are numerous publications which address second-
order conditions for problems of such type. We only mention Casas, Tröltzsch, and
Unger [4], Bonnans [1], and Casas and Mateos [3]. Here, we consider conditions
that are sufficient for local optimality of a reference function in a Ls-neighborhood,
where s is not necessarily equal to ∞. To that end, we use a technique, introduced
for the Navier-Stokes equations by Tröltzsch and Wachsmuth [12]. In case of the
Navier-Stokes equations, the situation is, in some sense, easier, since the nonlinearity
in the state equation is only of quadratic type. Hence, under certain assumptions on
the objective functional, it is possible to avoid the well-known two-norm discrepancy
(see [12] for details). This is even valid, if one allows for strongly active sets as
introduced by Dontchev, Hager, Poore, and Yang [5]. However, in our case, one has
to deal with a two-norm discrepancy when using strongly active control constraints.
Therefore, we modify the proof of Tröltzsch and Wachsmuth and follow an approach
by Casas, Tröltzsch, and Unger [4], who consider a more general setting. This covers
a class of optimal control problems with a semilinear elliptic state equation whose
nonlinearity is monotone. However, although this is not the case here, main parts of
the corresponding theory for second-order conditions can also be applied to (P).

The paper is organized as follows: After stating the mathematical setting in Section
2, we recall some results of [10], [7], and [8], concerning the semilinear state equation
and first-order conditions for (P), see Sections 3 and 4. Then, in Section 5, our main
result, i.e. the second-order sufficient conditions, are stated. Section 6 is devoted to
some auxiliary results that are needed for the proof of the second order-conditions,
that is presented in Section 7.

2. The mathematical setting. Throughout this paper, we assume the follow-
ing conditions on the domain Ω and on the quantities and functions occurring in
(P):

Assumption 1. We assume that Ω ⊂ R
3 is a bounded simply connected domain with

Lipschitz boundary Γ0. The boundary of the simply connected subdomain Ωg ⊂ Ω,
denoted by Γr, is assumed to be a closed Lipschitz surface that is piecewise C1,δ.
Notice that the distance of Γr to Γ0 is positive. Then, Ωs is defined by Ωs = Ω\Ωg.
The Boltzmann radiation constant is assumed to be positive, i.e. σ ∈ R

+. For the
thermal conductivity, we assume κ ∈ L∞(Ω) with

κ(x) =

{

κs(x) in Ωs

κg(x) in Ωg

and κ(x) ≥ κmin > 0 a.e. on Ω. Furthermore, the emissivity ε ∈ L∞(Γ0 ∪ Γr) is
bounded by 1 ≥ ε ≥ εmin > 0 a.e. on Γ0 ∪ Γr.

Assumption 2. The desired temperature gradient z is given in L2(Ωg) and ν is
a positive constant. For the box constraints, we assume ua, ub ∈ L∞(Ωs) and 0 ≤
ua(x) < ub(x) a.e. in Ωs. The external temperature y0 is a function in L16(Γ0) and
fulfills y0 ≥ ϑ a.e. on Γ0 with a positive constant ϑ.

Moreover, we use the following notations:

Notation. We introduce the set of admissible controls by

Uad := {u ∈ L∞(Ωs) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}.
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The identity operator in the respective function spaces is denoted by I . Moreover,
τr is the trace operator on Γr, whereas τ0 denotes the trace on Γ0. Throughout this
paper, c is a generic constant and ϕ denotes a generic function. Let W be a Banach
space with its dual space W ∗. Then, for f ∈ W and g ∈ W ∗, 〈f , g〉 denotes the
associated pairing.

3. The semilinear state equations. In this section, we recall some results
of Laitinen and Tiihonen [7], Tiihonen [10], [11], and Meyer, Philip, and Tröltzsch
[8]. First, we present some properties of the nonlocal radiation operator G and the
integral operator K.

Definition 3.1. The integral operator K, representing the irradiation on Γr, is given
by

(K y)(x) =

∫

Γr

ω(x, z) y(z) dsz, (3.1)

where the kernel ω is defined by

ω(x, z) =















Ξ(x, z)
[nr(z) · (x − z)][nr(x) · (z − x)]

2|z − x|3
, for n = 2

Ξ(x, z)
[nr(z) · (x − z)][nr(x) · (z − x)]

π|z − x|4
, for n = 3.

In this definition, x, z denote two points on Γr, and nr(x) is the unit normal at x
facing outward with respect to Ωs. Here, Ξ represents the visibility factor which is
given by

Ξ(x, z) =

{

0 if xz ∩ Ωg 6= ∅,
1 if xz ∩ Ωg = ∅,

with xz denotes the line between x and z.

In [11], it is proven that ω(x, z) has a singularity at x of type |x − z|−(1−δ) in the
two-dimensional and |x − z|−2(1−δ) in the three-dimensional case, which is, in both
cases, integrable. This is the key point to the following lemma derived in [11].

Lemma 3.2.

(i) K maps Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞.
(ii) The operator I − (1 − ε)K : Lp(Γr) → Lp(Γr) is continuously invertible.

With the help of Lemma 3.2, Tiihonen and Laitinen proved the following property of
G = (I − K)(I − (1 − ε)K)−1ε (cf. [10, Lemma 6] and [7, Lemma 8]).

Lemma 3.3. G is a bounded linear operator from Lp(Γr) to itself for all 1 ≤ p ≤ ∞.

Notice that the kernel ω is symmetric and hence, K is formally self-adjoint. Therefore,
we obtain that G∗ = ε(I− (1−ε)K)−1(I−K) is also linear and bounded from Lp(Γr)
to Lp(Γr) for all 1 ≤ p ≤ ∞.

With these results at hand, Laitinen and Tiihonen derived the existence of solutions



SECOND-ORDER CONDITIONS 5

to the state equation in (P) that is given by

−div(κs ∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(

∂y

∂nr

)

g

− κs

(

∂y

∂nr

)

s

= G σ|y|3y on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0.

(3.2)

Notice that, due to the non-positivity of G, the nonlinearity in (3.2) is not monotone.
Therefore, Laitinen and Tiihonen used Brezis’ existence theorem on the solution of
equations with pseudomonotone operators to show the existence of solutions (see [7]
for details). In the following, we consider y in the state space V that is defined by

V := {v ∈ H1(Ω) | τr v ∈ L5(Γr) , τ0 v ∈ L5(Γ0)}

where τr denotes the trace operator on Γr, whereas τ0 is the trace on Γ0. The space
V is equipped with the norm

‖v‖V = ‖v‖H1(Ω) + ‖v‖L5(Γr) + ‖v‖L5(Γ0).

Theorem 3.4. [7, Theorem 2] Under Assumption 1, the semilinear equation (3.2)
admits a unique solution in V for every u ∈ H1(Ωs)

∗ and y0 ∈ L5(Γ0).

In [8], it is shown that, if the right-hand side is sufficiently regular, solutions to (3.2)
belong to the following function space

V ∞ := H1(Ω) ∩ L∞(Ω), (3.3)

equipped with the norm

‖v‖V ∞ = ‖v‖H1(Ω) + ‖v‖L∞(Ω).

Notice that y ∈ V ∞ implies τry ∈ L∞(Γr) and τ0y ∈ L∞(Γ0) (see [8, Remark 3.5]).

Theorem 3.5. [8, Theorem 4.2] Suppose that Assumption 1 is fulfilled and u ∈ L2(Ωs)
and y0 ∈ L16(Γ0). Then, there exists a constant c only depending on Ω such that the
solution of (3.2) fulfills

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c(1 + ‖u‖L2(Ωs) + ‖y0‖
4
L16(Γ0)

). (3.4)

For a fixed y0 ∈ L16(Γ0), we introduce the control-to-state operator S : L2(Ωs) → V ∞

that assigns y to u. The positivity of S is covered by the following maximum principle.

Theorem 3.6. [8, Theorem 4.3] Suppose that Assumption 1 is fulfilled and u(x) ≥ 0
a.e. in Ωs and y0(x) ≥ ϑ > 0 a.e. on Γ0. If y is the solution of (3.2), then y(x) ≥ ϑ
holds a.e. on Ω and a.e. on Γr ∪ Γ0.

The next theorem states the existence of an optimal solution for (P). It is also proven
in [8] by rather standard arguments.

Theorem 3.7. [8, Theorem 5.2] Under the Assumptions 1 and 2, there exists an
optimal control ū ∈ L∞(Ωs) with associated state ȳ ∈ V ∞.
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4. First-order necessary optimality conditions. The key point in the proof
of first-order necessary optimality conditions is to show the differentiability of the
control-to-state operator S : u 7→ y. In preparation of a corresponding theorem, we
consider the following linear equation

−div(κ∇y) = fΩ in Ω

κs

(

∂y

∂nr

)

s

− κg

(

∂y

∂nr

)

g

= fr on Γr

κs
∂y

∂n0
+ 4 εσ|ȳ|3y = f0 on Γ0,

(4.1)

with arbitrary functions (fΩ, fr, f0) in L2(Ω) × L2(Γr) × L2(Γ0) and ȳ ∈ V ∞ with
ȳ > 0 a.e. in Ω. It is easy to verify that the bilinear form associated to the left-hand
side in (4.1) is bounded and coercive in H1(Ω). Therefore, the Lax-Milgram lemma
implies that (4.1) admits solutions in H1(Ω) for every right-hand side in H1(Ω)∗.
Embedding theorems give that, for n ≤ 3, fΩ can be identified with an element of
H1(Ω)∗, if fΩ ∈ Lq(Ω) with q ≥ 6/5. Thus there exists a linear continuous operator
BΩ : Lq(Ω) → H1(Ω), q ≥ 6/5, mapping fΩ to y, if fr = f0 = 0. Analogously, we have
the existence of linear continuous operators Br : L2(Γr) → H1(Ω) and B0 : L2(Γ0) →
H1(Ω) such that the solution of (4.1) can be expressed as

y = BΩ fΩ + Br fr + B0 f0. (4.2)

Notice that the operators BΩ, Br, and B0 depend on ȳ. However, to improve the
readability, we simply write BΩ instead of BΩ(ȳ) (Br and B0 analogously). Next, we
consider a slightly different PDE:

−div(κ∇y) = fΩ in Ω

κs

(

∂y

∂nr

)

s

− κg

(

∂y

∂nr

)

g

+ 4 G(σ|ȳ|3y) = fr on Γr

κs
∂y

∂n0
+ 4 εσ|ȳ|3y = f0 on Γ0.

(4.3)

Since G is not positive, the bilinear form associated to this equation is in general
not coercive. Thus, the Lax-Milgram lemma cannot be applied. However, (4.3) is
equivalent to

y = BΩ fΩ + Br (fr − 4 G(σ|ȳ|3y)) + B0 f0. (4.4)

Notice that it would be more appropriate to write G(σ|τrȳ|3 τry) instead of G(σ|ȳ|3y)
in this context. However, for the purpose of readability, in all what follows, we supress
the trace in arguments of operators with domain in L2(Γr) and L2(Γ0), respectively.
Applying the trace operator, (4.4) is transformed into

τry + 4 τr Br(Gσ|ȳ|3 y) = τr(BΩ fΩ + Br fr + B0 f0). (4.5)

To show the existence of solutions of this equation and hence (4.3), we rely on the
following assumption.

Assumption 3. λ = 1 is neither an eigenvalue of

B(ȳ)( · ) := 4 τr Br(G(σ|ȳ|3 · ), (4.6)



SECOND-ORDER CONDITIONS 7

nor an eigenvalue of

B̃(ȳ)( · ) := 4 τr Br(σ|ȳ|
3 G∗ · ), (4.7)

with B(ȳ) : L2(Γr) → L2(Γr) and B̃(ȳ) : L2(Γr) → L2(Γr), respectively.

Since Br : L2(Γr) → H1(Ω), we have that τr Br : L2(Γr) → H1/2(Γr). Therefore, due
to the compact embedding of L2(Γr) in H1/2(Γr), B(ȳ) : L2(Γr) → L2(Γr) is a compact
operator. Thus, thanks to Assumption 3, the theory of Fredholm operators ensures
that (I + B(ȳ)) has a continuous inverse operator. Therefore, (4.5) admits a solution
in L2(Γr), giving the existence of solutions to (4.3). An immediate consequence of
this result is the following theorem (cf. [8]).

Theorem 4.1. Under Assumptions 1–3, S : L2(Ωs) → V ∞ is twice continuously
Fréchet-differenntiable at (ȳ, ū). Its first derivative, denoted by y = S ′(ū)h, h ∈
L2(Ωs), is given by

−div(κs ∇y) = h in Ωs

−div(κg ∇y) = 0 in Ωg

κs

(

∂y

∂nr

)

s

− κg

(

∂y

∂nr

)

g

+ 4 G(σ|ȳ|3y) = 0 on Γr

κs
∂y

∂n0
+ 4 εσ|ȳ|3y = 0 on Γ0.

(4.8)

Moreover, the second derivative w = S ′′(ū)[h1, h2] solves the equation

−div(κs ∇w) = 0 in Ωs

−div(κg ∇w) = 0 in Ωg

κs

(

∂w

∂nr

)

s

− κg

(

∂w

∂nr

)

g

+ 4 G(σ|ȳ|3w) = −12 G(σ|ȳ|ȳ y1y2) on Γr

κs
∂w

∂n0
+ 4 εσ|ȳ|3w = −12 εσ|ȳ|ȳ y1y2 on Γ0

(4.9)

with yi = S′(ū)hi, i = 1, 2.

Proof: We follow the lines of [8, Theorem 7.1], where the Fréchet-differentiability of
S is shown in detail. However, here we also need the second derivative of S, hence we
shortly sketch the proof for convenience of the reader.

We reformulate (3.2) as

−div(κs ∇ȳ) = ū in Ωs

−div(κg ∇ȳ) = 0 in Ωg

κg

(

∂ȳ

∂nr

)

g

− κs

(

∂ȳ

∂nr

)

s

= G σ|ȳ|3ȳ on Γr

κs
∂ȳ

∂n0
+ λ ȳ = εσ(y4

0 − |ȳ|3ȳ) + λ ȳ on Γ0,

(4.10)

with some λ > 0 such that the bilinear form associated to the left-hand side in (4.10)
is bounded an coercive in H1(Ω). Thus, the Lax-Milgram lemma yields that (4.10)
admits a solution in H1(Ω) for every right-hand side in H1(Ω)∗. Moreover, in [8] it
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is shown that, if the right-hand side is sufficiently regular, i.e. in L2(Ωs) × L4(Γr) ×
L4(Γ0), the solution is bounded in Ω and on Γr∪Γ0. Thus, linear continuous operators
B̃Ω : L2(Ω) → V ∞, B̃r : L4(Γr) → V ∞, and B̃0 : L4(Γ0) → V ∞ exist such that (4.10)
is equivalent to

0 = ȳ − B̃Ωs ū + B̃r (G(σ|ȳ|3ȳ)) − B̃0 (λ ȳ + εσ y4
0 − εσ |ȳ|3ȳ) =: T (ȳ, ū), (4.11)

with T : V ∞ × L2(Ωs) → V ∞. Since Φ(y) = |y|3y is twice Fréchet-differentiable in
L∞(Γr ∪Γ0) and B̃Ω, B̃r, and B̃0 are linear continuous operators, the chain rule gives
that T is twice continously differentiable from V ∞ ×L2(Ωs) to V ∞. Moreover, in [8]
it is shown that, the equation ∂T

∂y (ȳ, ū)y = f with some f ∈ V ∞ corresponds to a

linear PDE with the same differential operator as in (4.3). Hence, under Assumption
3, ∂T

∂y (ȳ, ū) is continuously invertible in V ∞. Therefore, the implicit function theorem

gives that S is as smooth as T and hence, y = S(u) is twice continuously differentiable
at ū.

It remains to derive the particular form of S ′(ū) and S′′(ū). Substituting ȳ = S(ū) in
(4.11) and differentiating in direction h yield

S′(ū)h = B̃Ωs h − B̃r (G(4σ|S(ū)|3S′(ū)h))

+ B̃0 (λ S′(ū)h − 4εσ |S(ū)|3S′(ū)h).
(4.12)

Now we replace y = S ′(ū)h and ȳ = S(ū). Then, with the definitions of B̃Ω, B̃r, and
B̃0, (4.12) is equivalent to the linearized equation (4.8). For the second derivative, we
rename h1 = h in (4.12) and differentiate both sides in direction h2

S′′(ū)[h1, h2] = − B̃r (G(12σ|S(ū)|S(ū) [S ′(ū)h1 , S′(ū)h2]))

− B̃r (G(4σ|S(ū)|3 S′′(ū)[h1 , h2]))

+ B̃0 (λ S′′(ū)[h1 , h2] − 12εσ |S(ū)|S(ū) [S ′(ū)h1 , S′(ū)h2])

− B̃0 (4εσ |S(ū)|3 S′′(ū)[h1 , h2]).

By setting ȳ = S(ū), yi = S′(ū)hi, i = 1, 2, and w = S′′(ū)[h1, h2], the definitions of
B̃Ω, B̃r, and B̃0 imply (4.9).

Next we derive first-order necessary optimaliy consditions to (P). To that end, we
introduce the reduced objective functional by

j(u) := J(S(u), u) =
1

2
‖∇S(u)− z‖2

L2(Ωg) +
ν

2
‖u‖2

L2(Ωs)
. (4.13)

Furthermore, we define the set of admissible controls by

Uad := {u ∈ L2(Ω) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}.

Due to Theorem 4.1 and the chain rule, we know that j is twice continuously Fréchet-
differentiable from L2(Ωs) to R. Thus, by standard arguments, an optimal solution ū
of (P) must satisfy the following variational inequality

j′(ū)(u − ū) ≥ 0 ∀u ∈ Uad. (4.14)

For the derivative of j, one obtains

j′(ū)h = (∇ȳ − z , ∇y)L2(Ωg) + ν(ū , h)L2(Ωg), (4.15)
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with ȳ = S(ū) and y = S ′(ū)h. In [8], it is shown that

(∇ȳ − z , ∇y)L2(Ωg) = (p , h)L2(Ωs) (4.16)

holds true, where p solves the adjoint equation associated to (P) that is given by

div(κg ∇p) = ∆ȳ − div z in Ωg

div(κs ∇p) = 0 in Ωs

κs

(

∂p

∂nr

)

s

− κg

(

∂p

∂nr

)

g

+ 4σ |ȳ|3G∗p =
∂ȳ

∂nr
− z · nr on Γr

κs
∂p

∂n0
+ 4εσ |ȳ|3p = 0 on Γ0.

(4.17)

Notice that the right-hand site in (4.17) is well defined, since ∆ȳ ∈ H1(Ω)∗. Similar
to the discussion of (4.3), the Fredholm alternative implies the existence of solutions
to (4.17), provided that Assumption 3 holds true.

Theorem 4.2. [8, Theorem 7.2] Under Assumptions 1–3, there exists a unique solu-
tion of (4.17) in H1(Ω).

With (4.16) at hand, (4.14) is equivalent to

(p + ν ū , u − ū)L2(Ωs) ≥ 0 ∀u ∈ Uad. (4.18)

A pointwise discussion of this inequality yields

ū(x) = Pad

{

−
1

ν
p(x)

}

, (4.19)

where Pad(x) denotes the pointwise projection operator on [ua(x), ub(x)].

In this way, we have derived the following theorem:

Theorem 4.3. Suppose that Assumptions 1–3 are fulfilled and ū is a locally optimal
solution of (P) with associated state ȳ. Then there exists an adjoint state p ∈ H 1(Ω)
such that the adjoint equation (4.17) and the condition (4.19) are satisfied.

5. Second-order sufficient conditions. This section is devoted to our main
result, second-order sufficient optimality conditions for (P). First, we establish second-
order conditions that require a rather large subspace where the second derivative of
j must be positive definit. These conditions are very easy to prove. Then, we shrink
this subspace and formulate another sufficient condition that is less restrictive than
the first one. The associated proof is performed in Section 7.

In the following, the subspace, where j ′′(ū) is assumed to be positive definit, is called
critical cone. The ”large” critical cone is defined by

C̃(ū) :=

{

u ∈ L2(Ωs)

∣

∣

∣

∣

u(x) ≥ 0 , where ū(x) = ua(x)
u(x) ≤ 0 , where ū(x) = ub(x)

}

,

and hence does not account for strongly active sets.

Theorem 5.1. Suppose that Assumptions 1–3 are fulfilled and that (ȳ, ū) satisfy the
first-order necessary optimality conditions. Assume further that a constant δ̃ > 0
exists such that

j′′(ū)u2 ≥ δ̃ ‖u‖2
L2(Ωs)

(5.1)
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is satisfied for all u ∈ C̃(ū). Then positive constants ε̃ > 0 and σ̃ > 0 exist, such that
the quadratic growth condition

j(u) ≥ j(ū) + σ̃ ‖u− ū‖2
L2(Ωs) (5.2)

holds true for all u ∈ Uad with ‖u − ū‖L2(Ωs) ≤ ε̃.

Proof: The proof follows standard arguments. A Taylor expansion of j at ū yields for
an arbitrary u ∈ Uad

j(u) = j(ū) + j′(ū)(u − ū) +
1

2
j′′(ū)(u − ū)2 + r

(2)
j (5.3)

≥ j(ū) +
δ̃

2
‖u− ū‖2

L2(Ωs)
− |r

(2)
j | (5.4)

where we used the variational inequality (4.14). Moreover, u ∈ Uad implies (u− ū) ∈
C̃(ū), hence (5.1) applies to j ′′(ū)(u − ū)2. Since j is twice continuously Fréchet-
differentiable from L2(Ωs) to R, we have that

|r
(2)
j |

‖u− ū‖2
L2(Ωs)

→ 0 , if ‖u− ū‖L2(Ωs) → 0. (5.5)

Thus a constant ε̃ exists with |r
(2)
j | ≤ δ̃/4 ‖u − ū‖2

L2(Ωs)
for all ‖u − ū‖L2(Ωs) ≤ ε̃.

Therefore, with σ̃ = δ̃/4, (5.4) implies (5.2).

Next, we formulate less restrictive second-order sufficient conditions that consider
strongly active sets. As mentioned in Section 1, in this case, we have to deal with
a two-norm discrepancy. We establish a condition that gives local optimality in a
Ls-neighborhood, where s is not necessarily equal to ∞, but can be chosen smaller.
This gives some flexibility in the choice of the neighborhood where local optimality
of a reference function is obtained. However, a ”larger” neighborhood corresponds to
a ”weaker” growth condition (see Theorem 5.4).

We introduce the strongly active set as follows:

Definition 5.2. Let τ > 0 be given. Then the strongly active set Aτ is defined by

Aτ := {x ∈ Ω | |p(x) + ν ū(x)| ≥ τ}.

Moreover, the corresponding ”small” τ -critical cone is defined in a standard way (cf.
Dontchev et al. [5]).

Definition 5.3. The critical cone belonging to (P) is given by

Cτ (ū) :=







u ∈ L2(Ω)

∣

∣

∣

∣

∣

∣

u(x) = 0 , a.e. in Aτ

u(x) ≥ 0 , where ū(x) = ua(x) and x /∈ Aτ

u(x) ≤ 0 , where ū(x) = ub(x) and x /∈ Aτ







. (5.6)

Now, we are in the position to state second order sufficient conditions for (P) with
respect to the reduced critical cone Cτ (ū).

(SSC)

{

Let δ > 0 exist such that

j′′(ū) u2 ≥ δ ‖u‖2
Lq(Ωs)

for all u ∈ Cτ (ū).
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In Section 7, we show that (SSC) is indeed sufficient for local optimality of ū.

Theorem 5.4. Suppose that Assumptions 1–3 are fulfilled. Let 4/3 ≤ q ≤ 2 be given.
Define s by

s :=

{

q/(2 − q) , for q < 2
∞ , for q = 2.

(5.7)

Moreover, let (ȳ, ū) satisfy the first-order necessary optimality conditions for problem
(P) and assume that condition (SSC) is fulfilled with some δ > 0, τ > 0. Then there
exist ε̄ > 0 and σ̄ > 0 such that

j(u) ≥ j(ū) + σ̄ ‖u − ū‖2
Lq(Ωs) (5.8)

for all u ∈ Uad with ‖u− ū‖Ls(Ωs) ≤ ε̄.

Remark 5.5. Setting q = 4/3, we obtain s = 2, and hence Theorem 5.4 gives a
L4/3-quadratic growth condition in a L2-neighborhood of ū. Choosing q = 2 and thus
s = ∞, we obtain L2-quadratic growth of j in a L∞-neighborhood of ū.

6. Auxiliary results. Before we are in the position to prove Theorem 5.4, we
show some properties of the linear PDEs (4.8), (4.9), and (4.17). In Section 6.2, we
derive some results concerning the second derivative of j, that are also needed for
the proof of Theorem 5.4. Throughout this section, we assume that (ȳ, ū) is a fixed
stationary point of problem (P). Therefore, we have that ū ∈ Uad and (ȳ, ū) satisfy
the state equation (3.2). This implies that ‖ȳ‖V ∞ is bounded by a constant because
of Theorem 3.5 and [8, Lemma 5.1]. This property is used several times in the proofs
presented above. Notice that Lemma 3.3 implies the boundedness of G and G∗ from
Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞, what is also used in the subsequent proofs.

6.1. The linearized equations. We already know that (4.8), (4.9), and (4.17)
admit solutions in H1(Ω). Here, some estimates are derived that concern the H1(Ω)-
norms of the solutions are derived.

Lemma 6.1. Let Assumptions 1–3 be fulfilled and q ≥ 6/5 be given. Then the solution
of (4.8) satisfies

‖y‖H1(Ω) ≤ c ‖h‖Lq(Ωs), (6.1)

with a positive constant c.

Proof: The differential operator in (4.8) has the same structure as the one in (4.3).
Hence, analogously to (4.4), y can be expressed by

y = BΩ h̃ − 4 Br (G(σ|ȳ|3y)) (6.2)

with h̃|Ωs = h and h̃|Ωg = 0. The operator BΩ is continuous from Lq(Ω) to H1(Ω)
as described in Section 4. Together with the continuity of BΩ : Lq(Ω) → H1(Ω) and
Br : L2(Γr) → H1(Ω), this implies

‖y‖H1(Ω) ≤ ‖BΩ‖L(Lq(Ω),H1(Ω)) ‖h̃‖Lq(Ω)

+ 4σ ‖Br‖L(L2(Γr),H1(Ω)) ‖G‖L(L2(Γr)) ‖ȳ‖
3
L∞(Γr)

‖y‖L2(Γr)

≤ c (‖h‖Lq(Ωs) + ‖y‖L2(Γr)) (6.3)
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because of Lemma 3.3. Similar to (4.5), we apply the trace operator τr to (6.2) and
obtain

τr y = (I + B(ȳ))−1τrBΩ h̃, (6.4)

where B(ȳ) is as defined in (4.6). This yields

‖y‖L2(Γr) ≤ ‖(I + B(ȳ))−1‖L(L2(Γr))‖τr BΩ‖L(Lq(Ω),L2(Γr))‖h̃‖Lq(Ω)

≤ c ‖(I + B(ȳ))−1‖L(L2(Γr)) ‖h‖Lq(Ωs),

where Assumption 3 ensures that ‖(I + B(ȳ))−1‖L(L2(Γr)) < ∞. Together with (6.3),
this implies (6.1).

Lemma 6.2. Suppose that Assumptions 1–3 are fulfilled and q ≥ 6/5 is given. Then
the solution of (4.9) satisfies

‖w‖H1(Ω) ≤ c ‖h1‖Lq(Ωs) ‖h2‖Lq(Ωs), (6.5)

with a positive constant c.

Proof: Since the differential operator in (4.9) is the same as in (4.3) and (4.8), we
have analogously to (6.2)

w = −4 Br (G(σ|ȳ|3w)) − 12 Br (G(σ|ȳ|ȳ y1 y2)) − 12 B0(εσ|ȳ|ȳ y1 y2)

and similarly to (6.4)

τr w = −(I + B(ȳ))−1τr

(

12 Br (G(σ|ȳ|ȳ y1 y2)) + 12 B0(εσ|ȳ|ȳ y1 y2)
)

,

where Assumption 3 again ensures the continuity of (I + B(ȳ))−1. Therefore, we can
argue as in the proof before and obtain

‖w‖H1(Ω) ≤ c (‖G(σ |ȳ|ȳ y1 y2)‖L2(Γr) + ‖εσ |ȳ|ȳ y1 y2‖L2(Γ0)). (6.6)

The first addend on the right-hand side is estimated by

‖G(σ |ȳ|ȳ y1 y2)‖L2(Γr) ≤ c ‖G‖L(L2(Γr))‖ȳ‖
2
L∞(Γr)

‖y1 y2‖L2(Γr).

Due to dim Ω ≤ 3, the embedding theorems imply for two arbitrary functions v1, v2 ∈
H1(Ω):

‖v1 v2‖L2(Γr) ≤ ( ‖v2
1‖L2(Γr) ‖v

2
2‖L2(Γr) )1/2 = ‖v1‖L4(Γr) ‖v2‖L4(Γr)

≤ c ‖v1‖H1(Ω) ‖v2‖H1(Ω).
(6.7)

Thus, with v1 = y1 and v2 = y2, Lemma 6.1 yields

‖G(σ |ȳ|ȳ y1 y2)‖L2(Γr) ≤ c ‖h1‖Lq(Ωs) ‖h2‖Lq(Ωs). (6.8)

Analogously, we obtain for the second addend in (6.6)

‖εσ |ȳ|ȳ y1 y2‖L2(Γ0) ≤ c ‖h1‖Lq(Ωs) ‖h2‖Lq(Ωs). (6.9)

Inserting (6.8) and (6.9) in (6.6) finally gives the assertion.
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Lemma 6.3. Suppose that Assumptions 1–3 are fulfilled. Let p denote the solution of
the adjoint equation (4.17). Then, there exists a positive constant c such that

‖p‖Lq(Γr) ≤ c

holds true for all 1 ≤ q ≤ 4.

Proof: Formal integration by parts, also on the right-hand side, yields the weak
formulation associated to (4.17):

∫

Ω

κ∇p · ∇v dx + 4

∫

Γr

σ |ȳ|3 G∗(p) v ds + 4

∫

Γ0

εσ |ȳ|3 p v ds

=

∫

Ωg

(∇ȳ − z) · ∇v dx =: 〈g, v〉 ∀ v ∈ H1(Ω)

(6.10)

with g ∈ H1(Ω)∗, since ȳ ∈ V ∞ and z ∈ L2(Ωg) by Assumption 2. If we consider the
operator BΩ, introduced in Section 4, with domain in H1(Ω)∗, it is easy to see that
(4.17) is equivalent to

p = BΩ g − 4 Br (σ|ȳ|3 G∗ p). (6.11)

Applying the trace operator to this equation gives

τr p = (I − B̃(ȳ))−1τrBΩ g,

with B̃(ȳ) as defined in (4.7). Therefore, we obtain

‖p‖L2(Γr) ≤ ‖(I − B̃(ū))−1‖L(L2(Γr))‖τr BΩ‖L(H1(Ω)∗,L2(Γr))‖g‖H1(Ω)∗ , (6.12)

and Assumption 3 again ensures that ‖(I − B̃(ū))−1‖L(L2(Γr)) < ∞. The definition of
g in (6.10) implies

‖g‖H1(Ω)∗ ≤ ‖ȳ‖H1(Ω) + ‖z‖L2(Ωg) ≤ c,

where the boundedness of ‖ȳ‖H1(Ω) follows from [8, Lemma 5.1]. Hence, (6.12) yields
‖p‖L2(Γr) ≤ c, and with the embedding theorems for dim Ω ≤ 3, (6.11) finally implies

‖p‖Lq(Γr) ≤ c ‖p‖H1(Ω) ≤ c
(

‖g‖H1(Ω)∗ + ‖p‖L2(Γr)

)

≤ c.

6.2. The second derivative of j. As mentioned above, the reduced objective
functional j is twice continuously Fréchet-differentiable from L2(Ωs) to R. Due to the
chain rule, its second derivative is given by

j′′(ū)[h1 , h2] = (∇y1 , ∇y2)L2(Ωg) + (∇ȳ − z , ∇w)L2(Ωg) + ν(h1 , h2)L2(Ωs),

with yi = S′(ū)hi, i = 1, 2, and w = S′′(ū)[h1, h2] defined by (4.9). The weak
formulation of (4.9) is given by

∫

Ω

κ∇w · ∇v dx + 4

∫

Γr

G(σ |ȳ|3w)v ds + 4

∫

Γ0

εσ |ȳ|3 w v ds =

− 12

∫

Γr

G(σ |ȳ|ȳ y1 y2)v ds − 12

∫

Γ0

εσ |ȳ|ȳ y1 y2 v ds ∀ v ∈ H1(Ω).
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Now, we insert p ∈ H1(Ω) as test function in this equation and choose w as test
function in the weak formulation of the adjoint equation (6.10). Subtracting both
equations yields

(∇ȳ − z , ∇w)L2(Ωg) = − 12

∫

Γr

G(σ |ȳ|ȳ y1 y2)p ds − 12

∫

Γ0

εσ |ȳ|ȳ y1 y2 p ds,

and hence

j′′(ū)[h1 , h2] = (∇y1 , ∇y2)L2(Ωg) + ν(h1 , h2)L2(Ωs)

− 12
(

∫

Γr

G(σ |ȳ|ȳ y1y2)p ds +

∫

Γ0

εσ |ȳ|ȳ y1 y2 p ds
)

. (6.13)

Lemma 6.4. Under Assumptions 1–3,

∣

∣

∣

∫

Γr

G(σ |ȳ|ȳ y1 y2)p ds
∣

∣

∣
+
∣

∣

∣

∫

Γ0

εσ |ȳ|ȳ y1 y2 p ds
∣

∣

∣
≤ c ‖h1‖Lq(Ωs) ‖h2‖Lq(Ωs)

holds true with a positive constant c and yi = S′(ū)hi, i = 1, 2.

Proof: The Γr-integral is estimated as follows

∣

∣

∣

∫

Γr

G(σ |ȳ|ȳ y1 y2)p ds
∣

∣

∣
≤ ‖p‖L2(Γr) ‖G‖L(L2(Γr)) σ ‖y‖2

L∞(Γr)
‖y1 y2‖L2(Γr)

≤ c ‖h1‖Lq(Ωs) ‖h2‖Lq(Ωs), (6.14)

where we used (6.8), Lemma 6.1, and Lemma 6.3 for the last inequality. Analogously,
we obtain for the integral over Γ0:

∣

∣

∣

∫

Γ0

εσ |ȳ|ȳ y1 y2 p ds
∣

∣

∣
≤ c ‖h1‖Lq(Ωs) ‖h2‖Lq(Ωs).

Together with (6.14), this yields the assertion.

The Taylor expansion of j is given by

j(u) = j(ū) + j′(ū)(u − ū) +
1

2
j′′(ū)(u − ū)2 + r

(2)
j , (6.15)

where the remainder term fulfills (5.5), since j is twice Fréchet-differentiable from
L2(Ωs) to R. Using the previous results, we show the following lemma that includes
(5.5) as a special case.

Lemma 6.5. Let Assumptions 1–3 be fulfilled and q ≥ 6/5 be given. Then, the

remainder term r
(2)
j satisfies

|r
(2)
j |

‖h‖2
Lq(Ωs)

→ 0 (6.16)

for all h with ū + h ∈ Uad and ‖h‖L2(Ωs) → 0.
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Proof: First we prove the assertion for 6/5 ≤ q ≤ 2. Later we show, that (6.16) holds
for every q ≥ 6/5.

(i) Taylor expansions

With (6.15) at hand, one obtains for r
(2)
j

r
(2)
j = j(ū + h) − j(ū) − j ′(ū)h −

1

2
j′′(ū)h2

=

1
∫

0

j′(ū + β h)h dβ − j′(ū)h −
1

2
j′′(ū)h2

=

1
∫

0

β
∫

0

j′′(ū + θ h)h2 − j′′(ū)h2 dθ dβ =

1
∫

0

β
∫

0

ρj dθ dβ. (6.17)

with ρj := j′′(ū + θ h)h2 − j′′(ū)h2. Inserting (6.13) in the definition of ρj yields

ρj = ‖∇ηh‖
2
L2(Ωg) − ‖∇η‖2

L2(Ωg)

− 12

∫

Γr

G
(

s (|yh|yh η2
h − |ȳ|ȳ η2)

)

p ds − 12

∫

Γ0

εσ (|yh|yh η2
h − |ȳ|ȳ η2)p ds (6.18)

with ȳ = S(ū), yh = S(ū + θh), η = S′(ū)h, and ηh = S′(ū + θh)h. Straightforward
computation shows that the first addend in (6.18) can be expressed as

‖∇ηh‖
2
L2(Ωg) − ‖∇η‖2

L2(Ωg) = J ′′(yh, ū + θ h)(ηh, h)2 − J ′′(ȳ, ū)(η, h)2 =: ρJ .

For yh = S(+̄θ h), one obtains

yh = S(ū) + θ S′(ū)h + r
(1)
S = ȳ + θη + r

(1)
S . (6.19)

This first-order remainder term satisfies

‖r
(1)
S ‖H1(Ω) ≤ ‖r

(1)
S ‖V ∞ ≤ ϕ(‖h‖L2(Ωs)) ‖h‖L2(Ωs), (6.20)

where ϕ : R
+ → R

+ denotes a generic function with ϕ(x) → 0 for every x ↓ 0.
Furthermore, since S is twice Fréchet-differentiable from L2(Ωs) to V ∞, we have

S′(ū + θh) = S′(ū) + θ S′′(ū)h + r
(1)
S′

(6.21)

with

‖r
(1)
S′ ‖L(L2(Ωs),V ∞) ≤ ϕ(‖h‖L2(Ωs)) ‖h‖L2(Ωs).

We apply both sides of (6.21) to h and obtain

ηh = S′(ū + θh)h = S′(ū)h + θ S′′(ū)h2 + r
(1)
S′ h = η + θ w + r̃

(2)
S , (6.22)

where w = S′′(ū)h2 solves equation (4.9) with the inhomogenities −12 G(σ |ȳ|ȳ η2)

and −12 εσ |ȳ|ȳ η2, respectively. Moreover, r̃
(2)
S is given by r̃

(2)
S = r

(1)
S′ h and thus
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fulfills

‖r̃
(2)
S ‖H1(Ω) ≤ ‖r

(1)
S′ h‖V ∞ ≤ ‖r

(1)
S′ ‖L(L2(Ωs),V ∞) ‖h‖L2(Ωs)

≤ ϕ(‖h‖L2(Ωs)) ‖h‖
2
L2(Ωs)

≤ ϕ(‖h‖L2(Ωs)) ‖h‖Lq/(q−1)(Ωs)‖h‖Lq(Ωs)

≤ c ϕ(‖h‖L2(Ωs)) ‖h‖Lq(Ωs), (6.23)

since |h(x)| ≤ ub(x) − ua(x) a.e. in Ωs because of (ū + h) ∈ Uad.

(ii) Estimation of ρJ

With (6.22) and θ ≤ 1, we find for ρJ

|ρJ | = | ‖∇ηh‖
2
L2(Ωg) − ‖∇η‖2

L2(Ωg)|

≤ | ‖ηh‖
2
H1(Ω) − ‖η‖2

H1(Ω)|

= | ‖η + θ w + r̃
(2)
S ‖2

H1(Ω) − ‖η‖2
H1(Ω)|

≤ 2 ‖w‖H1(Ω)‖η‖H1(Ω) + 2 ‖r̃
(2)
S ‖H1(Ω)‖η‖H1(Ω) + 2 ‖w‖H1(Ω)‖r̃

(2)
S ‖H1(Ω)

+ ‖r̃
(2)
S ‖2

H1(Ω) + ‖w‖2
H1(Ω),

(6.24)

where (6.23) holds for ‖r̃
(2)
S ‖H1(Ω). Moreover, Lemma 6.1 and 6.2 give

‖η‖H1(Ω) ≤ c ‖h‖Lq(Ωs) and ‖w‖H1(Ω) ≤ c ‖h‖2
Lq(Ωs).

Therefore, by inserting these estimates together with (6.23), (6.24) results in

|ρJ | ≤ ϕ(‖h‖L2(Ωs)) ‖h‖
2
Lq(Ωs)

. (6.25)

Notice that the assumption q ≤ 2 implies ‖h‖Lq(Ωs) ≤ c ‖h‖L2(Ωs). This is used for
instance in the estimate ‖w‖H1(Ω) ≤ ϕ(‖h‖L2(Ωs)) ‖h‖Lq(Ωs).

(iii) Estimation of the boundary integrals

Next, we estimate the integral over Γr in (6.18). Using (6.22), one obtains

∣

∣

∣

∫

Γr

G
(

σ (|yh|yh η2
h − |ȳ|ȳ η2)

)

p ds
∣

∣

∣

=
∣

∣

∣

∫

Γr

G
[

σ (|yh|yh

(

η + θ w + r̃
(2)
S

)2
− |ȳ|ȳ η2)

]

p ds
∣

∣

∣
≤ I1 + I2

with

I1 :=
∣

∣

∣

∫

Γr

σ (|yh|yh − |ȳ|ȳ)η2 G∗p ds
∣

∣

∣

and

I2 :=
∣

∣

∣

∫

Γr

σ |yh|yh G∗p (2θηw + 2r̃
(2)
S η + 2θwr̃

(2)
S + (r̃

(2)
S )2 + θ2w2) ds

∣

∣

∣
.
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We continue with

I1 ≤ σ ‖η2‖L2(Γr) ‖(|yh|yh − |ȳ|ȳ) G∗p‖L2(Γr)

≤ σ ‖η2‖L2(Γr) ‖G
∗‖L(L4(Γr)) ‖p‖L4(Γr)‖ |yh|yh − |ȳ|ȳ ‖L4(Γr),

(6.26)

where we used (6.7) for the last inequality. Thanks to ū, ū + h ∈ Uad, the maximum
principle in Theorem 3.6 implies ȳ, yh ≥ ϑ > 0. Thus, together with (6.19), we have

|yh|yh − |ȳ|ȳ = y2
h − ȳ2 = (yh + ȳ)(yh − ȳ) = (yh + ȳ)(η + r

(1)
S ).

Hence, (6.20) and Lemma 6.1 yield

‖ |yh|yh − |ȳ|ȳ ‖L4(Γr) ≤ ‖(yh + ȳ)‖L∞(Γr) (‖η‖L4(Γr) + ‖r
(1)
S ‖L4(Γr))

≤ c (1 + ϕ(‖h‖L2(Ωs)))‖h‖L2(Ωs) = ϕ(‖h‖L2(Ωs)).

Therefore, by applying Lemma 6.1 to ‖η‖2
L2(Γr)

and Lemma 6.3 to ‖p‖L4(Γr), (6.26)
results in

I1 ≤ ϕ(‖h‖L2(Ωs)) ‖h‖
2
Lq(Ωs)

. (6.27)

Using again (6.7) and Lemma 6.3, the integral I2 is estimated as follows:

I2 ≤ ‖σ |yh|yh G∗ p‖L2(Γr)
(

2‖ηw‖L2(Γr) + 2‖r̃
(2)
S η‖L2(Γr) + 2‖wr̃

(2)
S ‖L2(Γr) + ‖(r̃

(2)
S )2‖L2(Γr) + ‖w2‖L2(Γr)

)

≤ σ‖yh‖
2
L∞(Ωs)

‖G∗‖L2(Γr)‖p‖L2(Γr)

(

2 ‖w‖L4(Γr)‖η‖L4(Γr) + 2 ‖r̃
(2)
S ‖L4(Γr)‖η‖L4(Γr) + 2 ‖w‖L4(Γr)‖r̃

(2)
S ‖L4(Γr)

+ ‖r̃
(2)
S ‖2

L4(Γr)
+ ‖w‖2

L4(Γr)

)

≤ c
(

2 ‖w‖H1(Ω)‖η‖H1(Ω) + 2 ‖r̃
(2)
S ‖H1(Ω)‖η‖H1(Ω) + 2 ‖w‖H1(Ω)‖r̃

(2)
S ‖H1(Ω)

+ ‖r̃
(2)
S ‖2

H1(Ω) + ‖w‖2
H1(Ω)

)

.

The expression on the right-hand side in the last inequality is the same as in (6.24).
Hence, we argue as before and obtain

I2 ≤ ϕ(‖h‖L2(Ωs)) ‖h‖
2
Lq(Ωs)

.

Together with (6.27), this implies

∣

∣

∣

∫

Γr

G
(

σ (|yh|yh η2
h − |ȳ|ȳ η2)

)

p ds
∣

∣

∣
≤ ϕ(‖h‖L2(Ωs)) ‖h‖

2
Lq(Ωs)

. (6.28)

An analogous discussion for the integral over Γ0 in (6.18) gives

∣

∣

∣

∫

Γ0

εσ (|yh|yh η2
h − |ȳ|ȳ η2)p ds

∣

∣

∣
≤ ϕ(‖h‖L2(Ωs)) ‖h‖

2
Lq(Ωs)

.

Hence by inserting this estimate together with (6.28) and (6.25) in (6.18), we end up
with

|ρj | ≤ ϕ(‖h‖L2(Ωs)) ‖h‖
2
Lq(Ωs)

.
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For the remainder term r
(2)
j , we finally obtain

∣

∣

∣
r
(2)
j

∣

∣

∣
≤

1
∫

0

β
∫

0

|ρj | dθ dβ ≤ ϕ(‖h‖L2(Ωs)) ‖h‖
2
Lq(Ωs)

1
∫

0

β
∫

0

dθ dβ

≤ ϕ(‖h‖L2(Ωs)) ‖h‖
2
Lq(Ωs)

,

with some 6/5 ≤ q ≤ 2. Due to ‖h‖2
Lq(Ωs)

≤ c ‖h‖2
Lq′(Ωs)

for every q′ ≥ q, (6.16)

clearly holds for every q ≥ 6/5.

7. Proof of Theorem 5.4. As in the proof of Theorem 5.1, we start with the
Taylor expansion of the reduced objective functional

j(u) = j(ū) + j′(ū)(u − ū) +
1

2
j′′(ū)(u − ū)2 + r

(2)
j (7.1)

with u ∈ Uad.

(i) Estimation of the first derivative j ′(ū)(u − ū)

A pointwise evaluation of the necessary conditions in (4.18) yields

j′(ū)(x)
(

u(x) − ū(x)
)

=
(

p(x) + νū(x)
)(

u(x) − ū(x)
)

≥ 0 a.e. in Ωs, ∀ u ∈ Uad.

This implies (p(x) + νū(x))(u(x) − ū(x)) = |p(x) + νū(x)| |u(x) − ū(x)|. Hence, with
Definition 5.2, we obtain for the first derivative of j

j′(ū)(u − ū) =

∫

Aτ

∣

∣p(x) + νū(x)
∣

∣

∣

∣u(x) − ū(x)
∣

∣ dx +

∫

Ωs\Aτ

∣

∣p(x) + νū(x)
∣

∣

∣

∣u(x) − ū(x)
∣

∣ dx

≥

∫

Aτ

τ |u(x) − ū(x)| dx = τ ‖u− ū‖L1(Aτ ). (7.2)

(ii) Estimation of the second derivative j ′′(ū)(u − ū)2

Let ũ be defined by

ũ(x) =

{

ū(x) , for x ∈ Aτ

u(x) , for x /∈ Aτ ,

and thus (ũ − ū) ∈ Cτ (ū), thanks to Definition 5.3. We continue with

j′′(ū)(u − ū)2 = j′′(u − ũ + ũ − ū)

= j′′(ū)(u − ũ)2 + 2 j′′(ū)[u − ũ, ũ − ū] + j ′′(ū)(ũ − ū)2. (7.3)

In the following, we estimate the three addends on the right-hand side of (7.3) sep-
arately. To that end, define y = S ′(ū)u and ỹ = S′(ū)ũ. Then, with (6.13), one
obtains

j′′(ū)(u − ũ)2 = ‖∇(y − ỹ)‖L2(Ωg) + ν‖u − ũ‖L2(Ωs)

− 12

∫

Γr

G
(

σ |ȳ|ȳ (y − ỹ)2
)

p ds − 12

∫

Γ0

εσ |ȳ|ȳ (y − ỹ)2 p ds

≥ −12
∣

∣

∣

∫

Γr

G
(

σ |ȳ|ȳ (y − ỹ)2
)

p ds +

∫

Γ0

εσ |ȳ|ȳ (y − ỹ)2 p ds)
∣

∣

∣

≥ −c ‖u− ũ‖2
Lq(Ωs)

, (7.4)
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where Lemma 6.4 is used for the last inequality. The second addend is transformed
into

j′′(ū)[u − ũ, ũ − ū] =
(

∇(y − ỹ) , ∇(ỹ − η)
)

L2(Ωg)
+ ν
(

u − ũ , ũ − ū
)

L2(Ωs)

− 12

∫

Γr

G
(

σ |ȳ|ȳ (y − ỹ) (ỹ − η)
)

p ds

− 12

∫

Γ0

εσ |ȳ|ȳ (y − ỹ) (ỹ − η) p ds,

where y and ỹ are defined as above and η is given by η = S ′(ū)ū. By the definition
of ũ, we have (ũ − ū)(x) = 0, if x ∈ Aτ , and (u − ũ)(x) = 0, if x ∈ Ωs\Aτ , and hence
(u − ũ , ũ − ū)L2(Ωs) = 0. Moreover, Lemma 6.1 implies

−
∣

∣

(

∇(y − ỹ) , ∇(ỹ − η)
)

L2(Ωg)

∣

∣ ≥ −‖y − ỹ‖H1(Ω) ‖ỹ − η‖H1(Ω)

≥ −c ‖u− ũ‖Lq(Ωs) ‖ũ− ū‖Lq(Ωs).

The boundary integrals are again estimated with Lemma 6.4, and hence it follows
that

j′′(ū)[u − ũ, ũ − ū] ≥ −c ‖u− ũ‖Lq(Ωs) ‖ũ − ū‖Lq(Ωs).

With

‖ũ− ū‖Lq(Ωs) ≤ ‖u− ũ‖Lq(Ωs) + ‖u− ū‖Lq(Ωs) (7.5)

this results in

j′′(ū)[u − ũ, ũ − ū] ≥ −c (‖u− ũ‖2
Lq(Ωs)

+ ‖u − ũ‖Lq(Ωs) ‖u− ū‖Lq(Ωs)). (7.6)

Due to (ũ − ū) ∈ Cτ (ū), condition (SSC) yields for the last addend in (7.3)

j′′(ū)(ũ − ū)2 ≥ δ ‖ũ− ū‖2
Lq(Ωs)

.

Using

‖u− ū‖2
Lq(Ωs)

= ‖u− ũ + ũ− ū‖2
Lq(Ωs)

≤ ‖u− ũ‖2
Lq(Ωs)

+ 2 ‖u− ũ‖Lq(Ωs) ‖ũ− ū‖Lq(Ωs) + ‖ũ − ū‖2
Lq(Ωs)

and again (7.5), this is estimated by

j′′(ū)(ũ−ū)2 ≥ δ ‖u−ū‖2
Lq(Ωs)

−3δ ‖u−ũ‖2
Lq(Ωs)

−2δ ‖u−ũ‖Lq(Ωs) ‖u−ū‖Lq(Ωs). (7.7)

Now we insert (7.4), (7.6), and (7.7) in (7.3) and obtain

j′′(ū)(u − ū)2 ≥ δ ‖u − ū‖2
Lq(Ωs)

− (3δ + c) ‖u− ũ‖2
Lq(Ωs)

− (2δ + c) ‖u − ũ‖Lq(Ωs) ‖u− ū‖Lq(Ωs).

Then Young’s inequality implies

j′′(ū)(u − ū)2 ≥

δ ‖u− ū‖2
Lq(Ωs)

−

(

3δ + c +
2δ + c

κ

)

‖u− ū‖2
Lq(Aτ ) − (2δ + c)κ ‖u− ū‖2

Lq(Ωs)
,

(7.8)
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with an arbitrary κ > 0. Notice that the definition of ũ yields ‖u − ũ‖Lq(Ωs) =
‖u− ū‖Lq(Aτ ).

(iii) The quadratic growth condition

Next, we insert (7.2) and (7.8) in the Taylor expansion (7.1) and obtain

j(u) ≥ j(ū) + τ ‖u− ū‖L1(Aτ ) −

(

3δ + c +
2δ + c

κ

)

‖u − ū‖2
Lq(Aτ )

+
1

2

(

δ − (2δ + c)κ − 2
|r

(2)
j |

‖u− ū‖2
Lq(Ωs)

)

‖u− ū‖2
Lq(Ωs)

.

(7.9)

The well-known interpolation inequality (cf. Brezis [2]) implies

‖u− ū‖2
Lq(Aτ ) ≤ ‖u− ū‖L1(Aτ )‖u− ū‖Ls(Aτ )

≤ ‖u− ū‖L1(Aτ )‖u− ū‖Ls(Ωs),

with s as defined in (5.7). Then (7.9) results in

j(u) ≥ j(ū) + a1 ‖u − ū‖L1(Aτ ) +
1

2
a2 ‖u− ū‖2

Lq(Ωs)
, (7.10)

with

a1 = τ −

(

3δ + c +
2δ + c

κ

)

‖u− ū‖Ls(Ωs)

and

a2 = δ − (2δ + c)κ − 2
|r

(2)
j |

‖u− ū‖2
Lq(Ωs)

.

To derive the quadratic growth condition (5.8), we show that a1 and a2 are non
negative, if ‖u − ū‖Ls(Ωs) is sufficiently small. We start with a2: Due to Lemma 6.5,
for every εr > 0, there exists a constant ε1 > 0 with ‖u − ū‖L2(Ωs) ≤ ε1, such that

|r
(2)
j |

‖u− ū‖2
Lq(Ωs)

≤ εr.

Moreover, Lemma 6.5 implies that εr tends to zero if ε1 is chosen sufficiently small.
Therefore, if we also set κ sufficiently small, there exists a constant σ̄ such that

a2 ≥ δ − (2δ + c)κ − 2 εr ≥ 2 σ̄ > 0. (7.11)

Furthermore, a1 is non negative, if ε2 := ‖u− ū‖Ls(Ωs) is sufficiently small, i.e.

ε2 ≤
τ

3δ + c + (2δ + c)/κ
.

By assumption, we have q ≥ 4/3 and hence s ≥ 2. Therefore,

‖u− ū‖L2(Ωs) ≤ cs ‖u− ū‖Ls(Ωs) ≤ cs ε2
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holds true for every q ≥ 4/3. Thus, if we set ε̄ = min{ε2 ; ε1/cs}, then (7.11) is
satisfied and a1 is positive. Therefore, for every u ∈ Uad with ‖u − ū‖Ls(Ωs) ≤ ε̄,

j(u) ≥ j(ū) +
1

2
(δ − (2δ + c)κ − 2 εr) ‖u− ū‖2

Lq(Ωs)
≥ j(ū) + σ̄ ‖u − ū‖2

Lq(Ωs)

holds true.
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