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Key words. Laplace transform, numerical inversion, parabolic, spectral order, parallelizable.

AMS subject classifications. Classification: 65R10, 65J10.

1. Introduction. In a variety of situations, the problem arises of inverting nu-
merically the Laplace transform U(z) of a given mapping of interest u(t). Roughly
speaking, it turns out that the wider the set W where U(z) can be computed is, the
easier the inversion results. For instance, if W is an interval (a, b) then the numerical
inversion becomes an ill-posed problem [1, 8, 9]. On the other hand, if W is the
complement of some bounded region, then the efficient Talbot’s method [19, 25] is at
hand.

In the present paper we focus on the particular situation where W is a sector
symmetric with respect to the real axis, strictly containing the right half plane, and
we assume that U(z) exhibits a potential behavior on W . We say then that U(z) is
sectorial. Precisely, there is a renewed interest in the numerical inversion of sectorial
mappings [10, 11, 14, 16, 21], mainly due to its applicability to linear, nonhomoge-
neous evolution equations of parabolic type (both in the context of abstract IVP’s
and Volterra equations), as well as their discretizations in space [2, 3]. Notice that
the applicability of the inversion approach, in the sectorial setting, demands in prac-
tice that the source term of the parabolic equation must be approximated efficiently
(at least locally) by holomorphic mappings [11, 16]. This difficulty is overcome in
[12, 20], where the ideas in the present paper are adapted so as to provide accurate
reconstructions of the traditional Runge-Kutta approximations to the solutions of
such parabolic problems. These reconstructions require no regularity on the source
term of the problem.

In the present paper we consider the issue of the numerical inversion of sectorial
mappings by itself. To fix ideas, let

u : (0, +∞) → X

be a locally integrable mapping, taking values in a Banach space X , with exponential
growth. Denote by

U(z) =

∫ +∞

0

e−ztu(t) dt
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its Laplace transform. We will always assume that U(z) admits a holomorphic exten-
sion to the complement W of some acute sector

Σδ = {z ∈ C : | arg(−z)| ≤ δ}, 0 < δ <
π

2
, (1.1)

an that there exist constants M > 0 and µ ∈ R such that

‖U(z)‖ ≤
M

|z|µ
, z /∈ Σδ. (1.2)

The last requirement, with µ ≥ 1, means that u admits a bounded and holomorphic
extension to any sector of the form | arg(z)| ≤ δ′, with 0 < δ′ < π/2− δ. If µ < 1, we
select an integer number m ≥ 1, with m + µ ≥ 1, and set V (z) = U(z)/zm. Then, by
the previous remark, V (z) is the Laplace transform of a mapping v : (0, +∞) → X ,
which admits a bounded and holomorphic extension to sectors with semiangle δ′ as
before, and now u is understood to be the derivative of order m of v.

Notice that in case U(z) satisfies a similar inequality

‖U(z)‖ ≤
M

|z − ω|µ
, z /∈ ω + Σδ,

for some ω ∈ R, then, by using the shifting theorem, the inversion of U(z) is reduced

to the one of a Laplace transform Ũ(z) fulfilling (1.2). Since the respective originals
u(t) and ũ(t) are related by u(t) = eωtũ(t), then we can just approximate ũ(t). This
is why the analysis is restricted to the situation ω = 0, i.e. to (1.2).

The goal is to numerically reconstruct u from knowledge of a moderate number of
evaluations of U(z) at suitable nodes z /∈ Σδ. Let us point out that, from a practical
point of view, it is essential to take into account that these evaluations are going to
be affected by errors.

The starting point of the method we propose is the well-known inversion formula

u(t) =
1

2πi

∫

Γ

etzU(z) dz, t > 0, (1.3)

where Γ is a suitable path connecting −i∞ to +i∞ which, in our setting, can be
taken so as to guarantee the absolute convergence of the integral appearing in (1.3).
As in [10, 14, 16], we choose Γ the branch of a hyperbola parametrized by a mapping
S : (−∞, +∞) → C admitting a holomorphic extension to a horizontal strip around
the real axis. The numerical method we propose is simply the truncated trapezoidal
rule, applied to the definite integral arising after parametrizing (1.3) by S, used with
2n+1 nodes xk = kh, −n ≤ k ≤ n, and a suitable step size h > 0. The properties of S
allow us to use the ideas and results in [23, 24], where the trapezoidal rule applied to
holomorphic mappings on strips is considered. Let us comment that the fast decay of
our integrand [10, 14] yields an improvement of the more general estimates in [23, 24].

Very often, for instance in the context of IVP’s (see Illustration 3 in Section 5),
the main computational effort of the method is due to the evaluations of U(z) at the
nodes zk = S(xk), −n ≤ k ≤ n. An important feature of the present approach is
that the same evaluations can be used to approximate u(t) at different t > 0 [14, 19].
Accordingly, our goal is to obtain a uniform error estimate for the approximation
of u(t) on intervals of the form [t0, Λt0], with given t0 > 0 and Λ ≥ 1, rather than
at a fixed t > 0. Essentially, this was the aim in [14], whose basic estimates we
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borrow. Notice also that the algorithm presents two levels of parallelism since, first,
the evaluations of U(z) at the involved nodes and, second, the evaluations of u(t) at a
selected finite set of values of t ∈ [t0, Λt0], can be carried out on different processors.

In the present paper, by considering a different choice of the geometrical and scale
parameters from the one in [14], we improve the results there in two different ways:

(i) We get a better error bound, which now turns out to be a genuine spectral
estimate of the form O(e−cn).

(ii) We also get a weaker dependence of the exponential factor c on Λ, since now
c = O(1/ lnΛ).

This means, in practice, that with a moderate number of evaluations of U(z) we can
accurately approximate u(t), uniformly on intervals [t0, t1] with Λ = t1/t0 >> 1, let
us say Λ = 50.

On the other hand, for the choice of parameters we propose, the precision ρ used in
the evaluations of U(z) at the required nodes plays a more relevant role than in [14]. In
fact, ignoring that we always have ρ > 0 would result in large actual errors for n >> 1,
as simple numerical experiments show (see Illustration 1 in Section 5). This drawback
is overcome by minimizing the estimate we get for the actual error (Theorem 2), which
leads to a (ρ, n)-dependent choice of parameters. With this choice, the actual error
finally behaves for moderate n like O(e−cn), with c = O(1/ ln Λ), and for large n like
O(ρ). This optimal choice of parameters demands, of course, some information about
the size of ρ. In the absence of it, we propose an n-dependent choice of parameters for
which the actual error behaves like O(ρ + e−cn), with c = O(1/(ln n + ln Λ)). All the
above estimates are uniform on t0 ≤ t ≤ Λt0, with fixed t0 > 0 and Λ > 1. Moreover,
the error constants are made explicit in the analysis and turn out to be reasonable.

The outline of the paper is as follows. In Section 2 we describe the numerical
method and show, in Theorem 1, how to achieve (i) and (ii). The propagation of
errors is studied in Section 3. The choice of parameters is considered in Section 4 and
four simple numerical illustrations of the theoretical results are provided in Section 5.

2. The numerical method. Given δ in (1.1) and following the ideas in [14],
we select α, d > 0 such that

0 < α − d < α + d <
π

2
− δ . (2.1)

Defining

T (w) = 1 − sin(α + iw) (2.2)

this mapping transforms each horizontal straight line Im w = y, −d ≤ y ≤ d, into the
left branch of the hyperbola given by

(
Re z − 1

sin(α − y)

)2

−

(
Im z

cos(α − y)

)2

= 1, (2.3)

with center at (1, 0), foci at (0, 0) and (2, 0), whose asymptotes make angles ±[π/2−
(α − y)] with the real axis. Therefore, T transforms the horizontal strip

Dd = {z ∈ C : |Im z| ≤ d}

into the region in the complex plane limited by the left branches corresponding to
y = ±d in (2.3).
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Introducing a parameter λ > 0, the parametrization of Γ in (1.3) can be defined
as

Γ = {λT (x) : x ∈ R},

i.e. Γ is the branch of a hyperbola corresponding to the image of the real axis under
S = λT . This results in

u(t) =

∫ +∞

−∞

Gt(x) dx , t > 0,

where Gt : Dd → X, t > 0, is the mapping

Gt(w) = −
λ

2πi
exp(λtT (w))U(λT (w))T ′(w).

Once the parameters α, d, and λ have been fixed, we set xk = kh, k ∈ Z, and consider
the approximation to u(t) given by

un(t) = h

n∑

k=−n

Gt(xk), t > 0. (2.4)

The proof of the main result in [14] (Theorem 2), shows that for µ = 1 in (1.2)

‖u(t)−un(t)‖ ≤ M ·ϕ(α, d)·L(λt sin(α−d))·eλt
( 1

e2πd/h − 1
+

1

eλt sin α cosh(nh)

)
, (2.5)

where

ϕ(α, d) =
2

π

√
1 + sin(α + d)

1 − sin(α + d)
,

and L(x), x > 0, is the function

L(x) = 1 + | ln(1 − e−x)|.

Notice that L(x) is decreasing in x, L(x) ≈ | ln x|, for x → 0+ and L(x) tends to 1,
for x → +∞.

As we commented in the Introduction, in many applications the computational
effort to obtain un(t) is mainly due to the evaluations of U(z) at z = λT (xk), −n ≤
k ≤ n, but these evaluations could be carried out in parallel. Another attractive
feature of (2.4) is that the same evaluations of U(z) can be used to compute un(t) for
different t > 0. In fact, as we see below, with the appropriate choice of parameters,
we can use the same evaluations of U(z) so as to have a spectral estimate

‖u(t) − un(t)‖ = O(e−cn),

uniform on intervals t0 ≤ t ≤ t1. The exponential factor c turns out to depend weakly
on the ratio Λ = t1/t0, given that c = O(1/ ln Λ).

For simplicity the next theorem is restricted to the situation µ = 1 in (1.2). The
cases µ > 1 and µ < 1 are treated in subsequent remarks.

Theorem 1. Assume that U satisfies (1.2) with µ = 1. Fixing α and d according
to (2.1), for t0 > 0, Λ ≥ 1, 0 < θ < 1 and n ≥ 1, the following choice of parameters

h =
1

n
a(θ), λ =

2πdn(1 − θ)

t0Λa(θ)
, (2.6)
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with

a(θ) = arccosh
( Λ

(1 − θ) sin α

)
,

yields the uniform estimate on t0 ≤ t ≤ Λt0

‖u(t) − un(t)‖ ≤ M · ϕ(α, d) · L(λt0 sin(α − d)) ·
2εn(θ)θ

1 − εn(θ)
, (2.7)

where

εn(θ) = exp
(
−

2πd

a(θ)
n
)
.

The theorem shows, just by selecting any 0 < θ < 1, a genuine spectral order of
convergence in n of the form O(e−cn), where c = O(1/ ln Λ) (cf. [10, 14]).

Proof. Set σ = λt0. For t0 ≤ t ≤ Λt0, (2.5) implies the uniform bound

‖u(t) − un(t)‖ ≤ M · ϕ(α, d) · L(σ sin(α − d)) · eΛσ
( 1

e2πd/h − 1
+

1

eσ sin α cosh(nh)

)
.

Our choice of h and λ is precisely the one guaranteeing that

exp
(2πd

h

)
= exp(σ sin α cosh(nh)) =

1

εn(θ)
,

hence

1

e2πd/h − 1
+

1

eσ sin α cosh(nh)
≤

2e−2πd/h

1 − e−2πd/h
=

2εn(θ)

1 − εn(θ)
.

The proof ends after remarking that

eΛσεn(θ) = εn(θ)θ−1εn(θ) = εn(θ)θ.

To end the section we comment, in the two following remarks, on the situation
µ 6= 1 in (1.2). We omit details in the proofs, which are completely analogous to the
one of Theorem 1.

Remark 1. Assume that U satisfies (1.2) with µ > 1. By Remark 1 in [14] we
have

‖u(t)−un(t)‖ ≤ M ·ϕ(α, d, µ) ·L(λt sin(α−d)) ·
eλt

λµ−1

( 1

e2πd/h − 1
+

1

eλt sin α cosh(nh)

)
,

where

ϕ(α, d, µ) =
2

π

√
1 + sin(α + d)

(1 − sin(α + d))2µ−1
.

Thus, for 0 < θ < 1, the same choice of values for h and λ as in Theorem 1 gives the
bound

‖u(t) − un(t)‖ ≤ M · ϕ(α, d, µ) · L(λt0 sin(α − d)) · λ1−µ ·
2εn(θ)θ

1 − εn(θ)
,
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uniformly for t0 ≤ t ≤ Λt0. This estimate is again spectral in n, since

λ1−µ = O
((Λt0

n

)µ−1)
.

Remark 2. Assume now that U satisfies (1.2) with µ < 1. By Remark 1 in [14],
for a fixed s ∈ (0, 1), there holds

‖u(t)−un(t)‖ ≤ M ·ϕs(α, d, µ)·L(sλt sin(α−d))·
eλt

t1−µ

( 1

e2πd/h − 1
+

1

esλt sin α cosh(nh)

)
,

where now

ϕs(α, d, µ) =
2

π

√
1 + sin(α + d)

1− sin(α + d)

( 1 − µ

(1 − s)e sin(α − d)

)1−µ

.

In this situation, for θ ∈ (0, 1) we choose

h =
1

n
as(θ), λ =

2πdn(1 − θ)

t0Λas(θ)
,

where

as(θ) = arccosh
( Λ

s(1 − θ) sin α

)
.

Setting

εs,n(θ) = exp
(−2πdn

as(θ)

)
,

we get the spectral estimate

‖u(t) − un(t)‖ ≤ M · ϕs(α, d, µ) · L(sλt0 sin(α − d)) · tµ−1
0

2εs,n(θ)θ

1 − εs,n(θ)
,

uniformly for t0 ≤ t ≤ Λt0.

3. Error propagation. Numerical experiments (see Section 5), show that for
large values of n the estimate (2.7) is not longer true in practice. The explanation
of this apparently contradictory behavior lays in the influence of the errors when
evaluating U and the elementary functions involved. For the sake of simplicity, we
consider first the case µ = 1 in (1.2). The situations µ > 1 and µ < 1 are considered
in subsequent remarks.

Let zk = λT (xk), −n ≤ k ≤ n, be the nodes used in (2.4). Clearly, in practice,
as numerical approximation to u(t) we actually obtain

ūn(t) =

n∑

k=−n

ωk(t)Uk, (3.1)

where, for −n ≤ k ≤ n, ωk(t) ∈ C and Uk ∈ X , are approximations to

−
λh

2πi
exp(λtzk)T ′(xk),
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and U(zk), respectively.
To estimate the actual error ‖u(t) − ūn(t)‖ we need to make some assumptions

on the approximations used. To this end, we are going to focus on two frequent
possibilities, depending on whether we have information on absolute or relative errors
due to the evaluations. To be precise, we are going to assume that there exists ρ > 0
such that, simultaneously for all −n ≤ k ≤ n, we have either

‖U(zk) − Uk‖ ≤ ρ and ωk(t) = −
λh

2πi
exp(λtzk)T ′(xk) (3.2)

or

‖ exp(λtzk)T ′(xk)U(zk) − ωk(t)Uk‖ ≤ ρ‖ exp(λtzk)T ′(xk)U(zk)‖. (3.3)

Situation (3.2) arises for instance when Uk ≈ U(zk) are provided by means of
some auxiliary routine, let us say by solving a linear system, with prescribed accuracy
ρ and moreover the errors due to the evaluations of the elementary functions involved
turn out to be negligible compared to ρ. Situation (3.3) is typical when U(z) is an
elementary function.

The next theorem yields an estimate of the actual error for these situations. We
maintain the notation introduced in Theorem 1.

Theorem 2. Assume that U satisfies (1.2) with µ = 1. Fix α, d according to
(2.1). For t0 > 0, Λ ≥ 1, 0 < θ < 1 and n ≥ 1, select the parameters

h =
1

n
a(θ), λ =

2πdn(1 − θ)

t0Λa(θ)
.

Assume also that ωk(t) ∈ C, t0 ≤ t ≤ t1, Uk ∈ X, −n ≤ k ≤ n, satisfy either (3.2)
or (3.3). Then, the actual error is estimated by

‖u(t) − ūn(t)‖ ≤ M · Φ · Q ·

(
εεn(θ)θ−1 +

εn(θ)θ

1− εn(θ)

)
, (3.4)

uniformly on t0 ≤ t ≤ Λt0, where either
(a) ε = ρ/(Mt0),

Φ = max

{
2

π

√
1 + sin(α + d)

1 − sin(α + d)
,

1

πe sinα

}

and

Q = max

{
2L(λt0 sin(α − d)),

ln n

ln n − 1

[
ln n

2n
+ L

(λt0 sin α

ln n

)]}

in case (3.2) holds, or
(b) ε = ρ,

Φ =
2

π

√
1 + sin(α + d)

1− sin(α + d)

and

Q = max{2L(λt0 sin(α − d)), 1/2(h + L(λt0 sin α))},

in case (3.3) holds.
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Notice that Q depends logarithmically on α, d, 1 − θ and Λ.
The estimate (3.4) given by the theorem, with a fixed 0 < θ < 1, shows again a

spectral order of convergence O(e−cn), with c = O(1/ ln Λ), but only for moderate n,
to be more precise, as long as εn(θ) ≥ ε. In fact, for fixed θ, (3.4) goes to +∞ as
n → +∞. However, this apparent drawback is overcome by selecting θ in a suitable
way, as we explain in Section 4.

Proof. By writing

‖u(t) − ūn(t)‖ ≤ ‖u(t) − un(t)‖ + ‖un(t) − ūn(t)‖,

and noticing that, for the corresponding Q, (2.7) implies

‖u(t) − un(t)‖ ≤ M · Φ · Q
εn(θ)θ

1 − εn(θ)
,

the proof is reduced to show that

‖un(t) − ūn(t)‖ ≤ M · Φ · Qεεn(θ)θ−1. (3.5)

Assume first that (3.2) holds. This situation was already studied in [14], where
it was proved that

‖un(t) − ūn(t)‖ ≤
ρ ln n

2πe(ln n − 1) sin α

eλt

t

[
ln n

n
+ 2L

(λt sin α

ln n

)]
, (3.6)

whence, after recalling that ε = ρ/(t0M) and noticing that

eΛλt0 = εn(θ)θ−1, (3.7)

we readily obtain (3.5).
Assume now that (3.3) holds. Proceeding as in the proof of Lemma 1 and Theo-

rem 2 in [14], and denoting

ϕ(α, 0) =
2

π

√
1 + sin α

1 − sin α
,

we get

‖un(t) − ūn(t)‖ ≤
ρMeλt

2π
h

n∑

k=−n

e−λt sin α cosh xk

∣∣∣∣
T ′(xk)

T (xk)

∣∣∣∣

≤
Mϕ(α, 0)

4
ρeλth

n∑

k=−n

e−λt sin α cosh xk

≤
Mϕ(α, 0)

2
ρeλt

(
h +

∫ +∞

0

e−λt sin α cosh x dx

)

≤
Mϕ(α, 0)

2
ρeλt(h + L(λt sin α)).

Hence, using again (3.7) and the inequality ϕ(α, 0) ≤ ϕ(α, d), we deduce (3.5).
The behavior µ 6= 1 in (1.2) is considered in the following remarks, whose proofs

are a combination of Remark 1, Remark 2 and the arguments used in the proof of
Theorem 2 in [14]. Notice that (3.6) is independent of µ.

Remark 3. Assume that µ > 1 in (1.2) and fix 0 < θ < 1. Then, for the choice
of parameters in Theorem 2 and uniformly on t0 ≤ t ≤ Λt0, we have:
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(a) in case (3.2) holds

‖u(t) − ūn(t)‖ ≤ M · Φ · Q ·

(
εεn(θ)θ−1 + λ1−µ εn(θ)θ

1 − εn(θ)

)

with ε = ρ/(Mt0),

Φ = max

{
2

π

√
1 + sin(α + d)

(1 − sin(α + d))2µ−1
,

1

πe sin α

}

and

Q = max

{
2L(λt0 sin(α − d)),

ln n

ln n − 1

[
ln n

2n
+ L

(λt0 sin α

ln n

)]}
,

(b) in case (3.3) holds

‖u(t) − ūn(t)‖ ≤ M · Φ · Q · λ1−µ ·

(
εεn(θ)θ−1 +

εn(θ)θ

1 − εn(θ)

)
,

with ε = ρ,

Φ =
2

π

√
1 + sin(α + d)

(1 − sin(α + d))2µ−1

and

Q = max{2L(λt0 sin(α − d)), 1/2(h + L(λt0 sin α))}.

Remark 4. Assume that µ < 1 in (1.2) and fix 0 < s, θ < 1. Then, for the choice
of parameters in Remark 2 and uniformly on t0 ≤ t ≤ Λt0, we have:

(a) in case (3.2) holds

‖u(t) − ūn(t)‖ ≤ M · Φ · Q ·

(
εεs,n(θ)θ−1 + tµ−1

0

εs,n(θ)θ

1 − εs,n(θ)

)
,

with ε = ρ/(Mt0),

Φ = max

{
2

π

√
1 + sin(α + d)

1 − sin(α + d)

( 1 − µ

(1 − s)e sin(α − d)

)1−µ

,
1

πe sinα

}

and

Q = max

{
2L(sλt0 sin(α − d)),

ln n

ln n − 1

[
ln n

2n
+ L

(λt0 sin α

ln n

)]}
,

(b) in case (3.3) holds

‖u(t) − ūn(t)‖ ≤ M · Φ · Q ·

(
λ1−µεεs,n(θ)θ−1 + tµ−1

0

εs,n(θ)θ

1 − εs,n(θ)

)
,

with ε = ρ,

Φ =
2

π

√
1 + sin(α + d)

1 − sin(α + d)

( 1 − µ

(1 − s)e sin(α − d)

)1−µ

,

and

Q = max{2L(sλt0 sin(α − d)), 1/2(h + L(sλt0 sin α))}.
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4. The choice of parameters. With Theorem 2 in mind, we now try to derive
a strategy for the choice of parameters. First of all, (3.4) shows that it is of interest
to select α away from zero and α + d away from π/2. The dependence of the actual
error on α − d is less important, since it is logarithmic.

Suppose α and d have been already chosen, then for a given n we take h and λ as
indicated in Theorem 2 and we fix 0 < θ < 1. Assume also that we have an estimation
of ρ and set ε = ρ/(Mt0) or ε = ρ as in Theorem 2. Then, since in practice we always
have ρ > 0 and hence ε > 0, it turns out that εεn(θ)θ−1 → +∞, as n → +∞. Hence,
it is clear that increasing the number of nodes might result in a worse estimate (3.4).
In fact, increasing n may result in worse approximations, as Illustration 1 in Section 5
shows.

To overcome this drawback we let θ be a free parameter for the moment. Given
ε > 0 and n, after selecting α and d, neglecting the logarithmic factor Q and taking
into account that typically εn(θ) << 1, the best thing we can do is to choose 0 < θ < 1
so as to minimize the term

εεn(θ)θ−1 + εn(θ)θ , (4.1)

i.e. we must tune θ depending on ε > 0 and n. By a direct calculation it can be
proven that the first derivative of εn(θ)θ−1 with respect to θ is increasing in θ. The
same is true for εn(θ)θ (in this case the proof, though elementary, is more difficult).
We conclude that the expression in (4.1) is a convex function of θ. Moreover, its limit
either for θ → 0+ or θ → 1− is +∞. Therefore, (4.1) attains its minimum exactly for
one value θε,n ∈ (0, 1), which is the one we propose to be used. Though it is not easy
to express the dependence of θε,n on n and ε, this can be easily done numerically (see
Section 5).

Since, up to logarithmic factors, the choice θ = θε,n in (3.4) is optimal, it is clear
that with this choice we get for the actual error:

(a) A spectral order of convergence O(e−cn) with c = O(1/ ln Λ), for moderate
values of n, since this is true for any value 0 < θ < 1.

(b) The errors are not propagated. In fact, already with the non-optimal choice

θ = 1 −
1

n
,

(3.4) reads

‖u(t) − ūn(t)‖ = O(ε + e−cn), (4.2)

uniformly on t0 ≤ t ≤ Λt0, with c = O(1/(ln Λ + ln n)). This remark tells us
that, for large values of n, the actual error saturates at level ε, as observed
in the numerical experiments (see Section 5).

In the previous discussion it was essential to assume that we had some information
about ε. Notice that, even in case we do not have such an information, the choice
θ = 1 − 1/n, which led to (4.2), is always available. This bound is almost spectral in
n, depends weakly on Λ and prevents error amplification.

5. Numerical illustrations. In this section we give four numerical illustrations.
The first two ones concern elementary Laplace transforms which are assumed to be
computed with a relative error of order ρ ≈ eps, where eps stands for the machine
precision (eps = 10−16 in our computations). In the last two illustrations we do not

10
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Fig. 5.1. ln maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖ versus n for u in Illustration 1, with θ = 0.5 fixed,
α = 0.7, d = 0.6 and t0 = 1. The gray line corresponds to Λ = 50 and the black one to Λ = 5.

assume any information about the errors due to the computations of the Laplace
transforms.

Illustration 1. We first show by means of a simple example, that for n >> 1
(2.7) fails in the presence of errors in the evaluations. To this end, we consider the
mapping u(t) = e−t, whose Laplace transform is U(z) = 1/(1 + z).

This function satisfies (1.2) for all δ > 0 and M = 1/ sin δ. We fix θ = 0.5, α =
0.7, d = 0.6 and choose the parameters h, λ as stated in the theorem for all the values
of n. In Fig. 5.1 we plot in a semilogarithmic scale the absolute actual error, i.e.

ln max
t∈[t0,Λt0]

‖u(t) − ūn(t)‖

versus n (recall that ūn(t) stands for the actual computed approximation to u(t),
see (3.1)). This is done for Λ = 5, 50 and t0 = 1. This figure shows that the error
decays exponentially for the first values of n, saturates near ε level and then grows
like O(ecn).

Next we tune parameters as explained in Section 4. For Λ = 5, 50, in Fig. 5.2
(left) we plot the optimal values of θ against n. In Fig. 5.2 (right) we plot

ln max
t∈[t0,Λt0]

‖u(t) − ūn(t)‖

(continuous line) and the logarithm of the corresponding values of the theoretical
error estimate (dashed line) obtained in Theorem 2, versus n, once θ is optimal. We
maintain α = 0.7, d = 0.6 and t0 = 1.

Illustration 2. Take β = 1.5 and set

U(z) =
zβ−1

zβ + 1
,

11
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Fig. 5.2. Left: Optimal θ versus n. Right: Natural logarithms of maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖
(continuous) and the theoretical estimate (dashed) versus n, for u in Illustration 1. The gray lines
correspond to Λ = 50 and the black ones to Λ = 5.

i.e., U(z) is the Laplace transform of

u(t) = Mβ(−tβ),

where Mβ stands for the Mittag-Leffler function of order β (see [18]). Notice that
U satisfies (1.2) for any δ ∈ (π/3, π/2), with µ = 1 and M = 1/ sin(β(π − δ)).
We consider here as exact solution the one computed with 500 nodes and take α =
π/12, d = 0.25 and t0 = 1.

This example was already considered in [14]. In order to compare the performance
of the strategy proposed in [14] with the one proposed in the present paper, we first
compute ūn(t) by selecting the parameters as in [14]. In Fig. 5.3 (left) we plot in
semilogarithmic scale the theoretical estimate and actual errors for Λ = 2, 5, which
are acceptable. In Fig. 5.3 (right) we do the same for Λ = 50 and conclude that the
approach in [14] is not at all useful for large values of Λ. However, the corresponding
computation by using the strategy in Section 4, yields the plot in Fig. 5.4, which
shows a satisfactory spectral order of convergence even for Λ = 50.

Illustration 3. We consider the inhomogenous heat equation on the unit square
Ω = (0, 1)2 with zero initial value and a convective heat flux at the boundary






ut(t, x) = ∆u(t, x) + f(x), for x ∈ Ω, t ≥ 0,
∂νu(t, x) = −u(t, x), for x ∈ ∂Ω, t ≥ 0,
u(0, x) = 0, for x ∈ Ω,

(5.1)

where f is the indicator function of the rectangle R = [0.6, 0.8]× [0.2, 0.8], i.e. f = 1
on R and f = 0 elsewhere.

Problem (5.1) is semidiscretized in space by using linear finite elements on a
triangular grid. Denoting by Vh ⊂ L2(Ω) the space of elements and by Uh(z) the

12
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Fig. 5.3. Natural logarithms of maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖ (continuous) and the theoretical
estimate (dashed) versus n, for u in Illustration 2 proceeding as in [14] for δ = π/3, t0 = 1. The
gray lines correspond to Λ = 50 and the black ones to Λ = 5.

Laplace transform of the semidiscrete solution uh(t), we get

Uh(z) =
1

z
(z − ∆h)−1Phf,

with ∆h : Vh → Vh the discrete laplacian and Ph the orthogonal projection of f onto
Vh. Now, for fixed h > 0, we try to approximate uh(t) by inverting Uh(z). Notice that,
since ∆h is definite negative, certainly Uh(z) satisfies (1.2) for any 0 < δ < π/2 and
M = 1/(µh sin(δ)), with −µh the highest eigenvalue of ∆h. Notice also that, working
in coordinates relative to the standard basis of elements, Uh(z) is represented by a
vector valued mapping Uh(z) satisfying

zMhUh(z) + ShUh(z) =
1

z
fh,

where Mh and Sh stand for the mass and stiffness matrices and where fh is the vector
formed by the scalar products of f with the elements of the basis. Thus, one evaluation
of U(zk) at a given node zk requires the solution of one linear system of the above
form.

In the experiment we generate a mesh, shown in the left of Fig 5.5, with 542
triangles by means of the mesh generator Triangle [22]. Linear systems are solved
using MATLABs sparse LU factorization UMFPACK. Since uh(t) is unknown, the
errors are estimated in the L2(Ω)-norm with respect to a reference solution ūh,500(t)
obtained with 500 nodes. In the absence of precise information about ρ, both for
this reference solution and for the rest of the approximations ūh,n(t) to uh(t), we tune
θ = 1−1/n, as indicated in Section 4. In Fig. 5.6, for the parameters α = 0.7, d = 0.6,
t0 = 0.01 and θ = 1 − 1/n, we plot ln maxt∈[t0,Λt0] ‖ūh,500(t) − ūh,n(t)‖ against n, for
Λ = 5, 50. This plot shows the predicted behavior.
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Fig. 5.4. Natural logarithm of maxt∈[t0,Λt0] ‖u(t) − ūn(t)‖ (continuous) and the theoretical
estimate (dashed) versus n, for u in Illustration 2. The gray lines correspond to Λ = 50 and the
black ones to Λ = 5.
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Fig. 5.5. Left: Mesh of Ω, with the set R indicated by darkgray. Right: Temperature distribution
at t = 0.5 in false-color representation. (white corresponds to temperature 1 and black to 0)

Illustration 4. We consider again the Laplace transform U(z) = 1/(1 + z) of
the exponential function u(t) = e−t as in Illustration 1. The values of α, d and t0 are
again 0.7, 0.6 and 1, respectively.

We add on purpose perturbations of maximum size 10−4 to the evaluations of U
at the required nodes. Thus, we use (3.1) with

Uk = U(zk) + ηk , −n ≤ k ≤ n,

with |ηk| ≤ ρ = 10−4. Now we try to approximate u(t) without using the available
information about ρ. In this situation, as explained in Section 4, we take θ = 1−1/n.
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Fig. 5.6. Left: Natural logarithm of maxt∈[t0,Λt0] ‖u(t)−ūn(t)‖ (continuous) and the theoretical
estimate (dashed) versus n, for u in Illustration 3. The gray lines correspond to Λ = 5 and the black
ones to Λ = 50.

In fact, we compare two types of perturbations:
We first generate complex, random, independent perturbations ηk , in such a way

that |ηk| and arg(ηk) are uniformly distributed on [0, 10−4] and [0, 2π], respectively.
In Fig. 5.7 (left), we show the resulting actual error, which behaves much better than
predicted by (4.2). The explanation is that cancellations are likely compensating the
effects of the independent random perturbations. A finer analysis of the observed
behavior is out of the scope of the present paper.

Secondly, for each −n ≤ k ≤ n, we consider the perturbation

ηk = 10−4 exp(−i arg(ωk(t0))),

with ωk(t0) defined in (3.1). These perturbations correspond to the worst possible
case in (3.2), for t = t0 = 1. Now, the resulting actual error, plotted in Fig. 5.7
(right), fits quite well with (4.2).
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