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Abstract

We present structure preserving algorithms for the numerical com-
putation of structured staircase forms of skew-symmetric/symmetric
matrix pencils along with the Kronecker indices of the associated skew-
symmetric/symmetric Kronecker-like canonical form. These methods
allow deflation of the singular structure and deflation of infinite eigen-
values with index greater than one. Two algorithms are proposed: one
for general skew-symmetric/symmetric pencils and one for pencils in

which the skew-symmetric matrix is a direct sum of 0 and J =
[

0
−I

I
0

]

.

We show how to use the structured staircase form to solve boundary
value problems arising in control applications and present numerical
examples.
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1 Introduction

In this paper we study structure preserving numerical methods for the com-
putation of the structural information associated with the singular and in-
finite eigenvalue parts of the Kronecker canonical form of real skew-symme-
tric/symmetric matrix pencils

αN − βH, (1)

where N = −NT ,H = HT ∈ R
n,n and (α, β) ∈ C × C. Here by R

n,k we
denote the set of real n×k matrices. In the following we adopt the notation
of [30] and call pencils of this form even pencils, since replacing (α, β) by
(−α, β) and transposing yields the same pencil.

Even pencils occur in the context of linear quadratic optimal control
problems see e.g. [33, 37, 38, 44], H∞ control problems, see e.g. [4, 17, 36,
47], and other applications, see e.g. [30, 34].

For control problems of the form

Eẋ = Ax+Bu, y = Cx, (2)

it has been shown in [33] that the solution of the linear quadratic optimal
control problem leads to the boundary value problem

N





ẋ
µ̇
u̇



 = H





x
µ
u



 , (3)

with boundary conditions

x(t0) = x0, lim
t→∞

ETµ(t) = 0, (4)

where the matrix pencil associated with the boundary value problem

αN − βH = α





0 E 0
−ET 0 0

0 0 0



− β





Q AT S
A W B
ST BT R



 , (5)

is even, see [33]. (In particular, Q = QT , W = W T and R = RT .)
The solution of the boundary value problem can be obtained via the

computation of a structured Schur form of (5). Similar matrix pencils arise
in the solution of optimal H∞ control problems, see [4, 47]. If the control
problem comes from an ordinary differential equation, then E = I and if it
comes from a differential-algebraic equation, then E is a singular matrix.
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For both theoretical and computational purposes, the pencil (5) should
be regular and of index at most 1. In order to check this property numerically
and to remove singular parts and higher index infinite eigenvalue parts we
need a staircase form. We discuss this topic in detail in Section 5.

We will derive numerical methods to compute the characteristic quanti-
ties of the Kronecker canonical form of αN−βH under structure preserving
congruence transformations

αÑ − βH̃ = αP TNP − βP THP. (6)

The motivation for preserving the even structure comes from the special
properties of such pencils. For example, even pencils have the Hamilto-
nian eigensymmetry, i.e., the finite eigenvalues occur in λ,−λ̄ pairs and
λ,−λ, λ̄,−λ̄ quadruples for non-real eigenvalues of real pencils, see e.g.
[32, 33, 34].

As suggested by having eigenvalues with Hamiltonian symmetry, even
pencils are closely related to skew-Hamiltonian/Hamiltonian pencils. Let

Jn =
[

0
−In

In
0

]

, where In is the n × n identity matrix. (We leave off the

subscript n, if the dimension is clear from the context.) A matrix H ∈
R

2n,2n is called Hamiltonian if (HJ )T = HJ . A matrix N ∈ R
2n,2n is

called skew-Hamiltonian if (NJ )T = −NJ . A matrix pencil αN − βH
is called skew-Hamiltonian/Hamiltonian if N is skew-Hamiltonian and H
is Hamiltonian. If the dimension of the even pencil αN − βH is even,
then the pencil is equivalent to the skew-Hamiltonian/Hamiltonian pencil
αN − βH = αNJT − βHJT .

Furthermore, ifN = J , thenNJT = I and we have a standard eigenvalue
problem for the Hamiltonian matrix H = HJT . It is well-known, see [27,
33], that similarity transformations with symplectic matrices preserve the
Hamiltonian and skew-Hamiltonian structure. (A matrix S ∈ R

2n,2n is called
symplectic if SJST = J .) It was shown in [28], that if the Hamiltonian
matrix possesses a Hamiltonian Jordan form under symplectic similarity,
then it also admits a Hamiltonian Schur form under orthogonal symplectic
transformations. This work has been extended in [32] to skew-Hamiltoni-
an/Hamiltonian pencils. For even pencils there exist well-known structured
Kronecker forms, see e.g. [42]. We briefly review these forms in Section 2.

It is the topic of this paper to construct a structured staircase form for
even pencils that displays the invariants of the structured Kronecker form,
while working only with unitary (orthogonal) transformations.

We could in theory also use an unstructured numerical method like the
QZ or the GUPTRI algorithm to obtain this information, but this would
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destroy the symmetry structure in even pencils and introduce unnecessary
unstructured rounding errors. The following example illustrates how such
unstructured rounding errors may give misleading or even mathematically
impossible computed “eigenvalues” and Kronecker structure.

Example 1 As mentioned above, eigenvalues of even pencils have Hamil-
tonian pairing. A 3× 3 even pencil has at least one infinite eigenvalue. The
other two eigenvalues may be either both infinite, form a (λ,−λ) pair of
finite, real eigenvalues or form a complex conjugate pair of finite eigenvalues
with zero real part. If λ = 0 is an eigenvalue, then it has multiplicity two.

Consider a 3 × 3 even pencilwith matrices

N = Q





0 1 0
−1 0 0
0 0 0



QT , H = Q





0 0 1
0 1 0
1 0 0



QT ,

where Q is a random real orthogonal matrix generated as described in [39].
The pencil is congruent to the pencil

α





0 1 0
0 0 1
0 0 0



− β





1 0 0
0 1 0
0 0 1





so it has a triple eigenvalue at ∞ with geometric multiplicity 1 and algebraic
multiplicity 3.

We calculated the eigenvalues of αN−βH for several different randomly
generated orthogonal matrices Q using the QZ algorithm in Matlab [31]
version 6.0.0.88 (R12) with unit round roughly 2.22 × 10−16. Matlab re-
turns strikingly different approximations of eigenvalues for different ran-
domly generated orthogonal matrices Q. Sometimes it returns the math-
ematically correct three infinite eigenvalues; sometimes two infinite eigen-
values and one finite eigenvalue; sometimes one infinite eigenvalue and two
finite eigenvalues; sometimes three finite eigenvalues.

None of the computed sets of approximate eigenvalues that included
finite eigenvalues was the set of eigenvalues of an even pencil; none had
Hamiltonian eigenvalue pairing. Often, there was a singleton finite eigen-
value.

The QZ algorithm is numerically stable in the sense that the computed
eigenvalues are exactly correct for some rounding-error-small perturbation of
the original data matrices. However, this rounding-error-small perturbation
is not necessarily an even perturbation of an even pencil. The unstructured

4



rounding errors are sufficient to destroy the Hamiltonian pairing and re-
turn entirely unrealistic sets of eigenvalue approximations and Kronecker
structures that do not occur in even pencils.

Recently, in [5, 10], numerical methods were developed to compute the
Hamiltonian Schur form for Hamiltonian matrices and the methods were
extended to the regular pencil case with nonsingular matrix N in [4].

An important remaining issue is a structure preserving method to com-
pute the structural invariants under congruence associated with the infinite
eigenvalues and the singular part of the pencil. This is of particular impor-
tance in the case of optimal control problems for descriptor systems, where
E is a singular matrix, [33], since typical numerical methods for computing
optimal feedback controls require the pencils to be regular and of index at
most one. If this is not the case, then the singular part and the part associ-
ated with higher index singular blocks must be deflated first, see Section 5.

In Section 3 we derive structure preserving algorithms for the computa-
tion of structured staircase forms for arbitrary even pencils. In particular
we show how to determine the Kronecker indices associated with singular
Kronecker blocks and with Kronecker blocks corresponding to the eigen-
value infinity. The staircase form also provides a structure preserving way
to deflate these blocks. Section 4 treats the computation of eigenvalues and
deflating subspaces for regular even pencils of index 1.

If E = I, then N = Jn ⊕ 0 is the direct sum of Jn and 0. In this case
we show in Appendix D how to preserve not only skew-symmetry but the
whole Jn ⊕ 0 structure.

The results and algorithms of this paper also adapt to symmetric/symmetric
and Hermitian/Hermitian pencils for which a similar structured Kronecker
canonical form is known, see e.g. [35, 41]. In a similar way, the results and
algorithms also adapt to skew-Hermitian/Hermitian pencils and to complex
skew-symmetric/symmetric pencils. For brevity, however, we will not dis-
cuss such variations here.

It should be noted that some of the ideas presented in this paper have
been observed and discussed for special cases in [11]. Similar forms for a
special case of symmetric/symmetric pencils have recently been proposed in
[29].

2 Kronecker and staircase forms

In this section we review the Kronecker canonical form and staircase forms
for unstructured, asymmetric pencils.
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Theorem 1 Kronecker Canonical Form [18, 23]. Let E,A ∈ R
m,n.

Then there exist nonsingular matrices P ∈ C
m,m and Q ∈ C

n,n such that

P (αE − βA)Q

= diag(Oη ,Lε1 , . . . ,Lεk ,L
T
δ1
, . . . ,LTδ` ,Nσ1

, . . . ,Nσr ,Jρ1 , . . . ,Jρs),(7)

where . . .

1. Oη = α0η − β0η is an η × η block of zeros;

2. each Lεj is an εj×(εj+1) right singular block with right minimal index
εj and form

α







0 1
. . .

. . .

0 1






− β







1 0
. . .

. . .

1 0






;

3. each LTδj is a (δj + 1) × δj left singular block with left minimal index

δj and form

α













0

1
. . .

. . . 0
1













− β













1

0
. . .

. . . 1
0













,

4. each Nσj
is a σj × σj infinite eigenvalue block with index σj and form

α













0 1
. . .

. . .

. . . 1
0













− β













1
. . .

. . .

1













;

5. each Jρj
is a ρj × ρj Jordan block with finite eigenvalue λj ∈ C and

form

α













1
. . .

. . .

1













− β













λj 1
. . .

. . .

. . . 1
λj













.

The Kronecker canonical form is unique up to permutation of the blocks,
i. e., the kind, size and number of the blocks are characteristic for the pen-
cil αE − βA.
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It is more common to express Oη as a combination of L0 and LT0 blocks.
Here, we display Oη explicitly to emphasize the similarities between Theo-
rem 1 and the structured form in Theorem 3 below.

There also exists a real version of the Kronecker canonical form, where
the blocks Jρj

are in real Jordan form and the transformation matrices are
real. A similar result also holds for complex pencils, [18, 19].

Definition 2

i) An n×n matrix pencil αE−βA is called regular, if det(αE−βA) 6= 0
for some (α, β) ∈ C × C. Otherwise the pencil is called singular.
(Singular pencils are those whose Kronecker canonical form has either
an Oη block with η > 0 or an Lε block with ε > 0 or an LTε block with
ε > 0.)

ii) If αE − βA is regular, then a pair of complex numbers (α, β) 6= (0, 0)
is an eigenvalue of αE − βA, if det(αE − βA) = 0. If αE − βA is
a singular pencil, then, for our purposes in this paper, its eigenvalues
are the eigenvalues of the regular blocks in its Kronecker canonical
form, i.e., the union of the eigenvalues of the Nσj

and Jρj
blocks in

Theorem 1. We identify eigenvalues (α, β) with β 6= 0 with the finite
eigenvalue λ = α/β. Eigenvalues (α, β) with β = 0 are called infinite
eigenvalues.

iii) The index of a regular matrix pencil αE−βA is the size of the largest
block Nσj

in Theorem 1. It is denoted by ind(E,A).

iv) The inertia index of a symmetric matrix H is the triple In(H) =
(π, ν, ξ), where π is the number of positive eigenvalues of H, ν is the
number of negative eigenvalues, and ξ is the number of zero eigenval-
ues.

Arbitrarily small rounding errors can radically change the kind and num-
ber of the Kronecker blocks. Consequently, it is problematic to compute
the Jordan or Kronecker canonical form with a numerical algorithm in fi-
nite precision arithmetic [40]. Among the most successful compromises in
the nearly-impossible problem of calculating Kronecker canonical forms are
the staircase algorithms. Using a sequence of rank decisions, orthogonal
matrix multiplications, and small perturbations, staircase algorithms trans-
form a pencil into staircase or generalized upper triangular (GUPTRI) form
[12, 13, 14, 43]. The rank decisions and perturbations have the effect of

7



determining the essential invariants in the Kronecker canonical form of a
“least generic” pencil within a tolerated perturbation. (A formal defini-
tion of the term “least generic” is surprisingly complicated. See [15, 16]
for a detailed discussion and a recently developed interactive tool.) Since
the GUPTRI form is built on a sequence of rank decisions and tolerated
perturbations with a built-in bias toward a nearby least generic pencil, the
computed invariants may not always agree with the invariants of the original
pencil.

Example 1 demonstrates that otherwise excellent numerical methods can
give unsatisfactory results when applied to even pencils, because the eigen-
values of even pencils have a special structure that is not necessarily pre-
served by unstructured rounding errors. In fact, even pencils have a special
even Kronecker-like canonical form described by the following theorem.

Theorem 3 [42] If N, H ∈ R
n,n with N = −NT ,H = HT , then there

exists a nonsingular matrix X ∈ C
n,n such that

XT (αN − βH)X = diag(BS ,BI ,BZ ,BF ), (8)

where

BS = diag(Oη,Sξ1 , . . . ,Sξk),

BI = diag (I2ε1+1, . . . , I2εl+1, I2δ1 , . . . , I2δm) ,

BZ = diag (Z2σ1+1, . . . ,Z2σr+1,Z2ρ1 , . . . ,Z2ρs) ,

BF = diag(Rφ1
, . . . ,Rφt

, Cψ1
, . . . , Cψu

)

and the blocks have the following properties.

1. Oη = α0η − β0η;

2. each Sξj is a (2ξj + 1) × (2ξj + 1) block that combines a right singular
block and a left singular block, both of minimal index ξj. It has the
form

α





















1 0
. .

.
. .

.

1 0
−1

. .
.

0
−1 . .

.

0





















− β





















0 1
. .

.
. .

.

0 1
0

. .
.

1
0 . .

.

1





















;
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3. each I2εj+1 is a (2εj + 1) × (2εj + 1) block that contains a single block
corresponding to the eigenvalue ∞ with index 2εj + 1. It has the form

α





















1 0
. .

.
. .

.

1 0
−1 0

. .
.

0
−1 . .

.

0





















− β





















0 1
. .

.
. .

.

0 1
0 s

. .
.

1
0 . .

.

1





















,

where s ∈ {1,−1} is the sign-index or sign-characteristic of the block;

4. each I2δj is a 4δj × 4δj block that combines two 2δj × 2δj infinite
eigenvalue blocks of index δj. It has the form

α

























1 0
. .

.
. .

.

1 . .
.

0
−1 0

. .
.

. .
.

−1 . .
.

0

























− β

















1
. .

.

1
1

. .
.

1

















;

5. each Z2σj+1 is a (4σj + 2) × (4σj + 2) block that combines two (2σj +
1) × (2σj + 1) Jordan blocks corresponding to the eigenvalue 0. It has
the form

α

















1
. .

.

1
−1

. .
.

−1

















− β

























1 0
. .

.
. .

.

1 . .
.

0
1 0

. .
.

. .
.

1 . .
.

0

























;

6. each Z2ρj
is a 2ρj × 2ρj block that contains a single Jordan block
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corresponding to the eigenvalue 0. It has the form

α

















1
. .

.

1
−1

. .
.

−1

















− β

























1 0
. .

.
. .

.

1 . .
.

s 0
1 0

. .
.

. .
.

1 . .
.

0

























,

where s ∈ {1,−1} is the sign characteristic of this block;

7. each Rφj
is a 2φj × 2φj block that combines two φj ×φj Jordan blocks

corresponding to nonzero real eigenvalues aj and −aj. It has the form

α

















1
. .

.

1
−1

. .
.

−1

















−β

























1 aj

. .
.

. .
.

1 . .
.

aj

1 aj

. .
.

. .
.

1 . .
.

aj

























.

8. The entries Cψj
take two slightly different forms.

(a) One possibility is that Cψj
is a 2ψj × 2ψj block combining two

ψj×ψj Jordan blocks with purely imaginary eigenvalues ibj ,−ibj
(bj > 0). In this case it has the form

α

















1
. .

.

1
−1

. .
.

−1

















−β s

























1 bj
. .

.
. .

.

1 . .
.

bj
1 bj

. .
.

. .
.

1 . .
.

bj

























,

where s ∈ {1,−1} is the sign characteristic.

(b) The other possibility is that Cψj
is a 4ψj × 4ψj block combining

ψj × ψj Jordan blocks for each of the complex eigenvalues aj +
ibj, aj − ibj ,−aj + ibj,−aj − ibj (with aj 6= 0 and bj 6= 0). In this
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case it has form

α

















Ω
. .

.

Ω
−Ω

. .
.

−Ω

















−β

























Ω Λj

. .
.

. .
.

Ω . .
.

Λj

Ω Λj

. .
.

. .
.

Ω . .
.

Λj

























with Ω =

[

0 1
1 0

]

and Λj =

[

−bj aj
aj bj

]

.

This structured Kronecker canonical form is unique up to permutation of
the blocks, i.e., the kind, size and number of the blocks as well as the sign
characteristics are characteristic of the pencil αN − βH.

A corresponding structured Kronecker form is also known for complex even
pencils αN − βH with N,H ∈ C

n,n and N = −NH ,H = HH , see [42].
It was shown in [32] that the existence of the canonical form in The-

orem 3 guarantees that corresponding condensed forms under orthogonal
transformations also exist, see also [28].

The computation of the canonical form in Theorem 3 faces similar dif-
ficulties to those discussed above for the general Kronecker canonical form.
Example 1 and experience with the unstructured Kronecker canonical form
suggest that a successful numerical method for computing the characteristic
indices and sign characteristics should use a staircase-like condensed form
under unitary transformations that preserve the even structure of the pencil.
This is the topic of this paper.

3 Staircase algorithms for even pencils

In this section we discuss staircase algorithms for even pencils of the form
(1). We distinguish two cases. The first method deals with pencils where
N is a general skew-symmetric matrix and the second method treats the

important special case that N =
[

J
0

0
0

]

with J =
[

0
−I

I
0

]

.

The procedures for computing staircase forms are built on a sequence of
numerical rank decisions. This is also true for the procedures for even pen-
cils that we present below. For general matrices the rank can be determined
by the rank revealing QR factorization [20, Sec. 5.4] or the singular value
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decomposition (SVD) [20, Sec. 8.6]. For more details on determining nu-
merical ranks, see, for example, [6, 20]. For symmetric and skew-symmetric
matrices the rank can be determined via the appropriate Schur forms [20,
Chapter 8]. An inexpensive way is the following modified rank revealing
QR–factorization method. Let A be symmetric or skew-symmetric. Com-
pute the rank revealing QR factorization

QTAΠ =

[

R1

0

]

,

where R1 is of full row rank, Q is real orthogonal, and Π is a permutation.
Compute

QTAQ =

[

R1Π
T

0

]

Q =

[

R11 0
0 0

]

.

The zero (1, 2) block follows from the symmetry or skew-symmetry of A.
Note also that R11 must be nonsingular. When A is skew-symmetric, R11

must have even order.

3.1 Even Staircase form

For a general even pencil we construct a symmetric variation of the staircase
form of [43]. The staircase form will display the regular, index 1 part of
the pencil. Moreover, we show below that the staircase form also displays
the characteristic quantities describing the singular part and the eigenvalue
infinity of Theorem 3.

Theorem 4 Even staircase form. For a matrix pencil αN − βH with
N = −NT ,H = HT ∈ R

n,n, there exists a real orthogonal matrix U ∈ R
n,n,

such that

UTNU =


































N11 . . . . . . N1,m N1,m+1 N1,m+2 . . . N1,2m 0
...

. . .
...

...
... . .

.
. .

.

...
. . .

...
... Nm−1,m+2 . .

.

−NT
1,m · · · · · · Nm,m Nm,m+1 0

−NT
1,m+1 . . . . . . −NT

m,m+1 Nm+1,m+1

−NT
1,m+2 · · · −NT

m−1,m+2 0
... . .

.
. .

.

−NT
1,2m . .

.

0



































n1

...

...
nm

l
qm
...
q2
q1
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UTHU = (9)




































H11 · · · · · · H1,m H1,m+1 H1,m+2 . . . . . . H1,2m+1

...
. . .

...
...

... . .
.

...
. . .

...
...

... . .
.

HT
1,m . . . . . . Hm,m Hm,m+1 Hm,m+2

HT
1,m+1 . . . . . . HT

m,m+1 Hm+1,m+1

HT
1,m+2 . . . . . . HT

m,m+2
... . .

.

... . .
.

HT
1,2m+1





































n1

...

...
nm

l
qm
...
...
q1

,

where q1 ≥ n1 ≥ q2 ≥ n2 ≥ . . . ≥ qm ≥ nm,

Nj,2m+1−j ∈ R
nj ,qj+1, 1 ≤ j ≤ m− 1,

Nm+1,m+1 =

[

∆ 0
0 0

]

, ∆ = −∆T ∈ R
2p,2p,

Hj,2m+2−j =
[

Γj 0
]

∈ R
nj ,qj , Γj ∈ R

nj ,nj , 1 ≤ j ≤ m,

Hm+1,m+1 =

[

Σ11 Σ12

ΣT
12 Σ22

]

, Σ11 = ΣT
11 ∈ R

2p,2p, Σ22 = ΣT
22 ∈ R

l−2p,l−2p,

and the blocks Σ22 and ∆ and Γj, j = 1, . . . ,m are nonsingular.

Proof. A formal, constructive proof is given by Algorithm 1 in Ap-
pendix A, but for ease of explication, we present a less formal construction
here. Both the formal algorithm and the less formal construction described
here are explicit but recursive procedures. During the construction, we note
the inertias of certain symmetric submatrices that will be used by Theo-
rem 5. Note also that some blocks in the partitioned matrices may be void,
i.e., they may have zero rows or zero columns or both.

Let αN − βH be an even pencil. If N = H = 0, then the pencil
is singular and trivially in even staircase form. If N is nonsingular, then
this is a regular pencil of index 0 and thus trivially in even staircase form.
If N is singular, then determine an rank revealing factorization or skew-

symmetric Schur decomposition U T
1 NU1 =

[

∆
0

0
0

]

, with U1 orthogonal and

∆ nonsingular. Perform a pencil equivalence

UT1 (αN − βH)U1 = α

[

∆ 0
0 0

]

− β

[

Ĥ11 Ĥ12

ĤT
12 Ĥ22

]

.
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If Ĥ22 is nonsingular, then the pencil is regular, of index at most 1 with
rank Ĥ22 infinite eigenvalues and the even staircase form is complete. If Ĥ22

is singular, determine a rank revealing factorization or symmetric Schur

decomposition UT
2 Ĥ22U2 =

[

Σ
0

0
0

]

with U2 orthogonal and Σ nonsingular.

Record the inertia (π, ν, 0) of Σ for use in Theorem 5 below and perform
a further pencil equivalence

[

I 0
0 U2

]T (

α

[

∆ 0
0 0

]

− β

[

Ĥ11 Ĥ12

ĤT
12 Ĥ22

])[

I 0
0 U2

]

(10)

= α





∆ 0 0
0 0 0
0 0 0



− β





H̃11 H̃12 H̃13

H̃T
12 Σ 0

H̃T
13 0 0



 .

Determine a rank revealing factorization or singular value decomposition

UT3 H̃13V3 =

[

Γ 0
0 0

]

with U3 and V3 orthogonal and Γ nonsingular. Perform another pencil equiv-
alence





U3 0 0
0 I 0
0 0 V3





T 

α





∆ 0 0
0 0 0
0 0 0



− β





H̃11 H̃12 H̃13

H̃T
12 Σ 0

H̃T
13 0 0













U3 0 0
0 I 0
0 0 V3





= α













N11 N12 N13 0 0
−N T

12 N22 0 0 0
−N T

13 0 0 0 0
0 0 0 0 0
0 0 0 0 0













− β













H11 H12 H13 Γ 0
HT

12 H22 H23 0 0
HT

13 HT
23 Σ 0 0

ΓT 0 0 0 0
0 0 0 0 0













(11)

where ∆ =
[

N11

NT
12

N12

N22

]

and N13 = 0. The N13 block may fill with nonzero

entries later in the process, so we do not distinguish it from other blocks
that may be nonzero.

Recursively apply the even staircase reduction to the central subpencil

α
[

N22

0
0
0

]

−β
[

H22

HT
23

H23

Σ

]

recording the inertias of the submatrices Σ as they

occur. This corresponds to performing another pencil equivalence to (11)
that modifies rows and columns 2 and 3 typically modifying N12, N13, H12

and H13 along with the central subpencil. At that point the pencil is in even
staircase form.
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Remark 1 It should be note that the rank decisions in the recursive proce-
dure described in the proof of Theorem 4 have to be carried out with great
care. Ideally one would need a structured version of the procedure for gen-
eral pencils in [15, 16]. The development of such a procedure is currently
under investigation.

The recursive construction of the even staircase form also generates a
sequence of inertias of certain ephemeral symmetric submatrices that ap-
pear briefly during the construction. The following theorem shows that the
characteristic quantities describing the singular part and the eigenvalue in-
finity of αN−βH are determined by the integer sequences {qj}

m
j=1, {nj}

m
j=1,

{πj}
m+1
j=1 , {νj}

m+1
j=1 and {rj = πj + µj}

m+1
j=1 .

Theorem 5 Suppose that an even pencil αN − βH has been reduced to the
condensed form (9) by Algorithm 1 with integer sequences {πj}, {νj}, and
{rj = πj + νj}. Then αN −βH has the following block structures associated
with the singular part and the eigenvalue ∞ in the even Kronecker canonical
form (8) of Theorem 3.

1. For every j = 1, . . . ,m, the pencil has 1
2 [nj − qj+1 − (rj+1 − rj)] blocks

I2j corresponding to the eigenvalue ∞. (Here we set qm+1 = 0).

2. For every j = 1, . . . ,m + 1, the pencil has rj − rj−1 odd-sized blocks
I2j−1 corresponding to the eigenvalue ∞,among which πj−πj−1 blocks
have sign index 1 and νj − νj−1 blocks have sign index −1. (Here we
set π0 = ν0 = r0 = 0.)

3. The pencil has a singular block α0q1−n1
− β0q1−n1

.

4. For every j = 2, . . . ,m, the pencil has qj − nj singular blocks Sj−1.

5. The subpencil αNm+1,m+1 − βHm+1,m+1 is a regular pencil of index
at most 1. It contains the Jordan structure associated with all finite
eigenvalues of αN − βH.

Proof. See Appendix B

Example 2 Our Matlab [31] implementation of Algorithm 1 determined
that in the cloud of rounding-error-small perturbations of each even pencil
αN − βH in Example 1 there is an even pencil with structured staircase
form

α





0 1 0
−1 0 0

0 0 0



− β





0 0 1
0 1 0
1 0 0



 . (12)
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Algorithm 1 obtains m = 2, l = 0, n1 = q1 = 1, r1 = 0, π1 = ν1 = 0;
n2 = q2 = 0, r2 = 1, π2 = 1, ν2 = 0. Theorem 5 shows that the pencil has
one block I3 with sign-characteristic 1. (Indeed, (12) is an I3 block with
sign-characteristic 1.)

The structured staircase form (12) is what would have been obtained in
exact arithmetic without rounding, but that is not the point of this example.
The point is that typical even pencils in the rounding error cloud surrounding
αN −H have two finite eigenvalues and more generic structured Kronecker
form. Algorithm 1 successfully and correctly located a least generic even
pencil within the cloud.

If the skew-symmetric matrix N in the pencil (5) is of the special form
[

Jn

0
0
0

]

as in applications from linear quadratic optimal control or H∞ con-

trol, then from a perturbation theory point of view it is advisable to preserve
this structure as much as possible, i.e., we would like to compute a staircase
form, where the middle block associated with the finite eigenvalues and the
infinite-eigenvalue-index-1 part is again of the same form as the original pen-

cil with a (possibly smaller) skew-symmetric part
[

Jp

0
0
0

]

. An algorithm to

compute a variant even staircase form while preserving the
[

Jp

0
0
0

]

structure

of the skew-symmetric part appears in Appendix D.

4 The regular, index one case

It remains to determine the finite eigenvalues and index 1 infinite eigenvalues
contained in the central block of the even staircase form (9) (and the variant
staircase form (27) in Appendix D). To avoid the hazards of introducing
asymmetric rounding errors demonstrated above, a structure preserving nu-
merical method is necessary. In this section we outline how to modify a
skew-Hamiltonian/Hamiltonian structure preserving algorithm from [3] for
regular even pencils of index at most 1.

For ease of notation, in this section we assume that the even pencil is
regular of index at most 1.

In order to use the skew-Hamiltonian/Hamiltonian algorithm, we must
transform the skew-symmetric/symmetric pencil into skew-Hamiltonian/Ham-
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iltonian form. For this we assume that the even pencil already has the form

αN − βH = α









0 D2 0 0
−D2 0 0 0

0 0 0 0
0 0 0 0









− β









H11 H12 H13 H14

HT
12 H22 H23 H24

HT
13 HT

23 H33 H34

HT
14 HT

24 HT
34 H44









, (13)

where D2 is positive diagonal, D2,H11,H22 ∈ R
p,p, and H33,H44 ∈ R

r,r.
For a general even pencil this may be achieved, for example, by computing
and reordering the real Schur form of N11.

The pencil (13) has even size. If the size of the original pencil is odd,
then add one more index 1 eigenvalue infinity by appending one row and
column as

α

[

N 0
0 0

]

− β

[

H 0
0 Θ

]

,

where Θ is a nonzero scalar.
Let S = diag(D, 0, D, 0) and n = p + r. By interchanging the 2nd and

3rd columns and rows and then multiplying with J Tn from the right, the
pencil (13) is equivalent to the skew-Hamiltonian/Hamiltonian pencil

αZ − βM = αSJnS
TJTn − β









H12 H14 −H11 −H13

H23 H34 −HT
13 −H33

H22 H24 −HT
12 −HT

23

HT
24 H44 −HT

14 −H34









.

We then have the following structured Schur form.

Theorem 6 Let S = diag(D, 0, D, 0), T = JnS
TJTn , and let M ∈ R

2n,2n be
Hamiltonian. Then there exist orthogonal matrices Q1, Q2 and orthogonal
symplectic matrices U1, U2 such that

QT1MQ2 =









M11 M12 M13 M14

0 M22 M23 M24

0 0 M33 0
0 0 M43 M44









,

QT1 SU1 =









0 S12 0 S14

0 S22 0 S24

0 0 0 0
0 0 0 S44









,

UT2 TQ2 =









0 0 0 0
0 T22 T23 T24

0 0 0 0
0 0 T43 T44









, (14)
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where M11,M
T
33 ∈ R

r,r are upper triangular M22, S22, T22,M44, S
T
44, T

T
44 ∈

R
p,p are upper triangular, and M44 is lower quasi-triangular. Furthermore,

S22, S44, T22, T44 are nonsingular.
The finite eigenvalues of αST − βM , and αN −H in (13) as well, are

the same as the finite eigenvalues of the index 0 pencil

αA− βB = α

[

S22S
T
44 0

0 T T44T22

]

− β

[

0 M22

−MT
44 0

]

.

Proof. The proof appears in Appendix C, where (14) is proved construc-
tively by Algorithm 4.

5 Application to optimal control

Consider the linear quadratic control problem described by (2)–(5). It is
well known that if the pencil is regular then the boundary value problem
is uniquely solvable [8]. We therefore assume that the pencil (5) is regular.
(For the singular case, see [9].)

The following proposition shows how the even staircase form (9) char-
acterizes consistency of boundary conditions for the special problem (3).
(The general theory of linear differential-algebraic equations of [24, 25] uses
a normal form to characterize consistent initial conditions.)

Theorem 7 Consider the boundary value problem (3) with a regular matrix
pencil. Transform the boundary value problem to the staircase form (9).
With U as in (9), partition

z = UT





x
µ
u



 =
[

zT1 . . . zTm zTm+1 zTm+2 . . . zT2m+1

]T
(15)

conformally. Then z1, . . . , zm = 0, and ż1, . . . , żm = 0. The solution of the
boundary value problem

Nm+1,n+1żm+1 =

[

∆ 0
0 0

]

żm+1 = Hm+1,m+1zm+1 =

[

Σ11 Σ12

ΣT
12 Σ22

]

zm+1,

(16)
(which is of index at most 1) uniquely determines the remaining components,
zm+2, . . . , z2m+1.
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Proof. Because the pencil is regular, we have nj = qj and Hj,2m+2−j =
Γj , j = 1, . . . ,m. Hence, for j = 1, . . . ,m, we obtain recursively that

zm+j+1 = Γ−1
m−j+1

(

m+j
∑

i=m+1

Nm−j+1,iżi −

m+j
∑

i=m+1

Hm−j+1,izi

)

.

The consistency of the boundary conditions in (3) may be checked by
using the recursion formulas for zm+2, . . . , z2m+1, the explicit solution rep-
resentation

zm+1 =

[

I

−Σ−1
22 ΣT

12

]

eW (t−t0)
[

I 0
]

zm+1(t0),

with W = ∆−1(Σ11 − Σ12Σ
−1
22 ΣT

12), and (15) with zj = 0 for j = 1, . . . ,m.
A similar observation was made about more general pencils in [9].

In this way we may reduce the general linear differential-algebraic bound-
ary value problem (3) in an even structured way to a smaller linear differential-
algebraic boundary value problem of index at most 1, to which appropriate
methods may be applied. See for example, [1, 2, 26].

6 Conclusion

Even pencils have paired eigenvalues and a structured Kronecker-like canon-
ical form with paired blocks. Even otherwise numerically stable numerical
methods that allow asymmetric rounding errors can return computed “eigen-
values” that are unrealistic in the sense that they do not have proper pairing
and, hence, are not eigenvalues of an even pencil. Numerical procedures in-
cluding asymmetric staircase forms for determining Kronecker indices do
not calculate the sign indices of the even Kronecker-like form and, if they
allow asymmetric rounding errors, can return unrealistic results.

This paper presents an even staircase form for even pencils that displays
the structure and characteristic indices of the singular and infinite eigenvalue
structure of even Kronecker-like canonical form. Using only orthogonal ma-
trix multiplications and rank decisions, the accompanying numerically stable
numerical method preserves even structure throughout and introduces only
even rounding errors.

The use of the even staircase form is illustrated using an application
to boundary value problems arising from optimal control of differential-
algebraic systems. The even staircase form may be the first step of a method
for calculating eigenvalues of an even pencil also outlined here.
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A Proof of Theorem 4: Algorithm 1

Note that in the following algorithm, some blocks in the partitioned matrices
may be void, i.e., they may have zero rows or zero columns or both.

Algorithm 1 Staircase algorithm for even pencils.
For N = −NT ,H = HT ∈ R

n,n this algorithm computes an orthogonal
matrix U ∈ R

n,n such that UTNU , UTHU are in the form of (9). In addi-
tion, the algorithm produces a sequence of inertias (πj, νj , 0) of nonsingular,
symmetric submatrices that will be used in Theorem 5.
Set flag = 0, m = n0 = q0 = r0 = 0, l = n,

N = N22 = N, H = H, U = I.

DO WHILE flag = 0

Perform a rank revealing factorization of N22 ∈ R
l−rm,l−rm,

N22 = U1

[

∆ 0
0 0

]

UT
1 ,

with ∆ ∈ R2p,2p. Set

N1 =

[

U1 0
0 Irm

]T

N

[

U1 0
0 Irm

]

=

[

∆ 0
0 0

]

,

H1 =

[

U1 0
0 Irm

]T

H

[

U1 0
0 Irm

]

=

[

Ĥ11 Ĥ12

ĤT
12 Ĥ22

]

,

partitioned analogously. (Here Ĥ22 ∈ R
l−2p,l−2p).

IF 2p = l THEN

Set flag = 1 and

U =





In1+...+nm
0 0

0 U1 0
0 0 Iq1+...+qm



 .

ELSE

Set m = m+ 1.

Perform the Schur decomposition of Ĥ22,

Ĥ22 = U2

[

Σ 0
0 0

]

UT
2 ,

where Σ ∈ Rµ,µ is nonsingular with inertia index (πm, νm, 0)
and rank rm = µ = πm + νm.
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Set

N2 =

[

I2p 0
0 U2

]T

N1

[

I2p 0
0 U2

]

=





∆ 0 0
0 0 0
0 0 0



 ,

H2 =

[

I2p 0
0 U2

]T

H1

[

I2p 0
0 U2

]

=





H̃11 H̃12 H̃13

H̃T
12 Σ 0

H̃T
13 0 0



 ,

partitioned analogously.

IF µ = l − 2p THEN

Set flag = 1 and

Û =

[

U1 0
0 Irm−1

] [

I2p 0
0 U2

]

,

U =





In1+...+nm−1
0 0

0 Û 0
0 0 Iq1+...+qm−1





ELSE

Perform a rank revealing factorization or SVD

H̃13 = U3

[

Γm 0
0 0

]

V T
3 ,

where Γm ∈ Rτ,τ is nonsingular.

Set nm = τ, qm = l − 2p− µ and

N3 =





U3 0 0
0 Iµ 0
0 0 V3





T

N2





U3 0 0
0 Iµ 0
0 0 V3





=













N11 N12 0 0 0
−N T

12 N22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,
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H3 =





U3 0 0
0 Iµ 0
0 0 V3





T

H2





U3 0 0
0 Iµ 0
0 0 V3





=













H11 H12 H13 Γm 0
HT

12 H22 H23 0 0
HT

13 HT
23 Σ 0 0

ΓT
m 0 0 0 0
0 0 0 0 0













,

Û =

[

U1 0
0 Irm−1

] [

I2p 0
0 U2

]





U3 0 0
0 Iµ 0
0 0 V3



 ,

U =





In1+...+nm−1
0 0

0 Û 0
0 0 Iq1+...+qm−1



 .

Set

N =

[

2p− τ µ

2p− τ N22 0
µ 0 0

]

, H =

[

2p− τ µ

2p− τ H22 H23

µ HT
23 Σ

]

∈ R
l,l,

and l = 2p− τ + µ.

END IF

END IF

Form H = UTHU, N = UTNU, and U = UU.

END WHILE

Algorithm 1 will stop after finitely many steps, because at each recursive
call, the order of the even pencil decreases. At some stage Ĥ22 must be
either nonsingular or void.

B Proof of Theorem 5

We prove Theorem 5 constructively using another staircase algorithm to
obtain a more condensed even staircase form followed by a further reduction
closer to the even Kronecker-like canonical form of Theorem 3. In contrast to
Algorithm 1 these reductions use extra non-orthogonal transformations, so
they are theoretical in nature and may not be well suited to finite precision
computation. The extra work displays a relationship between successive
values of the inertias (πj , νj , 0).
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Algorithm 2 Given N = −NT ,H = HT ∈ R
n,n, this algorithm computes

a real nonsingular matrix Y ∈ R
n,n such that Y TNY , Y THY are in the

even staircase form (9).

Set flag = 0, m = n0 = q0 = r0 = 0, l = n,

N22 = N, N =

[

N22 0
0 0r0

]

, H22 = H, H =

[

H22 H23

HT
23 Σ

]

, U = I,

where Σ = ΣT ∈ Rr0,r0, and H23 ∈ Rl×r0.

% Since r0 = 0, the initial last row and column of N and H are void.
DO WHILE flag = 0

Perform a rank revealing factorization of N22 ∈ Rl−rm,l−rm,

N22 = U1

[

∆ 0
0 0

]

UT
1 ,

with ∆ ∈ R2p,2p. Set

N1 =

[

U1 0
0 Irm

]T

N

[

U1 0
0 Irm

]

=





∆ 0 0
0 0 0
0 0 0



 ,

H1 =

[

U1 0
0 Irm

]T

H

[

U1 0
0 Irm

]

=





Ĥ11 Ĥ12 Ĥ13

ĤT
12 Ĥ22 Ĥ23

ĤT
13 ĤT

23 Σ



 ,

partitioned analogously. (Here Ĥ22 ∈ Rl−2p−rm,l−2p−rm).

IF 2p = l − rm THEN

Set flag = 1 and

Y =





In1+...+nm
0 0

0 U1 0
0 0 Iq1+...+qm



 .

ELSE

Set m = m+ 1.

Perform a congruence transformation with

X =





I 0 0
0 I 0

0 −Σ−1ĤT
23 I




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to annihilate the blocks Ĥ23 and ĤT
23 in H1. Set

N1a = XTN1X = N1, H1a = XTH1X =





Ĥ11 H̄12 Ĥ13

H̄T
12 H̄22 0

ĤT
13 0 Σ



 .

Perform the Schur decomposition

H̄22 = U2

[

Σm 0
0 0

]

UT
2 ,

where Σm ∈ Rµ̃,µ̃ is nonsingular.

Let (π̃m, ν̃m, 0) be the inertia index of Σm.

Set

N1b =





I2p 0 0
0 U2 0
0 0 Irm−1





T

N1a





I2p 0 0
0 U2 0
0 0 Irm−1



 =









∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,

H1b =





I2p 0 0
0 U2 0
0 0 Irm−1





T

H1a





I2p 0 0
0 U2 0
0 0 Irm−1



 =









Ĥ11 ∗ ∗ Ĥ13

∗ Σm 0 0
∗ 0 0 0

ĤT
13 0 0 Σ









,

partitioned analogously.

Let P be the permutation that interchanges the last two columns

and rows of H3. Set

N2 = P TN1bP =









∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









=:





∆ 0 0
0 0 0
0 0 0



 ,

H2 = P TH1bP =









H̃11 ∗ Ĥ13 ∗
∗ Σm 0 0

ĤT
13 0 Σ 0
∗ 0 0 0









=:





H̃11 H̃12 H̃13

H̃T
12 Σ 0

H̃T
13 0 0



 . (17)

Set rm = rm−1 + µ̃.

IF rm = l− 2p THEN
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Set flag = 1 and

Ŷ =

[

U1 0
0 Irm−1

]

X





I2p 0 0
0 U2 0
0 0 Irm−1



P,

Y =





In1+...+nm−1
0 0

0 Ŷ 0
0 0 Iq1+...+qm−1



 .

ELSE

Perform a rank revealing factorization or SVD

H̃13 = U3

[

Γm 0
0 0

]

V T
3 ,

where Γm ∈ Rτ,τ is nonsingular.

Set nm = τ, qm = l − 2p− rm, and

N3 =





U3 0 0
0 Irm

0
0 0 V3





T

N2





U3 0 0
0 Irm

0
0 0 V3





=













N11 N12 0 0 0
−N T

12 N22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,

H3 =





U3 0 0
0 Irm

0
0 0 V3





T

H2





U3 0 0
0 Irm

0
0 0 V3





=













H11 H12 H13 Γm 0
HT

12 H22 H23 0 0
HT

13 HT
23 Σ 0 0

ΓT
m 0 0 0 0
0 0 0 0 0













,

Ŷ =

[

U1 0
0 Irm−1

]

X





I2p 0 0
0 U2 0
0 0 Irm−1



P





U3 0 0
0 Irm

0
0 0 V3



 .

Set

U =





In1+...+nm−1
0 0

0 Ŷ 0
0 0 Iq1+...+qm−1



 .
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Set

N =

[

2p− τ rm

2p− τ N22 0
rm 0 0

]

, H =

[

2p− τ rm

2p− τ H22 H23

rm HT
23 Σ

]

∈ R
l,l,

and l = 2p− τ + rm.

END IF

END IF

Form H = YTHY, N = YTNY, Y = Y Y.

END WHILE

We now show that the subpencils generated by two algorithms are equiv-
alent. For this we need the following lemma.

Lemma 8 Suppose that A ∈ R
m,n and rankA = r. If

XT
1 AY1 =

[

Σ1 0
0 0

]

, XT
2 AY2 =

[

Σ2 0
0 0

]

,

where Σ1,Σ2 ∈ R
r,r, X1, X2 ∈ R

m,m, and Y1, Y2 ∈ R
n,n are nonsingular,

then there exist nonsingular matrices

S =

[

S1 0
S2 S3

]

∈ R
m,m, Z =

[

Z1 0
Z2 Z3

]

∈ R
n,n

where S1, Z1 ∈ R
r,r, such that

X1 = X2S, Y1 = Y2Z, Σ1 = ST1 Σ2Z1.

In particular, if A = AT or A = −AT and X1 = Y1, X2 = Y2, then S = Z
and Σ1 = ZT1 Σ2Z1.

Proof. Let S = X−1
2 X1 and Z = Y −1

2 Y1. Then

[

Σ1 0
0 0

]

= ST
[

Σ2 0
0 0

]

Z.

The result follows directly by comparing the blocks on both sides.
To show the relationship between Algorithms 2 and 1 we denote the

blocks in Algorithm 2 by a ˜ and in Algorithm 1 by a ˆ.
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Assume that at the beginning of the mth reduction

αÑ − βH̃ = KT (αN̂ − βĤ)K (18)

for some nonsingular matrix K =

[

K11 0
K21 K22

]

, where K11 ∈ R
l−rm,l−rm ,

K22 ∈ R
rm,rm . Then for Ñ22 and N̂22 in Ñ and N̂ , respectively, we have

Ñ22 = KT
11N̂22K11.

Let

ŨT1 Ñ22Ũ1 =

[

∆̃ 0
0 0

]

, ÛT1 N̂22Û1 =

[

∆̂ 0
0 0

]

.

By Lemma 8,
Ũ1 = K−1

11 Û1M,

where M =

[

M11 0
M21 M22

]

is nonsingular and M11 ∈ R
2p,2p. Then a simple

calculation yields

αÑ1 − βH̃1 = M̃T (αN̂1 − βĤ1)M̃ ,

where

M̃ =

[

Û1 0
0 Irm

]T

K

[

Ũ1 0
0 Irm

]

=





M11 0 0
M21 M22 0

M31 M32 M33





with M33 = K22. Clearly, then

[ ˜̂
H22

˜̂
H23

˜̂
H
T

23 Σ̃

]

=

[

M22 0
M32 M33

]T




ˆ̂
H22

ˆ̂
H23

ˆ̂
H
T

23 Σ̂





[

M22 0
M32 M33

]

. (19)

In Algorithm 2 we then determine a nonsingular matrix Z̃ such that

Z̃T

[ ˜̂
H22

˜̂
H23

˜̂
H
T

23 Σ̃

]

Z̃ =

[

Σ̃ 0
0 0

]

,

where Σ̃ := diag(Σm, Σ̃) and in Algorithm 1 we determine an orthogonal
matrix Ẑ such that

ẐT





ˆ̂
H22

ˆ̂
H23

ˆ̂
H
T

23 Σ̂



 Ẑ =

[

Σ̂ 0
0 0

]

.
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By (19), the new Σ̃ and Σ̂ must have the same inertia and the same size
rm+1 × rm+1. Moreover, by Lemma 8,

Z̃ =

[

M22 0
M32 M33

]−1

ẐL,

where L =

[

L22 0
L32 L33

]

is nonsingular and L22 ∈ R
rm+1,rm+1 .

We then have

αÑ2 − βH̃2 = L̃T (αN̂2 − βĤ2)L̃, (20)

where

L̃ =

[

I2p 0

0 Ẑ

]−1

M̃

[

I2p 0

0 Z̃

]

=





L11 0 0
L21 L22 0
L31 L32 L33



 ,

with L11 = M11.
Let H̃13 be the block of H̃2 in (17) and Ĥ13 be the corresponding block

in Ĥ2. By comparing the blocks in (20) we have

H̃13 = LT11Ĥ13L33.

Let

ŨT H̃13Ṽ =

[

Γ̃m 0
0 0

]

, ÛT Ĥ13V̂ =

[

Γ̂m 0
0 0

]

be the computed rank revealing factorizations. Then Γ̃m and Γ̂m must have
the same size τ × τ . Again by Lemma 8

Ũ = L−1
11 ÛS, Ṽ = L−1

33 V̂ T,

where

S =

[

S11 0
S21 S22

]

, T =

[

T11 0
T21 T22

]

,

and S11, T11 ∈ R
τ,τ . Then

αÑ3 − βH̃3 = S̃T (αN̂3 − βĤ3)S̃,

where

S̃ =





Û 0 0
0 Irm+1

0

0 0 V̂





−1

L̃





Ũ 0 0
0 Irm+1

0

0 0 Ṽ




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=













S11 0 0 0 0
S21 S22 0 0 0
S31 S32 S33 0 0
S41 S42 S43 S44 0
S51 S52 S53 S54 S55













,

with S33 = L22 and S44 = T11, S54 = T21, and S55 = T22. It is then evident
that the newly generated subpencils αÑ − βH̃ and αN̂ − βĤ satisfy

αÑ − βH̃ =

[

S22 0
S32 S33

]T

(αN̂ − βĤ)

[

S22 0
S32 S33

]

,

which is the same as (18). Since both algorithms start with

Ñ = N̂ = N, H̃ = Ĥ = H,

it follows by induction that they generate the same integers nj, qj, rj. The
inertia indices satisfy π̃j = πj − πj−1 and ν̃j = νj − νj−1.

In the following we will show that by carrying out some further block
Gauß elimination steps, the staircase form computed by Algorithm 2 can
be reduced close to the even Kronecker-like form. In Algorithm 2 it is not
necessary to move all the blocks Σ toward the center. So the permutation
with P in (17) does not necessarily have to be carried out. The staircase
form has the following block structure.

N̂ = Y TNY =




































N11 . . . . . . N1,m N1,m+1 N1,m+2 . . . N1,2m 0
...

. . .
...

...
... . .

.
. .

.

...
. . .

...
... Nm−1,m+2 . .

.

−NT
1,m . . . . . . Nm,m Nm,m+1 0

−NT
1,m+1 . . . . . . −NT

m,m+1 Nm+1,m+1

−NT
1,m . . . −NT

m−1,m+2 0 0
... . .

.
. .

. . . .

−NT
1,2m . .

. . . .

0 0





































n1

...

...
nm

l
q̃m
...
...
q̃1

,

Ĥ = Y THY =
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



































H11 . . . . . . H1,m H1,m+1 H1,m+2 . . . . . . H1,2m+1

...
. . .

...
...

... . .
.

...
. . .

...
...

... . .
.

HT
1,m . . . . . . Hm,m Hm,m+1 Hm,m+2

HT
1,m+1 . . . . . . HT

m,m+1 Hm+1,m+1

HT
1,m+2 . . . . . . HT

m,m+2 Hm+2,m+2

... . .
. . . .

... . .
. . . .

HT
1,2m+1 H2m+1,2m+1





































n1

...

...
nm

l
q̃m
...
...
q̃1

, (21)

where for r̃j = rj − rj−1, q̃j = qj + r̃j, (1 ≤ j ≤ m), and l = 2p+ r̃m+1. The
blocks have the following properties.

Nj,2m+1−j ∈ R
nj ,q̃j+1 , rankNj,2m+1−j = q̃j+1, 1 ≤ j ≤ m− 1,

Nm+1,m+1 =

[

∆ 0
0 0r̃m+1

]

, ∆ ∈ R
2p,2p,

Hj,2m+2−j =
[

r̃j nj qj − nj

nj Πj Γj 0
]

, 1 ≤ j ≤ m,

H2m+2−j,2m+2−j =

[

r̃j qj

r̃j Σj 0
qj 0 0

]

, 1 ≤ j ≤ m,

Hm+1,m+1 =

[

Σ11 Σ12

ΣT
12 Σm+1

]

, Σ11 ∈ R
2p,2p, Σm+1 ∈ R

r̃m+1,r̃m+1 ,

where all the blocks ∆,Σj,Γj are nonsingular. Without loss of generality,
we may assume that ∆ = J2p and Σj = diag(Iπ̃j

,−Iν̃j
).

The property that Nj,2m+1−j has full column rank can be shown as
follows.

After the first step of reduction we have

N =













N11 N12 0 0 0

−N T
12 N22 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













.
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In the next step, after having compressed N22, N is changed to



















N̂11 N̂12 N̂13 0 0 0

−N̂ T
12 ∆ 0 0 0 0

−N̂ T
13 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



















.

Since

[

N11 N12

−N T
12 N22

]

and ∆ are nonsingular, N̂13 has to be of full column

rank. It is easily seen that N̂13 is equivalent to N1,2m. So N1,2m has full
column rank. By induction, it follows that the other blocks Nj,2m+1−j have
full column rank as well.

We now begin further reductions on the pencil (21). The reduction
process is described in the following algorithm.

Algorithm 3 Let N := Y TNY and H := Y THY be given as in (21).

Annihilate the blocks Σ12 and ΣT
12 with pivot block Σm+1 in Hm+1,m+1.

Annihilate the blocks in Nm,m+1 (−NT
m,m+1) above and to the left of

∆ in Nm+1,m+1 with the pivot block ∆. Then

[

Nm,m Nm,m+1

−NT
m,m+1 Nm+1,m+1

]

=





Ñm,m 0 Φ̃m

0 ∆ 0

−Φ̃T
m 0 0



 .

Because by the reduction procedure

[

Nm,m Nm,m+1

−NT
m,m+1 Nm+1,m+1

]

is nonsingular,

Φ̃m has to be of full column rank. So we can determine a nonsingular

matrix X such that ZT Φ̃j =

[

0
Ir̃m+1

]

. Then

[

Z 0
0 I

]T [
Nm,m Nm,m+1

−NT
m,m+1 Nm+1,m+1

] [

Z 0
0 I

]

=









Ψ11 Ψ12 0 0

−ΨT
12 Ψ22 0 Ĩrm+1

0 0 ∆ 0

0 −Ĩrm+1
0 0









.

We then annihilate Ψ22,Ψ12, and −ΨT
12 by performing another block Gauß

congruence transformation with pivot blocks Ir̃m+1
and −Ir̃m+1

. Again by

the nonsingularity of

[

Nm,m Nm,m+1

−NT
m,m+1 Nm+1,m+1

]

, Ψ11 has to be nonsingular.
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So it can be compressed further to Ψm := J(nm−r̃m+1)/2 by performing one

more congruence transformation. Eventually,

[

Nm,m Nm,m+1

−NT
m,m+1 Nm+1,m+1

]

−→









Ψm 0 0 0
0 0 0 Ir̃m+1

0 0 ∆ 0
0 −Ir̃m+1

0 0









.

Applying the same sequence of congruence transformations to H, it is

easy to check that the block structures and ranks will not change.

We now proceed by working on H. First we simplify Γj and ΓT
j to Inm

in Hm,m+2 and HT
m,m+2 by post-multiplying diag(I,Γ−1

j , I) to Hm,m+2 and

pre-multiplying its transpose to HT
m,m+2. Note that this transformation

does not affect Hm+2,m+2 and the blocks in N.

Second, we annihilate Πm, −ΠT
m in Hm,m+2, HT

m,m+2 and Hm,m+1, H
T
m,m+1, Hm,m

with pivot block Inm
in Hm,m+2 and HT

m,m+2.

FOR j = m− 1, . . . , 1

a) Annihilate the blocks Nj,j+1, . . . , Nj,2m−j as well as −NT
j,j+1, . . . ,−N

T
j,2m−j

in N with the nonsingular blocks in −NT
j+1,2m−j , . . . ,−N

T
m,m+1, Nm+1,m+1,

Nm,m+1, . . . , Nj+1,2m−j as pivots.

Simplify Nj,2m+1−j and −NT
j,2m+1−j to

[

0
Iq̃j+1

]

and −

[

0
Iq̃j+1

]T

, respectively.

Annihilate the blocks in Nj,j with pivot blocks Iq̃j+1
and −Iq̃j+1

from

Nj,2m+1−j and −NT
j,2m+1−j to get

Nj,j =

[

Ψj 0
0 0

]

.

With the same argument as before, Ψj must be nonsingular and thus

we reduce Ψj to J(nj−q̃j+1)/2.

b) Reduce the blocks Γj, ΓT
j in Hj,2m+2−j and HT

j,2m+2−j to Inj
.

Annihilate the blocks Hj,j, Hj,j+1, . . . , Hj,2m+1−j, HT
j,j+1, . . . , H

T
j,2m+1−j,

as well as Πj, πT
j in Hj,2m+2−j and HT

j,2m+2−j with block pivot Inj

from Hj,2m+2−j and HT
j,2m+2−j.

END FOR j

With this further reduction, the matrices N and H are transformed as

XTNX =
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



































N11 N1,2δ 0
. . . . .

.
. .

.

. . . Nm−1,m+1 . .
.

Nm,m Nm,m+1 0
−NT

m,m+1 Nm+1,m+1

−NT
m−1,m+1 0 0

. .
.

. .
. . . .

−NT
1,2m . .

. . . .

0 0





































n1

...

...
nm

l
q̃m
...
...
q̃1

,

XTHX =
























0 H1,2m+1

. . . . .
.

0 Hm,m+2

Hm+1,m+1

HT
m,m+2 Hm+2,m+2

. .
. . . .

HT
1,2m+1 H2m+1,2m+1

























n1

...
nm

l
q̃m
...
q̃1

(22)

for some nonsingular matrix X, where (note that qj = q̃j − r̃j)

Nj,2m+1−j =





r̃j+1 qj+1

nj − q̃j+1 0 0
r̃j+1 I 0
qj+1 0 I



, 1 ≤ j ≤ m− 1,

Nj,j =

[

nj − q̃j+1 q̃j+1

nj − q̃j+1 J 0
q̃j+1 0 0

]

, q̃m+1 = r̃m+1, 1 ≤ j ≤ m,

Nm,m+1 =

[

2p r̃m+1

nm − r̃m+1 0 0
r̃m+1 0 I

]

,

Nm+1,m+1 =

[

∆ 0
0 0r̃m+1

]

, ∆ = Jp,

Hj,2m+2−j =
[

r̃j nj qj − nj

nj 0 I 0
]

, 1 ≤ j ≤ m,

H2m+2−j,2m+2−j =

[

r̃j qj

r̃j Σj 0
qj 0 0

]

, 1 ≤ j ≤ m,

Hm+1,m+1 =

[

Θ 0
0 Σm+1

]

, Θ = ΘT ∈ R
2p,2p.
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Note that all Σj = diag(Iπ̃j
,−Iν̃j

), 1 ≤ j ≤ m+ 1 are signature matrices.
By performing a congruence transformation to the pencil withXTNX,XTHX

in (22) with an appropriate permutation, we obtain the structured Kronecker
form (8) of αN − βH. This leads to the conclusion in Theorem 5.

Let us illustrate this complicated process by an example.

Example 3 Let

αN − βH = α







































0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 1 0 0

∆

−1 0

−1 0 0 0 0
0 −1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







































−β







































0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 0 1 0

Θ

0 0

0 1 0 0
0 0 0 0 0

0 0 −1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0







































,

where ∆ is nonsingular. We have m = 3, and

n1 = 2, n2 = 1, n3 = 0; q1 = 3, q2 = 2, q3 = 1,

r̃1 = 1, r̃2 = 0, r̃3 = 0, r̃4 = 0.

Then

q1 − n1 = 1, q2 − n2 = 1, q3 − n3 = 1, (for Sj−1)

k1 = (n1 − q2 − r̃2)/2 = 0, k2 = (n2 − q3 − r̃3)/2 = 0, (for I2j),

r̃1 = ν̃1 = 1, r̃2 = 0, r̃3 = 0, r̃4 = 0, (for I2j−1)
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By Theorem 5, we conclude that the pencil has one singular block O1 =
α0 − β0; one block S1; one block S2; and one block I1 with s = −1. The
canonical structure of αN −βH associated with the finite eigenvalues is the
same as that of α∆ − βΘ.

In fact, if we rearrange the columns and rows of N and H in the or-
der 4, 8, 1, 3, 5, 6, 9, 2, 7, 10, 11 and let P be the corresponding permutation
matrix, then

P T (αN − βH)P = α







































∆

0

0 0 0 1 0
0 0 1 0 0
0 −1 0 0 0
−1 0 0 0 0
0 0 0 0 0

0 1 0
−1 0 0
0 0 0

0







































−β







































Θ

−1

0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 −1 0 0 0
−1 0 0 0 0

0 0 1
0 0 0
−1 0 0

0







































,

which is in the structured Kronecker form.

C A structured algorithm for computing the struc-
tured Schur form of regular skew-symmetric/sym-
metric pencil of index at most 1.

In this appendix we present an algorithm for computing the structured
Schur form (14). We call a matrix U ∈ R

2n,2n orthogonal-symplectic if
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UTU = I2n and UTJnU = Jn. In this algorithm we will denote by G(i, j)
a Givens rotation operating in rows or columns i and j. If Gij ∈ R

n,n

then Gs(i, j) := diag(Gij , Gij) is orthogonal-symplectic and also G(n, 2n) ∈
R

2n,2n is orthogonal-symplectic. Finally in the algorithm we use the orthogonal-
symplectic permutation matrix P = [en, e1, . . . , en−1, e2n, en+1, . . . , e2n−1].

Algorithm 4 For a regular skew-Hamiltonian/Hamiltonian pencil αZ −
βM of index at most 1 with Z = SJnS

TJTn ∈ R
2n,2n and S = diag(D, 0, D, 0),

whereD ∈ R
p,p is positive diagonal, this algorithm computes orthogonal ma-

trices Q1, Q2 and orthogonal symplectic matrices U1, U2 such that QT
1MQ2,

QT1 SU1, U
T
2 (JnS

TJTn )Q2 are in the form (14).

Let

M = MP, Q1 = U1 = I2n, Q2 = U2 = P,

T = P T (JnS
TJTn )P = diag(0, D, 0n−p−1, 0, D, 0n−p−1).

Step 1. Reduce M,S, T to a form that is as (14) with the exception

that M44 is lower Hessenberg.

FOR k = 1, . . . , n
% Annihilate mn+k,k, . . . ,m2n−1,k

FOR j = n+ k, . . . , 2n− 1

Determine G(j, j + 1) to annihilate mjk. Set

M = GT (j, j + 1)M, S = GT (j, j + 1)S, Q1 = Q1G(j, j + 1).

Determine Gs(j − n, j − n+ 1) to annihilate sj,j+1. Set

S = SGs(j − n, j − n+ 1), U1 = U1Gs(j − n, j − n+ 1).

Determine G(j−n, j−n+1) to annihilate sj−n+1,j−n. Set

M = GT (j − n, j − n+ 1)M, S = GT (j − n, j − n+ 1)S,

Q1 = Q1G(j − n, j − n+ 1).

END FOR

% Annihilate m2n,k
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Determine G(n, 2n) to annihilate m2n,k. Set

M = GT (n, 2n)M, S = GT (n, 2n)S, Q1 = Q1G(n, 2n).

Determine another G(n, 2n) to annihilate s2n,n. Set

S = SG(n, 2n), U1 = U1G(n, 2n).

% Annihilate mn,k, . . . ,mk+1,k

FOR j = n, . . . , k + 1

Determine G(j − 1, j) to annihilate mj,k. Set

M = GT (j − 1, j)M, S = GT (j − 1, j)S, Q1 = Q1G(j − 1, j).

Determine Gs(j − 1, j) to annihilate sj,j+1. Set

S = SGs(j − 1, j), U1 = U1Gs(j − 1, j).

Determine G(n+j−1, n+j) to annihilate sn+j−1,n+j. Set

M = GT (n+ j − 1, n+ j)M, S = GT (n+ j − 1, n+ j)S,

Q1 = Q1G(n+ j − 1, n+ j).

END FOR

% Annihilate mn+k,k+1, . . . ,mn+k,n−1

FOR j = k + 1, . . . , n− 1

Determine G(j, j + 1) to annihilate mn+k,j. Set

M = MG(j, j + 1), T = TG(j, j + 1), Q2 = Q2G(j, j + 1).

Determine Gs(j, j + 1) to annihilate tj+1,j. Set

T = GTs (j, j + 1)T, U2 = U2Gs(j, j + 1).

Determine G(n+j, n+j+1) to annihilate tn+j,n+j+1. Set

M = MG(n+ j, n+ j + 1), T = TG(n+ j, n+ j + 1),

Q2 = Q2G(n+ j, n+ j + 1).
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END FOR

% Annihilate mn+k,n

Determine G(n, 2n) to annihilate mn+k,n. Set

M = MG(n, 2n), T = TG(n, 2n), Q2 = Q2G(n, 2n).

Determine another G(n, 2n) to annihilate t2n,n. Set

T = GT (n, 2n)T, U2 = U2G(n, 2n).

% Annihilate mn+k,2n, . . . ,mn+k,n+k+2

FOR j = 2n, . . . , n+ k + 2

Determine G(j − 1, j) to annihilate mn+k,j. Set

M = MG(j − 1, j), T = TG(j − 1, j), Q2 = Q2G(j − 1, j).

Determine Gs(j − n− 1, j − n) to annihilate tj−1,j. Set

T = GTs (j − n− 1, j − n)T, U2 = U2Gs(j − n− 1, j − n).

Determine G(j−n−1, j−n) to annihilate tj−n,j−n−1. Set

M = MG(j − n− 1, j − n), T = TG(j − n− 1, j − n),

Q2 = Q2G(j − n− 1, j − n).

END FOR

END FOR

(Note that the (3,3) block of T now is zero.)

% Annihilate mn+1,n+2, . . . ,mn+p,n+p+1

FOR k = n+ 1, . . . , n+ p

Determine G(k, k + 1) to annihilate mk,k+1. Set

M = MG(k, k + 1), T = TG(k, k + 1), Q2 = Q2G(k, k + 1).
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END FOR

Step 2. Reduce M44 to lower quasi-triangular form.

Partition the matrices M,S, T as in (14). Apply the periodic QZ-algorithm,
see e.g. ([7, 21, 22]) to the formal product

S−T
44 S−1

22 M22T
−1
22 T

−T
44 MT

44 to determine orthogonal matrices Wj, j =
1, . . . , 6 such that W T

1 S44W2 and W T
5 T44W6 are lower triangular, W T

3 S22W2

and W T
3 M22W4, W

T
5 T22W4 are upper triangular, and W T

1 M44W6 is

lower quasi-triangular.

Let

Q1 = diag(Ip,W3, Ip,W1), Q2 = diag(Ip,W4, Ip,W6),

U1 = diag(Ip,W2, Ip,W2), U2 = diag(Ip,W5, Ip,W5).

Set

M = QT
1 MQ2, S = QT

1 SU1, T = UT2 TQ2,

Q1 = Q1Q1, Q2 = Q2Q2, U1 = U1U1, U2 = U2U2.

Once the form (14) has been obtained, we introduce

Ŝ = QT
1 SU1, T̂ = UT

2 TQ2 and M̂ = QT
1MQ2. (23)

Because T = JnS
TJTn , M = −JnMJTn , U1Jn = JnU1, and U2Jn = JnU2, we

have

UT1 T (JnQ1J
T
n ) = JnŜ

TJTn ,

(JnQ2J
T
n )TSU2 = JnT̂

TJTn ,

(JnQ2J
T
n )TM(JnQ

T
1 Jn)

T = −JnM̂
TJTn (24)

and from Z = ST , we have

QT1 Z(JnQ1J
T
n ) = QT

1 SU1U
T
1 T (JnQ1J

T
n ) = ŜJnŜ

TJTn ,

(JnQ2J
T
n )TZQ2 = (JnQ2J

T
n )SU2U

T
2 TQ2 = JnT̂ J

T
n T̂ . (25)

It was shown in [3] that the finite eigenvalues of αZ − βM are exactly the
finite eigenvalues of

αZ − βM = α

[

Z 0
0 Z

]

− β

[

0 M
M 0

]
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(with doubled algebraic multiplicity). Let Q1 = diag(Q1, JnQ2J
T
n , ), Q2 =

diag(JnQ1J
T
n , Q2). If follows from (23), (24), (25), and (14) that

QT
1 (αZ − βM)Q2 = α

[

ŜJnŜ
TJTn 0

0 JnT̂ J
T
n T̂

]

− β

[

0 M̂

−JnM̂
TJTn 0

]

= α

























0 ∗ ∗ ∗
0 S22S

T
44 ∗ ∗

0 0 0 0
0 0 ∗ S44S

T
22

0 ∗ ∗ ∗
0 T T44T22 ∗ ∗
0 0 0 0
0 0 ∗ T T22T44

























−β

























M11 ∗ ∗ ∗
0 M22 ∗ ∗
0 0 M33 0
0 0 ∗ M44

−MT
33 ∗ ∗ ∗

0 −MT
44 ∗ ∗

0 0 −MT
11 0

0 0 ∗ −MT
22

























.

Rearranging the rows and columns by a block permutation in the order
1, 5, 2, 6, 3, 7, 4, 8, the pencil is equivalent to the pencil

α









0 ∗ ∗ ∗
0 A ∗ ∗
0 0 0 0
0 0 ∗ AT









− β









C ∗ ∗ ∗
0 B ∗ ∗
0 0 −CT 0
0 0 ∗ −BT









,

where the asterisks indicate (possibly) nonzero blocks and

A =

[

S22S
T
44 0

0 T T44T22

]

, B =

[

0 M22

−MT
44 0

]

, C =

[

0 M11

−MT
33 0

]

.

The finite eigenvalues of αZ − βM are exactly those of αA − βB and
αAT + βBT . It is easily verified that

[

I 0
0 −I

]

(αA + βB)

[

I 0
0 −I

]

= αA− βB,
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the eigenvalues of αA− βB and αAT + βBT are the same. Therefore, αZ −
βM and αA− βB have the same finite eigenvalues with the same algebraic
multiplicity.

Since S22, S44, T22, T44 are nonsingular, the pencil αA−βB is equivalent
to

A−1B =

[

0 S−T
44 S−1

22 M22

−T−1
22 T

−T
44 MT

44 0

]

.

Then, obviously, the eigenvalues of A−1B are the square roots of the eigen-
values of the matrix

(A−1B)2 = −

[

S−T
44 S

−1
22 M22T

−1
22 T

−T
44 MT

44 0

0 T−1
22 T

−T
44 MT

44S
−T
44 S−1

22 M22

]

.

Note that the two diagonal blocks have the same eigenvalues. Using the
triangular forms of these blocks, the eigenvalues of (A−1B)2 can be computed
from the diagonal blocks of the upper quasi-triangular matrix

−S−T
44 S

−1
22 M22T

−1
22 T

−T
44 MT

44.

This then allows to compute the eigenvalues of αA− βB.
Because αN − βH is equivalent to αZ − βM , the finite eigenvalues of

αN − βH can be obtained from αA− βB, too.

D A variant even staircase form

This appendix presents a variant even staircase form for even pencils in

which the skew-symmetric matrix N has the special form
[

Jn

0
0
0

]

. Such even

pencils arise in linear quadratic optimal control and H∞ control problems.
The middle block of the final even staircase form associated with the finite
eigenvalues and the infinite-eigenvalue-index-1 part is again of the same form

as the original pencil with a (possibly smaller) skew-symmetric part
[

Jp

0
0
0

]

.

The algorithm uses non-orthogonal symplectic matrices to perform the
congruence transformations. This leads to a simpler but less numerically
stable algorithm than Algorithm 1.

The reduction procedure makes use of the following SVD-like factoriza-
tion [46, 45].
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Lemma 9 If B ∈ R
m,2n, then there exists a symplectic matrix S ∈ R

2n,2n

and an orthogonal matrix Q ∈ R
m,m such that

QTBS =









p q n− p− q p q n− p− q

p R11 R12 0 R14 0 0
q 0 R22 0 R24 0 0
p 0 0 0 R44 0 0
m− 2p− q 0 0 0 0 0 0









(26)

where R11, R44 ∈ R
p,p, R22 ∈ R

q,q are nonsingular.

Proof. See [45, 46].
We then have the following structured staircase form.

Lemma 10 If N =
[

Jn

0
0
0

]

and H = HT ∈ R
2n+s,2n+s, then there exists a

nonsingular matrix X ∈ R
2n+s,2n+s, such that

XTNX =


































N11 N1,m+1 N1,m+2 . . . N1,2m 0
. . .

...
... . .

.
. .

.

. . .
... Nm−1,m+2 . .

.

Nm,m Nm,m+1 0
−NT

1,m+1 . . . . . . −NT
m,m+1 Nm+1,m+1

−NT
1,m+2 . . . −NT

m−1,m+2 0
... . .

.
. .

.

−NT
1,2m . .

.

0



































n1

...

...
nm

l
qm
...
...
q1

,

XTHX = (27)




































H11 · · · · · · H1,m H1,m+1 H1,m+2 . . . . . . H1,2m+1

...
. . .

...
...

... . .
.

...
. . .

...
...

... . .
.

HT
1,m . . . . . . Hm,m Hm,m+1 Hm,m+2

HT
1,m+1 . . . . . . HT

m,m+1 Hm+1,m+1

HT
1,m+2 . . . . . . HT

m,m+2
... . .

.

... . .
.

HT
1,2m+1





































n1

...

...
nm

l
qm
...
...
q1

,

where q1 ≥ n1 ≥ q2 ≥ n2 ≥ . . . ≥ qm ≥ nm. In particular,

Nm+1,m+1 =

[

Jp 0
0 0

]

,
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Hm+1,m+1 =

[

Σ11 Σ12

ΣT
12 Σ22

]

, Σ11 = ΣT
11 ∈ R

2p,2p, Σ22 = ΣT
22 ∈ R

l−2p,l−2p,

Nj,2m+1−j = ∈ R
nj ,qj+1 , 1 ≤ j ≤ m− 1,

Hj,2m+2−j =
[

Γj 0
]

∈ R
nj ,qj , Γj ∈ R

nj ,nj , 1 ≤ j ≤ m.

Moreover, the blocks Σ22 and all blocks Γj, j = 1, . . . ,m are nonsingular.

Proof. The proof is given constructively by Algorithm 5 below.

Algorithm 5 Staircase algorithm for special skew-symmetric/symmetric pen-

cil. Given N =
[

Jn

0
0
0

]

and H = HT ∈ R
2n+s,2n+s, this algorithm computes

a nonsingular matrix X ∈ R
2n+s,2n+s such that XTNX,XTHX are in the

form (27).
Set flag = 0, m = n0 = q0 = r0 = 0, p = n, l = 2n+ s, and

H = H =

[

H11 H12

HT
12 H22

]

, N = N =

[

Jn 0
0 0

]

, X = I2n+s,

with H11 ∈ R
2n,2n.

DO WHILE flag = 0

IF l = 2p THEN Set flag = 1

ELSE

Set m = m+ 1.

Perform a rank revealing factorization

H22 = U1

[

Σ 0
0 0

]

UT
1 ,

where Σ = ΣT ∈ Rµ,µ is nonsingular. Let (πm, νm, 0) be the

inertia index of Σ.

Set rm = µ.

Set

X1 =

[

I2p 0
0 U1

]

,

N1 = X T
1 NX1 = N ,

H1 = X T
1 HX1 =





Ĥ11 Ĥ12 Ĥ13

ĤT
12 Σ 0

ĤT
13 0 0



 .

IF µ = l − 2p THEN
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Set flag = 1 and

X =





In1+...+nm−1
0 0

0 X1 0
0 0 Iq1+...+qm−1



 .

ELSE

Perform the factorization (26) of ĤT
13

ĤT
13 = U2









H̃T
18 H̃T

28 0 H̃T
48 0 0

0 H̃T
29 0 H̃T

49 0 0

0 0 0 H̃T
4,10 0 0

0 0 0 0 0 0









S−1,

where H̃18, H̃4,10 ∈ Rσ,σ and H̃29 ∈ Rτ,τ are nonsingular, S ∈
R2p,2p is symplectic, and U2 is orthogonal.

Set

X2 =





S 0 0
0 Iµ 0
0 0 U2



 ,

N2 = X T
2 N1X2 = N ,

H2 = X T
2 H1X2 =







































H̃11 H̃12 H̃13 H̃14 H̃15 H̃16 H̃17 H̃18 0 0 0

H̃T
12 H̃22 H̃23 H̃24 H̃25 H̃26 H̃27 H̃28 H̃29 0 0

H̃T
13 H̃T

23 H̃33 H̃34 H̃35 H̃36 H̃37 0 0 0 0

H̃T
14 H̃T

24 H̃T
34 H̃44 H̃45 H̃46 H̃47 H̃48 H̃49 H̃4,10 0

H̃T
15 H̃T

25 H̃T
35 H̃T

45 H̃55 H̃56 H̃57 0 0 0 0

H̃T
16 H̃T

26 H̃T
36 H̃T

46 H̃T
56 H̃66 H̃67 0 0 0 0

H̃T
17 H̃T

27 H̃T
37 H̃T

47 H̃T
57 H̃T

67 Σ 0 0 0 0

H̃T
18 H̃T

28 0 H̃T
48 0 0 0 0 0 0 0

0 H̃T
29 0 H̃T

49 0 0 0 0 0 0 0

0 0 0 H̃T
4,10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0







































σ
τ
p̂
σ
τ
p̂
µ
σ
τ
σ
q̂

where q̂ = l − 2p− µ− 2σ − τ, p̂ = p− σ − τ.

Let P be a permutation such that the leading 6 block--columns

of H2 are reordered as 1, 4, 2, 3, 6, 5. Set

X̂ = X1X2P, X =





In1+...+nm−1
0 0

0 X̂ 0
0 0 Iq1+...+qm−1



 ,

N3 = P TN2P =
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



































0 Iσ 0 0 0 0 0 0 0 0 0
−Iσ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Iτ 0 0 0 0 0
0 0 0 0 Ip̂ 0 0 0 0 0 0
0 0 0 −Ip̂ 0 0 0 0 0 0 0
0 0 −Iτ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0





































σ
σ
τ
p̂
p̂
τ
µ
σ
τ
σ
q̂

=

















N11 0 N13 0 0 0
0 Jp̂ 0 0 0 0

−N13 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















2σ + τ
2p̂
τ
µ
2σ + τ
q̂

,

H3 = P TH2P =






































H̃11 H̃14 H̃12 H̃13 H̃16 H̃15 H̃17 H̃18 0 0 0

H̃T
14 H̃44 H̃T

24 H̃T
34 H̃46 H̃45 H̃47 H̃48 H̃49 H̃4,10 0

H̃T
12 H̃24 H̃22 H̃23 H̃26 H̃25 H̃27 H̃28 H̃29 0 0

H̃T
13 H̃34 H̃T

23 H̃33 H̃36 H̃35 H̃37 0 0 0 0

H̃T
16 H̃T

46 H̃T
26 H̃T

36 H̃66 H̃T
56 H̃67 0 0 0 0

H̃T
15 H̃T

45 H̃T
25 H̃T

35 H̃56 H̃55 H̃57 0 0 0 0

H̃T
17 H̃T

47 H̃T
27 H̃T

37 H̃T
67 H̃T

57 Σ 0 0 0 0

H̃T
18 H̃T

48 H̃T
28 0 0 0 0 0 0 0 0

0 H̃T
49 H̃T

29 0 0 0 0 0 0 0 0

0 H̃T
4,10 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0







































σ
σ
τ
p̂
p̂
τ
µ
σ
τ
σ
q̂

=

















H11 H12 H13 H14 Γ 0
HT

12 H22 H23 H24 0 0
HT

13 HT
23 H33 H34 0 0

HT
14 HT

24 HT
34 Σ 0 0

ΓT 0 0 0 0 0
0 0 0 0 0 0

















2σ + τ
2p̂
τ
µ
2σ + τ
q̂

,

where N11 =
[

Jσ

0
0
0

]

, N13 =
[

0
Iτ

]

, and Γ =





H̃18 0 0

H̃48 H̃49 H̃4,10

H̃28 H̃29 0





is nonsingular.

Set nm = 2σ + τ, qm = l− 2p− µ, l = 2p̂+ τ + µ, p = p̂, and
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set

N =





Jp 0 0
0 0 0
0 0 0



 , H =





H22 H23 H24

HT
23 H33 H34

HT
24 HT

34 Σ



 .

END IF

END IF

Form H = X THX, N = X TNX, X = XX.

END WHILE

The condensed form obtained by Algorithm 5 is a special case of (9), so
Theorem 5 applies to (27). Note that in Algorithm 5, there is no compu-
tational effort in reducing N , the computations are only performed on H.
The trade-off, however, is that the algorithm uses non-orthogonal transfor-
mations when factoring ĤT

13. Hence, Algorithm 5 may be less robust in the
presence of rounding errors than Algorithm 1.
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