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Abstract. This paper investigates the effect of structure-preserving perturbations on the eigen-
values of linearly and nonlinearly structured eigenvalue problems. Particular attention is paid to
structures that form Jordan algebras, Lie algebras, and automorphism groups of a scalar product.
Bounds and computable expressions for structured eigenvalue condition numbers are derived for
these classes of matrices, which include complex symmetric, pseudo symmetric, persymmetric, skew-
symmetric, Hamiltonian, symplectic, and orthogonal matrices. In particular we show that under mild
assumptions on the scalar product, the structured and unstructured eigenvalue condition numbers
are equal for structures in Jordan algebras. For Lie algebras, the effect on the condition number of
incorporating structure varies greatly with the structure. We identify Lie algebras for which structure
does not affect the eigenvalue condition number.
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1. Introduction. There is a growing interest in structured perturbation analysis
due to the substantial development of algorithms for structured problems. When
these algorithms preserve structure (see for example [2], [4], [13], and the literature
cited therein) it is often appropriate to consider condition numbers that measure
the sensitivity to structured perturbations. In this paper we investigate the effect of
structure-preserving perturbations on linearly and nonlinearly structured eigenvalue
problems.

Suppose that S is a class of structured matrices and define the (absolute) struc-
tured condition number of a simple eigenvalue λ of A ∈ S by

κ(A, λ; S) = lim
ε→0

sup
{ |λ̂ − λ|

ε
: λ̂ ∈ Sp(A + E), A + E ∈ S, ‖E‖ ≤ ε

}
,(1.1)

where Sp(A+E) denotes the spectrum of A+E and ‖ ·‖ is an arbitrary matrix norm.
Let x and y be the normalized right and left eigenvectors associated with λ, i.e.,

Ax = λx, y∗A = λy∗, ‖x‖2 = ‖y‖2 = 1.(1.2)

Moreover, let κ(A, λ) ≡ κ(A, λ; Cn×n) denote the standard unstructured eigenvalue
condition number, where n is the dimension of A. Clearly,

κ(A, λ; S) ≤ κ(A, λ).

If this inequality is not always close to being attained then κ(A, λ) may severely
overestimate the worst case effect of structured perturbations. Note that the standard
eigenvalue condition number allows complex perturbations even if A is real. Our
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definition in (1.1) automatically forces the perturbations to be real when A is real
and S ⊂ Rn×n.

In this paper we consider the case where S is a smooth manifold. This covers linear
structures and some nonlinear structures, such as orthogonal, unitary and symplectic
structures. We show that for such S, the structured problem in (1.1) simplifies to
a linearly constrained optimization problem. We obtain an explicit expression for
κ(A, λ; S), thereby extending Higham and Higham’s work [11] for linear structures in
Cn×n.

Associated with a scalar product in Rn or Cn are three important classes of struc-
tured matrices: an automorphism group, a Lie algebra, and a Jordan algebra. We
specialize our results to each of these three classes, starting with the linear struc-
tures. We show that under mild assumptions on the scalar product, the structured
and unstructured eigenvalue condition numbers are equal for structures in Jordan
algebras. For example, this equality holds for real and complex symmetric matrices,
pseudo-symmetric, persymmetric, Hermitian, and J-Hermitian matrices. For Lie al-
gebras, the effect on the condition number of incorporating structure varies greatly
with the structure. We identify Lie algebras for which structure does not affect the
eigenvalue condition number, such as skew-Hermitian structures, and Lie algebras for
which the ratio between the unstructured and structured eigenvalue condition number
can be large, such as skew-symmetric or perskew-symmetric structures. Our treat-
ment extends and unifies recent work on these classes of matrices by Graillat [9] and
Rump [18].

Finally we show how to compute structured eigenvalue condition numbers when
S is the automorphism group of a scalar product. This includes the classes of uni-
tary, complex orthogonal, and symplectic matrices. We provide bounds for the ratio
between the structured and unstructured condition number. In particular we show
that for unitary matrices this ratio is always equal to 1. This latter result also holds
for orthogonal matrices with one exception: when λ is real, the structured eigenvalue
condition number is zero.

Note that for λ 6= 0 a relative condition number, on both data and output spaces,
can also be defined, which is just κ(A, λ; S)‖A‖/|λ|. Our results comparing the struc-
tured and unstructured absolute condition numbers clearly apply without change to
the relative condition numbers.

The rest of this paper is organized as follows. Section 2 provides the definition
and a computable expression for the structured eigenvalue condition number of a
nonlinearly structured matrix. In Section 3, we introduce the scalar products and
the associated structures to be considered. Firstly, we treat linear structures (Jordan
and Lie algebras) in Section 4 and investigate the corresponding structured condition
numbers. Nonlinear structures (automorphism groups) are discussed in Section 5.

2. Structured condition number. It is well known that simple eigenvalues
λ ∈ Sp(A) depend analytically on the entries of A in a sufficiently small open neigh-
borhood BA of A [19]. To be more specific, there exists a uniquely defined analytic

function fλ : BA → C so that λ = fλ(A) and λ̂ = fλ(A+E) is an eigenvalue of A+E
for every A + E ∈ BA. Moreover, one has the expansion

λ̂ = λ +
1

|y∗x|y
∗Ex + O(‖E‖2).(2.1)
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Combined with (1.1) this yields

κ(A, λ; S) =
1

|y∗x| lim
ε→0

sup
{ |y∗Ex|

ε
: A + E ∈ S, ‖E‖ ≤ ε

}
.(2.2)

The difficulty in obtaining an explicit expression for the supremum in (2.2) de-
pends on the nature of S and the matrix norm ‖ · ‖. For example, when ‖ · ‖ is
the Frobenius norm or the matrix 2-norm and for unstructured perturbations (i.e.,
S = Cn×n), the supremum in (2.2) is attained by E = εyx∗, which implies the well
known formula [21]

κν(A, λ) = 1/|y∗x|, ν = 2, F.

Note that κν(A, λ) ≥ 1 always, but κν(A, λ; S) can be less than 1 for ν = 2, F .
When S is a smooth manifold (see [12] for an introduction to smooth manifolds),

the task of computing the supremum (2.2) simplifies to a linearly constrained opti-
mization problem.

Theorem 2.1. Let λ be a simple eigenvalue of A ∈ S, where S is a smooth real
or complex manifold. Then the structured condition number for λ with respect to S is
given by

κ(A, λ; S) =
1

|y∗x| sup {|y∗Ex| : E ∈ TAS, ‖E‖ = 1} ,(2.3)

where TAS is the tangent space at A.
Proof. Let E ∈ TAS with ‖E‖ = 1. Then there is a smooth curve GE : (−ε, ε) →

Kn×n (K = R or C) satisfying GE(0) = 0, G′
E

(0) = E and A + GE(t) ∈ S for all t.
We have

lim
t→0

GE(t)

‖GE(t)‖ = lim
t→0

Et + O(|t|2)
‖Et + O(|t|2)‖ = E.

Hence, using the expansion (2.1),

lim
t→0

|λ(A + GE(t)) − λ(A)|
‖GE(t)‖ = lim

t→0

1

|y∗x| ·
∣∣y∗GE(t)x + O(‖GE(t)‖2)

∣∣
‖GE(t)‖ =

|y∗Ex|
|y∗x| .

This implies κ(A, λ; S) ≥ η, where η denotes the right-hand side of (2.3). Equality
holds since the curves GE form a covering of an open neighborhood of A ∈ S.

It is convenient to introduce the notation

φ(x, y; S) = sup
{
|y∗Ex| : E ∈ S, ‖E‖ = 1

}
(2.4)

so that (2.3) can be rewritten as

κ(A, λ; S) = φ(x, y;TAS)/|y∗x|.(2.5)

In a similar way to [20], an explicit expression for κ(A, λ; S) can be obtained if
one further assumes that the matrix norm ‖ · ‖ under consideration is the Frobenius
norm ‖ · ‖F . Let us rewrite

y∗Ex = vec(y∗Ex) = (xT ⊗ y∗) vec(E) = (x ⊗ y)∗ vec(E),

3



where ⊗ denotes the Kronecker product and vec denotes the operator that stacks the
columns of a matrix into one long vector [8, p. 180]. Note that TAS is a linear vector
space of dimension m ≤ n2. Hence, there is an n2 × m matrix B such that for every
E ∈ TAS there exists a uniquely defined parameter vector p with

vec(E) = Bp, ‖E‖F = ‖p‖2.(2.6)

Any matrix B satisfying these properties is called a pattern matrix for TAS, see
also [10], [20], and [6]. The relationships in (2.6) together with (2.4) yield

φF (x, y;TAS) = sup {|(x̄ ⊗ y)∗Bp| : ‖p‖2 = 1, p ∈ K
m} ,(2.7)

where K = R or C. We will use the subscripts F and 2 to refer to the use of the
Frobenius and matrix 2-norm in (2.4).

When K = C the supremum is taken over all p ∈ Cm and consequently, from
(2.5),

κF (A, λ; S) =
1

|y∗x| ‖(x̄ ⊗ y)∗B‖2.(2.8)

Complications arise if K = R but λ is a complex eigenvalue or B is a complex
matrix. In this case, the supremum is also taken over all p ∈ Rm but (x̄ ⊗ y)∗B may
be a complex vector. In a similar way as in [5] for the standard eigenvalue condition
number we can show that the real structured eigenvalue condition number is within
a small factor of the complex one in (2.8). To be more specific,

1√
2|y∗x|

‖(x̄ ⊗ y)∗B‖2 ≤ κF (A, λ; S) ≤ 1

|y∗x| ‖(x̄ ⊗ y)∗B‖2,(2.9)

see also [9], [18]. To obtain an exact expression for the real structured eigenvalue
condition number, let us consider the relation

|(x̄ ⊗ y)∗Bp|2 =
∣∣ Re

(
(x̄ ⊗ y)∗B

)
p
∣∣2 +

∣∣ Im
(
(x̄ ⊗ y)∗B

)
p
∣∣2,

which together with (2.7) implies

κF (A, λ; S) =
1

|y∗x|

∥∥∥∥
[

Re
(
(x̄ ⊗ y)∗B

)

Im
(
(x̄ ⊗ y)∗B

)
]∥∥∥∥

2

.(2.10)

For a real pattern matrix B, this formula can be rewritten as

κF (A, λ; S) =
1

|y∗x| ‖[xR ⊗ yR + xI ⊗ yI , xR ⊗ yI − xI ⊗ yR]T B‖2,(2.11)

where x = xR + ıxI and y = yR + ıyI with xR, xI , yR, yI ∈ Rn. If additionally λ is
real, we can choose x and y real and (2.11) reduces to (2.8).

The difficulty in computing (2.8), (2.10) or (2.11) lies in characterizing the tangent
space TAS and building the pattern matrix B. We show in section 5 how these tasks
can be achieved when S is an automorphism group.

It is difficult to compare the explicit formula for κF (A, λ; S) in (2.8) or (2.10) to
that of the standard condition number κF (A, λ) = 1/|y∗x| unless S has some special
structure. Noschese and Pasquini [17] show that for perturbations having an assigned
zero structure (or sparsity pattern), (2.8) reduces to

κF (A, λ; S) = ‖(yx∗)|S‖F /|y∗x|,
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Table 3.1

A sampling of structured matrices associated with scalar products 〈·, ·〉
M

, where M is the matrix

defining the scalar product.

Space M Lie Group Jordan Algebra Lie Algebra

G = {G : G? = G−1} J = {S : S? = S} L = {K : K? = −K}

Bilinear forms

Rn I Real orthogonals Symmetrics Skew-symmetrics

Cn I Complex orthogonals Complex symmetrics Cplx skew-symmetrics

Rn Σp,q Pseudo-orthogonalsa Pseudo symmetrics Pseudo skew-symmetrics

Cn Σp,q Cplx pseudo-orthogonals Cplx pseudo-symm. Cplx pseudo-skew-symm.

Rn R Real perplectics Persymmetrics Perskew-symmetrics

R2n J Real symplectics Skew-Hamiltonians Hamiltonians

C2n J Complex symplectics Cplx J-skew-symm. Complex J-symmetrics

Sesquilinear forms

Cn I Unitaries Hermitian Skew-Hermitian

Cn Σp,q Pseudo-unitariesb Pseudo Hermitian Pseudo skew-Hermitian

C2n J Conjugate symplectics J-skew-Hermitian J-Hermitian

Here, R =

[
1

. .
.

1

]
and Σp,q =

[
Ip 0
0 −Iq

]
∈ Rn×n are symmetric and J =

[
0 In

−In 0

]
is

skew-symmetric.

aPhysicists refer to the pseudo-orthogonal group with Σ3,1 =
[

I3
−1

]
as the Lorentz group.

bPseudo-unitary matrices are sometimes called Σp,q-unitaries, or hypernormal matrices in the
signal processing literature.

where (yx∗)|S means the restriction of the rank-one matrix yx∗ to the sparsity struc-
ture of S. For example if the perturbation is upper triangular then (yx∗)|S is the
upper triangular part of yx∗.

Starting from (2.5) we compare in sections 4 and 5 the structured condition
number to the unstructured one for structured matrices belonging to the Jordan
algebra, Lie algebra, or automorphism group of a scalar product.

3. Structured matrices in scalar product spaces. We now introduce the
basic definitions and properties of scalar products and the structured classes of ma-
trices associated with them.

The term scalar product will be used to refer to any nondegenerate bilinear or
sesquilinear form 〈·, ·〉 on Kn. Here K denotes the field R or C. It is well known that
any real or complex bilinear form 〈·, ·〉 has a unique matrix representation given by
〈·, ·〉 = xT My, while a sesquilinear form can be represented by 〈·, ·〉 = x∗My, where
the matrix M is nonsingular. We will denote 〈·, ·〉 by 〈·, ·〉

M
as needed.

A bilinear form is symmetric if 〈x, y〉 = 〈y, x〉, and skew-symmetric if 〈x, y〉 =
−〈y, x〉. Hence for a symmetric form M = MT and for a skew-symmetric form
M = −MT . A sesquilinear form is Hermitian if 〈x, y〉 = 〈y, x〉 and skew-Hermitian if
〈x, y〉 = −〈y, x〉. The matrices associated with such forms are Hermitian and skew-
Hermitian, respectively.
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To each scalar product there corresponds a notion of adjoint, generalizing the idea
of transpose T and conjugate transpose ∗, that is, for any matrix A ∈ Kn×n there is
a unique adjoint A? with respect to the form defined by 〈Ax, y〉

M
= 〈x,A?y〉

M
for all

x and y in Kn. In matrix terms the adjoint is given by

A? =

{
M−1AT M for bilinear forms,
M−1A∗M for sesquilinear forms.

It is well known [1] that the set of self-adjoint matrices

J =
{
S ∈ K

n×n : 〈Sx, y〉
M

= 〈x, Sy〉
M

}
=

{
S ∈ K

n×n : S? = S
}

forms a Jordan algebra, while the set of skew-adjoint matrices

L =
{
L ∈ K

n×n : 〈Lx, y〉
M

= −〈x,Ly〉
M

}
=

{
L ∈ K

n×n : L? = −L
}

forms a Lie algebra. The sets L and J are linear subspaces, but they are not closed
under multiplication. A third class of matrices associated with 〈·, ·〉

M
are those pre-

serving the form, i.e.,

G =
{
G ∈ K

n×n : 〈Gx,Gy〉
M

= 〈x, y〉
M

}
= {G ∈ K

n×n : G? = G−1}.

They form a Lie group under multiplication. We refer to G as an automorphism
group. Table 3.1 shows a sample of well-known structured matrices in L, J, or G

associated with some scalar products. In the rest of this paper we concentrate on
structures belonging to at least one of these three classes.

The eigenvalues of matrices in J, L and G have interesting pairing properties as
shown by the following theorem.

Theorem 3.1. [15, Thm. 7.2, Thm. 7.6] Let A ∈ L or A ∈ J. Then the eigen-
values of A occur in pairs as shown below, with the same Jordan structure for each
eigenvalue in a pair.

Bilinear Sesquilinear

A ∈ J “no pairing” λ, λ

A ∈ L λ,−λ λ,−λ

A ∈ G λ, 1/λ λ, 1/λ

There is no eigenvalue structure property that holds for Jordan algebras of all
bilinear forms. However for certain special classes of J there may be additional struc-
ture in the eigenvalues. For example, it is known that the eigenvalues of any real or
complex skew-Hamiltonian matrix all have even multiplicity [7]. More generally we
have the following result.

Proposition 3.2. [15, Prop. 7.7] Let J be the Jordan algebra of any skew-
symmetric bilinear form on Kn. Then for any A ∈ J, the eigenvalues of A all have
even multiplicity. Furthermore, all Jordan blocks of a fixed size appear an even number
of times.

Hence we will not consider matrices in these algebras since they cannot have
simple eigenvalues.

There are two important classes of scalar products termed unitary and orthosym-
metric [15]. The scalar product 〈·, ·〉

M
is unitary if αM is unitary for some α > 0. A

scalar product is said to be orthosymmetric if

M =

{
±MT (bilinear forms),
βM∗, |β| = 1, (sesquilinear forms).
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Note that important classes of structured matrices arise in this context as witnessed by
the entries in Table 3.1, all of which have unitary and orthosymmetric scalar product
with α = 1 and β = 1. The unitary property will be needed when measuring struc-
tured perturbations with a unitarily invariant norm. We will need the orthosymmetry
property to show that left multiplication by M maps L and J to the sets Skew(K)
and Sym(K) for bilinear forms and to a scalar multiple of Herm(C) for sesquilinear
forms (see Lemma 4.1), where

Skew(K) = {A ∈ K
n×n : AT = −A}, Sym(K) = {A ∈ K

n×n : AT = A}

are the sets of symmetric and skew-symmetric matrices on Kn×n and Herm(C) is the
set of Hermitian matrices.

4. Jordan and Lie algebras. Let S be the Jordan algebra or Lie algebra of
a scalar product on Kn. Since S is a linear subspace of Kn×n, the tangent space at
A ∈ S is S itself. Hence (2.5) becomes

κ(A, λ; S) = φ(x, y; S)/|y∗x|.

The analysis of the structured eigenvalue condition number κ(A, λ; S) is reduced to
the study of the five structures Sym(K), Skew(K) (K = R or C) and Herm(C) if one
further assumes that the scalar product is both orthosymmetric and unitary. This is
shown in the next lemma.

Lemma 4.1. Let S be the Jordan algebra or Lie algebra of a scalar product.
which is both unitary and orthosymmetric, i.e., αM is unitary for some α > 0 and,
for bilinear forms, MT = εM with ε = ±1. Let E ∈ S so that E? = δE with δ = ±1.
Then, for any unitarily invariant norm,

φ(x, y; S) = φ(x, ỹ; S̃),

where ỹ = αMy and, for bilinear forms on Kn (K = R, C),

S̃ =

{
Sym(K) if δ = ε,
Skew(K) if δ 6= ε,

(4.1)

and for sesquilinear forms on Cn,

S̃ =

{
Herm(C) if δ = +1,
ı Herm(C) if δ = −1.

(4.2)

Proof. For bilinear forms, orthosymmetry implies that MT = εM , ε = ±1.
Then E ∈ S ⇐⇒ E? = M−1ET M = δE ⇐⇒ ME = δET M , and so (ME)T =

δ(ET M)T = εδ(ME). This shows that M · S = S̃ with S̃ as in (4.1).
For sesquilinear forms, orthosymmetry means that M∗ = γM for some |γ| = 1.

Choosing β so that β2 = γ, an argument similar to the one for bilinear forms shows
that for any E ∈ S, βME is either Hermitian or skew-Hermitian. But the set of all
skew-Hermitian matrices is i · Herm(C). Hence βM · S = S̃ with S̃ as in (4.2).

Since αM is unitary,

φ(x, y; S) = sup{|y∗Ex| : E ∈ S, ‖E‖ = 1}
= sup{|y∗(αM)∗Fx| : F ∈ βM · S, ‖F‖ = 1}
= φ(x, ỹ, S̃),
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where F = αβME with β = 1 for bilinear forms and |β| = 1 for sesquilinear forms.

Lemma 4.1 is a key result for comparing κ(A, λ; S) to κ(A, λ).

4.1. Jordan algebras. Graillat [9] and Rump [18] show that for the structures
symmetric, complex symmetric, persymmetric, complex persymmetric and Hermitian,
the structured and unstructured eigenvalue condition numbers are equal for the 2-
norm. These are examples of Jordan algebras (see Table 3.1). The next theorem
extends these results to all Jordan algebras of a unitary and orthosymmetric scalar
product. Unlike the proofs in [9] and [18], our unifying proof does need to consider
each Jordan algebra individually.

Theorem 4.2. Let λ be a simple eigenvalue of A ∈ J, where J is the Jordan
algebra of an orthosymmetric and unitary scalar product 〈·, ·〉

M
on Kn. Then, for the

2-norm,

κ2(A, λ; J) = κ2(A, λ).

Proof. Since 〈·, ·〉
M

is unitary, αM is unitary for some α > 0. Let x and y be as
in (1.2) and define ỹ = αMy.

For bilinear forms, orthosymmetry means that M = ±MT . We do not need to
consider the case M = −MT since from Proposition 3.2 the eigenvalues of matrices
in Jordan algebras of skew-symmetric bilinear forms all have even multiplicity. Now,
if M = MT then from Lemma 4.1 we have that

φ2(x, y; J) = φ2(x, ỹ; Sym(K)).(4.3)

But A ∈ J implies A = A? = M−1AT M and

Ax = λx ⇐⇒ x∗AT = λx∗ ⇐⇒ x∗MA = λx∗M

so that we can take y = αM∗x as a normalized left eigenvector for A associated to
λ. Rump [18, Lem. 2.5] shows that there exists Ẽ ∈ Sym(R) ⊂ Sym(C) such that

Ẽx = µx̄ with |µ| = 1 and ‖Ẽ‖2 = 1. Hence

|ỹ∗Ẽx| = |y∗(αM)−1x̄| = |xT (αM)(αM)−1x̄| = 1,

so that φ2(x, ỹ; Sym(K)) = 1 and therefore κ2(A, λ; J) = κ2(A, λ) using (2.5) and
(4.3).

For sesquilinear forms, using Lemma 4.1 we have

φ2(x, y; J) = φ2(x, ỹ; Herm(C)).(4.4)

Hence to show that φ2(x, y; J) = 1 we need to find Ẽ ∈ Herm(C) such that |ỹ∗Ẽx| = 1.
Define µ = (ỹ∗x)/|ỹ∗x| which has unit modulus. If x 6= µỹ, there exists a unique

unitary reflector Ẽ such that Ẽx = µỹ and ‖Ẽ‖2 = 1 [14, Thm. 8.6]. Furthermore

Ẽ = I + ξuu∗, where u = µỹ − x and ξ = 1/(u∗x) ∈ R \ {0} so that Ẽ ∈ Herm(C).

Hence |ỹ∗Ẽx| = |ỹ∗ỹ| = 1. The equality κ2(A, λ; J) = κ2(A, λ) holds using (2.5) and
(4.4).

For Jordan algebras J of sesquilinear forms, eigenvalues come in pairs λ and λ̄ and
if λ is simple so is λ̄ (see Theorem 3.1). For unitary scalar products, αM is unitary
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for some α > 0, and, if x and y are normalized right and left eigenvectors associated
with λ then αMy and αMx are normalized right and left eigenvectors associated with
λ̄. Hence, |(αMx)∗(αMy)| = |x∗y| so that

κ(A, λ; J) = κ(A, λ̄; J).

4.2. Lie algebras. We show that, with the exception of symmetric bilinear
forms, incorporating structure does not affect the eigenvalue condition number for
matrices in Lie algebras of scalar products that are both orthosymmetric and unitary.
These include as special cases the skew-symmetric, complex skew-symmetric, and
skew-Hermitian matrices considered by Rump [18].

Theorem 4.3. Let λ be a simple eigenvalue of A ∈ L, where L is the Lie algebra
of an orthosymmetric and unitary scalar product 〈·, ·〉

M
on Cn.

• For symmetric bilinear forms,

1 ≤ κ2(A, λ; L) ≤ κ2(A, λ), λ 6= 0,

0 = κ(A, 0; L) < κ(A, 0) =
1

|xT Mx| (for any norm in (2.2)).

• For skew-symmetric bilinear forms,

κν(A, λ)√
2

≤ κν(A, λ; L) ≤ κν(A, λ), ν = 2, F.

• For sesquilinear forms,

κ2(A, λ; L) = κ2(A, λ).

Proof. Since 〈·, ·〉
M

is unitary, αM is unitary for some α > 0. Let x and y be as
in (1.2) and define ỹ = αMy.

For bilinear forms, orthosymmetry implies M = ±MT .
(i) If M = MT (symmetric bilinear form) then using Lemma 4.1 we have

φ2(x, y; L) = φ2(x, ỹ; Skew(C)).(4.5)

A necessary and sufficient condition for the existence of Ẽ ∈ Skew(C) such

that Ẽx = b for some b ∈ Cn is that bT x = 0 [16, Thm. 3.2]. We cannot choose
b = ỹ since ỹT x 6= 0 in general. Hence, φ2(x, ỹ; Skew(C)) ≤ 1. However, for
A ∈ L, A? = −A and

λ〈x, x〉
M

= 〈λx, x〉
M

= 〈Ax, x〉
M

= 〈x,A?x〉
M

= −〈x,Ax〉
M

= −λ〈x, x〉
M

so that if λ 6= 0, 〈x, x〉
M

= (Mx)T x = 0. Take b = αMx of unit 2-norm so that
bT x = 0 = b∗x̄. There exists Q unitary such that [x̄, b] = Q[e1,−e2], where ek

denotes the kth column of the identity matrix. Then Ẽ = Q(e1e
T
2 −e2e

T
1 )QT ∈

Skew(C) satisfies Ẽx = b and ‖Ẽ‖2 = 1. Hence

|ỹ∗Ẽx| = |y∗(αM)∗(αM)x| = |y∗x|

and therefore φ2(x, ỹ; Skew(C)) ≥ |y∗x| which implies κ2(A, λ; L) ≥ 1 using
(2.5) and (4.5). Now if λ = 0 then since A ∈ L,

Ax = 0 ⇐⇒ −A?x = 0 ⇐⇒ M−1AT Mx = 0 ⇐⇒ (Mx)T A = 0
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so that we can take y = Mx as a left eigenvector of λ = 0. Hence for any
E ∈ L,

y∗Ex = xT (ME)x = (xT (ME)x)T = −xT (ME)x = 0

and therefore κ(A, 0; L) = 0.
(ii) If M = −MT (skew-symmetric bilinear form) then using Lemma 4.1 we have

φν(x, y; L) = φν(x, ỹ; Sym(C)), ν = 2, F.

It is not difficult to show that S = ỹx∗ + x̄ỹT − (ỹT x)x̄x∗ ∈ Sym(C) satisfies

Sx = ỹ with ‖S‖2 ≤ ‖S‖F =
√

2 − |ỹT x|2 ≤
√

2. Taking Ẽ = S/
√

2 gives

|ỹ∗Ẽx| = |ỹ∗ỹ|/
√

2 = 1/
√

2

and therefore φν(x, y; L) = φν(x, ỹ; Sym(C)) ≥ 1/
√

2. The lower bound fol-
lows using (2.5).

For sesquilinear forms, Lemma 4.1 implies

φ2(x, y; L) = φ2(x, ỹ; ı Herm(C)).

As in the proof of Theorem 4.2, there exists Ẽ ∈ Herm(C) such that Ẽx = µỹ with

|µ| = 1 and ‖Ẽ‖2 = 1. Hence |ỹ∗(iẼ)x| = |ỹ∗ỹ| = 1 which implies φ2(x, y; L) =
φ2(x, ỹ; ı Herm(C)) = 1. The result follows from (2.5).

Note that Theorem 4.3 deals with complex perturbations only. However, for real
bilinear forms the results still hold when λ is real. For complex λ, the lower bounds
need to be multiplied by 1/

√
2 in view of (2.9).

For the special case where M = I, i.e., when L is the set of complex skew-
symmetric matrices, Rump [18] exhibits a 3 × 3 example showing that the ratio
κ2(A, λ; L)/κ2(A, λ) for λ 6= 0 can be arbitrarily small. Does this hold for all Lie
algebras of symmetric bilinear forms on Kn? The numerical experiments we ran on
perskew-symmetric matrices and on pseudo-skew-symmetric matrices using (2.8) and
(2.10) seem to confirm it. However it is difficult to give a general and unifying proof
of this fact without considering specific algebras.

From Theorem 3.1 we know that eigenvalues of matrices in L come in pairs λ,−λ
for bilinear forms and λ,−λ̄ for sesquilinear forms and that if λ is simple so is −λ (or
−λ̄). We can show that for unitary scalar products,

κ(A, λ; L) =

{
κ(A,−λ; L) (bilinear forms),
κ(A,−λ̄; L) (sesquilinear forms).

5. Automorphism groups. We now consider structured condition numbers for
automorphism groups G associated with the scalar product 〈·, ·〉

M
,

G = {A ∈ K
n×n : A? = A−1}.

This includes the groups of symplectic matrices (M = J), real and complex orthogonal
matrices (M = I), as well as Lorentz transformations (M = diag(1, 1, 1,−1)). We
first show how to compute κF (A, λ; G) in (2.8) and (2.10), then consider properties
of the structured condition number, and finally provide lower bounds for κ2(A, λ; G).
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5.1. Computation of κF (A, λ; G). An automorphism group G forms a smooth
manifold. The Jacobian of the function

F (A) =

{
AT MA − M (bilinear forms)
A∗MA − M (sesquilinear forms)

at A ∈ Kn×n can be represented as the linear function

JA(X) =

{
AT MX + XT MA (bilinear forms)
A∗MX + X∗MA (sesquilinear forms).

The tangent space TAG at A ∈ G coincides with the kernel of this Jacobian,

TAG = {X : JA(X) = 0} = {AH : H? = −H} = A· L,(5.1)

where L is the Lie algebra of 〈·, ·〉
M

.
As the Lie algebra L in (5.1) is independent of A, it is often simple to explicitly

construct a pattern matrix L such that for every H ∈ L there exists a uniquely defined
parameter vector q with

vec(H) = Lq, ‖H‖F = ‖q‖2.

To obtain a pattern matrix B for A · L in the sense of (2.6), we can compute a QR
decomposition (I⊗A)L = BR, where the columns of B form an orthonormal basis for
the space spanned by the columns of L, and R is an upper triangular matrix. Hence,

vec(AH) = (I ⊗ A) vec(H) = (I ⊗ A)Lq = Bp,

where p = Rq, and ‖AH‖F = ‖ vec(AH)‖2 = ‖p‖2.
According to (2.8) we have

κF (A, λ; G) =
1

|y∗x| ‖(x ⊗ y)∗B‖2 =
|λ|
|y∗x| ‖(x ⊗ y)∗LR−1‖2(5.2)

if K = C or if K = R with λ real. Otherwise, when K = R and λ is complex or, when
B is complex, (2.10) implies

κF (A, λ; G) =
1

|y∗x|

∥∥∥∥
[

Re
(
λ(x̄ ⊗ y)∗LR−1

)

Im
(
λ(x̄ ⊗ y)∗LR−1

)
]∥∥∥∥

2

.(5.3)

The construction of pattern matrices is made easier when 〈·, ·〉
M

is orthosymmet-

ric. For bilinear forms, using (4.1) we have that for H ∈ L, H̃ := MH ∈ L̃ where

L̃ =

{
Skew(K) if M = MT ,
Sym(K) if M = −MT .

For sesquilinear forms, orthosymmetry implies that M∗ = γM for some |γ| = 1, and

from (4.2) we have that for H ∈ L, H̃ := βMH ∈ L̃ where L̃ = Herm(C) and β

is such that β2 = γ. Let L̃ be a pattern matrix for H̃ ∈ L̃, i.e., vec(H̃) = L̃q̃ with

‖q̃‖2 = ‖H̃‖F . There are only three different types of pattern matrices and they are
easy to construct. For example, for n = 2,
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• if L̃ = Sym(K), q̃ ∈ K3, and

L̃ =




1 0 0
0 1/

√
2 0

0 1/
√

2 0
0 0 1


 ,

• if L̃ = Skew(K), q̃ ∈ K1, and

L̃ =




0
1/
√

2
−1/

√
2

0


 ,

• if L̃ = Herm(C), q̃ ∈ R4, and

L̃ =




1 0 0 0
0 1/

√
2 −i/

√
2 0

0 1/
√

2 i/
√

2 0
0 0 0 1


 .

Note that for Hermitian structures, L̃ is complex but the vector of parameters is
real since we need to force the diagonal entries of H̃ to be real. The pattern matrix
B̃ for AH is then obtained via a QR decomposition (I ⊗ AM−1)L̃ = B̃R̃. For
orthosymmetric complex bilinear forms (2.8) becomes

κF (A, λ; G) =
|λ|
|y∗x| ‖(x

T ⊗ y∗M−1)L̃R̃−1‖2.(5.4)

and for orthosymmetric sesquilinear forms or orthosymmetric real bilinear forms,
(2.10) becomes

κF (A, λ; G) =
1

|y∗x|

∥∥∥∥
[

Re
(
λ(xT ⊗ y∗M−1)L̃R̃−1

)

Im
(
λ(xT ⊗ y∗M−1)L̃R̃−1

)
]∥∥∥∥

2

.

5.2. Properties of κF (A, λ; S). The eigenvalues of A ∈ G come in pairs λ
and 1/λ for bilinear forms, and in pairs λ and 1/λ for sesquilinear forms. In both
cases these pairs have the same Jordan structure, and hence the same algebraic and
geometric multiplicities (see Theorem 3.1). Hence if λ is simple so is 1/λ or 1/λ̄.
For unitary scalar products, there are interesting relations between the structured
condition numbers of these eigenvalue pairings.

Theorem 5.1. Let λ be a simple eigenvalue of A ∈ G, where G is the automor-
phism group of a unitary scalar product on Kn. Then for the (absolute) unstructured
eigenvalue condition number,

κ(A, λ) =

{
κ(A, 1/λ) (bilinear forms),
κ(A, 1/λ̄) (sesquilinear forms),

whereas for the (absolute) structured eigenvalue condition number,

κ(A, λ; G) =

{
|λ|2 κ(A, 1/λ; G) (bilinear forms),
|λ|2 κ(A, 1/λ̄; G) (sesquilinear forms).
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Proof. We just prove the bilinear case, the proof for the sesquilinear case being
similar. The scalar product 〈·, ·〉

M
being unitary implies that αM is unitary for some

α > 0. If x and y are normalized right and left eigenvectors associated with λ then
αMy and αMx are right and left normalized eigenvectors belonging to the eigenvalue
1/λ. The equality for κ(A, λ) follows.

Let E ∈ TAG. Then E = AH for some H in the Lie algebra L of 〈·, ·〉
M

and

|y∗Ex| = |λ| |y∗Hx|.(5.5)

Also, A ∈ G ⇒ MT A = A−T MT , αM unitary ⇒ M−T = α2M and H ∈ L ⇒
α2MT HM = −HT . Hence,

|(αMx)∗E(αMy)| = |α2xT MT AHMy|
= |α2(xT A−T )(MT HM)y|

=
1

|λ| |x
T HT y|

=
1

|λ| |y
∗Hx| =

1

|λ|2 |y
∗Ex|

so that from (2.3), κ(A, λ; G) = κ(A, 1/λ; G)/|λ|2.

Theorem 5.1 shows that the relative structured eigenvalue condition numbers for
λ and 1/λ if the form is bilinear or λ and 1/λ̄ if the form is sesquilinear, are equal. On
the other hand, the relative unstructured eigenvalue condition numbers for λ and 1/λ
( or λ and 1/λ̄) is 1/|λ|2. Hence, if we use a non structure preserving algorithm, we
should compute the larger of λ and 1/λ (or 1/λ̄). In other words, we should compute
whichever member of the pair (λ, 1/λ) (or the pair (λ, 1/λ̄)) lies outside the unit circle
and then obtain the other one by reciprocation.

5.3. Bounds for κ2(A, λ; G). Lower bounds for the eigenvalue structured con-
dition number can be derived when 〈·, ·〉

M
is orthosymmetric and unitary.

Theorem 5.2. Let λ be a simple eigenvalue of A ∈ G, where G is the automor-
phism group of an orthosymmetric and unitary scalar product 〈·, ·〉

M
on Kn. If K = C

or, if K = R with λ real we have

• for symmetric bilinear forms,

|λ|
‖A‖ν

≤ κν(A, λ; G) ≤ κν(A, λ) for λ 6= ±1, ν = 2, F,

κ(A, λ; G) = 0 for λ = ±1 and any norm,

• for skew-symmetric bilinear forms,

|λ|√
2‖A‖ν

κν(A, λ) ≤ κν(A, λ; G) ≤ κν(A, λ), ν = 2, F,(5.6)

• for sesquilinear forms (K = C),

|λ|
‖A‖ν

κν(A, λ) ≤ κν(A, λ; G) ≤ κν(A, λ), ν = 2, F.
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For K = R and λ complex, the lower bounds for the Frobenius norm need to be
multiplied by 1/

√
2.

Proof. Let L be the Lie algebra of 〈·, ·〉
M

. From (2.3) and (5.1) we have

κ2(A, λ; G) =
1

|y∗x| sup {|y∗AHx| : H ∈ L, ‖AH‖2 = 1} .

Since αM is unitarity for some α > 0 and because the scalar product is orthosym-
metric, using (4.1) and (4.2) we can rewrite κ2(A, λ; G) as

κ2(A, λ; G) =
|λ|
|y∗x| sup

{
|(αMy)∗H̃x| : H̃ ∈ L̃, ‖A(αM)∗H̃‖2 = 1

}
,(5.7)

where for bilinear forms,

L̃ =

{
Skew(K) if M = MT ,
Sym(K) if M = −MT .

and L̃ = Herm(C) for sesquilinear forms.

• L̃ = Skew(C), i.e., 〈·, ·〉
M

is a skew-symmetric bilinear form on Cn. We know

that there exists H̃ ∈ Skew(C) such that H̃x = b for some b ∈ Cn if and only
if bT x = 0 [16]. So we need to find a vector b satisfying this orthogonality
condition. We have that A ∈ G implies

λ〈x, x〉
M

= 〈Ax, x〉
M

= 〈x,A−1x〉
M

=
1

λ
〈x, x〉

M
.(5.8)

Hence if λ 6= ±1, we have (Mx)T x = 0 and we can take b = Mx. As
in the proof of Theorem 4.3, there exists S ∈ Skew(C) such that Sx =

αMx and ‖S‖2 = 1. Let H̃ = ξS with ξ > 0 such that ‖A(αM)∗H̃‖ν =

‖A(αM)∗ξS‖ν = 1 which implies ξ ≥ 1/‖A‖ν . Also, we have |(αMy)∗H̃x| =
ξ|y∗x|. The lower bounds for λ 6= ±1 follows from (5.7). Note that if K = R

and λ is real, the worst case perturbation is real.
If λ = ±1 then Mx̄ is a left eigenvector and for any H ∈ L, y∗AHx =
λy∗Hx = xT (MH)x = 0 since MH ∈ Skew(C).

• L̃ = Sym(C), i.e., 〈·, ·〉
M

is a skew-symmetric bilinear form on Cn. As in the
proof of Theorem 4.3 there exists S ∈ Sym(C) such that Sx = αMy and

‖S‖2 ≤ ‖S‖F ≤
√

2. Let H̃ = ξS with ξ > 0 such that ‖A(αM)∗H̃‖nu =
‖A(αM)∗ξS‖ν = 1. This implies ξ ≥ 1√

2‖A‖nu
and the lower bound follow.

• L̃ = Herm(C). Let ỹ = αMy. As in the proof of Theorem 4.2 there exists

S ∈ Herm(C) such that Sx = µỹ, with |µ| = 1 and ‖S‖2 = 1. Let H̃ = ı ξS
with ξ > 0 such that ‖A(αM)∗(ı ξS)‖ν = 1. This implies ξ ≥ ‖A‖−1

ν and the
lower bound follows.

For real bilinear forms (K = R), if λ is real we can take x and y real and the worst
case perturbation is real. When λ is complex one need to use (2.9).

When M = I and 〈·, ·〉 is a sesquilinear form, G is the set of unitary matrices
(see Table 3.1). But unitary matrices are normal and therefore κν(A, λ) = 1 (ν =
2, F ). Thus we can expect κν(A, λ; G) ≤ 1. Theorem 5.2 implies that the structured
condition number is exactly 1.

For M = I and a real bilinear form, G is the set of orthogonal matrices. Theorem
5.2 says that κ(A, λ; G) = 0 if λ = ±1 and 1√

2
≤ κν(A, λ; G) ≤ 1, otherwise. In fact
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Table 5.1

Condition numbers for the eigenvalues of the symplectic matrix A in (5.9), ratio ρ between the

structured and unstructured condition number, and lower bound γ for this ratio.

λ 104 102 2 1/2 10−2 10−4

κF (A, λ; G) 1.2 1.2 1.5 0.4 1.2 × 10−4 1.2 × 10−8

ρ 0.87 0.87 0.89 0.22 8.7 × 10−5 8.7 × 10−9

γ 0.5 5 × 10−3 1 × 10−4 2.5 × 10−5 5 × 10−7 5 × 10−9

we can show that κ2(A, λ; G) = 1 for λ 6= ±1. For that decompose x = xR + ıxI

with real vectors xR, xI . If λ 6= ±1 then the fact that xT x = 0 (see (5.8)) yields
‖xR‖2 = ‖xI‖2 = 1/

√
2 and xT

R
xI = 0. Consequently, the two nonzero singular values

of the skew-symmetric matrix H = 2(x
R
xT

I
−x

I
xT

R
) are both 1, and hence ‖H‖2 = 1.

Moreover, |x∗Hx| = 4(‖xR‖2
2 · ‖xI‖2

2) = 1, which shows from (5.5) and (2.3) that
κ2(A, λ, G) ≥ 1. A more general perturbation analysis of orthogonal and unitary
eigenvalue problems, based on the Cayley transform, can be found in [3].

Suppose G is the automorphism group of a skew-symmetric bilinear form 〈·, ·〉
M

(M = −MT ). For an eigenvalue λ of A with |λ| ≈ ‖A‖2, the bounds in Theorem 5.2
imply

κν(A, λ; G) ≈ κν(A, λ), ν = 2, F.

From Theorem 5.1 we then have

|λ|2κν(A, 1/λ; G) ≈ κν(A, 1/λ), ν = 2, F

showing that if |λ| is large, the unstructured eigenvalue condition number for 1/λ is
much larger than the structured one. The lower bound (5.6) may not be tight when
max(|λ|, 1/|λ|) ¿ ‖A‖ν as shown by the following example. Suppose that M = J
and that 〈·, ·〉

J
is a real bilinear form (K = R). Then G is the set of real symplectic

matrices (see table 3.1). Let us consider the symplectic matrix

A =

[
D D
0 D−1

]
, D = diag(104, 102, 2).(5.9)

Define the ratio

ρ = κF (A, λ; G)/κF (A, λ) ≤ 1

between the structured and unstructured eigenvalue condition numbers. ρ is computed
using (5.4) and its values are displayed in Table 5.1 together with the lower bound
γ = |λ|/(

√
2‖A‖2) of Theorem 5.2. This example demonstrates the looseness of the

bounds of Theorem 5.2 for eigenvalues in the interior of the spectrum. Hence for these
eigenvalues the computable expressions in Section 5.1 are of interest.

6. Conclusions. We have derived directly computable expressions for struc-
tured eigenvalue condition numbers on a smooth manifold of structured matrices.
Furthermore, we have obtained meaningful bounds on the ratios between the struc-
tured and unstructured eigenvalue condition numbers for a number of structures re-
lated to Jordan algebras, Lie algebras, and automorphism groups. We have identified
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classes of structured matrices for which this ratio is 1 or close to 1. Hence for these
structures, the usual unstructured perturbation analysis is sufficient.

The important task of finding computable expressions for structured backward
errors of nonlinearly structured eigenvalue problems is still largely open and remains
to be addressed.
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