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Abstract. The classical approach to investigating polynomial eigenvalue problems is linearization, where the
polynomial is converted into a larger matrix pencil with the same eigenvalues. For any polynomial there are infinitely
many linearizations with widely varying properties, but in practice the companion forms are typically used. However,
these companion forms are not always entirely satisfactory, and linearizations with special properties may sometimes
be required.

In this paper we develop a systematic approach to generating large classes of linearizations for matrix polynomials.
Given a polynomial P , we show how to simply construct two vector spaces of pencils that generalize the companion
forms of P , and prove that almost all of these pencils are linearizations for P . Eigenvectors of these pencils are
shown to be closely related to those of P . A distinguished subspace is then isolated, and the special properties of
these pencils are investigated. These spaces of pencils provide a convenient arena in which to look for structured
linearizations of structured polynomials, as well as to try to optimize the conditioning of linearizations, issues to be
addressed in further work.
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1. Introduction. Polynomial eigenvalue problems P (λ)x = 0, where

P (λ) =

k∑

i=0

λiAi (1.1)

with real or complex coefficient matrices Ai, form the basis for (among many other applications)
the vibration analysis of buildings, machines, and vehicles [5], [9], [23], and numerical methods for
the solution of these problems are incorporated in most commercial and non-commercial software
packages for structural analysis.

The classical and most widely used approach to solve polynomial eigenvalue problems is lineariza-
tion, i.e., the conversion of (1.1) into a larger size linear eigenvalue problem L(λ)z = (λX +Y )z = 0
with the same eigenvalues, so that classical methods for linear eigenvalue problems can be pressed
into service. The linearizations most commonly commissioned are the companion forms; for P (λ) in
(1.1) one of these companion forms is

L(λ) = λ




Ak 0 · · · 0

0 In

. . .
...

...
. . .

. . . 0

0 · · · 0 In


 +




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...

0 · · · −In 0


 . (1.2)

Many physical problems lead to matrix polynomials that are structured in some way; for example,
the coefficient matrices may all be symmetric [9], or perhaps alternate between symmetric and skew-
symmetric [15], or even have palindromic structure [12]. Such structure in the matrix polynomial
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often forces symmetries or constraints on the spectrum [12], [14], [15], [23] that have physical sig-
nificance. Numerical methods (in a finite precision environment) that ignore this structure often
destroy these qualitatively important spectral symmetries, sometimes even to the point of producing
physically meaningless or uninterpretable results [23].

Unfortunately the companion form linearizations do not reflect any structure that may be present
in the original polynomial, so their use for numerical computation in such situations may be prob-
lematic. It would be preferable if the structural properties of the polynomial were faithfully reflected
in the linearization; a structure-preserving numerical method that leaves the qualitative properties
of the spectrum intact would then be possible. Examples of such structured linearizations and their
concomitant structure-preserving numerical methods can be found in [14] and [15].

An important issue for any computational problem is its conditioning, i.e., its sensitivity to small
perturbations. It is known that different linearizations for a given polynomial eigenvalue problem can
have very different conditioning [22], [23], so that numerical methods may produce rather different
results for each linearization. It would clearly be useful to have available a large class of easily
constructible linearizations from which one could always select a linearization guaranteed to be as
well-conditioned as the original problem.

A further issue for linearizations concerns eigenvalues at ∞. Much of the literature on polynomial
eigenvalue problems considers only polynomials whose leading coefficient matrix Ak is nonsingular
(or even the identity), so the issue of infinite eigenvalues doesn’t even arise. But there are a number
of applications, such as constraint multi-body systems [2], [18], circuit simulation [3], or optical
waveguide design [19], where the leading coefficient is singular. In such cases one must choose
a linearization with care, since not all linearizations properly reflect the Jordan structure of the
eigenvalue ∞ [13]. It has therefore been suggested [10] that only strong linearizations, which are
guaranteed to preserve the structure of infinite eigenvalues, can safely be used in such circumstances.
Having a large class of linearizations that are known to also be strong linearizations would make
this issue of infinite eigenvalues less of a concern in practice.

The aim of this paper is to show how to systematically generate, for any regular matrix poly-
nomial P , large classes of linearizations that address these issues. These linearizations are easy to
construct from the data in P , properly handle any infinite eigenvalues, provide a fertile source of
structured linearizations for many types of structured polynomials [8], [12], and collectively consti-
tute a well-defined arena in which to look for “optimally” conditioned linearizations [7].

After introducing some basic definitions and notation in section 2, we develop a natural general-
ization of the companion forms in section 3. The result is two large vector spaces of pencils for each
matrix polynomial P , termed L1(P ) and L2(P ). Eigenvectors of any pencil from these associated
vector spaces are shown to be simply related to the eigenvectors of P , thereby deepening the analogy
to the companion forms. While not every pencil in these spaces is a linearization for P , we describe
conditions under which these pencils are linearizations in section 4. As a consequence we can then
show that almost every pencil in these spaces is in fact a strong linearization for P .

Finally, pencils in L1(P )∩L2(P ) are considered in sections 5 and 6. For a polynomial P of degree
k this intersection, termed DL(P ), is shown to be a subspace of dimension k. Further properties of
these special pencils are derived, including an elegant characterization of exactly which pencils in
DL(P ) are linearizations for P .

Subsequent papers [7], [8], [12] extend this work to the investigation of the conditioning of lin-
earizations in DL(P ), and the construction of structured linearizations for various types of structured
matrix polynomials.
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2. Basic definitions and notation. We study n × n matrix polynomials of degree k of the
form

P (λ) =

k∑

i=0

λiAi , A1, . . . , Ak ∈ F
n×n, Ak 6= 0 , (2.1)

where F denotes the field of real or complex numbers. Our main concern in this paper is with regular
matrix polynomials, i.e., polynomials P (λ) such that det P (λ) is not identically zero for all λ ∈ C.
However, some of our results also hold for singular matrix polynomials (these are studied in detail
in [13], [20]).

The classical approach to solve and investigate polynomial eigenvalue problems P (λ)x = 0 is to
first perform a linearization, that is, to transform the given polynomial into a linear matrix pencil
L(λ) = λX + Y with the same eigenvalues, and then work with this pencil. This transformation
of polynomials to pencils is mediated by unimodular matrix polynomials, i.e., matrix polynomials
E(λ) such that det E(λ) is a nonzero constant, independent of λ.

Definition 2.1 (Linearization). Let P (λ) be an n× n matrix polynomial of degree k. A pencil
L(λ) = λX +Y with X, Y ∈ Fkn×kn is called a linearization of P (λ) if there exist unimodular matrix
polynomials E(λ), F (λ) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

There are many different possibilities for linearizations, but probably the most important ex-
amples in practice have been the so-called companion forms or companion polynomials [5]. Letting

X1 = X2 =

[
Ak 0

0 I(k−1)n

]
,

Y1 =




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0


 , and Y2 =




Ak−1 −In · · · 0

Ak−2 0
. . .

...
...

. . .
. . . −In

A0 0 · · · 0




,

then C1(λ) = λX1 +Y1 and C2(λ) = λX2 +Y2 are respectively called the first and second companion
forms for P (λ) in (2.1).

The notion of linearization in Definition 2.1 has been designed mainly for matrix polynomi-
als (2.1) with invertible leading coefficient Ak. In this case all the eigenvalues of P (λ) are finite, and
their Jordan structures (i.e., their partial multiplicities) may be recovered from any linearization [5].
However, the situation is somewhat different when the leading coefficient of a regular P (λ) is singu-
lar, so that ∞ is an eigenvalue with some multiplicity m > 0. Although the Jordan structures of all
the finite eigenvalues of P are still faithfully recovered from any linearization of P , the eigenvalue
∞ is problematic. Consider, for example, the fact that the identity matrix is a linearization for any
unimodular P (λ). Indeed, in [10] it is shown that any Jordan structure for the eigenvalue ∞ that
is compatible with its algebraic multiplicity m can be realized by some linearization for P . Thus
linearization in the sense of Definition 2.1 completely fails to reflect the Jordan structure of infinite
eigenvalues.
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To overcome this deficiency, a modification of Definition 2.1 was introduced in [4], and termed
strong linearization in [10]. The technical device underlying this strengthened notion is the corre-
spondence between the infinite eigenvalue of a matrix polynomial P and the eigenvalue zero of the
polynomial obtained from P by reversing the order of its coefficient matrices.

Definition 2.2 (Reversal of matrix polynomials). For a matrix polynomial P (λ) of degree k
as in (2.1), the reversal of P (λ) is the polynomial

revP (λ) := λkP (1/λ) =

k∑

i=0

λiAk−i .

Note that the eigenvalues of revP are the reciprocals of those of P ; here we also view 0 and ∞ as
reciprocals.

Definition 2.3 (Strong Linearization). Let P (λ) be a matrix polynomial. If L(λ) is a lin-
earization for P (λ) and revL(λ) is a linearization for revP (λ), then L(λ) is said to be a strong
linearization for P (λ).

For regular polynomials P (λ), the additional property that revL(λ) is a linearization for revP (λ)
ensures that the Jordan structure of the eigenvalue ∞ is preserved by strong linearizations. In [4], it
has been shown that the first and second companion forms of any polynomial P have this additional
property, and thus are always strong linearizations for P . In this paper most of the pencils we
construct will be shown to be strong linearizations.

We fix the following notation that will be used throughout the paper: I = In is the n × n
identity, R = Rk denotes the k × k reverse identity, and N = Nk is the standard k × k nilpotent
Jordan block, i.e.,

R = Rk =

[
1

. .
.

1

]
, and N = Nk =




0 1

0
. . .
. . . 1

0


 . (2.2)

The vector [λk−1, λk−2, . . . , λ, 1]T of decreasing powers of λ is denoted by Λ. We will also sometimes
use Λ with an argument, so that

Λ =




λk−1

...
λ
1


 , while Λ(r) =




rk−1

...
r
1


 . (2.3)

Denoting the Kronecker product by ⊗, the unimodular matrix polynomials

T (λ) =




1 λ λ2 · · · λk−1

1 λ
. . .

...

1
. . . λ2

. . . λ
1



⊗ I and G(λ) =




1 λk−1

. . .
...

1 λ

1


 ⊗ I (2.4)

are used in several places in this paper. Observe that the last block-column of G(λ) is Λ ⊗ I , and
that T (λ) may be factored as

T (λ) = G(λ)




I λI

I
I

. . .
I







I
I λI

I
. . .

I


 · · ·




I
. . .

I λI

I
I


 . (2.5)
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3. Vector Spaces of “Potential” Linearizations. The companion forms of a matrix poly-
nomial P (λ) have several nice properties that make them attractive as linearizations for P :

• they are immediately constructible from the data in P ,
• eigenvectors of P are easily recovered from eigenvectors of the companion forms,
• they are always strong linearizations for P .

However, the companion forms have one significant drawback; they usually do not reflect any struc-
ture or eigenvalue symmetry that may be present in the original polynomial P . One would like
to be able to draw on a source of linearizations for P that allow for the preservation of structure
while sharing as many of the useful properties of companion forms as possible. To this end we
introduce vector spaces of pencils that generalize the two companion forms, and analyze some of the
properties these pencils have in common with the companion forms. In subsequent papers [8] and
[12] we explore these spaces further to find subspaces of structured linearizations for various types
of structured polynomials P (λ).

To motivate the definition of these spaces, let us recall the origin of the first companion form.
Imitating the standard procedure for converting a system of higher order linear differential al-
gebraic equations into a first order system (see [5]), introduce the variables x1 = λk−1x, x2 =
λk−2x, . . . , xk−1 = λx, xk = x, thereby transforming the n × n polynomial eigenvalue problem

P (λ)x =
(∑k

i=0 λiAi

)
x = 0 into

Ak(λx1) + Ak−1x1 + Ak−2x2 + · · · + A1xk−1 + A0xk = 0 .

Then together with the relations between successive variables this can all be expressed as the kn×kn
linear eigenvalue problem




λ




Ak 0 · · · 0

0 In

. . .
...

...
. . .

. . . 0
0 · · · 0 In




+




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0







︸ ︷︷ ︸
= C1(λ)




x1

...
xk−1

xk


 = 0 . (3.1)

Conversely, if we start with (3.1), then the last k− 1 block rows immediately constrain any solution
of (3.1) to have the form




x1

...
xk−1

xk


 =




λk−1x
...

λx
x


 = Λ ⊗ x

for some vector x ∈ F
n. Thus to solve (3.1) it is reasonable to restrict attention to products of the

form C1(λ) ·
(
Λ ⊗ x

)
. But for an arbitrary vector x ∈ Fn we have

C1(λ) ·
(
Λ ⊗ x

)
=

[ (
P (λ)x

)T
0 · · · 0

]T

, (3.2)

and so any solution of (3.1) leads to a solution of the original problem P (λ)x = 0.
Now observe that (3.2) holding for all x ∈ Fn is equivalent to the identity

C1(λ) ·
(
Λ ⊗ In

)
= C1(λ)




λk−1In

...
λIn

In


 =




P (λ)
0
...
0


 = e1 ⊗ P (λ) . (3.3)
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Thus to generalize the companion form we consider the set of all kn × kn matrix pencils L(λ) =
λX + Y satisfying the property

L(λ) · (Λ ⊗ In) = L(λ)




λk−1In

...
λIn

In


 =




v1P (λ)
...

vk−1P (λ)
vkP (λ)


 = v ⊗ P (λ) (3.4)

for some vector v = [v1, · · · , vk]T ∈ Fk. This set of pencils will be denoted by L1(P ) as a reminder
that it generalizes the first companion form of P . To work with property (3.4) more effectively we
also introduce the notation

VP = {v ⊗ P (λ) : v ∈ F
k} (3.5)

for the set of all possible right-hand sides of (3.4). Thus we have the following definition.

Definition 3.1. L1(P ) :=
{
L(λ) = λX + Y : X, Y ∈ Fkn×kn, L(λ) · (Λ ⊗ In) ∈ VP

}
.

We will sometimes use the phrase “L(λ) satisfies the right ansatz with vector v” or “v is the right
ansatz vector for L(λ)” when L(λ) ∈ L1(P ) and the vector v in (3.4) is the focus of attention. We
say “right” ansatz here because L(λ) is multiplied on the right by the block column Λ⊗ In; later we
introduce an analogous “left ansatz”.

From the properties of Kronecker product it is easy to see that VP is a vector space isomorphic
to Fk, and consequently that L1(P ) is also a vector space.

Proposition 3.2. For any polynomial P (λ), L1(P ) is a vector space over F.
Since C1(λ) is always in L1(P ), we see that L1(P ) is a nontrivial vector space for any matrix
polynomial P .

Our next goal is to show that, like the companion forms, pencils in L1(P ) are easily constructible
from the data in P . A consequence of this construction is a characterization of all the pencils in
L1(P ), and a calculation of dim L1(P ). To simplify the discussion, we introduce the following new
operation on block matrices as a convenient tool for working with products of the form L(λ)·(Λ ⊗ In).

Definition 3.3 (Column Shifted sum). Let X and Y be block matrices

X =




X11 · · · X1k

...
...

Xk1 · · · Xkk


 , Y =




Y11 · · · Y1k

...
...

Yk1 · · · Ykk




with blocks Xij , Yij ∈ Fn×n. Then the column shifted sum of X and Y is defined to be

X �→Y :=




X11 · · · X1k 0
...

...
...

Xk1 · · · Xkk 0


 +



0 Y11 · · · Y1k

...
...

...
0 Yk1 · · · Ykk


 ,

where the zero blocks are also n × n.

As an example, consider the matrices X and Y of the first companion form C1(λ) of the poly-

nomial P (λ) =
∑k

i=0 λiAi. Then X �→Y is just




Ak 0 · · · 0

0 In

. . .
...

...
. . .

. . . 0

0 · · · 0 In


 �→




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...

0 · · · −In 0


 =




Ak Ak−1 · · · A0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


 .
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Thus, the property C1(λ) · (Λ ⊗ In) = e1 ⊗ P (λ) translates in terms of the column shifted sum into
X �→Y = e1 ⊗ [Ak Ak−1 · · · A0]. In fact, this shifted sum operation is specifically designed to
imitate the product of a pencil L(λ) = λX + Y with the block column matrix Λ ⊗ In, in the sense
of the following lemma.

Lemma 3.4. Let P (λ) =
∑k

i=0 λiAi be an n × n matrix polynomial, and L(λ) = λX + Y a
kn × kn pencil. Then for v ∈ Fk,

(λX + Y ) · (Λ ⊗ In) = v ⊗ P (λ) ⇐⇒ X �→Y = v ⊗ [Ak Ak−1 · · · A0] , (3.6)

and so the space L1(P ) may be alternatively characterized as

L1(P ) =
{
λX + Y : X �→Y = v ⊗ [Ak Ak−1 · · · A0] , v ∈ F

k
}

. (3.7)

Proof. The proof follows from a straightforward calculation.
The column shifted sum now allows us to directly construct all the pencils in L1(P ).

Theorem 3.5 (Characterization of pencils in L1(P )).

Let P (λ) =
∑k

i=0 λiAi be an n×n matrix polynomial, and v ∈ Fk any vector. Then the set of pencils
in L1(P ) with right ansatz vector v is all L(λ) = λX + Y such that X and Y are of the form

X =
[ n (k−1)n

v ⊗ Ak −W
]

and Y =
[ (k−1)n n

W +
(
v ⊗

[
Ak−1 · · · A1

])
v ⊗ A0

]
,

with W ∈ Fkn×(k−1)n chosen arbitrarily.
Proof. Consider the multiplication map M that is implicit in the definition of L1(P ):

L1(P )
M
−→ VP

L(λ) 7−→ L(λ) (Λ ⊗ In) .

Clearly M is linear. To see that M is surjective, let v ⊗ P (λ) be an arbitrary element of VP and
construct

Xv =
[ n (k−1)n

v ⊗ Ak 0
]

and Yv =
[ (k−1)n n

v ⊗
[

Ak−1 · · · A1

]
v ⊗ A0

]
.

Then Xv �→Yv = v ⊗ [Ak Ak−1 · · · A0], so by Lemma 3.4, Lv(λ) := λXv + Yv is an M-preimage of
v ⊗ P (λ). The set of all M-preimages of v ⊗ P (λ) is then Lv(λ) + kerM, so all that remains is to
compute kerM.

By (3.6), the kernel of M consists of all pencils λX + Y satisfying X �→Y = 0. The definition
of the shifted sum then implies that X and Y must have the form

X =
[ n (k−1)n

0 −W
]

and Y =
[ (k−1)n n

W 0
]
,

where W ∈ Fkn×(k−1)n is arbitrary. This completes the proof.

Corollary 3.6. dim L1(P ) = k(k − 1)n2 + k .
Proof. Since M is surjective, dim L1(P ) = dim kerM + dimVP = k(k − 1)n2 + k .

Thus we see that L1(P ) is a relatively large subspace of the full pencil space (with dimension 2k2n2),
yet the pencils in L1(P ) are still easy to construct from the data in P . The next corollary isolates
a special case of Theorem 3.5 that plays an important role in section 4.
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Corollary 3.7. Suppose L(λ) = λX + Y ∈ L1(P ) has right ansatz vector v = αe1. Then

X =

[
αAk X12

0 −Z

]
and Y =

[
Y11 αA0

Z 0

]
(3.8)

for some Z ∈ F(k−1)n×(k−1)n.

Note that C1(λ) fits the pattern in Corollary 3.7 with v = e1 and Z = −I(k−1)n.

The second important property of the companion form is the simple relationship between its
eigenvectors and those of the polynomial P that it linearizes. From the discussion following (3.1) it
is evident that every eigenvector of C1(λ) has the form Λ⊗x, where x is an eigenvector of P . Thus
eigenvectors of P are recovered simply by extracting the last n coordinates from eigenvectors of the
companion form. Our next result shows that linearizations in L1(P ) also have this property.

Theorem 3.8 (Eigenvector Recovery Property for L1(P )).
Let P (λ) be an n × n matrix polynomial of degree k, and L(λ) any pencil in L1(P ) with nonzero
right ansatz vector v. Then x ∈ Cn is an eigenvector for P (λ) with finite eigenvalue λ ∈ C if and
only if Λ⊗x is an eigenvector for L(λ) with eigenvalue λ. If in addition P is regular and L ∈ L1(P )
is a linearization for P , then every eigenvector of L with finite eigenvalue λ is of the form Λ⊗x for
some eigenvector x of P .

Proof. The first statement follows immediately from the identity

L(λ)
(
Λ ⊗ x

)
= L(λ)

(
Λ ⊗ In

)
(1 ⊗ x) =

(
v ⊗ P (λ)

)
(1 ⊗ x) = v ⊗

(
P (λ)x

)
.

For the second statement, assume that λ ∈ C is a finite eigenvalue of L(λ) with geometric multiplicity
m and let y ∈ Ckn be any eigenvector of L(λ) associated with λ. Since L(λ) is a linearization of
P (λ), the geometric multiplicity of λ for P (λ) is also m. Let x1, . . . , xm be linearly independent
eigenvectors of P (λ) associated with λ, and define yi = Λ⊗xi for i = 1, . . . , m. Then y1, . . . , ym are
linearly independent eigenvectors for L(λ) with eigenvalue λ, and so y must be a linear combination
of y1, . . . , ym. Thus y has the form y = Λ ⊗ x for some eigenvector x ∈ C

n for P .

Note that a result analogous to Theorem 3.8 is also valid for the eigenvalue ∞. Because additional
arguments are needed this will be deferred until section 4.

The above development and analysis of the pencil space L1(P ) has a parallel version where the
starting point is the second companion form

C2(λ) = λ




Ak 0 · · · 0

0 In

. . .
...

...
. . .

. . . 0
0 · · · 0 In




+




Ak−1 −In · · · 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 · · · 0




. (3.9)

The analog of (3.3) is the identity

[
λk−1In · · · λIn In

]
C2(λ) =

[
P (λ) 0 · · · 0

]
,

expressed more compactly as
(
ΛT ⊗ In

)
· C2(λ) = eT

1 ⊗ P (λ). This leads us to consider pencils
L(λ) = λX + Y satisfying the “left ansatz”

(
ΛT ⊗ In

)
· L(λ) = wT ⊗ P (λ) , (3.10)

and to a corresponding vector space L2(P ). The vector w in (3.10) will be referred to as the “left
ansatz vector” for L(λ).
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Definition 3.9. With WP = {wT ⊗ P (λ) : w ∈ Fk}, we define

L2(P ) =
{
L(λ) = λX + Y : X, Y ∈ F

kn×kn,
(
ΛT ⊗ In

)
· L(λ) ∈ WP

}
.

The analysis of L2(P ) is aided by the introduction of the following block matrix operation.
Definition 3.10 (Row shifted sum). Let X and Y be block matrices

X =




X11 · · · X1k

...
. . .

...
Xk1 · · · Xkk


 , Y =




Y11 · · · Y1k

...
. . .

...
Yk1 · · · Ykk




with blocks Xij , Yij ∈ Fn×n. Then the row shifted sum of X and Y is defined to be

X �↓ Y :=




X11 · · · X1k

...
. . .

...
Xk1 · · · Xkk

0 · · · 0


 +




0 · · · 0
Y11 · · · Y1k

...
. . .

...
Yk1 · · · Ykk


 ,

where the zero blocks are also n × n.
We then have the following analog of Lemma 3.4 establishing the correspondence between the left
ansatz and row shifted sums.

Lemma 3.11. Let P (λ) =
∑k

i=0 λiAi be an n × n matrix polynomial, and L(λ) = λX + Y a
kn × kn pencil. Then for any w ∈ Fk,

(ΛT ⊗ In) · (λX + Y ) = wT ⊗ P (λ) ⇐⇒ X �↓ Y = wT ⊗




Ak

...
A0


 . (3.11)

Using these tools one can characterize the pencils in L2(P ) in a manner completely analogous to
Theorem 3.5, and thus conclude that

dim L2(P ) = dim L1(P ) = k(k − 1)n2 + k . (3.12)

It is also not difficult to establish a stronger relationship between the spaces L1(P ) and L2(P ),

which again immediately implies (3.12). Here for a polynomial P (λ) =
∑k

i=0 λiAi , we use P T to

denote the polynomial
∑k

i=0 λiAT
i ; by extension, if S is any set of polynomials, then ST is the set{

P T : P ∈ S
}
.

Proposition 3.12. L2(P ) =
[
L1(P

T )
]T

.
Proof. L ∈ L1(P

T ) ⇔ L(λ) · (Λ ⊗ In) = v ⊗ P T (λ)

⇔
(
ΛT ⊗ In

)
· LT (λ) = vT ⊗ P (λ) ⇔ LT ∈ L2(P ) .

The analog of Theorem 3.8 for pencils in L2(P ) involves left eigenvectors of P (λ) rather than
right eigenvectors. Since the definition of a left eigenvector of a matrix polynomial does not seem
to be completely standardized, we include here the definition that will be used in this paper.

Definition 3.13. A left eigenvector of an n × n matrix polynomial P associated with a finite
eigenvalue λ is a nonzero vector y ∈ Cn such that y∗P (λ) = 0.
Note that this definition differs from the one adopted in [5], although it is compatible with the
usual definition for left eigenvectors of a constant matrix [6], [21]. We have chosen Definition 3.13
here because it is the one typically used in formulas for condition numbers of eigenvalues, a topic
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investigated in [7]. The following result shows that left eigenvectors of P are easily recovered from
linearizations in L2(P ). The proof is completely analogous to the one given for Theorem 3.8.

Theorem 3.14 (Eigenvector Recovery Property for L2(P )).
Let P (λ) be an n×n matrix polynomial of degree k, and L(λ) any pencil in L2(P ) with nonzero left
ansatz vector w. Then y ∈ C

n is a left eigenvector for P (λ) with finite eigenvalue λ ∈ C if and only
if Λ ⊗ y is a left eigenvector for L(λ) with eigenvalue λ. If in addition P is regular and L ∈ L2(P )
is a linearization for P , then every left eigenvector of L with finite eigenvalue λ is of the form Λ⊗ y
for some left eigenvector y of P .

Just as for Theorem 3.8, there is an analogous result valid for the eigenvalue ∞ that can be found
in section 4.

In this section we have seen that pencils in L1(P ) and L2(P ) closely resemble the companion
forms, and have eigenvectors that are simply related to those of P . Thus one can reasonably view
L1(P ) and L2(P ) as large classes of “potential” linearizations for P (λ). So far, though, we have not
shown any of these “good candidates” to actually be linearizations. It is to this question that we
turn next.

4. When is a Pencil in L1(P ) a Linearization?. It is clear that not all pencils in the spaces
L1(P ) and L2(P ) are linearizations of P — consider, for example, any pencil in L1(P ) with right
ansatz vector v = 0. In this section we focus on L1(P ), and obtain criteria for deciding if a pencil
from L1(P ) is a linearization for P or not. We show, for example, that for any given L ∈ L1(P ) there
is typically a condition (specific to L) on the coefficient matrices of P that is needed to guarantee
that L is actually a linearization for P . Specific examples of such “linearization conditions” can be
found later in this section and in the tables in section 5. Analogs of all the results in this section
also hold for L2(P ), with very similar arguments.

We begin with a result concerning the special case of the right ansatz (3.4) considered in Corol-
lary 3.7. Note that P is not assumed here to be regular.

Theorem 4.1. Suppose P (λ) =
∑k

i=0 λiAi with Ak 6= 0 is an n × n matrix polynomial, and
L(λ) = λX + Y ∈ L1(P ) has nonzero right ansatz vector v = αe1, so

L(λ) · (Λ ⊗ In) = αe1 ⊗ P (λ) . (4.1)

Partition X and Y as in Corollary 3.7 :

X =

n (k−1)n


αAk X12

0 −Z




n

(k−1)n
and Y =

(k−1)n n


Y11 αA0

Z 0




n

(k−1)n
. (4.2)

Then Z nonsingular ⇒ L(λ) is a strong linearization of P (λ).
Proof. We show first that L(λ) is a linearization of P (λ). Begin the reduction of L(λ) to

diag(P (λ), I(k−1)n) using the unimodular matrix polynomials T (λ) and G(λ) defined in (2.4). In
the product L(λ)G(λ), clearly the first k − 1 block-columns are the same as those of L(λ); because
the last block-column of G(λ) is Λ⊗ I , we see from (4.1) that the last block-column of L(λ)G(λ) is
αe1 ⊗ P (λ). Partitioning Z into block columns [Z1 Z2 . . . Zk−1] where Zi ∈ F(k−1)n×n, we have

L(λ) = λX + Y = λ

[
αAk X12

0 −Z

]
+

[
Y11 αA0

Z 0

]

=

[
∗ ∗ . . . ∗ ∗
Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) −λZk−1

]
,
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and so

L(λ)G(λ) =

[
∗ ∗ . . . ∗ αP (λ)

Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) 0

]
.

Further transformation by block-column operations yields

L(λ) G(λ)




I λI

I
I

. . .
I







I
I λI

I
. . .

I


 · · ·




I
. . .

I λI

I
I




︸ ︷︷ ︸
= T (λ)

=

[
∗ αP (λ)

Z 0

]
.

Scaling and block-column permutations on L(λ)T (λ) show that there exists a unimodular matrix
polynomial F (λ) such that

L(λ)F (λ) =

[
P (λ) W (λ)

0 Z

]

for some matrix polynomial W (λ). (Note that we have reached this point without any assumptions
about Z.) Now if Z is nonsingular, then we obtain

[
I −W (λ)Z−1

0 Z−1

]
L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
,

i.e., L(λ) is a linearization for P (λ).
To show that L(λ) is also a strong linearization for P (λ), it remains to show that revL(λ) =

λY + X is a linearization for revP (λ). Now it would be nice if revL(λ) was a pencil in L1(revP ),
but it is not; however, a small modification of revL(λ) is in L1(revP ). Observe that λk−1 ·Λ(1/λ) =
[1, λ, . . . , λk−2, λk−1]T = RkΛ, where Rk denotes the k × k reverse identity matrix. Thus replacing
λ by 1/λ in (4.1) and multiplying both sides by λk yields

λL(1/λ) ·
(
λk−1Λ(1/λ) ⊗ I

)
= αe1 ⊗ λkP (1/λ) ,

or equivalently revL(λ) ·
(
(RkΛ) ⊗ I

)
= αe1 ⊗ revP (λ). Thus, L̂(λ) := revL(λ) · (Rk ⊗ I) satisfies

L̂(λ) · (Λ ⊗ I) = αe1 ⊗ revP (λ), (4.3)

and so L̂ ∈ L1(revP ). (Observe that L̂(λ) is just revL(λ) = λY + X with the block-columns of

Y and X arranged in reverse order.) Since L̂ and revL are equivalent pencils, the proof will be

complete once we show that λX̂ + Ŷ := L̂(λ) is a linearization for revP (λ). But X̂ = Y · (Rk ⊗ I)

and Ŷ = X · (Rk ⊗ I), and hence from (4.2) it follows that

X̂ =

[
αA0 X̂12

0 −Ẑ

]
and Ŷ =

[
Ŷ11 αAk

Ẑ 0

]
,

where Ẑ = −Z · (Rk−1 ⊗ I). Clearly Ẑ is nonsingular if Z is, and so by the part of the theorem that

has already been proved, L̂ (and therefore also revL) is a linearization for revP (λ).
Remark 4.2. The fact (first proved in [4]) that the first companion form of any polynomial is

always a strong linearization is a special case of Theorem 4.1.
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When a matrix polynomial P (λ) is regular, then it is easy to see from Definition 2.1 that any
linearization for P (λ) must also be regular. The next result shows something rather surprising:
when a pencil L is in L1(P ) this minimal necessary condition of regularity is actually sufficient to
guarantee that L is a linearization for P . This result serves to emphasize just how close a pencil is
to being a linearization for P , even a strong linearization for P , once it satisfies the ansatz (3.4).

Theorem 4.3 (Strong Linearization Theorem).
Let P (λ) be a regular matrix polynomial and let L(λ) ∈ L1(P ). Then the following statements are
equivalent.

(i) L(λ) is a linearization for P (λ).
(ii) L(λ) is a regular pencil.
(iii) L(λ) is a strong linearization for P (λ).

Proof. “(i) ⇒ (ii)”: If L(λ) is a linearization for P (λ), then there exist unimodular matrix
polynomials E(λ), F (λ), such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

Thus the regularity of P (λ) implies the regularity of L(λ).

“(ii) ⇒ (iii)”: Since L(λ) ∈ L1(P ) we know that L(λ) · (Λ ⊗ In) = v ⊗ P (λ) for some v ∈ Fk. But
L(λ) is regular, so v is nonzero. Let M ∈ Fk×k be any nonsingular matrix such that Mv = αe1.

Then the regular pencil L̃(λ) := (M ⊗ In) · L(λ) is in L1(P ) with right ansatz vector αe1, since

L̃(λ)(Λ ⊗ In) = (M ⊗ In)L(λ)(Λ ⊗ In) = (M ⊗ In)(v ⊗ P (λ))

= Mv ⊗ P (λ)

= αe1 ⊗ P (λ) .

Hence by Corollary 3.7 the matrices X̃ and Ỹ in L̃(λ) := λX̃ + Ỹ have the forms

X̃ =

n (k−1)n


αAk X̃12

0 −Z̃




n

(k−1)n
and Ỹ =

(k−1)n n


Ỹ11 αA0

Z̃ 0




n

(k−1)n
.

Now if Z̃ was singular, there would exist a nonzero vector w ∈ F(k−1)n such that wT Z̃ = 0. But this
would imply that

[
0 wT

]
(λX̃ + Ỹ ) ≡ 0

for all λ ∈ F, contradicting the regularity of L̃(λ). Thus Z̃ is nonsingular, and so by Theorem 4.1

we know that L̃(λ), and hence also L(λ), is a strong linearization for P (λ).

“(iii) ⇒ (i)” is trivial.

Now recall that a vector x ∈ Fn is a right (left) eigenvector for a polynomial P with eigenvalue
∞ if and only if x is a right (left) eigenvector for revP with eigenvalue 0. Translating statements
about infinite eigenvalues to ones about zero eigenvalues allows us to use Theorems 3.8, 3.14, and
4.3 to extend the eigenvector recovery properties of L1(P ) and L2(P ) to the eigenvalue ∞.

12



Theorem 4.4 (Eigenvector Recovery at ∞).
Let P (λ) be an n × n matrix polynomial of degree k, and L(λ) any pencil in L1(P ) (resp., L2(P ))
with nonzero right (left) ansatz vector v. Then x ∈ Cn is a right (left) eigenvector for P (λ) with
eigenvalue ∞ if and only if e1 ⊗ x is a right (left) eigenvector for L(λ) with eigenvalue ∞. If in
addition P is regular and L ∈ L1(P ) (resp., L ∈ L2(P )) is a linearization for P , then every right
(left) eigenvector of L with eigenvalue ∞ is of the form e1 ⊗ x for some right (left) eigenvector x of
P with eigenvalue ∞.

Proof. We give the proof only for right eigenvectors of L ∈ L1(P ) here. The argument for
recovery of left eigenvectors of L ∈ L2(P ) is essentially the same, given the analogs of Theorem 4.1
and Theorem 4.3 for L2(P ).

For any L(λ) define L̂(λ) := revL(λ) · (Rk ⊗ I). Then the argument used in Theorem 4.1 to

obtain (4.3) shows that L ∈ L1(P ) ⇒ L̂ ∈ L1(revP ), with the same nonzero right ansatz vector
v. By Theorem 3.8 we know that x is a right eigenvector for revP with eigenvalue 0 if and only if
Λ ⊗ x = ek ⊗ x is a right eigenvector for L̂ with eigenvalue 0. But ek ⊗ x is a right eigenvector for
L̂ if and only if e1 ⊗ x = (Rk ⊗ I)(ek ⊗ x) is a right eigenvector for revL, both with eigenvalue 0.
This establishes the first part of the theorem.

If P is regular and L ∈ L1(P ) is a linearization for P , then by Theorem 4.3 L̂ ∈ L1(revP ) is a

linearization for revP . Theorem 3.8 then implies that every right eigenvector of L̂ with eigenvalue
0 is of the form ek ⊗ x, where x is a right eigenvector of revP with eigenvalue 0; equivalently every
right eigenvector of revL with eigenvalue 0 is of the form e1 ⊗x for some right eigenvector x of revP
with eigenvalue 0. This establishes the second part of the theorem.

4.1. Linearization Conditions. A useful by-product of the proof of Theorem 4.3 is a simple
procedure to generate a symbolic “linearization condition” for any given pencil L ∈ L1(P ), i.e., a
necessary and sufficient condition (in terms of the data in P ) for L to be a linearization for P . We
describe this procedure and then illustrate with some examples.

Procedure to determine the linearization condition for a pencil in L1(P ).

1) Suppose P (λ) is a regular matrix polynomial and L(λ) = λX + Y ∈ L1(P ) has
nonzero right ansatz vector v ∈ Fk, i.e., L(λ) · (Λ ⊗ In) = v ⊗ P (λ).

2) Select any nonsingular matrix M such that Mv = αe1.
3) Apply the corresponding block-transformation M ⊗ In to L(λ) to produce

L̃(λ) := (M ⊗ In)L(λ), which must be of the form

L̃(λ) = λX̃ + Ỹ = λ

[
X̃11 X̃12

0 −Z

]
+

[
Ỹ11 Ỹ12

Z 0

]
,

where X̃11 and Ỹ12 are n × n. Since only Z is of interest here, it suffices to form
just Ỹ = (M ⊗ In)Y .

4) Extract det Z 6= 0 , the linearization condition for L(λ).

Note that this procedure can readily be implemented as a numerical algorithm to check if a pencil
in L1(P ) is a linearization: choose M to be unitary, e.g., a Householder reflector, then use a rank
revealing factorization such as the QR-decomposition with column pivoting or the singular value
decomposition to check if Z is nonsingular.

Example 4.5. Consider the general quadratic polynomial P (λ) = λ2A + λB + C (assumed to
be regular) and the following pencils in L1(P ):

L1(λ) = λ

[
A B + C
A 2B − A

]
+

[
−C C

A − B C

]
, L2(λ) = λ

[
0 −B
A B − C

]
+

[
B 0
C C

]
.
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Since
[
A B + C
A 2B − A

]
�→

[
−C C

A − B C

]
=

[
A B C
A B C

]
,

we have L1(λ) ∈ L1(P ) with right ansatz vector v =
[

1 1
]T

. Subtracting the first entry from the
second reduces v to e1, and the corresponding block-row-operation on Y yields

Ỹ =

[
−C C

A − B + C 0

]
.

Hence Z = A − B + C, and det(A − B + C) = det P (−1) 6= 0 is the linearization condition. Thus
L1(λ) is a linearization for P if and only if λ = −1 is not an eigenvalue of P . On the other hand,
for L2(λ) we have

[
0 −B
A B − C

]
�→

[
B 0
C C

]
=

[
0 0 0
A B C

]
,

so L2(λ) ∈ L1(P ) with v =
[

0 1
]T

. Permuting the entries of v gives e1, and applying the
analogous block row-permutation to Y yields

Ỹ =

[
C C
B 0

]
.

Thus Z = Ỹ21 = B, and so det B 6= 0 is the linearization condition for L2(λ).
The next example shows that the linearization condition for a pencil in L1(P ) may depend on

some nonlinear combination of the data in P , and thus its meaning may not be so easy to interpret.
Example 4.6. Consider the general cubic polynomial P (λ) = λ3A + λ2B + λC + D (again

assumed to be regular) and the pencil

L3(λ) = λX + Y = λ




A 0 2C
−2A −B − C D − 4C

0 A −I


 +




B −C D
C − B 2C − D −2D
−A I 0




in L1(P ). Since

X �→Y =
[
1 −2 0

]T
⊗

[
A B C D

]
,

we have v =
[
1 −2 0

]T
. Adding twice the first block-row of Y to the second block-row of Y gives

Z =

[
B + C −D
−A I

]
,

and hence the linearization condition det Z = det(B + C −DA) 6= 0. (Recall that for n×n blocks
W, X, Y, Z such that Y and Z commute, we have det [ W X

Y Z ] = det(WZ − XY ). See [11].)
We have seen in this section that each pencil in L1(P ) has its own particular condition on the

coefficient matrices of P that must be satisfied in order for the pencil to be a linearization for P .
From this point of view it seems conceivable that there could be polynomials P for which very few
of the pencils in L1(P ) are actually linearizations for P . However, the following result shows that
this never happens; when P is regular the “bad” pencils in L1(P ) always form a very sparse subset
of L1(P ).

14



Theorem 4.7 (Linearizations are Generic in L1(P )).
For any regular n × n matrix polynomial P (λ) of degree k, almost every pencil in L1(P ) is a lin-
earization for P (λ). (Here by “almost every” we mean for all but a closed, nowhere dense set of
measure zero in L1(P ).)

Proof. Let d = dim L1(P ) = k + (k − 1)kn2, and let L1(λ), L2(λ), . . . , Ld(λ) be any fixed basis
for L1(P ). Since any L(λ) ∈ L1(P ) can be uniquely expressed as a linear combination

L(λ) = β1L1(λ) + β2L2(λ) + · · · + βdLd(λ) ,

we can view det L(λ) as a polynomial in λ whose coefficients c0, c1, c2, . . . , ckn are each polynomial
functions of β1, . . . , βd, that is ci = ci(β1, . . . , βd).

Now by Theorem 4.3 we know that L(λ) ∈ L1(P ) fails to be a linearization for P (λ) if and
only if det L(λ) ≡ 0, equivalently if all the coefficients ci are zero. Thus the subset of pencils in
L1(P ) that are not linearizations for P (λ) can be characterized as the common zero set Z of the
polynomials

{
ci(β1, β2, . . . , βd) : 0 ≤ i ≤ kn

}
, i.e. as an algebraic subset of F

d.
Since proper algebraic subsets of Fd are well known to be closed, nowhere dense subsets of

measure zero, the proof will be complete once we show that Z is a proper subset of Fd, or equivalently,
that there is a pencil in L1(P ) that is a linearization for P . But this is immediate: the first companion
form C1(λ) for P (λ) is in L1(P ) and is always a linearization for P (see [5] or Remark 4.2).

Although L1(P ) and L2(P ) contain a large supply of linearizations for P , there do exist simple
linearizations for P that are neither in L1(P ) nor in L2(P ). We illustrate this with a recent example
from [1].

Example 4.8. Consider the cubic matrix polynomial P (λ) = λ3A3 + λ2A2 + λA1 + A0. The
pencil

L(λ) = λ




0 A3 0
I A2 0
0 0 I


 +




−I 0 0
0 A1 A0

0 −I 0




is shown in [1] to be a linearization for P . Using shifted sums it is easy to see that L(λ) is in neither
L1(P ) nor L2(P ).

4.2. A Generalization of the Right Ansatz. In the context of numerical methods for the
solution of eigenvalue problems it is common practice to use polynomial or rational transformations
(shifts or shift-and-invert) of the spectrum to accelerate convergence of the iterative methods, [6],
[16], [17]. In view of this it is useful to generalize the ansatz (3.4) and the accompanying linearization
condition in a slightly different direction. For any basis π0, π1, . . . , πk−1 for the space of scalar
polynomials of degree less than or equal to k − 1, let us define Λπ := [π0(λ), π1(λ), . . . , πk−1(λ)]T

and let Π be the unique (nonsingular) constant matrix such that Λπ = ΠΛ. (Recall again that
Λ := [λk−1, λk−2, . . . , λ, 1]T .) Then we have:

Proposition 4.9. Let P (λ) =
∑k

i=0 λiAi be a (not necessarily regular) n×n matrix polynomial
with Ak 6= 0, and let L(λ) = λX + Y be any kn × kn pencil such that L(λ) satisfies the modified
ansatz

L(λ) · (Λπ ⊗ In) = v ⊗ P (λ) (4.4)

for some nonzero v ∈ Fk. Let M be any nonsingular matrix such that Mv = e1. If the lower-left
(k − 1)n × (k − 1)n submatrix Z of Ỹ in

L̃(λ) = λX̃ + Ỹ := (M ⊗ In) · L(λ) · (Π ⊗ In)

is nonsingular then L(λ) is a strong linearization for P (λ).
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Proof. Since L(λ) and L̃(λ) are equivalent pencils, one is a linearization for P (λ) if and only if

the other is. But L̃(λ) is easily seen to satisfy L̃(λ) · (Λ ⊗ In) = e1 ⊗ P (λ), and so by Theorem 4.1
the result follows.

Note that the modified ansatz (4.4) still permits recovery of the eigenvectors of the original
matrix polynomial P (λ) from the eigenvectors of the linearization.

Remark 4.10. With the assumptions and notation as in Proposition 4.9 assume in addition
that P (λ) is regular. If x is an eigenvector of L(λ) associated with the eigenvalue λ0, then the
vector that is formed by the last n components of the vector (Π−1 ⊗ In) ·x is an eigenvector of P (λ)
associated with the eigenvalue λ0.

5. Double Ansatz Spaces. So far we have constructed two large vector spaces of pencils
L1(P ) and L2(P ) for any given matrix polynomial P (λ), and shown that when P is regular, almost
all of these pencils are linearizations for P . Indeed, these spaces are so large that for any choice of
(right or left) ansatz vector, there are many degrees of freedom available for choosing a potential
linearization in L1(P ) or L2(P ) with the given ansatz vector (see Theorem 3.5). This suggests that
it might be possible to identify special subspaces of pencils in L1(P ) or L2(P ) with additional useful
properties.

Recall that one of the key advantages of linearizations in L1(P ) is that right eigenvectors of P
are easily recovered from right eigenvectors of the linearization. L2(P ) offers a similar advantage
for recovery of left eigenvectors. Thus it seems natural to consider pencils in the intersection of
L1(P ) and L2(P ); for these pencils we can simply relate both the right and left eigenvectors of the
pencil to those of the original polynomial P . This simultaneous eigenvector recovery property is
particularly important in the investigation of the conditioning of linearizations [7]. Therefore we
make the following definition.

Definition 5.1 (Double ansatz spaces).
For any n × n matrix polynomial P of degree k, the double ansatz space of P is

DL(P ) := L1(P ) ∩ L2(P ) ,

i.e., the set of kn × kn pencils L(λ) that simultaneously satisfy a “right ansatz”

L(λ) · (Λ ⊗ I) = v ⊗ P (λ) for some v ∈ F
k (5.1)

and a “left ansatz”

(ΛT ⊗ I) · L(λ) = wT ⊗ P (λ) for some w ∈ F
k . (5.2)

The rest of this paper is devoted to developing some of the basic properties of DL(P )-spaces;
in subsequent papers [7], [8], [12] additional aspects are explored. In this section we characterize
DL(P ), and show how all the pencils in DL(P ) may be constructed. In section 6 we reconsider the
“linearization condition” discussed in section 4. As illustrated by Example 4.6, the intrinsic meaning
of this condition can sometimes be rather obscure. However, we will see that for pencils in DL(P )
this condition can always be expressed in a way that makes its meaning transparent.

A priori, the right and left ansatz vectors of a pencil in DL(P ) may be any pair v, w ∈ Fk.
However, it turns out that only pairs with v = w can ever be realized by a DL(P )-pencil. To show
this, we first need to determine when the equations X �→Y = S and X �↓ Y = T can be solved
simultaneously for X and Y .
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Proposition 5.2. Let S = [Sij ] and T = [Tji] be block matrices of size kn × (k + 1)n and
(k + 1)n × kn, respectively, where Sij , Tji ∈ Fn×n for i = 1, . . . , k and j = 1, . . . , k + 1. Then there
exist block k × k matrices X = [Xij ], Y = [Yij ] with blocks Xij , Yij ∈ Fn×n for i, j = 1, . . . k such
that

X �→Y = S and X �↓ Y = T (5.3)

if and only if for j = 1, . . . , k the blocks of S and T satisfy the compatibility conditions

Tjj +

j−1∑

µ=1

(Tµ,2j−µ − Sµ,2j−µ) = Sjj +

j−1∑

µ=1

(S2j−µ,µ − T2j−µ,µ) (5.4)

and

j∑

µ=1

(Sµ,2j+1−µ − Tµ,2j+1−µ) =

j∑

µ=1

(T2j+1−µ,µ − S2j+1−µ,µ) . (5.5)

(Here, Sν,η = 0 = Tη,ν whenever (ν, η) 6∈ {1, . . . , k}×{1, . . . , k + 1}.) If (5.3) has a solution then X
and Y are uniquely determined by the formulas

Xij = Tij +
i−1∑

µ=1

(Tµ,j+i−µ − Sµ,j+i−µ) , Yij =
i∑

µ=1

(Sµ,j+i+1−µ − Tµ,j+i+1−µ) , (5.6)

Xji = Sji +

i−1∑

µ=1

(Sj+i−µ,µ − Tj+i−µ,µ) , Yji =

i∑

µ=1

(Tj+i+1−µ,µ − Sj+i+1−µ,µ) , (5.7)

for i, j = 1, . . . , k and j ≥ i.

Proof. “⇒”: Assume that (5.3) holds. First, we show by induction on k that the formulas (5.6)–
(5.7) hold.

“k = 1”: In this case, we have

X �→Y = S =
[

S11 S12

]
, X �↓ Y = T =

[
T11

T21

]

and hence X = S11 = T11 and Y = S12 = T21 which coincides with (5.6)–(5.7).

“k − 1 ⇒ k”: By the definition of the column and row shifted sums, (5.3) implies

Yik = Si,k+1 and Yki = Tk+1,i (5.8)

as well as Xji +Yj,i−1 = Sji and Xij +Yi−1,j = Tij for j = 1, . . . , k and i = 2, . . . , k , which together
with (5.8) gives

Xki = Ski − Tk+1,i−1 and Xik = Tik − Si−1,k+1 (5.9)

for i = 1, . . . , k. (Remember that S0,k+1 = 0 = Tk+1,0 by convention.) In order to be able to use
the induction hypothesis, let us partition X and Y as

X =




X1k

X̃
...

Xk−1,k

Xk1 . . . Xk,k−1 Xkk


 , Y =




Y1k

Ỹ
...

Yk−1,k

Yk1 . . . Yk,k−1 Ykk


 ,
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with (n − 1)k × (n − 1)k matrices X̃ and Ỹ . Then we obtain

X̃ �→Ỹ =




S11 . . . S1,k−1 S1k − X1k

S21 . . . S2,k−1 S2k − X2k

...
. . .

...
...

Sk−1,1 . . . Sk−1,k−1 Sk−1,k − Xk−1,k


 (5.10)

=




S11 . . . S1,k−1 S1k − T1k

S21 . . . S2,k−1 S2k − T2k + S1,k+1

...
. . .

...
...

Sk−1,1 . . . Sk−1,k−1 Sk−1,k − Tk−1,k + Sk−2,k+1


 =: S̃ . (5.11)

Analogously,

X̃ �↓ Ỹ =




T11 T12 . . . T1,k−1

...
...

. . .
...

Tk−1,1 Tk−1,2 . . . Tk−1,k−1

Tk1 − Sk1 Tk2 − Sk2 + Tk+1,1 . . . Tk,k−1 − Sk,k−1 + Tk+1,k−2




︸ ︷︷ ︸
=: eT

. (5.12)

Writing S̃ = [S̃ij ] and T̃ = [T̃ij ] with n × n blocks S̃ij , T̃ij and using the induction hypothesis for

X̃ = [Xij ] and Ỹ = [Yij ] , we then obtain for i, j = 1, . . . , k − 1 and j ≥ i that

Xij = T̃ij +

i−1∑

µ=1

(T̃µ,j+i−µ − S̃µ,j+i−µ) , Yij =

i∑

µ=1

(S̃µ,j+i+1−µ − T̃µ,j+i+1−µ) , (5.13)

Xji = S̃ji +

i−1∑

µ=1

(S̃j+i−µ,µ − T̃j+i−µ,µ) , Yji =

i∑

µ=1

(T̃j+i+1−µ,µ − S̃j+i+1−µ,µ) , (5.14)

where S̃νη = 0 = T̃ην whenever (ν, η) 6∈ {1, . . . , k−1}×{1, . . . , k}. We claim that together with (5.8)
and (5.9), the formulas (5.13)–(5.14) coincide with the formulas (5.6)–(5.7). We show this in detail
for the first formula in (5.6); for the other formulas there is a similar proof that is omitted. If

j + i ≤ k, then the block forms of S̃ and T̃ given in (5.11) and (5.12) immediately yield

Xij = T̃ij +

i−1∑

µ=1

(T̃µ,j+i−µ − S̃µ,j+i−µ) = Tij +

i−1∑

µ=1

(Tµ,j+i−µ − Sµ,j+i−µ)

If j + i > k and i, j < k, then j + i − m = k for some m ≥ 1 ; using Sνη = 0 = Tην for
(ν, η) 6∈ {1, . . . , k} × {1, . . . , k + 1} we obtain

Xij = T̃ij +

i−1∑

µ=1

(T̃µ,j+i−µ − S̃µ,j+i−µ)

= T̃ij +
i−1∑

µ=m+1

(T̃µ,j+i−µ − S̃µ,j+i−µ) − S̃mk

= Tij +

i−1∑

µ=m+1

(Tµ,j+i−µ − Sµ,j+i−µ) − Smk + Tmk − Sm−1,k+1

= Tij +

i−1∑

µ=1

(Tµ,j+i−µ − Sµ,j+i−µ) .
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Finally, for i = k or j = k the statement follows immediately from (5.8) or (5.9). This concludes the
inductive proof of the formulas (5.6)–(5.7). In particular, this implies that X and Y are uniquely
determined by S and T . Note that Xii and Yii now satisfy two distinct formulas for i = 1, . . . , n.
Since both right hand sides in the formulas (5.6)–(5.7) must be equal in this case, we directly
obtain (5.4) and (5.5).

“⇐”: We have to show existence of block matrices X = [Xij ] and Y = [Yij ] such that X �→Y = S
and X �↓ Y = T . Define Xij and Yij by the formulas (5.6)–(5.7). Because of (5.4) and (5.5), then
X and Y are well defined. We will now show in detail that X �→Y = S. (The proof of X �↓ Y = T
is similar and will be omitted.) Indeed, formulas (5.6)–(5.7) imply Xj1 = Sj1 and Yik = Tik for
i, j = 1, . . . , k. Moreover, we obtain for i = 1, . . . , k and j = 2, . . . , k that

Xij + Yi,j−1 = Tij +

i−1∑

µ=1

(Tµ,j+i−µ − Sµ,j+i−µ) +

i∑

µ=1

(Sµ,j+i−µ − Tµ,j+i−µ)

= Tij + Sij − Tij = Sij

if j − 1 ≥ i , and that

Xij + Yi,j−1 = Sij +

j−1∑

µ=1

(Sj+i−µ,µ − Tj+i−µ,µ) +

j−1∑

µ=1

(Tj+i−µ,µ − Sj+i−µ,µ) = Sij

if j − 1 < i . This shows X �→Y = S and concludes the proof.

We are now in a position to show not only that any DL(P )-pencil has its right ansatz vector
equal to its left ansatz vector, but also that every v ∈ Fk is actually realized as the ansatz vector of
a pencil in DL(P ), indeed of a unique pencil in DL(P ). Note that this result does not require any
regularity assumption on P .

Theorem 5.3. Let P (λ) =
∑k

i=0 λiAi be a matrix polynomial with coefficients in Fn×n and
Ak 6= 0. Then for vectors v = (v1, . . . , vk)T and w = (w1, . . . , wk)T in Fk, there exists a kn × kn
matrix pencil L(λ) = λX + Y that simultaneously satisfies

L(λ) · (Λ ⊗ I) = v ⊗ P (λ) and (ΛT ⊗ I) · L(λ) = wT ⊗ P (λ) (5.15)

if and only if v = w. In this case, if X = [Xij ] and Y = [Yij ] are written as block matrices with
n × n blocks Xij , Yij , then X and Y are uniquely determined by v. In particular, setting v0 := 0,
vµ := 0, and Aµ := 0 ∈ Fn×n for µ < 0 or µ > k, the blocks of X and Y satisfy the formulas

Xij = vjAk+1−i +

min(i−1,j−1)∑

µ=1

(vj+i−µAk+1−µ − vµAk+1−j−i+µ), (5.16)

Yij =

min(i,j)∑

µ=1

(vµAk−j−i+µ − vj+i+1−µAk+1−µ), i, j = 1, . . . , k. (5.17)

Proof. Note that (5.15) is equivalent to X �→Y = S and X �↓ Y = T , where S = (Sij) and
T = (Tji) are block k × k matrices such that

Sij = viAk+1−j , Tji = wiAk+1−j , i = 1, . . . , k, j = 1, . . . , k + 1. (5.18)
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Then by Proposition 5.2, X and Y satisfying (5.15) exist if and only if

wjAk+1−j +

j−1∑

µ=1

(
w2j−µAk+1−µ − vµAk+1−2j+µ

)
=

vjAk+1−j +

j−1∑

µ=1

(
v2j−µAk+1−µ − wµAk+1−2j+µ

)
(5.19)

and

j∑

µ=1

(
vµAk−2j+µ − w2j+1−µAk+1−µ

)
=

j∑

µ=1

(
wµAk−2j+µ − v2j+1−µAk+1−µ

)
(5.20)

for j = 1, . . . , k. (Here v0 := w0 := 0, and for µ < 0 or µ > k, vµ := wµ := 0 and Aµ := 0 ∈ Fn×n.)
Hence, it is sufficient to prove the statement

v = w ⇐⇒ (5.19) and (5.20) are satisfied.

“⇒”: If v = w then (5.19) and (5.20) are obviously true.
“⇐”: We show vm = wm for m = 1, . . . , k by induction on m.
“m = 1”: (5.19) for j = 1 yields v1Ak = w1Ak. Since Ak 6= 0 this implies v1 = w1.
“m = 2”: (5.20) for j = 1 yields v1Ak−1 − w2Ak = w1Ak−1 − v2Ak. Since v1 = w1 and Ak 6= 0 this
implies v2 = w2.
“m − 1 ⇒ m”: Assume first that m is odd, so m = 2j − 1 for some j ≥ 2. Since by the induction
hypothesis we have vi = wi for i = 1, . . . , 2j − 2, we obtain from (5.19) that w2j−1Ak = v2j−1Ak.
This implies w2j−1 = v2j−1 because Ak 6= 0. Next assume that m is even, i.e., m = 2j for some
j ≥ 2. Again, since vi = wi for i = 1, . . . , 2j − 1 by the induction hypothesis, we obtain from (5.20)
that w2jAk = v2jAk. This implies w2j = v2j because Ak 6= 0.

This concludes the induction. Hence we have v = w.
The uniqueness of X and Y and the formulas (5.16) and (5.17) follow directly from Proposi-

tion 5.2, the formulas (5.6) and (5.7), and (5.18).
In light of the results in Theorem 5.3, we no longer need to refer separately to the right and left

ansatz vectors of a pencil in DL(P ). It suffices to say the ansatz vector v of L ∈ DL(P ), and it is to
be understood that v plays both roles.

We can also concisely summarize the result of Theorem 5.3 in a slightly different way. Viewing
DL(P ) as a special subspace of L1(P ), consider the multiplication map M (introduced in the proof
of Theorem 3.5) restricted to the subspace DL(P ). Then the following is an immediate corollary of
Theorem 5.3.

Corollary 5.4. For any polynomial P , the map DL(P )
M
−→ VP is an isomorphism.

Thus once an ansatz vector v has been chosen, a pencil from DL(P ) is uniquely determined and can
be computed using the formulas of Theorem 5.3.

Another significant property of DL(P ) is worth mentioning here. A matrix polynomial is sym-
metric when all its coefficient matrices are symmetric. For symmetric P , a simple argument shows
that every pencil in DL(P ) is also symmetric: L ∈ DL(P ) with ansatz vector v implies that LT

is also in DL(P ) with the same ansatz vector v, and then L = LT follows from the uniqueness
statement of Theorem 5.3.

Examples of pencils in DL(P ) for k = 2 and k = 3 may be found in Tables 5.1 and 5.2. Using
shifted sums one easily verifies that these examples are indeed in both L1(P ) and L2(P ), with the
same right and left ansatz vector v. Note that if A, B, C, and D are symmetric, then so are all the
pencils in these examples. Symmetric linearizations are studied in more detail in [8].
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Table 5.1
Some pencils in DL(P ) for the general quadratic P (λ) = λ2A + λB + C. Linearization condition found using

procedure in section 4.1.

v L(λ) ∈ DL(P ) for given v Linearization condition

»

1
0

–

λ

»

A 0
0 −C

–

+

»

B C

C 0

–

det(C) 6= 0

»

0
1

–

λ

»

0 A

A B

–

+

»

−A 0
0 C

–

det(A) 6= 0

»

1
1

–

λ

»

A A

A B − C

–

+

»

B − A C

C C

–

det(A − B + C) = det[P (−1)] 6= 0

»

α

β

–

λ

»

αA βA

βA βB − αC

–

+

»

αB − βA αC

αC βC

–

det(β2A − αβB + α2C) 6= 0 ;

equivalently, det[P (− β

α
)] 6= 0 .

Perhaps the most important property of the space DL(P ) is that the linearization condition for
each pencil in DL(P ) can be directly linked to its ansatz vector v. Establishing this link is the topic
of the next section.

6. The Eigenvalue Exclusion Theorem. In this section we see how the linearization condi-
tion of any pencil L ∈ DL(P ) may be expressed in terms of the ansatz vector v that defines L. For
example, consider the cubic polynomial P (λ) = λ3A + λ2B + λC + D and the pencil

L(λ) = λ




A 0 −A
0 −A − C −B − D

−A −B − D −C


 +




B A + C D
A + C B + D 0

D 0 −D




in DL(P ) with ansatz vector v =
[

1 0 −1
]T

. Using the procedure in section 4.1 one easily finds
that

det

[
A + C B + D
B + D A + C

]
6= 0 (6.1)

is the linearization condition for L(λ). (See also Table 5.2.) Now it is not immediately clear what
the meaning of this condition is, or even if it has any intrinsic meaning at all. However, the identity

[
0 I
I I

][
A + C B + D
B + D A + C

][
I 0
−I I

]
=

[
−A + B − C + D A + C

0 A + B + C + D

]
=

[
P (−1) A + C

0 P (+1)

]

shows that condition (6.1) is equivalent to saying that neither −1 nor +1 is an eigenvalue of the
matrix polynomial P (λ). Thus in this example we can reinterpret the linearization condition from
section 4.1 as an “eigenvalue exclusion” condition.

But why do these particular eigenvalues need to be excluded? And what role, if any, does the

ansatz vector v =
[

1 0 −1
]T

play here? Observe that if we interpret the components of v as
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Table 5.2
Some pencils in DL(P ) for the general cubic P (λ) = λ3A + λ2B + λC + D. Linearization condition found using

procedure in section 4.1.

v L(λ) ∈ DL(P ) for given v Linearization condition

2

4

1
0
0

3

5 λ

2

4

A 0 0
0 −C −D

0 −D 0

3

5 +

2

4

B C D

C D 0
D 0 0

3

5 det D 6= 0

2

4

0
1
0

3

5 λ

2

4

0 A 0
A B 0
0 0 −D

3

5 +

2

4

−A 0 0
0 C D

0 D 0

3

5 det A · det D 6= 0

2

4

0
0
1

3

5 λ

2

4

0 0 A

0 A B

A B C

3

5 +

2

4

0 −A 0
−A −B 0
0 0 D

3

5 det A 6= 0

2

4

1
0
−1

3

5 λ

2

4

A 0 −A

0 −A − C −B − D

−A −B − D −C

3

5 +

2

4

B A + C D

A + C B + D 0
D 0 −D

3

5 det
h

A+C B+D
B+D A+C

i

6= 0

2

4

1
1
1

3

5 λ

2

4

A A A

A A + B − C B − D

A B − D C − D

3

5 +

2

4

B − A C − A D

C − A C + D − B D

D D D

3

5 det
h

C−B A−B+D
A−B+D A−C+D

i

6= 0

the coefficients of a scalar polynomial then we obtain x2 −1, whose roots are exactly the eigenvalues
that have to be excluded in order to guarantee that L(λ) is a linearization for P (λ). The primary
goal of this section is to show that this is not merely a coincidence, but rather an instance of a
general phenomenon described by the “eigenvalue exclusion theorem”.

The main technical result needed to prove this theorem is an explicit formula for the determinant
of a pencil L(λ) in DL(P ). To develop this formula we begin with some notation to be used
throughout the remainder of this section. As before, our n × n matrix polynomial is P (λ) =∑k

i=0 λiAi with nonzero leading coefficient Ak. The pencil L(λ) ∈ DL(P ) under consideration has
ansatz vector v = [v1, v2, . . . , vk]T . The scalar polynomial associated with the vector v is defined as
follows.

Definition 6.1 (v-polynomial).
To a vector v = [v1, v2, . . . , vk]T ∈ Fk we associate the scalar polynomial

p(x ; v) = v1x
k−1 + v2x

k−2 + · · · + vk−1x + vk ,

and refer to it as the “ v-polynomial” of the vector v. We also adopt the convention that p(x ; v) has
a root at ∞ whenever v1 = 0.

To aid in describing the proof of Theorem 6.6, we also introduce the notion of the “Horner shifts”
of a polynomial.

Definition 6.2 (Horner shifts).
For any polynomial p(x) = anxn +an−1x

n−1 + · · ·+a1x+a0 and 0 ≤ ` ≤ n , the “degree ` Horner
shift of p(x)” is p`(x) := anx` + an−1x

`−1 + · · · + an−`+1x + an−` .
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Remark 6.3. The polynomials in Definition 6.2 satisfy the recurrence relation

p0(x) = an,

p`+1(x) = xp`(x) + an−`−1 for 0 ≤ ` ≤ n − 1,

pn(x) = p(x) ,

and are precisely the polynomials appearing in Horner’s method for evaluating the polynomial p(x).
We have seen in Theorem 5.3 that L(λ) ∈ DL(P ) is uniquely determined by the vector v and

the polynomial P , so it is not surprising that one can also specify the columns of L(λ) in terms of
this data. This is done in the next lemma, where a block-column-wise description of L(λ) is given.
In this description we make extensive use of the standard k× k nilpotent Jordan block N from (2.2)
in the matrix N ⊗ I , employed here as a block-shift operator.

Lemma 6.4 (Block-column structure of pencils in DL(P )).
Suppose that L(λ) = λX + Y is in DL(P ) with ansatz vector v. Partition X and Y as

X =
[

X1 X2 · · · Xk

]
and Y =

[
Y1 · · · Yk−1 Yk

]
,

where X`, Y` ∈ Fnk×n, ` = 1, . . . , k. Then with Y0 := 0, the block-columns Y` satisfy the recurrence

Y` = (N ⊗ I)(Y`−1 − v ⊗ Ak−`+1) + v`



Ak−1

...
A0


 , 1 ≤ ` ≤ k − 1, (6.2)

Yk = v ⊗ A0. (6.3)

The block-columns of X are determined by X` = −Y`−1 + v ⊗ Ak−`+1 for 1 ≤ ` ≤ k, and the
pencil L(λ) has the column-wise description

L(λ) =




Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗ A0 − λYk−1

+λv ⊗ Ak +λv ⊗ Ak−1 +λv ⊗ A2 +λv ⊗ A1


 . (6.4)

Proof. Let Y0 = [Yi0] := 0, X` = [Xi`], and Y` = [Yi`] for n × n blocks Yi0, Xi`, Yi`, where
i = 1, . . . , k. Then we obtain from (5.17) for 1 ≤ i < ` ≤ k − 1 that

Yi` =

i∑

µ=1

(vµAk−`−i+µ − v`+i+1−µAk+1−µ)

=
i+1∑

µ=1

(vµAk−`−i+µ − v`+i+1−µAk+1−µ) − vi+1Ak+1−` + v`Ak−i

= Yi+1,`−1 − vi+1Ak+1−` + v`Ak−i .

Analogously, we obtain for 1 ≤ ` ≤ i ≤ k − 1 that

Yi` =
∑̀

µ=1

(vµAk−`−i+µ − v`+i+1−µAk+1−µ)

=

`−1∑

µ=1

(vµAk−`−i+µ − v`+i+1−µAk+1−µ) + v`Ak−i − vi+1Ak+1−`

= Yi+1,`−1 − vi+1Ak+1−` + v`Ak−i .

23



Since formula (5.17) also implies Yk` = v`A0, we obtain

Y` =




Y1`

...
Yk−1,`

Yk`


 =




Y2,`−1

...
Yk,`−1

0


 −




v2Ak−`+1

...
vkAk−`+1

0


 +




v`Ak

...
v`A1

v`A0




= (N ⊗ I)(Y`−1 − v ⊗ Ak−`+1) + v`




Ak−1

...
A0




for ` = 1, . . . , k − 1. Noting that (3.6) implies Yk = v ⊗ A0 and X` + Y`−1 = v ⊗ Ak−`+1 for
` = 1, . . . , k, we immediately obtain (6.4).

Using (6.2) we can now develop a concise formula describing the action of the block-row
ΛT (x) ⊗ I on the block-column Y` , where x is a scalar variable taking values in C and ΛT (x) :=[

xk−1 xk−2 . . . x 1
]
. This formula will be used repeatedly and plays a central role in the

proof of Theorem 6.6. (Note that ΛT (x)v is the same as the scalar v-polynomial p(x ; v).)

Lemma 6.5. Suppose that L(λ) ∈ DL(P ) with ansatz vector v, and p(x ; v) is the v-polynomial
of v. Let Y` denote the `th block column of Y in L(λ) = λX + Y , where 1 ≤ ` ≤ k − 1. Then

(
ΛT (x) ⊗ I

)
Y` = p`−1(x ; v)P (x) − x p(x ; v)P`−1(x), (6.5)

where p`−1(x ; v) and P`−1(λ) are the degree ` − 1 Horner shifts of p(x ; v) and P (λ), respectively.

Proof. The proof will proceed by induction on ` . First note that for the k × k nilpotent Jordan
block N , it is easy to check that ΛT (x)N =

[
0 xk−1 · · · x

]
= xΛT (x) − xkeT

1 .

` = 1 : Using (6.2) we have

(
ΛT (x) ⊗ I

)
Y1 =

(
ΛT (x) ⊗ I

)

v1



Ak−1

...
A0


 − (N ⊗ I)(v ⊗ Ak)


 .

Simplifying this gives

(
ΛT (x) ⊗ I

)
Y1 = v1

(
P (x) − xkAk

)
−

(
ΛT (x)N ⊗ I

)
(v ⊗ Ak)

= v1P (x) − v1x
kAk −

((
xΛT (x) − xkeT

1

)
v ⊗ Ak

)

= p0(x ; v)P (x) − v1x
kAk −

(
xΛT (x)v

)
Ak +

(
xkeT

1 v
)
Ak

= p0(x ; v)P (x) − v1x
kAk − x p(x ; v)Ak + v1x

kAk

= p0(x ; v)P (x) − x p(x ; v)P0(x) ,

which establishes (6.5) for ` = 1. The induction hypothesis is now

` − 1 :
(
ΛT (x) ⊗ I

)
Y`−1 = p`−2(x ; v)P (x) − x p(x ; v)P`−2(x) .
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` : Starting again with (6.2) we have

(
ΛT (x) ⊗ I

)
Y` =

(
ΛT (x) ⊗ I

)

(N ⊗ I)(Y`−1 − v ⊗ Ak−`+1) + v`




Ak−1

...
A0







=
(
ΛT (x)N ⊗ I

)
(Y`−1 − v ⊗ Ak−`+1) + v`

(
ΛT (x) ⊗ I

)


Ak−1

...
A0




=
((

xΛT (x) − xkeT
1

)
⊗ I

)
(Y`−1 − v ⊗ Ak−`+1) + v`

(
P (x) − xkAk

)

= x
(
ΛT (x) ⊗ I

)
Y`−1 − xk

(
eT
1 ⊗ I

)
Y`−1 −

(
xΛT (x)v

)
Ak−`+1

+ v1x
kAk−`+1 + v` P (x) − v` xkAk .

Note that
(
eT
1 ⊗ I

)
Y`−1 is the top most block in Y`−1 , and is equal to v1Ak−`+1 − v`Ak by (5.17).

Finally, invoking the induction hypothesis gives
(
ΛT (x) ⊗ I

)
Y` = x p`−2(x ; v)P (x) − x2

p(x ; v)P`−2(x) − v1x
kAk−`+1 + v` xkAk

− x p(x ; v)Ak−`+1 + v1x
kAk−`+1 + v` P (x) − v` xkAk

=
(
x p`−2(x ; v) + v`

)
P (x) − x p(x ; v)

(
xP`−2(x) + Ak−`+1

)

= p`−1(x ; v)P (x) − x p(x ; v)P`−1(x) .

This completes the proof.
Theorem 6.6 (Determinant formula for pencils in DL(P )).

Suppose that L(λ) is in DL(P ) with nonzero ansatz vector v = [v1, v2, . . . , vk]T . Assume that v has
m leading zeroes with 0 ≤ m ≤ k − 1, so that v1 = v2 = · · · = vm = 0, vm+1 6= 0 is the first nonzero
coefficient of p(x ; v), and p(x ; v) has k−m−1 finite roots in C, counted with multiplicities, denoted
here by r1, r2, . . . , rk−m−1. Then we have

det L(λ) =





(−1)n·bk

2 c(v1)
kn det

(
P (r1)P (r2) · · ·P (rk−1)

)
det P (λ) if m = 0 ,

(−1)s(vm+1)
kn(det Ak)m det

(
P (r1) · · ·P (rk−m−1)

)
det P (λ) if m > 0 ,

(6.6)

where s = n
(
m +

⌊
m
2

⌋
+

⌊
k−m

2

⌋)
.

Proof. The proof proceeds in three parts.

Part 1 : We first consider the case when m = 0 (i.e., v1 6= 0) and p(x ; v) has k − 1 distinct finite
roots. The strategy of the proof is to reduce L(λ) by a sequence of equivalence transformations to
a point where the determinant can just be read off.

We begin the reduction process by right-multiplying L(λ) by the block-Toeplitz matrix T (λ).
Recall that T (λ) and G(λ) denote the unimodular matrix polynomials defined in (2.4), and are
related to each other via the factorization in (2.5). Using (6.4) for the description of L(λ), an
argument very similar to the one used in the proof of Theorem 4.1 yields the block-column-wise
description

L(λ)G(λ) =




Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗ P (λ)
+λv ⊗ Ak +λv ⊗ Ak−1 +λv ⊗ A2


 ,
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and hence

L(λ)T (λ) =




Y1 Y2 · · · Yk−1 v ⊗ P (λ)
+λv ⊗ P0(λ) +λv ⊗ P1(λ) +λv ⊗ Pk−2(λ)


 . (6.7)

Next we left-multiply by a constant (nonsingular) “Vandermonde-like” matrix M , built block-
row-wise from ΛT (x) := [ xk−1 xk−2 . . . x 1] evaluated at each of the roots of p(x ; v),

M :=




eT
1

ΛT (r1)
ΛT (r2)

...
ΛT (rk−1)



⊗ I =




1 0 · · · 0 0

rk−1
1 rk−2

1 · · · r1 1

rk−1
2 rk−2

2 · · · r2 1
...

... · · ·
...

...

rk−1
k−1 rk−2

k−1 · · · rk−1 1



⊗ I . (6.8)

Using Lemma 6.5 and the fact that ΛT (rj)v = p(rj ; v), we obtain that

(
ΛT (rj) ⊗ I

)(
Y` + λv ⊗ P`−1(λ)

)
=

p`−1(rj ; v)P (rj) − rj p(rj ; v)P`−1(rj) + λ p(rj ; v)P`−1(λ) .

Since r1, . . . , rk−1 are the roots of p(x ; v), the product ML(λ)T (λ) simplifies to




∗ ∗ · · · ∗ v1P (λ)

p0(r1 ; v)P (r1) p1(r1 ; v)P (r1) · · · pk−2 (r1 ; v)P (r1) 0
p0(r2 ; v)P (r2) p1(r2 ; v)P (r2) · · · pk−2 (r2 ; v)P (r2) 0

...
...

. . .
...

...
p0(rk−1 ; v)P (rk−1) p1(rk−1 ; v)P (rk−1) · · · pk−2(rk−1 ; v)P (rk−1) 0




.

This matrix now factors into




I

P (r1)
. . .

P (rk−1)




︸ ︷︷ ︸
=: W




∗ · · · ∗ v1P (λ)

p0(r1 ; v)I · · · pk−2 (r1 ; v)I 0
...

. . .
...

...
p0(rk−1 ; v)I · · · pk−2(rk−1 ; v)I 0




,

and after reversing the order of the block columns using R ⊗ I we have

ML(λ)T (λ)(R ⊗ I) = W




v1P (λ) ∗

0
... V ⊗ I
0




, (6.9)
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where

V =




pk−2(r1 ; v) · · · p1(r1 ; v) p0(r1 ; v)
...

...
...

...
pk−2(rk−1 ; v) · · · p1(rk−1 ; v) p0(rk−1 ; v)




=




(v1r
k−2
1 + · · · + vk−2r1 + vk−1) · · · (v1r1 + v2) v1

...
...

...
...

(v1r
k−2
k−1 + · · · + vk−2rk−1 + vk−1) · · · (v1rk−1 + v2) v1


 .

All that remains is to observe that V can be reduced by (det = +1) column operations to

v1 ·




rk−2
1 rk−3

1 · · · r1 1
...

...
...

...
...

rk−2
k−1 rk−3

k−1 · · · rk−1 1


 , (6.10)

so det(V ⊗ I) = v
(k−1)n
1 det M . Taking determinants on both sides of (6.9) now gives

det M · det L(λ) · det T (λ) · det(R ⊗ I) =

det
(
P (r1)P (r2) · · ·P (rk−1)

)
· det

(
v1P (λ)

)
· det(V ⊗ I) .

Since

det(R ⊗ I) = det(Rk ⊗ In) = (det Rk)n(det In)k = (−1)n·b k

2 c (6.11)

and det T (λ) = +1, this simplifies to the desired result

det L(λ) = (−1)n·bk

2 c(v1)
kn det

(
P (r1)P (r2) · · ·P (rk−1)

)
det P (λ) . (6.12)

This completes the argument for the case when m = 0 and the k− 1 roots of p(x ; v) are all distinct.

Part 2 : We now describe how to modify this argument to handle m > 0, i.e., the first nonzero
coefficient of p(x ; v) is vm+1. We will continue to assume that the k − m − 1 finite roots of p(x ; v)
are all distinct.

We start out the same way as before, post-multiplying L(λ) by T (λ) to get (6.7). But then,
instead of M in (6.8), we use all available finite roots of p(x ; v) to define the following modified
version of M :

M̂ :=




eT
1
...

eT
m+1

ΛT (r1)
...

ΛT (rk−m−1)




⊗ In =




Im+1 0

rk−1
1 rk−2

1 · · · r1 1
...

...
...

...
...

rk−1
k−m−1 rk−2

k−m−1 · · · rk−m−1 1




⊗ In . (6.13)

Now simplify the product M̂L(λ)T (λ) using Lemma 6.5 and ΛT (r`)v = p(r` ; v) = 0 as before, as
well as the fact that v1 = v2 = . . . = vm = 0, which implies that p0(x ; v), p1(x ; v), . . . , pm−1(x ; v)
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are all zero polynomials. Then we obtain

M̂L(λ)T (λ) =




0

∗
...
0

∗ · · · ∗ vm+1P (λ)

p0(r1 ; v)P (r1) · · · pk−2 (r1 ; v)P (r1) 0
...

...
...

...
p0(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0




=




0

B ∗
...
0

∗ ∗ · · · ∗ vm+1P (λ)

pm(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0

0
...

...
...

...
pm(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0




,

mn (k−m−1)n n

where the mn×mn block B can also be seen to have some further structure. First note that because
of the structure of M̂ , the block B in M̂L(λ)T (λ) is exactly the same as the corresponding block in
L(λ)T (λ) in (6.7), which is just the first mn rows of




Y1 Y2 · · · Ym

+λv ⊗ P0(λ) +λv ⊗ P1(λ) +λv ⊗ Pm−1(λ)


 .

But because v1 = v2 = . . . = vm = 0, the terms λv ⊗ Pi(λ) make no contribution to these first mn
rows. So B is the same as the first mn rows of


 Y1 Y2 · · · Ym


 .

Using the recurrence (6.2) from Lemma 6.4 with 1 ≤ ` ≤ m, we can now show that B is ac-
tually block anti-triangular. When ` = 1 we have Y1 = −Nv ⊗ Ak. Since the first m entries
of Nv are [v2, v3, . . . , vm+1]

T = [0, 0, . . . , vm+1]
T , we see that the first block-column of B is[

0, . . . , 0, −vm+1A
T
k

]T
. With ` = 2 we have Y2 = (N ⊗ I)Y1 − Nv ⊗ Ak−1, whose first mn

rows are




0
...
0

−vm+1Ak

∗



−




0
...
0
0

−vm+1Ak−1




=




0
...
0

−vm+1Ak

∗




.
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By induction, we then see that the first mn rows of Y` for 1 ≤ ` ≤ m look like

[
0, · · · , 0, −vm+1A

T
k , ∗, · · · , ∗

]T
,

with m − ` leading blocks of zeroes. Thus B has the block anti-triangular form

B = −vm+1 ·




0 · · · 0 Ak

... . .
.

. .
.

∗

0 Ak . .
. ...

Ak ∗ · · · ∗




,

and so M̂L(λ)T (λ) is equal to




0 −vm+1Ak 0

. .
.

∗
...

−vm+1Ak ∗ 0

∗ ∗ · · · ∗ vm+1P (λ)

pm (r1 ;v)P (r1) · · · pk−2 (r1 ;v)P (r1) 0

0
...

...
...

...
pm (rk−m−1 ;v)P (rk−m−1) · · · pk−2 (rk−m−1 ;v)P (rk−m−1) 0




.

Performing some block-column permutations gives us

M̂L(λ)T (λ)
(
(Rm ⊕ Rk−m) ⊗ In

)
=




−vm+1Ak 0 0
. . .

... ∗
∗ −vm+1Ak 0

∗ vm+1P (λ) ∗ · · · ∗

0 pk−2 (r1 ;v)P (r1) · · · pm (r1 ;v)P (r1)

0
...

...
...

...
0 pk−2 (rk−m−1 ;v)P (rk−m−1) · · · pm (rk−m−1 ;v)P (rk−m−1)




,

(6.14)
which after factoring becomes




(−vm+1Im) ⊗ In 0 0

0 vm+1In 0

0 0 Ŵ







Ak 0
. . . 0 ∗

∗ Ak

0 P (λ) ∗

0 0 V̂ ⊗ In




, (6.15)
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where Ŵ = diag
(
P (r1), . . . , P (rk−m−1)

)
and

V̂ =




pk−2(r1 ; v) · · · pm(r1 ; v)
...

...
...

pk−2 (rk−m−1 ; v) · · · pm(rk−m−1 ; v)




=




(vm+1r
k−m−2
1 + · · · + vk−1) · · · (vm+1r1 + vm+2) vm+1

...
...

...
...

(vm+1r
k−m−2
k−m−1 + · · · + vk−1) · · · (vm+1rk−m−1 + vm+2) vm+1


 .

Since vm+1 6= 0, this (k − m − 1) × (k − m − 1) matrix V̂ can be reduced by (det = +1) column
operations in a manner analogous to the reduction of V in (6.10), so we see that

det(V̂ ⊗ In) = (vm+1)
(k−m−1)n det M̂ . (6.16)

Now taking determinants on both sides of (6.14) using the factorization (6.15) gives

det M̂ · det L(λ) · det T (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In) =

det
(
P (r1)P (r2) · · ·P (rk−m−1)

)
· det(−vm+1Ak)m · det

(
vm+1P (λ)

)
· det(V̂ ⊗ In) .

Cancelling det M̂ on both sides using (6.16), and using det T (λ) = +1 together with the fact that
det(R ⊗ I) is its own inverse, we get

det L(λ) = det
(
P (r1)P (r2) · · ·P (rk−m−1)

)
· (−1)mn · (vm+1)

kn · (det Ak)m

· det P (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In) .

Finally, substituting det(Rm ⊗ In) = (−1)n·bm

2 c and det(Rk−m ⊗ In) = (−1)n·bk−m

2 c from (6.11)
yields the desired formula (6.6). Note that this is consistent with formula (6.12) derived for the m = 0
case, as long as we interpret the term (det Ak)m to be equal to +1 whenever m = 0, regardless of
whether det Ak is zero or nonzero.

Part 3 : Now that we know that (6.6) holds for any v ∈ Fk such that the corresponding p(x ; v) has
distinct finite roots, we can leverage this result to the general case by a continuity argument. For
every fixed m and fixed polynomial P (λ), the formula on the right hand side of (6.6) is clearly a
continuous function of the leading coefficient vm+1 and the roots r1, r2, . . . , rk−m−1 of p(x ; v), and
is defined for all lists in the set D =

{
(vm+1, r1, r2, . . . , rk−m−1) : vm+1 6= 0

}
regardless of whether

the numbers r1, r2, . . . , rk−m−1 are distinct or not.
The left hand side of (6.6) can also be viewed as a function defined and continuous for all lists

in D. To see this, first observe that the map

(vm+1, r1, r2, . . . , rk−m−1) 7→ (vm+1, vm+2, . . . , vk)

taking the leading coefficient and roots of the polynomial p(x ; v) to the coefficients of the same
polynomial p(x ; v) is defined and continuous on D, as well as being surjective. Next note that
because of the isomorphism in Corollary 5.4, the unique pencil L(λ) ∈ DL(P ) corresponding to
v = (0, 0, . . . , 0, vm+1, . . . , vk)T can be expressed as a linear combination

L(λ) = vm+1Lm+1(λ) + · · · + vkLk(λ)
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of the fixed pencils Li(λ) corresponding to v = ei. Thus det L(λ) is a continuous function of
(vm+1, vm+2, . . . , vk), and hence also of (vm+1, r1, r2, . . . , rk−m−1).

In summary, the two sides of (6.6) are continuous functions defined on the same domain D, and
have been shown to be equal on a dense subset

{
(vm+1, r1, r2, . . . , rk−m−1) : vm+1 6= 0 and r1, r2, . . . , rk−m−1 are distinct

}

of D. Therefore by continuity the two sides of (6.6) must be equal on all of D. Since this argument
holds for each m with 0 ≤ m ≤ k − 1, the desired result is established for all nonzero v ∈ Fk.

We now have all the ingredients needed to prove the main result of this section. Keep in mind
our convention that the “roots of p(x ; v)” includes a root at ∞ whenever v1 = 0.

Theorem 6.7 (Eigenvalue Exclusion Theorem).
Suppose that P (λ) is a regular matrix polynomial and L(λ) is in DL(P ) with ansatz vector v. Then
L(λ) is a linearization for P (λ) if and only if no root of the v-polynomial p(x ; v) is an eigenvalue
of P (λ). (Note that this statement includes ∞ as one of the possible roots of p(x ; v) or possible
eigenvalues of P (λ).)

Proof. By Theorem 4.3, L(λ) is a linearization for P (λ) if and only if L(λ) is regular. But from
the determinant formula (6.6) it follows that L(λ) is regular if and only if no root of p(x ; v) is an
eigenvalue of P (λ).

Using Theorem 6.7 we can now show that almost every pencil in DL(P ) is a linearization for P .
Although the same property was proved in Theorem 4.7 for pencils in L1(P ), the result for DL(P )
is not a consequence of Theorem 4.7, since DL(P ) is itself a closed, nowhere dense subset of measure
zero in L1(P ). Neither can the proof of Theorem 4.7 be directly generalized in any simple way;
hence the need for a different argument in the following result.

Theorem 6.8 (Linearizations are Generic in DL(P )).
For any regular matrix polynomial P (λ), pencils in DL(P ) are linearizations of P (λ) for almost all
v ∈ Fk. (Here “almost all” means for all but a closed, nowhere dense set of measure zero in Fk.)

Proof. Recall that the resultant [24] res(f, g) of two polynomials f(x) and g(x) is a polynomial
in the coefficients of f and g with the property that res(f, g) = 0 if and only if f(x) and g(x) have
a common (finite) root. Now consider res(p(x ; v), det P (x)), which, because P (λ) is fixed, can be
viewed as a polynomial r(v1, v2, . . . , vk) in the components of v ∈ Fk. The zero set Z(r) =

{
v ∈ Fk :

r(v1, v2, . . . , vk) = 0
}

, then, is exactly the set of v ∈ Fk for which some finite root of p(x ; v) is an
eigenvalue of P (λ). Recall that by our convention the v-polynomial p(x ; v) has ∞ as a root exactly
for v ∈ Fk lying in the hyperplane v1 = 0. Thus by Theorem 6.7 the set of vectors v ∈ Fk for which
the corresponding pencil L(λ) ∈ DL(P ) is not a linearization of P (λ) is either the proper algebraic
set Z(r), or the union of two proper algebraic sets, Z(r) and the hyperplane v1 = 0. But the union
of any finite number of proper algebraic sets is always a closed, nowhere dense set of measure zero
in Fk.

How far can the eigenvalue exclusion theorem be extended from DL(P )-pencils to other pencils
in L1(P )? Let us say that a pencil L ∈ L1(P ) with right ansatz vector v has the eigenvalue exclusion
property if the statement “no root of the v-polynomial p(x ; v) is an eigenvalue of P (λ)” is equivalent
to the linearization condition for L. That there are pencils in L1(P ) with the eigenvalue exclusion
property that are not in DL(P ) is shown by the pencil L1(λ) in Example 4.5. The following variation
of Example 4.6, though, is easily shown not to have the eigenvalue exclusion property.

Example 6.9. For the general cubic polynomial P (λ) = λ3A + λ2B + λC + D consider the
pencil

L(λ) = λX + Y = λ




A 0 2C
−2A −B − C A − 4C

0 A 0


 +




B −C D
C − B 2C − A −2D
−A 0 0
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that is in L1(P ) but not in DL(P ). Since X �→Y =
[
1 −2 0

]T
⊗

[
A B C D

]
, the right

ansatz vector is v =
[
1 −2 0

]T
with v-polynomial p(x ; v) = x2 − 2x and roots 0 and 2. On the

other hand, applying the procedure described in section 4.1 gives

Z =

[
B + C −A
−A 0

]
,

and hence the linearization condition det Z = det(−A2) 6= 0, equivalently det A 6= 0. Thus L(λ) is
a linearization for P (λ) if and only if ∞ is not an eigenvalue of P (λ). In this example, then, the
roots of the v-polynomial do not correctly predict the linearization condition for L.
The first companion form of a polynomial P is another example where the eigenvalue exclusion
property is easily seen not to hold. Characterizing the set of pencils in L1(P ) for which the eigenvalue
exclusion property does hold is an open problem.

7. Concluding Remarks. By generalizing the first and second companion form linearizations
for a matrix polynomial P (λ), we have introduced two large vector spaces of pencils, L1(P ) and
L2(P ), that serve as sources of potential linearizations for P (λ). The mild hypothesis that P (λ) is
regular makes almost every pencil in these spaces a linearization for P (λ).

A number of properties enjoyed by the companion forms extend to the linearizations in L1(P )
and L2(P ): they are strong linearizations, are readily constructed from the coefficient matrices of
P (λ), and have eigenvectors that reveal those of P (λ). Furthermore, a simple procedure can be used
to test when a pencil in L1(P ) or L2(P ) is linearization of P (λ).

The intersection of L1(P ) and L2(P ), denoted by DL(P ), is of particular significance. Pencils
in L1(P ) reveal only right eigenvectors of P (λ), while those in L2(P ) lead to left eigenvectors of
P (λ). Pencils in DL(P ) therefore simultaneously reveal right as well as left eigenvectors of P . An
isomorphism between DL(P ) and Fk allows the association of a unique scalar polynomial of degree
k to each pencil in DL(P ). Linearizations in DL(P ) can then be characterized by an eigenvalue
exclusion property — a pencil in this distinguished subspace is a linearization precisely when no
root of its associated scalar polynomial is an eigenvalue of P .

As remarked earlier, the first and second companion form linearizations have a significant draw-
back — they usually do not reflect any structure that may be present in P (λ). Different linearizations
can also exhibit very different conditioning. By systematizing the construction of large classes of
linearizations that generalize the companion forms, we have provided a rich arena in which lineariza-
tions with additional properties like structure preservation or improved conditioning can be found.
This is the subject of the work in [7], [8], [12].
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