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1 Introduction

Regional hyperthermia [3] is a cancer therapy that aims at heating the tumor above a therapeutic
temperature of about 41◦C in order to make it more susceptible to an accompanying radio or
chemo therapy. Energy is injected into the human body by microwave radiation originating from a
high frequency applicator. The resulting temperature is described by the elliptic bio heat transfer
equation [15]

−div(κ∇u) + w(u− ua) = f in Ω,

γ
∂u

∂n
+ u = g on Γ = ∂Ω,

(1)

where the specific absorption rate (SAR) enters as the right hand side f . The Helmholtz term
models the cooling of tissue by perfusion by arterial blood with a constant systemic temperature of
ua = 37◦C. The body Ω is a bounded open domain in R3 with boundary Γ. Its different tissue
types occupy finitely many subdomains Ωi, i = 1, . . . , nΩ, satisfying

Ω =

nΩ[

i=1

Ωi , Ωi ∩ Ωj = ∅ for i 6= j. (2)
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Figure 1. Combined MR hyperthermia applicator (Charité, Berlin Buch).

We assume the temperature diffusion coefficient κ(ξ) ≥ κ > 0 to be piecewise constant and the
perfusion w to be piecewise continuous on the subdomains. The right-hand side f belongs to L2(Ω)
and g ∈ L2(Γ) is satisfied for the boundary data.
In therapy planning, the antenna parameters for the applicator are determined for each individual
patient in order to achieve a therapeutically optimal temperature distribution. SAR values are
obtained by solving the time-harmonic Maxwell equations, and the temperature distribution is
predicted by (1) using a reference perfusion w = w̄(ξ, u(ξ)) (see [4]). Due to the self-regulating
capability of the tissue, this reference value depends on the temperature u.
Unfortunately, the actual perfusion value varies significantly between different patients, and even
between different therapy sessions for the same patient. For a reliable optimization of the therapy
parameters, the identification of the actual perfusion value is necessary.
Modern combined magnetic resonance (MR) hyperthermia applicators (see Fig. 1) now provide for
the first time online distributed 3D measurements of temperature and perfusion. To the current
best knowledge, the data m provided by MR measurements can be modeled by

m ≈ a(u − ubas) + b(w − wbas) in Ωm ⊂ Ω, (3)

where the piecewise constant and nonnegative sensitivities of m with respect to u and w,
respectively, satisfy a ≈ b in muscle and a� b in fat. ubas, wbas ∈ L2(Ω) are known offsets. Due to
measurement time constraints and artefacts in the data caused by motion of the patient and
inhomogeneities of the magnetic field, however, the data are subject to noise and moreover cover
only a subdomain Ωm of the human body. In favor of a simpler presentation we extend the
measurement parameters a, b, and m from Ωm to Ω with value zero.
In this article we consider the identification of a nonnegative perfusion w = w(ξ) from (1) and (3).
We impose a Tichonov regularization for w. Since the perfusion can be assumed to depend
continuously on the temperature in each subdomain Ωi, but is typically discontinuous at tissue
boundaries, we employ a piecewise H1-norm for regularization.
Parameter identification problems for elliptic PDEs were studied by several authors. For example,
in the context of SQP methods in Hilbert space we refer to [12,14] for reduced SQP methods, for
the augmented Lagrangian algorithm to [7,8,11,13] and to [9,16] for augmented Lagrange-SQP
methods.
The paper is organized as follows. In

�
2, we formulate the identification problem as an optimal
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control problem and prove existence of a solution. The SQP algorithm is formulated in
�
3.

�
4 is

devoted to numerical examples. Finally, we draw some conclusions in
�
5.

2 Optimality conditions

In this section we formulate the parameter identification problem as an optimal control problem
and present necessary optimality conditions for an optimal solution.
Throughout we suppose that Ω ⊂ Rd with d ∈ {1, 2, 3} satisfies a uniform interior cone condition

(that is, there exists a fixed cone KΩ such that each ξ ∈ Γ is the vertex of a cone KΩ(ξ) ⊂ Ω
congruent to KΩ).

2.1 The optimal control problem

In view of (2) let us introduce the inner product

〈w, w̃〉W =

nΩX

i=1

Z

Ωi

`
αww̃ + β∇w · ∇w̃

´
dξ for w, w̃ ∈ H1(Ω) (4)

with scalar parameters α > 0, β ≥ 0 and the induced norm ‖w‖W =
p
〈w,w〉W . We define the

Hilbert space W to be the closure of H1(Ω) with respect to ‖ · ‖W . For β = 0 we obtain
W = L2(Ω) and

W = {w ∈ L2(Ω) : w|Ωi ∈ H1(Ωi) for i = 1, . . . , nΩ}
for β > 0. Throughout the remainder of the paper we suppose β > 0.
To write the elliptic differential equation (1) in a compact form we define the operator
ẽ : H1(Ω) ×W → H1(Ω)′ by

〈ẽ(u,w), φ〉(H1)′,H1 =

Z

Ω
κ∇u · ∇φ+

`
w(u− ua)− f

´
φdξ +

1

γ

Z

Γ
κ(u− g)φ ds

for all φ ∈ H1(Ω) and for (u,w) ∈ H1(Ω)×W , where 〈· , ·〉(H1)′,H1 denotes the dual pairing

associated with H1(Ω) and its dual H1(Ω)′. Then we set

e = (−∆ + I)−1 ẽ : H1(Ω) ×W → H1(Ω).

Here, (−∆ + I)−1 : H1(Ω)′ → H1(Ω) is the Neumann solution operator or Riesz isomorphism, i.e.,
for h ∈ H1(Ω)′ , v = (−∆ + I)−1h solves

Z

Ω
(∇v · ∇φ+ vφ) dξ = 〈h, φ〉(H1)′,H1 for all φ ∈ H1(Ω).

Remark 1 We express the equality constraint in the Hilbert space H1(Ω) to simplify the
presentation throughout Sections 2 and 3. However in our numerical realization we deal with the
operator ẽ(u,w) instead of e(u,w). For a numerical comparison of both formulations we refer the
reader to [16].

Since Ω satisfies a uniform interior cone condition, H1(Ω) is continuously embedded into L6(Ω) for
d ≤ 3, cf. [5, p. 151]. From the Hölder inequality we find that the integral

Z

Ω
w(u− ua)φ dx for (u,w, φ) ∈ H1(Ω) ×W ×H1(Ω)

and its Fréchet-derivatives with respect to the pair (u,w) are well-defined. Since the other terms in
the definition of the operator ẽ are linear, we conclude that the operator e is twice continuously
Fréchet-differentiable and its second Fréchet-derivative is globally Lipschitz-continuous.
The next theorem ensures existence of a unique solution to the state equations for arbitrary
non-negative w ∈W .
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Theorem 2.1 Suppose that Ω is a bounded connected open set in Rd with smooth boundary, i.e.,
Γ is a variety of dimension d− 1 of class C∞ and Ω lies locally on one side of Γ. Then for every
w ∈ L2(Ω) with w ≥ 0 a.e. in Ω there exists a unique solution u = u(w) ∈ H1(Ω) of the equation
e(u,w) = 0. In particular, the set

E = {(u,w) ∈ H1(Ω) ×W : e(u,w) = 0 in H1(Ω)}

is nonempty. Moreover, u satisfies the estimate

‖u‖H1(Ω) ≤ C
`
‖f‖L2(Ω) + ‖g‖L2(Γ) + ‖w‖L2(Ω)

´

for some constant C > 0.

Proof Since Ω is a bounded connected open set with smooth boundary, it is known that H1(Ω) is
a Hilbert space endowed with the inner product

〈u, v〉Γ =

Z

Ω
∇u · ∇v dx+

Z

Γ
uv ds for u, v ∈ H1(Ω)

and the induced norm ‖u‖Γ =
p
〈u, u〉Γ for u ∈ H1(Ω), and that ‖ · ‖Γ is an equivalent norm to

‖ · ‖H1(Ω) on H1(Ω) (see [1, p. 133]). Utilizing Hölder’s and Young’s inequalities, κ(x) ≥ κ > 0,

γ > 0, the continuous embedding H1(Ω) ↪→ L6(Ω) and ua ∈ L3(Ω), the claim follows by the
Lax-Milgram lemma. �
Remark 2 If Ω is only an open Lipschitz domain, we have to require that w ≥ w on Ω a.e. for a
positive constant w. The existence of a unique solution u = u(w) ∈ H1(Ω) to the state equation
e(u,w) = 0 can be proved by utilizing the Lax-Milgram lemma. This positivity requirement for the
perfusion is realistic, since w = 0 only for necrotic tissue.

For brevity we introduce the Hilbert space

Z = H1(Ω) ×W

endowed with the Hilbert space product topology. Next we define the set of admissible parameters
Wad ⊂W by

Wad = {w ∈W : w ≥ 0 a.e. in Ω}.
Moreover, we set Zad = H1(Ω) ×Wad.

Remark 3 If Ω is only an open Lipschitz domain, we have to define

Wad = {w ∈W : w ≥ w a.e. in Ω}

with some constant w > 0 instead. Due to Remark 2-b) the existence of a unique solution u to (1)
for every w ∈Wad is then ensured.

For z = (u,w) ∈ Z we introduce the cost functional J : Z → R+ with R+ = {t ∈ R : t ≥ 0} by

J(z) =
1

2
‖a(u− ubas) + b(w −wbas)−m‖2L2(Ω) +

1

2
‖w −wref‖2W , (5)

where wref ∈W is a given reference perfusion. Moreover, let a, b ∈ L∞(Ω) satisfy a, b ≥ 0 in Ω a.e.
and m belongs to L2(Ω). It is obvious that J is twice continuously Fréchet-differentiable and its
second Fréchet-derivative is Lipschitz-continuous. Note that the regularization term contains the
scalar parameters α and β from (4), which have to be chosen in accordance to the measurement
error.
Summarizing, the parameter identification problem (1)–(3) can be written as

minJ(z) subject to z ∈ Zad and e(z) = 0. (P)

To prove existence of an optimal solution to (P) we shall make use of the following lemma.

Lemma 2.2 If D ⊂ Z is weak sequentially closed and bounded, then the set D ∩ E is weak
sequentially closed, where we have introduced the set E in Theorem 2.1.
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Proof If D ∩ E is empty, nothing has to be shown. Otherwise let z = (u,w) ∈ H1(Ω)×W and
{zn}n∈N , zn = (un, wn), a sequence in D ∩ E such that zn ⇀ z as n tends to infinity. From
zn ∈ E for every n we infer that e(un, wn) = 0 holds. Then we obtain

lim
n→∞

Z

Ω
κ∇(un − u) · ∇φ dξ = 0 for all φ ∈ H1(Ω). (6)

Since Ω satisfies a uniform interior cone condition and β > 0, H1(Ω) and W are compactly
embedded into L4(Ω) for d ≤ 3, see [5, p. 161]. Hence, there exists a subsequence {znk}k∈N , such

that znk → z in L4(Ω) × L4(Ω). Furthermore, the sequence {znk}k∈N is bounded in
L2(Ω)× L2(Ω). Using Hölder’s inequality we infer that

˛̨
˛
Z

Ω
(wnkunk −wu)φ dξ

˛̨
˛

=
˛̨
˛
Z

Ω
(wnkunk − wnku+ wnku−wu)φ dξ

˛̨
˛

≤
`
‖wnk‖L2(Ω)

‖unk − u‖L4(Ω)
+ ‖wnk −w‖L4(Ω)

‖u‖L4(Ω)

´
‖φ‖L4(Ω)

k→∞−→ 0 for all φ ∈ H1(Ω).

(7)

Analogously, we get

˛̨
˛
Z

Ω
(wnk −w)uaφ dξ

˛̨
˛ ≤ ‖wnk − w‖L4(Ω)‖ua‖L3(Ω)‖φ‖L6(Ω)

k→∞−→ 0 (8)

for all φ ∈ H1(Ω). Recall that the trace operator τΓ : H1(Ω)→ H1/2(Γ) is continuous and that

H1/2(Γ) is compactly embedded into L2(Γ). Thus, we find

˛̨
˛ 1
γ

Z

Γ
κ(unk − u)φ ds

˛̨
˛ ≤ 1

γ
‖κ‖L∞(Ω)‖unk − u‖L2(Ω)‖φ‖L2(Γ)

k→∞−→ 0 (9)

for all φ ∈ H1(Ω). Combining (6)-(9) it follows that

‖e(znk )− e(z)‖H1(Ω) = ‖ẽ(znk )− ẽ(z)‖H1(Ω)′

= sup
‖φ‖

H1(Ω)
=1

˛̨
˛
Z

Ω
κ∇(unk − u) · ∇φ+

`
wnk (unk − ua)− w(u− ua)

´
φ dξ

+
1

γ

Z

Γ
κ(unk − u)φ ds

˛̨
˛ k→∞−→ 0.

Hence, e(zn) = 0 implies that e(z) = 0 and z ∈ E. Since D is weak sequentially closed, z ∈ D holds,
such that the claim follows from z ∈ D ∩E. �
Utilizing Theorem 2.1 and Lemma 2.2, the existence of an optimal solution to (P) can be proved.

Theorem 2.3 Let Ω satisfy the hypothesis of Theorem 2.1. Then (P) possesses at least one
optimal solution, z∗ = (u∗, w∗).

Proof From (5) it follows that J is radially unbounded, i.e., the level sets

Dρ = {(u,w) ∈ Zad : J(u,w) ≤ ρ}

are closed, bounded, and convex, and hence weak sequentially closed (see [21, Proposition 38.2]).
By Lemma 2.2, Dρ ∩ E is nonempty and weak sequentially closed for sufficiently large ρ.
Moreover, convexity and continuity of J imply that J is weak sequentially lower continuous on Zad

(see [21, Proposition 37.7]). Therefore a solution of (P) exists (see [21, Theorem 38.A]). �
The following result implies a standard constraint qualification condition.

Theorem 2.4 If Ω satisfies the hypothesis of Theorem 2.1, then for every z = (u,w) ∈ Zad the
operator eu(z) is bijective. Here eu(z) denotes the Fréchet-derivative of the operator e with respect
to the variable u at the point z. In particular, the Fréchet-derivative e′(z) is surjective.
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Proof The operator eu(z) is bijective if and only if for every h ∈ H1(Ω)′ there exists a unique
v ∈ H1(Ω) such that

−div(κ∇v) +wv = h in Ω,

γ
∂v

∂n
+ v = 0 on Γ.

(10)

The existence of a unique solution v to (10) follows by the same arguments as in the proof of
Theorem 2.1. �

2.2 First-order necessary optimality conditions

Let us introduce the Lagrangian functional L : Z ×H1(Ω)→ R associated with (P):

L(z, λ) = J(z) + 〈e(z), λ〉H1(Ω)

Problem (P) is a nonconvex programming problem, so that different local minima might occur.
Numerical methods will deliver a local minimum close to their starting point. Therefore, we do not
restrict our investigations to global solutions of (P). We will assume that a fixed reference solution
z∗ = (u∗, w∗) ∈ Zad is given, satisfying certain first- and second-order optimality conditions
(ensuring local optimality of the solution). The active set at z∗ is given by

A = {ξ ∈ Ω : w∗(ξ) = 0 for ξ ∈ Ω}.

The corresponding inactive set is I = Ω\A.
In the following theorem we present first-order necessary optimality conditions for (P).

Theorem 2.5 Suppose that z∗ = (u∗, w∗) ∈ Zad is a local solution to (P). Then there exist
Lagrange multipliers λ∗ ∈ H1(Ω) and η∗ ∈W such that

−div(κ∇λ∗) +w∗λ∗ + a
`
a(u∗ − ubas) + b(w∗ −wbas) −m

´
= 0 in Ω, (11a)

γ
∂λ∗

∂n
+ λ∗ = 0 on Γ, (11b)

e(u∗, w∗) = 0, (11c)

C
`
b(a(u∗ − ubas) + b(w∗ − wbas)−m)

´
+

C
`
λ∗(u∗ − ua)

´
+ a(w∗ −wref) + η∗ = 0 in A, (11d)

η∗|A ≤ 0 and η∗|I = 0, (11e)

where, for instance, η∗|A denotes the restriction of the multiplier η∗ on the subset A of Ω.
Furthermore, the linear bounded operator C : L2(Ω)→W in (11d) is given as follows: For
w = Ch ∈W we have w(ξ) = wi(ξ) for ξ ∈ Ωi a.e., i = 1, . . . , nΩ, where

−∆wi + wi = h|Ωi in Ωi, (12a)

−∂wi
∂n

= 0 on ∂Ωi. (12b)

Proof Due to Theorem 2.4 there exists a unique Lagrange multiplier λ∗ ∈ H1(Ω) such that

Lu(z∗, λ∗)u = 0 for all u ∈ H1(Ω). (13)

From (13) we infer (11a) and (11b). Condition (11c) denotes feasibility and is clearly satisfied. Due
to the optimality of w∗ the following variational inequality holds:

Lw(z∗, λ∗)(w − w∗) ≥ 0 for all w ∈Wad.
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We set
〈−η∗, w − w∗〉W = Lw(u∗, w∗, λ∗)(w −w∗)

=

Z

Ω

`
b(a(u∗ − ubas) + b(w∗ − wbas)−m

´
(w −w∗) dξ

+

Z

Ω
λ∗(u∗ − ua)(w − w∗) dξ + α 〈w∗ − wref , w − w∗〉W

(14)

for all w ∈Wad. Setting

r = b(a(u∗ − ubas) + b(w∗ − wbas)−m) + λ∗(u∗ − ubas) ∈ L2(Ω) (15)

we infer from (12) that

Z

Ω
r(w − w∗) dξ =

nΩX

i=1

Z

Ωi

r(w −w∗) dξ =

nΩX

i=1

〈Cr,w − w∗〉H1(Ωi)

= 〈Cr, w −w∗〉W for all w ∈Wad.

(16)

Combining, (14) and (16) we obtain (11d). For the proof of (11e) we refer the reader to [6]. �
For second order conditions we refer to [18].

3 SQP Method

In the following we neglect the inequality constraint w ≥ 0 and consider instead of (P) the optimal
control problem

min J(z) subject to e(z) = 0. (17)

Next we introduce the standard (local) Lagrange-SQP method:

Algorithm 1 (Lagrange-SQP method)

a) Choose (z0, λ0) ∈ Z and set n = 0.

b) Solve the following linear-quadratic minimization problem for δzn

8
<
:

min Lz(zn, λn)δzn +
1

2
Lzz(zn, λn)(δzn , δzn)

subject to e′(zn)δzn + e(zn) = 0.
(QPn )

c) Set zn+1 = zn + δzn, λn+1 = Λ(zn, λn) and go back to step b) provided a certain stopping
criterium is not satisfied.

Remark 1 The linear-quadratic minimization problem (QPn ) is well-defined provided the operator
Lzz(zn, λn) is coercive on the null space N(e′(zn)) of e′(zn) and e′(zn) is surjective. Due to
Theorem 2.4 the operator e′(z) is surjective for any z ∈ Zad. Moreover, the operator Lzz(zn, λn) is
coercive on N(e′(zn)) provided ‖a(a(u∗ − u0) + b(w∗ −w0)−m)‖L2(Ω) is small;

see [18, Theorem 4.2].

Note that an open issue in Algorithm 1 is the Lagrange multiplier update formula described by the
mapping Λ : Z ×H1(Ω)→ H1(Ω). Different Lagrange multiplier updates possibly lead to different
rates of convergence. Here, we concentrate on the Newton Lagrange multiplier update.
For brevity, let us introduce the operator

F (z, λ) =

„
Lz(z, λ)
e(z)

«
for (z, λ) ∈ Z.

Then the first-order necessary optimality conditions can be expressed as

F (z∗, λ∗) = 0. (18)
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To find z∗ numerically we solve (18) by the Newton method. For that purpose we require the
Fréchet-derivative ∇F of the operator F . Setting M = ∇F we have

M(z, λ) =

„
Lzz(z, λ) e′(z)?

e′(z) 0

«
for (z, λ) ∈ Z.

Now we formulate the Lagrange-SQP method with the Newton Lagrange multiplier update.

Algorithm 2 (Lagrange-Newton-SQP method)

a) Choose (z0, λ0) ∈ Z and put n = 0.

b) Solve for (δzn , δλn) the linear system

M(zn, λn)

„
δzn

δλn

«
= −F (zn, λn). (19)

c) Set (zn+1, λn+1) = (zn + δzn, λn + δλn), n = n+ 1 and go back to b) provided a certain
stopping criterium is not satisfied.

Remark 2

a) In the context of Algorithm 1, the Newton multiplier update ΛN is given by
ΛN (zn, λn) = λn + ∆λn, where

δλn =
`
e′(zn)Lczz(zn, λn)−1e′(zn)?

´−1

·
`
e(zn)− e′(zn)Lczz(zn, λn)−1Lcz(zn, λn)

´
.

If z ∈ Zad holds and if ‖a(a(u∗ − u0) + b(w∗ − w0)−m)‖L2(Ω) is small, the operator ΛN is

well-defined; see Remark 1 and [10, Lemma 2.2.3].

b) Notice that in each iteration of Algorithm 2 the saddle-point problem (19) needs to be solved.

c) If Lzz(z, λ) is coercive on N(e′(z)) and e′(z) is surjective for all (z, λ) ∈ Z belonging to a
neighborhood of (z∗, λ∗) ∈ Z, the SQP method is locally equivalent with the Newton method
applied to L′(z, λ) = 0. Notice, that

In the following we show that for sufficiently well-matched data certain local solutions are unique,
and that the sequential quadratic programming approach converges quadratically.

Theorem 3.1 There exist constants CD > 0 and ρ > 0 independent of the actual measured data m
and the reference perfusion wref , such that the following holds:
If

r = ‖a(u(wref )− ubas) + b(wref − wbas)−m‖L2 < CD (20)

for wref ≥ w > 0 and u(wref ) satisfying (1), then there exists a local solution z∗ of (17) in the ball
B(z0, ρr), which is unique in B(z0 , CDρ). If the SQP method is started at (u(wref), wref , 0), it
converges quadratically towards z∗.

Proof We will use Kantorovich’s Theorem to prove convergence of Newton’s method applied to
F (x) = L′(z, λ) with x = (z, λ). Thus we have to verify its assumptions: invertibility of F ′(x0), a
Lipschitz condition for F ′, and a sufficiently small initial residual F (x0).
(i) Invertibility of F ′(x0). F ′(x0) is a saddle point operator with positive definite upper left block
Lzz(x0), since for any δz ∈ N(e′(z0)) we have

Lzz(x0)[δz, δz] = ‖aδu + bδw‖2
L2 + α‖δw‖2W ≥ α‖δw‖2W . (21)

Due to Theorem 2.4 there is a constant CS such that ‖δu‖H1 ≤ CS‖δw‖L2 and hence

Lzz(x0)[δz, δz] ≥ ‖δz‖2Zq
1 + C2

S

.

Note that CS is indeed independent of wref . Moreover, e′(z0) satisfies the usual inf-sup-condition
again due to Theorem 2.4, such that the Brezzi theorem establishes a bound CI of F ′(x0)−1 in the
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space E(Z), where L denotes the common space of all linear and continuous operators from Z into
itself.
(ii) Lipschitz condition for F ′. Since

(F ′(x1)− F ′(x2))[δx, δx] = 2

Z

Ω
((λ1 − λ2)δuδw + (u1 − u2)δw + (w1 − w2)δu) dξ,

F ′ satisfies the Lipschitz condition

‖F ′(x1)− F ′(x2)‖ ≤ 2‖(δu, δw, δλ)‖−2
Z

Ω
((λ1 − λ2)δuδw + (u1 − u2)δw + (w1 −w2)δu) dξ

≤ 2‖(δu, δw, δλ)‖−2c(Ω)
“
‖λ1 − λ2‖L4(Ω)‖δu‖L4(Ω)‖δw‖L2(Ω)

+ ‖δλ‖L4(Ω)‖u1 − u2‖L4(Ω)‖δw‖L2(Ω) + ‖δλ‖L4(Ω)‖δu‖L4(Ω)‖w1 − w2‖L2(Ω)

”

≤ CL‖(u1 − u2, w1 −w2, λ1 − λ2)‖
≤ CL‖x1 − x2‖

with Lipschitz constant CL.
(iii) Small initial residual. The starting point x0 leads to an initial residual

F (x0) =

2
4
a(a(u0 − ubas) + b(w0 − wbas)−m)
b(a(u0 − ubas) + b(w0 − wbas)−m)

0

3
5

that leads to an initial Newton correction with

‖F ′(x0)−1F (x0)‖ ≤ 2CI max(a, b)r.

(iv) Kantorovich theorem. Combining the estimates (i) and (ii) yields the affine invariant Lipschitz
condition

‖F ′(x0)−1(F ′(x1)− F ′(x2))‖ ≤ ω̄0‖x1 − x2‖
with Lipschitz constant ω̄0 = CICL. Defining CD = (4ω̄0CI max(a, b))−1, the assumption r < CD
and (iii) lead to

h0 = ω̄0‖F ′(x0)−1F (x0)‖ = 2ω̄0CI max(a, b)r <
1

2
.

Application of Kantorovich’s theorem (cf. [2, Thm. 2.1]) yields the existence of a solution point
x∗ ∈ B(x0, ρ−) with

ρ− =
1−
√

1− 2h0

ω̄0
≤ 4CI max(a, b)r = ρr

that satisfies the first order necessary condition L′(z∗, λ∗) = F (x∗) = 0. x∗ is unique in B(x0 , ρ+)
with

ρ+ =
1 +
√

1− 2h0

ω̄0
≥ ω̄−1

0 = CDρ.

Moreover, the Newton iteration converges quadratically to x∗.
(v) Second order sufficient condition. Let us introduce the path x(τ) = x0 + τ(x∗ − x0), τ ∈ [0, 1],
with associated derivatives F ′(τ) = F ′(x(τ)). Since x(τ) ∈ B(x0 , rρ), the inverses F ′(τ)−1 are
uniformly bounded for all τ due to the Banach perturbation lemma. Moreover, due to the Lipschitz
continuity of F ′, the mapping τ → F ′(τ)−1 is continuous. We consider the function

s(τ) = inf
ξ∈Z∗

〈(ξ, 0), F ′(τ)−1(ξ, 0)〉,

which is again continuous. Note that due to the injectivity of F ′(τ)

s(τ) = inf
ζ∈N(e′(z(τ)))

〈ζ, Lzz(x(τ))ζ〉

holds. Now assume that s(1) ≤ 0. Due to the continuity of s there is a τ̄ ∈ [0, 1] such that s(τ) = 0,
which implies the existence of a minimizing sequence ζk ∈ N(e′(z(τ̄))) with 〈ζ,Lzz(x(τ̄))ζ〉 → 0.
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Figure 2. Materials and geometry of the cross section. Measurements are available on Ωm = {fat,
muscle, tumor}. The area of the cross section is approximately 0.2 x 0.2 square meters.

Since Lzz(x(τ̄)) is symmetric, this contradicts the boundedness of F ′(τ̄)−1. Thus, s(1) > 0 and
hence Lzz(x∗) is positive definite on N(e′(z∗)). Therefore, x∗ is indeed a local solution of the
minimization problem (17). �
Remark 3 Theorem 3.1 does not guarantee the admissibility of the solution. With L∞-regularity
results for elliptic problems with Robin boundary conditions, lower bounds on w∗ can be
established, including nonnegativity in the case of sufficiently well matched data.

Remark 4 The constants CD and ρ established in Theorem 3.1 do typically increase with
increasing α. If assumption (20) is not satisfied, choosing a larger regularization parameter may
lead to a convergent method. Hence, performing a homotopy in α, starting with comparatively
large values, can be expected to perform well.

4 Numerical examples

To begin with, we study the identification capability of the algorithm on a 2D cross section of a
hyperthermia patient with artificial data. The cross section is chosen from the end of a treatment,
such that the temperature is already relatively high. See Fig. 2 for the geometry and material
distribution of the cross section. Choosing realistic perfusion profiles w and wbas corresponding to
hyperthermia and normal conditions, respectively, we obtain the related temperatures u and ubas
by solving (1). The measurements m are evaluated on a 128× 128 voxel grid representing Ωm
according to (3), adding independent white noise with variance σ = 0.5. The noise level has been
chosen to produce the same total variation of the signal as is observed in clinical measurements.
The measurement parameters a and b (cmp. 3) are set equal to 1 on muscle and tumor,
a = 0.1,b = 1 on fat and zero elsewhere.
As a reference perfusion we choose wref as w + δw1 + δw2, with a geometry-conforming systematic
offset δw1 = −0.2w continuous on each subdomain Ωi, and an additional geometry-violating offset
δw2 = −0.2w that is discontinuous inside a subdomain. The chosen perfusions are depicted in
Fig. 3, with temperatures and measurements shown in Fig. 4.
As a starting point for the homotopy in the regularization parameter α we choose wref, u(wref),
and λ = 0 with α = 100, performing classical continuation up to α = 0.05. L2 errors are shown for
different values of β in Fig. 5. We divided the L2 errors by the square root of the areas Ωm and
Ω\Ωm to obtain average errors on these areas. With decreasing regularization the temperature
errors decrease until a certain point and increase for less regularization. The results with the least
errors are obtained for α = 0.1, β = 0.001 and shown in Fig. 6. The average error of the starting
temperature u(wref ) (see Fig. 4 Middle) is 0.46 � on Ωm. Despite up to 40 percent offset and 50
percent white noise in the measuring data the error is reduced to 0.15 � by our method (Fig. 5).
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Figure 3. Perfusion data for the artificial setting. Left: normal perfusion wbas. Middle: perfusion w
under hyperthermia. Right: reference perfusion wref with the geometry violating offset δw2 outlined

in black.

Figure 4. Temperature and measurement data for the artificial setting. Left: actual temperature
u(w). Middle: initial temperature error u(w)− u(wref). Right: noisy measurements on Ωm.

As we can see the perfusion errors concentrate around Ω\Ωm ={ vessels,bone }. One reason for
that behavior is due to the fact, that there is no measuring data available on Ω\Ωm. Also the
perfusion in the vessels is more than 30 times higher than anywhere else, which leads to higher
absolute errors on Ω\Ωm, see Fig. 5.
As a further example, we perform the identification for a clinical data set with unknown
temperature and perfusion. The only data available for verification is a local measurement from a
temperature probe, the position of which is indicated in the MR measurement data in Fig. 7, left.
On the right the SAR-values are shown, which enter the right hand side of the bio heat transfer
equation (1). Since the measuring data in the artificial example has the same total variation than
the clinical measurement we expect regularization parameters α, β of the same order of magnitude
to work well. For α = 5 and β = 0.001 the identified temperature and perfusion are shown in
Fig. 8. The temperature in the position of the local temperature measurement has been identified
as 44,5 � compared to 44 � measured directly. An area of low perfusion inside the tumor is
identified, which indicates a region of necrotic tissue in the tumor’s center.

5 Conclusion

Despite significant offsets and noise in the signal, the method is capable of identifying the
temperature with an error reduction to 30 % of the initial error on Ωm. The resulting perfusion is
admissible except for a small area around the vessels. A rigourous treatment of the inequality
constraints seems to be necessary, see e.g. [17,19,20]. Since the violation of the constraints is
relatively small, however, a significant effect on the temperature field cannot be expected.
More information about the measurement parameters a and b, i.e. about the dependence of the
signal on perfusion and temperature, is needed to improve the clinical identifications.
A homotopy in the regularization parameters α and β is crucial for the unconstrained SQP method
to converge reliably. If SQP steps leave the admissible set Wad, the BHTE (1) is not necessarily
solvable, and divergence is expected and occasionaly observed.
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Figure 5. L2-Identification errors: Top left: L2-temperature error on Ωm, Top right:
L2-temperature error on Ω\Ωm, Bottom left: L2-perfusion error on Ωm, Bottom right: L2-perfusion

error on Ω\Ωm for different values of log(β). Note that the scales in the two bottom plots are
different.

Figure 6. Errors for α = 0.1, β = 0.001, Left: Identified perfusion, Middle: perfusion error wid −w,
Right: temperature error uid − u(w)
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Figure 7. Left: Clinical measurement data. Invasive temperature measurement ≈ 44 � in
position 1. Right: Clinical SAR-values.

Figure 8. Identified temperature (left) und perfusion (right) for α = 5, β = 1e− 3. Lower perfusion
in necrotic tumor tissue is identified.
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