On the Efficient Generation of Taylor Expansions
for DAE Solutions by Automatic Differentiation

Andreas Griewank! and Andrea Walther?

! Department of Mathematics, Humboldt-Universitit Berlin, Germany,
griewank@mathematik.hu-berlin.de.
2 Institute of Scientific Computing, Technische Universitit Dresden, Germany,
awalther@math.tu-dresden.de.

Abstract. Under certain conditions the signature method suggested by
Pantiledes and Pryce facilitates the local expansion of DAE solutions
by Taylor polynomials of arbitrary order. The successive calculation of
Taylor coefficients involves the solution of nonlinear algebraic equations
by some variant of the Gauss-Newton method. Hence, one needs to eval-
uate certain Jacobians and several right hand sides. Without advocating
a particular solver we discuss how this information can be efficiently
obtained using ADOL-C or similar automatic differentiation packages.?

1 Introduction

The differential algebraic systems in question are specified by a vector function

F(t,y) = F(t,y1,¥2,---,Yn) Wwith
F- R =R x R'™™ x Rt x ... x R**™ — R"” .

Here, t denotes the independent “time” variable, n is the dimension of the state
space and the y; are (1 4+ m;)-dimensional vectors whose rth component y; ,
represents the rth derivative of the state space component y; = y;o. However,
this relation is really of no importance as far as the pure automatic differentiation
task is concerned.

In principle, F' can be an arbitrary algebraic mapping from R'™ to R"
but for our purposes it should be defined by an evaluation procedure in a high
level computer language like Fortran or C. Then, the technique of automatic
differentiation (AD) offers an opportunity to provide derivative information of
any order for the given code segment by applying the chain rule systematically
to statements of computer programs. For that purpose, the code is decomposed
into a typically very long sequence of simple evaluations, e.g. additions, mul-
tiplications, and calls to elementary functions such as sin(z) or exp(z). The
derivatives with respect to the arguments of these operations can be easily cal-
culated. Exploiting the chain rule yields the derivatives of the whole sequence of

3 This work was supported by the DFG research center MATHEON, Mathematics for
Key Technologies in Berlin, and DFG grant WA 1607/2-1



2 A. Griewank and A. Walther

statements with respect to the input variables. Depending on the starting point
of this methodology—either at the beginning or at the end of the chain of com-
putational steps—one distinguishes between the forward mode and the reverse
mode of AD. Using the forward mode, one computes the required derivatives to-
gether with the function evaluation in one sweep. Applying the reverse mode of
AD, the derivative values are propagated during a backward sweep. Hence after a
function evaluation, one starts computing the derivatives of the dependents with
respect to the last intermediate values and traverses backwards through the eval-
uation process until the independents are reached. A comprehensive exposition
of these techniques of AD can be found in [7].

For many DAEs the computational graph related to the code segment to
evaluate F'(t,y) will be of quite manageable size, but still we will try to keep the
number of sweeps through it as low as possible. Moreover, we will try to amortize
the overhead of each sweep by performing reasonably intense calculations for
each graph vertex, which represents an intermediate quantity in the evaluation
of the algebraic function F(¢,y).

The structure of the paper is the following. In Section 2 we discuss the ef-
ficient computation of first and higher-order derivatives using automatic differ-
entiation. The structural analysis required for the signature method suggested
by Pantelides [9] and Pryce [10,11] is the subject of Section 3. New drivers of
the AD-tool ADOL-C [8] are presented for the first time in Section 4. They
are tailored especially for the use in the DAE context. Preliminary numerical
results illustrating the effort to compute higher-order derivatives are discussed
in Section 5. Section 6 contains some conclusions and an outlook.

2 Computing First and Higher Order Derivatives

Throughout the paper we assume that the time ¢ has been shifted so that its
current value is simply ¢ = 0. Then we obtain for any analytic path

y(t)=> y"t
r=0

a corresponding value path
Flty() = S0 0,59,y 0, ., y™) + 0t )
r=0

The coefficient functions F, : R - R™ are analytic provided this is true for
F as we assume for simplicity. To compute the desired higher-order information,
we will first examine the derivative computation for intrinsic function. For a
given Taylor polynomial

z(t) =z + x1t + 2ot> + ...+ 2o 1t" €R"



Efficient generation of Taylor expansions for DAE solutions by AD 3

a naive implementation to compute higher-order derivatives could be based
on “symbolic” differentiation. This approach would yield for a general smooth
v(t) = @(x(t)) the derivative expressions

Vo = 90(55 )
P1(z0) 21
p2(w0) 1 71 + @1(T0) T2
v3 = <P3(330) r1 7121 + 2 p2(20) 1 T2 + P1(T0) T3
vy = a(z0) T1 71 11 71 + 3P3(T0) T1 T1 T2
+pa(x0) (X2 2 + 221 23) + @1(x0) 24
vy =

Hence, the overall complexity grows rapidly in the highest degree 7 of the Tay-
lor polynomial. To avoid these prohibitively expensive calculations the standard
higher-order forward sweep of automatic differentiation is based on Taylor arith-
metic [2] yielding an effort that grows like 72 times the cost of evaluating F(t,y).
This is quite obvious for arithmetic operations as shown below. For a general
elemental function ¢, one finds also a recursion with quadratic complexity by
interpreting ¢ as solution of a linear ODE. The following table illustrates the
resulting computation of the Taylor coefficients for a simple multiplication and
the exponential function:

v(t) = | Recurrence for k=1...7—1| OPS| MOVES
k
z(t)xy(t) | ve= Y x;Yr—j ~ 72 37
Jj= 0
exp(x(t)) | kuvg = Z JUk—j; ~ 72 27
J_

Similar formulas can be found for all intrinsic functions. This fact permit the
computation of higher-order derivatives for the vector function F(¢,Y) as com-
position of elementary components. The AD-tool ADOL-C [8] uses the Taylor
arithmetic as described above to provide an efficient calculation of higher-order
derivatives. Furthermore, the AD-tools FADBAD [1] and CppAD [4] use the
same approach to compute higher-order information.

In ODE and DAE solving, the coefficients y(") are generated in increasing
order using successive values of the residuals F,. For that purpose, we have to
compose the input coefficients of the vectors

vy =7 vy
from the values y; s obtained so far. This simple application of the chain rule
is the only extra procedure we have to attach to our AD software to facilitate
the calculation of the desired Taylor coefficients. Specifically, using ADOL-C we
must set

U =y /8!



4 A. Griewank and A. Walther

because the computations performed by ADOL-C are based on the unscaled
Taylor coefficients.

If the F, for s < r are reevaluated from scratch every time this requires r
sweeps and thus a computational effort of order r3 times the cost of evaluating
the underlying algebraic mapping F(¢,y). As observed in [7, Section 10] there
are at least two ways in which this effort can be reduced to being quadratic
in r. The first option is to store and retrieve the partial Taylor polynomials of
all intermediate quantities that occur during the evaluation of F'. This has been
done in the Fortran package ATOMFT [5] for the solution of ODEs by the Taylor
series method.

The second possibility is to exploit the property that F, is linear in all y(*)
with s > /2 so that in fact

Fo(0,y @, yM Ly

= FT(O7 y(0)7 A ’y(s_l)7 O’ AR O) + Z Ak_s(o) y(O)’ AR 7y(k_3))y(8)
k=s

Here the A,(0,y@,...,y¥=%)) € R™" for s < r are the Taylor coefficients of
the Jacobian path J(0,y(t)). They can also be evaluated by standard AD meth-
ods and are needed anyway if one wishes to compute sensitivities of the Taylor
coefficients with respect to the basis point y° in an implicit Taylor method. In
contrast to the save and restore option, exploiting the linearity reduces the num-
ber of sweeps through the computational graph essentially to the logarithm of
the maximal order 7.

3 Structural Analysis in terms of the Jacobian J

The structural analysis used by Pantelides [9] has become part of professional
simulation software [3, 6] and has been applied successfully to a wide variety of
systems. Nevertheless, it has to be mentioned, that Pantelides’ algorithm applied
to DAEs of index 1 may perform an arbitrarily high number of iterations and
differentiations [12]. This behaviour is due to the fact that the structural index of
the DAE may exceed the index of the DAE and that the differentiation needed by
Pantelides’ algorithm relate to the structural index. However, the present paper
focuses on the derivative computation. Therefore, these possibly difficulties are
just a side note for computing the consisted point. They might be overcome
in the future by a better suited determination method for the negative shifts
mentioned below.

In the structural analysis used by Pantelides [9] and Pryce [10, 11], the ele-
ments o;; of the signature matrix ' are defined by

{max{r | y;,r occurs in F;}
055 = s

—oo if no component of y; occurs in F;

where F; denotes the ith component function of F. Here, “y;, occurs in F;”
means that the value of the latter depends nontrivially on the former, which



Efficient generation of Taylor expansions for DAE solutions by AD 5

leads to its occurrence in a symbolic expression for F;. The signature matrix is
used to determine vectors ¢ = (¢;)j; and d = (d;)j_; of nonnegative shifts. It
is shown in [10] that if a solution

* * * * *
Y - (y1,07"'7y1,d17"'ayn707"'7yn,dn)

of the equations

exists and the system Jacobian J with

OF;
—  if yj 4, occurs in F;
Jij =€ 0Yjd;—e; Seme ‘
0 otherwise

is nonsingular at the solution, then Y™ is a consistent point of the DAE at time
t. The required derivative information for constructing J can be obtained by a
single reverse sweep in vector mode to evaluate the rectangular Jacobian

J(0,y) = [/1(0,y), J2(0,y), ..., Jn(0,y)] € R**™ with
Ji(0,y) = 9F(0,y) e R (+my)
8yj
Irrespective of the size of m, the operations count for this will be about n times
that of evaluating F(¢,y) by itself.

To compute a solution Y* one has to solve a sequence of underdetermined
systems of nonlinear equations. For that purpose, one needs the corresponding
Jacobian. This matrix is given by a part of the system Jacobian and can be
evaluated using again either standard higher-order automatic differentiation or
the more efficient variants discussed above. However, the initialization of the
input Taylor coefficients is considerably easy since one simply has to choose the
corresponding unit vectors.

Once a consistent point at time ¢ = 0 is computed, one may for example apply
an explicit Taylor method to integrate the DAE. For that purpose, only one solve
of a linear system with the system Jacobian J as linear operator is required for
each order of the Taylor method. Hence, one performs one LU-factorization of
J. Subsequently, one only has to evaluate higher-order derivatives occurring in
the right-hand sides. For this purpose, the technique explained in the preceding
section can be used.

4 Implementation details

For simplicity we have assumed that the DAE system has been written in au-
tonomous form, but an explicit time dependence could certainly be accounted for



6 A. Griewank and A. Walther

too. Although variations are possible we suggest that the problem be specified
by an evaluation code of the following form

void sys_eval(int n, adoublex* y, adoublex F)

using the active variable type adouble provided by ADOL-C. Here y][j][k] repre-
sents y; x, i.e. the k-th derivative of the j-th variable with & < m,;. In other words,

the calling program must have allocated n adouble pointers y[j] for j = 0,...,n—1
where each of them is itself a vector of m; + 1 =: m[j] adoubles. On exit the
components F[i] for i = 0,...,n—1 contain the function components F; in Pryce
notation.

Provided the code sys_eval does not contain any branches it must be called
only once before the actual DAE solving begins. Before the call, y and F must
be allocated and y initialized by a loop of the form

int tag = 1;
trace_on(tag)
y = new adoublex[n]; F = new adouble[n];
for(j=0; j<n; j++)
{ y[j] = new adouble[m[jI];
for (i=0; i<m[j]; i++)
y[j1[il<<=yp[j][i];
}
sys_eval(n, y, F)
for(j=0; j<n; j++)
F[j] >>= Fpl[j]
trace_off ()

Here, yp[j][i] is an array of double values at which sys_eval can be sensibly called.
The loop after the call to sys_eval determines the dependent variables in ADOL-
C terminology, where Fpl[j] is like ypl[j][i] of type double. Now the DAE system
has been taped. If the function evaluation contain branches, the generated tape
can be reused as long as the control does not change. If the control flow changes,
the return values of the drivers for computing the desired derivatives indicate
that the tape is no longer valid and a retaping has to be performed. Hence,
by monitoring the corresponding return values the correctness of the derivative
information can be ensured while keeping the effort for the taping as low as
possible.

Once, the tape is generated, function and derivative evaluations are per-
formed for example by the routines zos_forward_partx(..), fos_forward_partx(..),
hos_forward_partx(..), and jacobian_partx(..) that are problem independent. For
example the call

zos_forward_partx(tag,n,n,m,yp,Fp)

will yield as output the system values Fp[j] for arbitrary inputs yp[j][i] and the
array m describing the partition of yp. Here, zos_forward stands for zero-order
scalar forward mode, since no derivatives are required.



Efficient generation of Taylor expansions for DAE solutions by AD 7

Now suppose we have allocated and assigned values to a three dimensional
tensor yt[j][i][r] for j < n,i < m[j],r < b. Mathematically, this is interpreted as
the family of Taylor expansions

b
yllil = yehllli ¢ -
r=0

For ADOL-C, the values y[j][i][r] are completely independent but for use in the
integration method proposed by Pryce they must be given values that are con-
sistent in that

yt G100 = vy /7! -

Here the y; 4, = yl(iJrr) are the already known or guessed solution values and

derivatives. All derivatives of higher-order should be set to zero. Now the call
fos_forward_partx(tag,n,n,m,yt,Ft)

yields the Taylor coefficients Ft[j][r] for r < 2, where fos_forward stands for first-
order scalar forward mode and the call

hos_forward_partx(tag,n,n,m,b,yt,Ft)

yields the Taylor coefficients Ft[j][r] for » < b of the resulting expansion

b
FIT = > Felilld ¢

In other words, the derivative (r!) Ft[j][r] corresponds exactly to the value F; ,
needed for the approach described in [10, 11] by Pryce, except for the scaling by
r! that has to be done by the user.

For computing the system Jacobian that is also required by the method of
Pryce and similar integration methods, ADOL-C provides also a special driver.
For using it one must allocate the array jac[i][j][k] for ¢ < n,j < n,k < m;. In
order to obtain the values

jac[i][il[k] = OF;/0y;.x
of this Jacobian, the user has to call the new Jacobian driver
jacobian_partx(tag,n,m,n,xp,jac).

of ADOL-C. The presented new driver of ADOL-C are available in the current
version 1.9.0 and have been incorporated into a software-prototype in order to
test the calculation of higher order derivatives for the integration of high-index
DAEs. The achieved numerical results are presented in the next section.



8 A. Griewank and A. Walther

1 Two pendula: Pendulum 1 15 Two pendula: Pendulum 2
X
y
0.5
O,
-0.5 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

time time

Fig. 1. Index 5 two-pendulum problem, numerical results

5 Numerical example

We implemented a very simple version of the algorithm given in [10] to illustrate
the capabilities of ADOL-C to provide the required higher-order derivatives.
Furthermore, the resulting code may form one possibility to verify the run-time
saving that can be achieved using the improvements stated in Section 2.

As test example, we choose a model of two pendula from [10], where the A
component of the first one controls the length of the second one. This system
with index 5 is described by the DAE

Fi=2"4+z\ =0 Fy=u"+ux =0
Fo=y"+yA—g =0 Fs=v"4+vA—g =0
F3=22+9y>—-L =0 Fo=u?+v*—(L+c\)? =0

and has four degrees of freedom. For the numerical tests presented below, we
use the gravity constant g = 1, the length L = 1 of the first pendulum, ¢ = 0.1
and simulate the behaviour of both pendula for the time interval [0,40]. This
choice of T ensures that we simulate the pendula for a period where they do
not show chaotic behaviour, which is the case for 7' > 50, cf. [10]. The values
(z0,90) = (uo,v0) = (1,0) and (x(,y)) = (up, vy) = (0,1) serve as initial point.
In order to judge the influence of the derivative calculation on the run-time, we
consider three discretizations based on the step size h = 0.0025, 0.005, 0.01 which
results in the time step numbers 16 000, 8 000 and 4 000 respectively. In addition
we use explicit Taylor methods of order 5, 10, 15, 20, 25, 30 for the integration of
the DAE.

The computed results for the two pendula are illustrated by Fig. 1, where the
first one shows obviously a periodic behaviour. Since the length of the second one
varies in dependence on the first pendulum one can observe for the second one a
non-periodic solution which results eventually in a chaotic behaviour. However,
for the chosen combinations of step size and integration order the computed
solutions are identical for the first pendulum and close or at least comparable
for the second one. This fact was acceptable for us since the influence of the
derivative order on the computing time was the main subject.



Efficient generation of Taylor expansions for DAE solutions by AD 9

Run-time develpoment

h =0.0025

h = 0.005
10} ]
5 h=0.01 ]

5 10 15 20 25 30
order

Fig. 2. Index 5 two-pendulum problem, run-times

The simulations were computed using a Red Hat Linux system, with an
AMD Athlon XP 1666 Mhz processor and 512 MB RAM. The required com-
puting times for the different step sizes and integration orders are illustrated by
Fig. 2. Here, for one specific step size the computational efforts varies mainly due
to the integration order of the explicit Taylor method. The predicted nonlinear
behaviour can be observed very clearly for the step size h = 0.0025. For the
larger time steps, i.e. h = 0.01 and h = 0.005, the derivative calculation is dom-
inated by the linear algebra cost. Therefore, Fig. 2 shows only a slight nonlinear
influence of the integration order on the run-time. Nevertheless, the numerical
experiment confirms that the effort for computing higher-order derivatives in-
creases only moderately when using the AD-tool ADOL-C. This is in accordance
to the theoretical results sketched in Section 2.

6 Conclusion and Outlook

This paper discusses the computation of higher-order derivatives using automatic
differentiation in the context of high index DAEs. For that purpose, the stan-
dard higher-order forward sweep of automatic differentiation based on Taylor
arithmetic is discussed as well as two possible improvements that are valuable
for very high order derivatives. This methodology is embedded in the struc-
tural analysis for high-index DAEs. One case study presents numerical results
achieved with the AD-tool ADOL-C that confirm the theoretical complexity of
computing higher-order derivatives.

Certainly, the implementation of the improvements for the generation of Tay-
lor expansions presented in this paper forms one specific future challenge. This
may include also a possibly thread-based parallelization. Here one can exploit
the coarse-grained nature of Taylor computations that differ significantly from
the situation when computing first-order derivatives using AD. An additional
task is to ease the use of existing AD-tools for the usage in connection with the
structural approach to integrate high-index DAEs. For that purpose, we pre-
sented a description of new drivers provided by ADOL-C 1.9.0 that take into



10 A. Griewank and A. Walther

account the special structure of a given DAE system where in addition to the
values of the variables also the values of specific derivatives of the variables enter
the evaluation of the system function.

References

1. C. Bendtsen and O. Stauning: FADBAD, a flexible C++ package for automatic
differentiation. Department of Mathematical Modelling, Technical University of
Denmark, 1996.

2. R. Brent and H. Kung: Fast algorithms for manipulating formal power series.
Journal of the Association for Computing Machinery 25, 581-595, 1978.

3. F. Cellier and H. Elmquist: Automated formula manipulation supports object-
oriented continuous-system modelling. IEEE Control System Magazine 13, 28-38,
1993.

4. http://www.seanet.com/~bradbell/CppAD/

5. Y.F. Chang and G. Corliss: Solving ordinary differential equations using Taylor
series. ACM Trans. Math. Software 8, 114-144, 1982.

6. W. Feehery and P. Barton: Dynamic optimization with state variable path con-
straints. Comput. Chem. Engrg. 22, 1241-1256, 1998.

7. A. Griewank: Fwvaluating Derivatives, Principles and Techniques of Algorithmic
Differentiation, Frontiers in Appl. Math. 19, STAM, Phil., 2000.

8. A. Griewank, D. Juedes, and J. Utke: ADOL-C: A package for the automatic
differentiation of algorithms written in C/C++. TOMS 22, 131-167, 1996.

9. C.C. Pantelides: The consistent initialization of differential-algebraic systems.
SIAM J. Sci. Statist. Comput. 9, 213-231, 1988.

10. J. Pryce: Solving high-index DAEs by Taylor series. Numer. Algorithms 19, 195—
211, 1998.

11. J. Pryce: A simple structural analysis method for DAEs. BIT 41, 364-394, 2001.

12. G. ReiBlig, W. Martinson, and P. Barton: Differential-algebraic equations of index
1 may have an arbitrarily high structural index. STAM J. Sci. Comput. 21, 1987—
1990, 2000.



