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Abstract

In this work we construct and analyse transparent boundary conditions (TBCs)

for general systems of parabolic equations. These TBCs are constructed for the
fully discrete scheme (θ–method, finite differences), in order to maintain uncon-

ditional stability of the scheme and to avoid numerical reflections. The discrete

transparent boundary conditions (DTBCs) are discrete convolutions in time and

are constructed using the solution of the Z–transformed exterior problem. We will
analyse the numerical error of these convolution coefficients caused by the inverse
Z–transformation. Since the DTBCs are non–local in time and thus very costly to

evaluate, we present approximate DTBCs of a sum–of–exponentials form that allow
for a fast calculation of the boundary terms. Finally, we will use our approximate

DTBCs for an example of a fluid stochastic Petri net and present numerical results.

Key words: parabolic systems, unbounded domains, discrete transparent
boundary condition, finite difference method

1 Introduction

In this work we consider the numerical solution of parabolic systems posed
on an unbounded domain. Therefore the computational domain must be re-
stricted by introducing artificial boundary conditions. These artificial BCs are
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called transparent boundary conditions (TBCs), if the solution on the whole–
space (restricted to the computational domain) is equal to the solution with
the artificial BCs. The artificial boundary splits the problem into three parts:
the interesting interior problem and a left and right exterior problem. For con-
stant coefficients the exterior problems can be solved explicitly by the Laplace
method. Assuming (spatial) C1-continuity of the solution at the artificial
boundaries yields the TBC as a Dirichlet–to–Neumann map. An ad-hoc dis-
cretisation of these continuous TBCs can destroy the stability of the employed
numerical scheme for the PDE and induce numerical reflections. To avoid this,
we derive discrete TBCs (DTBCs) for the fully discretised PDE. The procedure
is analogous to the continuous case and uses the Z-transformation. The inverse
Laplace/Z-transformation yields a convolution in time. Hence, the perfectly
exact BC is non-local in time and therefore very costly for long–time simula-
tions. To reduce the numerical effort, we introduce approximate DTBCs. Since
the inverse Z-transformation must be accomplished numerically for systems,
an additional small numerical error is induced.

For scalar parabolic equations research results are already advanced (cf. [1,
Chap. 2]) and DTBCs give outstanding results. In [2] Halpern developed a
family of artificial boundary conditions for the linear convection–diffusion
equation with small diffusion. This work was generalised by Lohéac in [3,4]
to the case of a spatial dependent diffusion coefficient. Halpern and Rauch
derived in [5] absorbing boundary conditions with variable coefficients, curved
artificial boundary and arbitrary convection. The numerical study of this con-
ditions were carried out in [6] by Dubach. Lill generalised in [7] the approach
of Engquist and Majda [8] to boundary conditions for a convection–diffusion
equation and drops the standard assumption that the initial data is com-
pactly supported inside the computational domain. However, the derived Z–
transformed boundary conditions were approximated in order to get local–
in–time artificial boundary conditions. In [1, Chap. 2] DTBCs for a general
class of finite difference discretisations of a scalar parabolic equation were con-
structed such that the overall scheme is unconditionally stable and as accurate
as the discretised whole–space problem.

For parabolic systems there are only few works in this direction (e.g. [9,10]
and a special 2 × 2 model problem was treated in [11]) and to the authors’
knowledge none for general parabolic systems. Such vector–valued parabolic
equations have a broad range of applications. E.g. they arise in the linearised
Navier-Stokes equations [11,7], energy-transport models in semiconductor mo-
delling [12], in mathematical biology, e.g. the dispersal of species [13] or at the
analysis of second order fluid stochastic Petri nets (FSPNs) [14] to investigate
performance and reliability of models for e.g. software systems [15]. In this
last mentioned application field we will give a numerical example.
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2 The Transparent Boundary Conditions

For the vector u ∈ Rd we consider the general parabolic system

ut =
∂

∂x
(A(x, t)ux) + M(x, t)ux + V(x, t)u, x ∈ R, t > 0, (1)

where A, M and V are real–valued d × d–matrices. We use the following
definition of a parabolic system:

Definition 1 ([16]) The system (1) is called parabolic in 0 ≤ t ≤ T if there

is a constant δ > 0 such that for all x ∈ R, 0 ≤ t ≤ T and for all eigenvalues

κ of the matrix A holds

κ ≥ δ > 0. (2)

We will now start to derive the analytic TBCs for the parabolic system (1). In
the scalar case the Laplace transformed equation in the exterior domain can
be solved explicitly. Afterwards the solution is inverse transformed explicitly,
thus yielding the analytic TBCs (cf. [1, Chap. 2]). For systems of equations
a Laplace transformation yields a system of ordinary differential equations,
that can be reduced to first order. Then the solution of this system can be
given in terms of its eigenvalues and eigenvectors. We will prove, that half of
the eigenvalues have positive real parts and thus yield solutions increasing for
x → ∞; the other half has negative real parts, yielding decreasing solutions.
Demanding that the part of the increasing solutions in the right exterior do-
main vanishes, leads to the transformed right TBC (and analogously for the
left TBC). However, for systems the inverse Laplace transform in general can-
not be calculated explicitly. Nevertheless, we will present the derivation of the
Laplace transformed TBC and show when it exists.

We consider the system (1) in the bounded (computational) domain [xL, xR]
together with TBCs at x = xL and x = xR. We will denote the constant
parameter matrices in the left and right exterior problem by a superscript L
and R respectively, when we need to distinguish between the boundaries. But
since the derivation for the left and right TBC is analogous, we focus on the
right boundary and omit the superscript R until needed. The TBC at x = xR

is constructed by considering (1) with constant coefficients for x > xR, the so
called right exterior problem

ut = Auxx + Mux + Vu, x > xR, (3)

where the matrices A = AR, M = MR and V = VR are constant in x and t.
The parabolicity condition (2) then reads:

κ > 0, for all eigenvalues κ of A.
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Thus, we will restrict our considerations to positive definite matrices A.

To derive the TBC we make the basic assumption that the initial data u(x, 0)
is supported inside the bounded domain [xL, xR]. We note that a strategy
to overcome this restriction could be found in [1, Chap. 1]. We now use the
Laplace transformation given by

û(x, s) =
∫ ∞

0
e−stu(x, t)dt , s = α + iξ, α > 0, ξ ∈ R,

and obtain from (3) the transformed right exterior problem

(sI − V) û = Aûxx + Mûx, x > xR. (4)

Reducing the order of the differential equation to first order we obtain a system
in ( û ûx )T :



û

ûx




x

=




0 I

A−1(sI − V) −A−1M






û

ûx


 = C



û

ûx


 , x ≥ xR. (5)

We now transform C into Jordan form with C = PJP−1, where P−1 contains
the left eigenvectors in rows. We sort the Jordan blocks in J with respect to
an increasing real part of the corresponding eigenvalue. Thus J can be written
as J =

(
J1 0

0 J2

)
, where J1 holds all Jordan blocks to eigenvalues with negative

real parts and J2 those with positive real parts. Due to the following Thm. 2
J1 and J2 are d×d-matrices. With P−1 =

(
P1 P2
P3 P4

)
equation (5) can be written

as

P



û

ûx




x

=



J1 0

0 J2






P1û + P2ûx

P3û + P4ûx


 .

Obviously, solution components due to the upper equation decrease for x → ∞
and solution components due to the lower equation increase. Extinguishing
increasing solutions at the right boundary yields the transformed right TBC

P3û + P4ûx = 0, x = xR. (6)

We will now assert, that the number of eigenvalues associated to increasing
and decreasing solutions is equal:

Theorem 2 (Splitting Theorem) For the eigenvalues λj , j = 1, . . . , 2d of

the matrix C in (5) with Re (λ1) ≤ Re (λ2) ≤ · · · ≤ Re(λ2d) holds

Re(λj) < 0, j = 1, . . . , d

Re(λj) > 0, j = n + 1, . . . , 2d ,

if Re (s) is sufficiently large.
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PROOF. We will first show, that there is no purely imaginary eigenvalue λ
of C. Therefore, we use the ansatz û = eλxu0 in (4), which yields

λ2ūT
0 Au0 + λūT

0 Mu0 + ūT
0 Vu0 − s|u0|2 = 0. (7)

We assume λ = iβ, β ∈ R and consider real parts. Since A is positive definite,
it holds λ2ūT

0 Au0 < 0 and thus, if the condition

Re
(
ūT

0 Vu0 + λūT
0 Mu0 − s|u0|2

)
< 0

holds, (7) is a contradiction. But since V+V
T

2
− β Im

(
M−M

T

2

)
− Re (s)I is

negative definite for Re (s) sufficiently large, this condition is true.

Now, instead of M consider εM in (4) with ε ∈ [0, 1]. For ε = 0 equation (4)
is invariant for x → −x and thus the number of increasing and decreasing
solutions, i.e. the number of eigenvalues of C with positive and negative real
parts must be the same. Now, for ε from zero to one, the eigenvalues of C are
continuously depending on ε and there exists no purely imaginary eigenvalue
for any ε ∈ [0, 1]. Thus, for ε = 1, still d eigenvalues have positive and d have
negative real part. 2

If P4 is regular the TBC (6) can be written in Dirichlet-to-Neumann form

ûx = Dû, (8)

for D = P−1
4 P3. The regularity of these matrices is not clear in general and

must be asserted for a chosen problem.

An ad-hoc discretisation of this TBC (6) (after a numerical inverse Laplace
transformation) can destroy the numerical stability of the employed finite
difference scheme and induce unphysical numerical reflections. Therefore, we
will derive a discrete version of the TBCs on a completely discrete level.

3 The Discrete Transparent Boundary Conditions

In this section we derive DTBCs for a full discretisation of the whole–space
problem (1). For the discretisation we choose a uniform grid with the step sizes
∆x in space and ∆t in time: xj = xL + j∆x, tn = n∆t with j ∈ Z, n ∈ N0.
We use a general θ-method in time and central differences for the first and
second spatial derivatives. With the abbreviation un+θ

s,j = (1 − θ)un
s,j + θun+1

s,j

the discrete system reads

h2

k
(un+1

j −un
j ) = ∆+(A∆−un+θ

j )+
h

2
M(∆++∆−)un+θ

j +h2Vun+θ
j , j ∈ Z. (9)
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For the scalar parabolic equation Ehrhardt [17,1] derived a DTBC, which is
reflection–free on the discrete level and conserves the stability properties of
the whole–space θ-scheme. The DTBC has the form of a discrete convolution
and the convolution coefficients can be obtained easily by a three-term recur-
rence formula. Here, our strategy is to mimic the derivation of Sec. 2 on a
purely discrete level: To derive the DTBC for (9) we solve the Z–transformed
system of difference equations in the exterior domain. Then all its solutions
are determined by eigenvalues and eigenvectors, which can be distinguished
into decaying and increasing solutions by the absolute value of the involved
eigenvalue. We obtain the DTBC by using the fact that the exterior solution
decays for |j| → ∞.

We focus again on the right exterior domain j ≥ J (xJ = xR); the parameter
matrices are constant and the discrete scheme (9) simplifies to

h2

k
(un+1

j − un
j ) = A∆+∆−un+θ

j +
h

2
M(∆+ + ∆−)un+θ

j + h2Vun+θ
j , (10)

for j ≥ J . Here A = AR,M = MR and V = VR are constant matrices and
∆+, ∆− denote the usual forward and backward difference operators. Again,
we assume for the initial data u0

j = 0 for j ≥ J−1. Then the Z–transformation

Z{un
j } = ûj(z) :=

∞∑

n=0

z−nun
j , z ∈ C, |z| > R,

(R denotes the radius of convergence) transforms (10) to

h2

k

z − 1

θz + 1 − θ
ûj = A∆+∆−ûj +

h

2
M(∆+ + ∆−)ûj + h2Vûj, (11)

for j ≥ J . Now we reduce the system of difference equations to first order




h
2
M A

−I I







∆+ûj

∆+∆−ûj


 =




h2

k
z−1

θz+1−θ
I − h2V −h

2
M

0 −I







ûj

∆−ûj


 ,

or with the abbreviations T+ := A + h
2
M and T− := A − h

2
M

∆+




ûj

∆−ûj


=




(T+)−1
[

h2

k
z−1

θz+1−θ
I − h2V

]
(T+)−1T−

(T+)−1
[

h2

k
z−1

θz+1−θ
I − h2V

]
(T+)−1T− − I







ûj

∆−ûj




= C̃




ûj

∆−ûj


 . (12)

We claim, that T+ and T− are positive definite matrices, which can be ensured
by a sufficiently small space step size h.
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We decompose the Jordan form J of C̃ + I in two blocks J =
(

J1 0

0 J2

)
, where

J1 holds the eigenvalues with an absolute value smaller than one, J2 those
with an absolute value larger than one. Then (12) reads with the matrix

P−1 =
(

P1 P2
P3 P4

)
of left (possibly generalised) eigenvectors

P




∆+ûj

∆+∆−ûj


 =



J1 0

0 J2






P1 P2

P3 P4







ûj

∆−ûj


 .

The eigenvalues in J2 yield for j → ∞ increasing solutions. Therefore the right
transformed DTBC reads

P3ûJ + P4∆
−ûJ = 0. (13)

The transformed DTBC (13) can be written in Dirichlet-to-Neumann form if
P4 is regular

∆−ûJ = D̂ûJ ,

where D̂ = −P−1
4 P3. After an inverse Z–transformation the right DTBC

reads

un+1
J − un+1

J−1 − D0un+1
J =

n∑

m=1

Dn+1−mum
J . (14)

Ehrhardt showed in [1, Chap. 2] for a scalar parabolic equation that the imag-
inary parts of the convolution coefficients {dn} were not decaying but oscillat-
ing. Therefore he introduced the summed coefficients {sn := dn +dn−1}, which
decay like O(n−3/2) and hence avoid subtractive cancellation in the evaluation
of the convolution. For our coefficient matrices {Dn} it seems difficult to rigor-
ously prove the asymptotic behaviour, but empirically the situation is similar
to the scalar case: only the summed coefficients {Sn := Dn + Dn−1}, n ≥ 1,
S0 := D0 decay. The right DTBC then reads

un+1
J − un+1

J−1 − S0un+1
J =

n∑

m=1

Sn+1−mum
J − un

J + un
J−1 . (15)

Now we will justify the splitting of the eigenvalues:

Theorem 3 (Discrete Splitting Theorem) Of the 2d eigenvalues of C̃+I
d have an absolute value strictly larger and d have an absolute value strictly

smaller than one, if 1
2
≤ θ ≤ 1, |z| > 1, h sufficiently small and either k

sufficiently small or (V + VT )/2 negative definite,.

PROOF. The proof is analogous to that of Thm. 2. We will show, that no
eigenvalue λ of C̃+I with an absolute value of one exists. As in the continuous
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case, equation (11) is invariant for j → −j for M = 0 and a continuity
argument proves the splitting.

To investigate the absolute value of the eigenvalues of C̃ + I we insert the
ansatz ûj = λj û0 in (11)

λ2T+û0 + T−û0 = λ

(
T+ + T− − h2V +

h2

k

z − 1

θz + 1 − θ
I

)
û0. (16)

We assume |λ| = 1, consider absolute values of (16) and use the triangle
inequality after multiplication with ¯̂uT

0 from the left

¯̂uT
0 (T+ + T−)û0 ≥

∣∣∣∣∣
¯̂uT

0 (T+ + T−)û0 − h2 ¯̂uT
0 Vû0 +

h2

k

z − 1

θz + 1 − θ
|û0|2

∣∣∣∣∣ ,

where ¯̂uT
0 (T+ + T−)û0 is a positive real value. But the absolute value on the

r.h.s. is strictly larger than ¯̂uT
0 (T+ + T−)û0, if

Re
(
−¯̂uT

0 Vû0 +
1

k

z − 1

θz + 1 − θ
|û0|2

)
> 0,

which is a contradiction. The real part of the z-depending term can be written
as

Re
(
r

z − 1

θz + 1 − θ

)
=

h2

k

1

θ

(2 − 1
θ
)
[
|z|2 − Re (z)

]
+
(

1
θ
− 1

) [
|z|2 − 1

]

|z + 1−θ
θ
|2 , (17)

and thus for k sufficiently small (or for negative definite matrices V+V
T

2
),

1
2
≤ θ ≤ 1 and |z| > 1 there exists no eigenvalue with absolute value one and

the eigenvalues divide into two equal groups. 2

Remark 4 We used the central difference to discretise the first spatial deriva-

tive, since this is possible for any matrix M. If M is diagonalisable, it can be

advantageous to use an upwind discretisation for the convection term. The

upwind matrices R and I − R are determined from Mdiag the diagonalised

M = S−1MdiagS. This changes the matrices T+ and T− into

T+ =A + hS−1MdiagRS

and

T− =A − hS−1Mdiag(I − R)S,

which still must be claimed to be positive definite.
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4 The Sum-of-Exponentials Ansatz and the Fast Evaluation of the
Convolution-type Boundary Condition

In order to reduce the numerical effort of the boundary convolution (15), it
is necessary to make some suitable approximation. We will use the approach
of [18] to approximate the coefficients s̃n

s,l of the convolution matrix Sn by
the sum-of-exponentials ansatz and show a method to evaluate the discrete
convolution with the approximated convolution coefficients ãn

s,l efficiently.

4.1 The Sum-of-Exponentials Ansatz

The approximation has to be done for each element in S separately. We use
for each s, τ = 1, . . . , d the following ansatz

s̃n
s,τ ≈ ãn

s,τ :=





s̃n
s,τ , n = 0, . . . , ν − 1

L(s,τ)∑
l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . .

, (19)

where L(s, τ ) ∈ N and ν ≥ 0 are tuneable parameters. The approximation
quality of this sum-of-exponentials ansatz depends on L(s, τ ), ν and the sets
{gs,τ,l} and {hs,τ,l} for all s, τ = 1, . . . , d.

In the following we present a method to calculate these sets for given L(s, τ )
and ν. We consider the formal power series

fs,τ (x) := s̃ν
s,τ + s̃ν+1

s,τ x + s̃ν+2
s,τ x2 + . . . , for |x| ≤ 1 . (20)

If the Padé approximation of (20) f̃s,τ(x) :=
n

(L(s,τ)−1)
s,τ (x)

d
(L(s,τ))
s,τ (x)

exists (where the

numerator and the denominator are polynomials of degree L(s, τ ) − 1 and
L(s, τ ) respectively), then its Taylor series f̃s,τ (x) = ãν

s,τ + ãν+1
s,τ x+ ãν+2

s,τ x2 + . . .
satisfies the conditions ãn

s,τ = s̃n
s,τ for n = ν, ν+1, . . . , 2L(s, τ )+ν−1 according

to the definition of the Padé approximation rule.

We now explain, how to compute the coefficient sets {gs,τ,l} and {hs,τ,l}.

Theorem 5 ([18], Theorem 3.1.) Let dL(s,τ)
s,τ have L(s, τ ) simple roots hs,τ,l

with |hs,τ,l| > 1, l = 1, . . . , L(s, τ ). Then

ãn
s,τ =

L(s,τ)∑

l=1

gs,τ,l h
−n
s,τ,l , n = ν, ν + 1, . . . ,

9



where

gs,τ,l := − n(L(s,τ)−1)
s,τ (hs,τ,l)(
d

(L(s,τ))
s,τ

)′
(hs,τ,l)

hν−1
s,τ,l 6= 0 , l = 1, . . . , L(s, τ ) .

Remark 6 The asymptotic decay of the ãn
s,τ is exponential. This is due to

the sum-of-exponentials ansatz (19) and the assumption |hs,τ,l| > 1, l =
1, . . . , L(s, τ ).

The above analysis permits us to give the following description of the approxi-
mation to the convolution coefficients by the representation (19) if we use a
[L(s, τ )− 1|L(s, τ )] Padé approximant to (20): the first 2L(s, τ )+ ν− 1 coeffi-
cients are reproduced exactly; however, the asymptotic behaviour of s̃n

s,τ and
ãn

s,τ (as n → ∞) differs strongly (algebraic versus exponential decay).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
x 10

−6

n

Fig. 1. Error |s̃n
1,1 − ãn

1,1| versus n.

We note that the Padé approximation must be performed with high preci-
sion (2L(s, τ )− 1 digits mantissa length) to avoid a ‘nearly breakdown’ by ill
conditioned steps in the Lanczos algorithm. If such problems still occur or if
one root of the denominator is smaller than 1 in absolute value, the orders of
the numerator and denominator polynomials are successively reduced. In our
numerical test case (see Sec. 6) we started with L(s, τ ) ≡ 30, ν = 2 and the
finally reached values of L(s, τ ) were between 26 and 30. Figure 1 shows the
error |s̃n

1,1 − ãn
1,1| versus n for the first diagonal element with the parameters

taken from the numerical example of Sec. 6. Clearly, the error increases sig-
nificantly for n > 2L(s, τ )+ 1 but remains of moderate size for large values of
n.
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4.2 The Fast Evaluation of the Approximate Convolution

Now we describe the fast evaluation of the discrete approximate convolution.
Let us consider the approximation (19) of the discrete convolution kernel ap-
pearing in the DTBC (15). With these “exponential” coefficients the convolu-
tion

C(n+1)
s,τ (u) :=

n+1−ν∑

m=1

ãn+1−m
s,τ um

τ,J , with ãn
s,τ :=

L(s,τ)∑

l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . . ,

|hs,τ,l| > 1, of a discrete function um
τ,J , m = 1, 2, . . . , with the kernel coeffi-

cients ãn
s,τ , can be calculated by recurrence formulas, and this will reduce the

numerical effort significantly. A straightforward calculation yields:

Theorem 7 ([18], Theorem 4.1.) The value C (n+1)
s,τ (u) for n ≥ ν − 1 is

represented by

C(n+1)
s,τ (u) =

L(s,τ)∑

l=1

C
(n+1)
s,τ,l (u) (21)

can be calculated efficiently by a simple recurrence formula:

C
(n+1)
s,τ,l (u) = h−1

s,τ,l C
(n)
s,τ,l + gs,τ,l h

−ν
s,τ,l u

n+1−ν
τ,J , n = ν − 1, ν, . . . (22)

C
(ν)
s,τ,l(u) ≡ 0 .

4.3 Summary of the Proposed Method to Evaluate Approximate DTBCs

(1) For each s, τ choose L(s, τ ) and ν and calculate numerically the exact
convolution coefficients s̃n

s,τ for n = 0, . . . , 2L(s, τ ) + ν − 1.
(2) For each s, τ use the Padé approximation for the Taylor series with ãn

s,τ =
s̃n

s,τ , for n = ν, ν +1, . . . , 2L(s, τ )+ ν − 1 to calculate the sets {gs,τ,l} and
{hs,τ,l} for all s, τ = 1, . . . , d according to Theorem 5.

(3) Implement the recurrence formulas (21), (22) to calculate the approxi-
mate convolutions.

5 Computation of the Convolution Coefficients by Numerical In-
verse Z–Transformation

The Z–transformation (or in the analytical case the Laplace transformation)
enables us to solve the exterior domain equations for deriving transparent
boundary conditions. In the implementation the numerical inverse Z–trans-
formation of the convolution coefficients is a subtle problem due to its inherent
instabilities.
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In this section we will examine the numerical error caused by the inverse
Z–transformation, since it is the crucial point in our numerical implemen-
tation. First we shall review the inverse Z–transformation: Assume that the
Z–transform of the series {`n}: ˆ̀(z) =

∑∞
n=0 `nz−n is analytic for |z| > R ≥ 0.

The coefficients are then recovered by `n = 1
2πi

∮
Sρ

ˆ̀(z)zn−1dz, where Sρ de-

notes the circle with radius ρ > R. With the substitution z = ρeiϕ we have

`n =
ρn

2π

∫ 2π

0

ˆ̀
(
ρeiϕ

)
einϕdϕ . (23)

For ρ = 1 this shows that the (inverse) Z–transformation is an isometry

between {`n} ∈ `2(N0) and ˆ̀
∣∣∣
|z|=1

∈ L2(0, 2π).

For ρ > 1, however, the amplification factors ρn in (23) cause numerical insta-
bilities. On the other hand, ρ = 1 cannot be chosen either for the application
to DTBCs, due to the poor regularity of D̂(z) = −P−1

4 P3 on the unit circle.
For the scalar parabolic equation, e.g., d̂(z) has two branch-points of type√

z2 − 1 (cf. [1, Chap. 2]), and hence too many quadrature points would be
necessary for the numerical evaluation of (23). But d̂(z) is analytic for |z| > 1.

So, one has to choose ρ as a compromise between more smoothness of ˆ̀
∣∣∣
|z|=ρ

(which allows for an efficient discretisation of (23)), and growing instabilities
for large values of ρ.

For the numerical inverse Z–transformation we choose a radius r and N
equidistant sampling points zp = re−ip2π/N . The approximate inverse trans-
form,

`N
n =

1

N
rn

N−1∑

p=0

ˆ̀(zp) einp 2π
N , n = 0, . . . N − 1, (24)

can then be calculated efficiently by an FFT. The numerical error of `N
n can

be separated into εapprox, the approximation error due to the finite number of
sampling points, and the roundoff error εround, which is amplified by ρn. We
shall now derive an estimate for this error. Defining Qρ

ˆ̀ = max
0≤ϕ≤2π

|ˆ̀
(
ρeiϕ

)
|

gives the estimate

|`n| ≤ ρnQρ
ˆ̀ . (25)

We insert the exact form of ˆ̀
p = ˆ̀(zp) into (24), change the order of summation

and use the orthogonality property

`N
n =

1

N
rn

∞∑

m=0

`mr−m
N−1∑

p=0

e−imp 2π
N einp 2π

N

=
1

N
rn

∞∑

m=0

`mr−m





N , if m = n + jN , j ∈ N0

0 , else
.

12



This gives `N
n − `n =

∑∞
p=1 `n+pN r−pN . Here, we insert inequality (25) and

sum the geometric series, which yields

|`N
n − `n| ≤ ρnQρ

ˆ̀

∞∑

p=1

(
ρ

r

)pN

= ρnQρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N , for r > ρ > R. (26)

We remark that similar estimates have been derived in the application of
quadrature rules to numerical integration by Lubich, which involve Fourier
transformation (cf. [19]).

The other influential error is the roundoff error that depends on the machine
accuracy εm and the accuracy ε in the numerical computation of ˆ̀

p. For in-
stance, we will use ã = a(1 + εm) as the computer representation of an exact
value a. The roundoff error of the inverse Z–transformation is calculated from
equation (24). The main part results from the N fold summation of ˆ̀

p and
the exponential function:

∣∣∣ ˜̀Nn − `N
n

∣∣∣ ≤ rn (CNεm + ε) Qr
ˆ̀
p
.

Together with (26) the error is bounded by

|˜̀Nn − `n| ≤ ρnQρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N + rn ((N + 1)εm + ε)Qr
ˆ̀
p
+ O(ε2

m + εεm) . (27)

We shall illustrate this error behaviour with the numerical example of Sec. 6.

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

r

Digits = 20
Digits = 30
Digits = 40

(a) 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

r

N = 64
N = 128
N = 256
N = 512

( b)

Fig. 2. Error in one element of the matrix D as a function of the radius r

(a) depending on the number of digits (with N = 256 fixed) and

(b) calculated with 20 digits precision depending on the number N of sampling
points for the inverse Z–transformation.

We calculated the series Dn for the queueing system with different accuracies
(20, 30 and 40 digits precision) and considered the solution obtained with 50
digits precision as a reference solution. We used N = 256 sampling points on
the circle. The Euclidean norm of the error is shown in Fig. 2(a) for one of the
36 entries in the matrix D. For all entries the error has the same behaviour:
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the error decreases with growing radius, up to a ropt, after which the roundoff
error grows rapidly. Observe, that the y-axis of the plot is in logarithmic scale.
The curves for 20, 30 and 40 digits coincide for small values of r up to the
radius r20

opt, r30
opt respectively.

Fig. 2(a) shows the influence of the mantissa length on the accuracy of the
calculation. Next, we want to show the dependence of the error on the number
N of sampling points. Fig. 2(b) shows four error curves with 20 digits precision;
one for N= 64, 128, 256 and 512, respectively. The Euclidean norm of the
error is summed up to 64. A higher number of sampling points yields a faster
decreasing error, ropt becomes smaller and of course the error at ropt becomes
less. An influence of N on the round off error is hardly discernable. Comparing
the errors at the different N -depending ropt we notice that the gain of taking
the double number of points gets less with increasing N . Of course the error
cannot become less than the precision in the calculation of ˆ̀

n.

Since the calculation for a system is rather expensive, it is desirable to predict
a radius close to ropt. For the different entries in D the optimal radius varies

only slightly - up to a difference of 0.001. We computed the matrices D̂ and Ŝ
with MATLAB with an accuracy of ε = 10−16. Thus, with a radius r = 1.018
and N = 212 sampling points, we achieve an accuracy of 10−8.

6 Numerical Example

As an illustrating example we consider a second order fluid stochastic Petri

Net. Stochastic Petri nets (SPNs) [20,21] are a tool for describing and studying
systems that model time dependent processes. Lately SPNs have been widely
used for model–based performance and dependability evaluation of computer
and communication systems. Due to the ever increasing complexity of these
systems, the size of the state space explodes. Thus, fluid stochastic Petri nets

(FSPNs) have gained attention to approximate these extremely large state
spaces or to model continuous quantities (cf. [22–24]), because FSPNs intro-
duce beside the discrete also a continuous sub–model — both effecting each
other. The hybrid net we use here, is defined in [14] and has been used to
model computer systems [15] and supervisory control systems [25]. Its tran-
sient behaviour is described by the parabolic equation

∂

∂t
π(x, t) +

∂

∂x
(M (x)π(x, t)) =

1

2

∂2

∂x2

(
Σ2(x)π(x, t)

)
+ QT

π(x, t), (28)

x ≥ xmin, t ≥ 0, that is weakly coupled by the generator matrix Q ∈ R
d×d,

which describes the dynamics of the discrete model part. π(x, t) ∈ Rd is
the vector valued probability density function. The other d × d–matrices are
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diagonal. M (x) = diag(µ1, . . . , µd)(x) and Σ2(x) are the expectation and
variance of the fluid flow. The initial boundary value problem is completed by
a reflecting barrier at x = xmin:

1

2

∂

∂x

(
Σ2(x)π(x, t)

) ∣∣∣∣
x=xmin

− M (x)π(x, t)

∣∣∣∣
x=xmin

= 0, (29)

and the initial condition

π(x, 0) = δ(x− x0)π0, x ≥ xmin, (30)

where δ denotes the Dirac–Delta distribution. Due to the special structure of
(28) it is sensible to use a slightly changed discretisation scheme: the coupling
term QT

π(x, t) is discretised explicitly by QT ((1 + θ)πn
j − θπn−1

j ), where
π

n
j ≈ π(xj, tn). Thus, the discrete system is in tridiagonal form and can be

solved efficiently. ∂
∂x

(M (x)π(x, t)) is discretised via the upwind method (see
Rem. 4) and a discrete maximum principle holds, that ensures T+ and T−

to be positive definite without any restriction on the step size h [26]. For
this problem the proof of the discrete splitting theorem holds without any
restrictions.

The discrete scheme for state s is

πn+1
s,j − πn

s,j

k
+ (1 − ρs,j)

µs,jπ
n+θ
s,j − µs,j−1π

n+θ
s,j−1

h
+ ρs,j

µs,j+1π
n+θ
s,j+1 − µs,jπ

n+θ
s,j

h

=
1

2

σ2
s,j−1π

n+θ
s,j−1 − 2σ2

s,jπ
n+θ
s,j + σ2

s,j+1π
n+θ
s,j+1

h2
+

d∑

l=1

(
(1 + θ)πn

l,j − θπn−1
l,j

)
qs,l,

(31)

where ρs,j is the upwind parameter.

N

low

high

P3 down up

arrival1

serve

arrival2

t2

t3

t5

t6

t1

t4 t7

2

Fig. 3. FSPN of a queueing system with failure and repair

Fig. 3 shows a queueing system, that represents the model of a node in a com-
munication network. Its buffer is approximated by the fluid place P3. Transi-
tions t3 and t4 fire with different rates clients into the system. This imitates
the existence of different peak times. If there is a token in place down, the fir-
ing (with exponentially distributed firing time) of transition t5 is prevented as
would be the case if the server fails. The parameters arrival1, arrival2 and serve

15



are defined by the rates of the transitions t3, t4 and t5 respectively. In Fig. 4
we present the reduced reachability graph of the queueing system of Fig. 3. We
choose N = 2 to obtain a concise graph. The expressions up and down give
the partial markings #up = 1,#down = 0 and #up = 0,#down = 1 respec-
tively. As well high, high–low and low signify the two places in the left part of
the petri net, which currently share at least one of the two tokens, that were
initially in place low. Transition t5 appears not in the reduced reachability

high-low, up, z

high, up, z high, down, z

high-low, down, z

low, down, z

t1

t1 t1

t1t2

t2 t2

t2

t6

t6

t6

t7

t7

t7

low, up, z

Fig. 4. Reduced reachability graph of the queueing system of Fig. 3 for N = 2.

graph, because it is not connected to a discrete place. Its rate influences the
fluid flow parameters. For N = 2 we get the following fluid parameters, if we
enumerate the tangible states in Fig. 4 from left to right:

M =diag




arrival1− serve

arrival1

arrival1 + arrival2− serve

arrival1 + arrival2

arrival2− serve

arrival2




= diag




−1.2

0.4

0.0

1.6

−0.4

1.2




,

Σ2 =diag




arrival1 + serve

arrival1

arrival1 + arrival2 + serve

arrival1 + arrival2

arrival2 + serve

arrival2




= diag




2.0

0.4

3.2

1.6

2.8

1.2




,

if we choose arrival1 = 0.4, arrival2 = 1.2 and serve = 1.6. The generator
matrix Q results from the the rates λ1 = 4.0, λ2 = 5.0, λ6 = 1.0, λ7 = 0.25
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of the transitions (t1, t2, t6 and t7), which have exponential distribution time
and are part of the discrete petri net. Thus Q evaluates to

Q =




−5.25 0.25 5.0 0.0 0.0 0.0

1.0 −6.0 0.0 5.0 0.0 0.0

4.0 0.0 −9.25 0.25 5.0 0.0

0.0 4.0 1.0 −10.0 0.0 5.0

0.0 0.0 4.0 0.0 −4.25 0.25

0.0 0.0 0.0 4.0 1.0 −5.0




.

At the beginning the system is in the state one shown in Fig. 3. Thus, the
initial marking is π0 = (1, 0, 0, 0, 0, 0).
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Fig. 5. The numerically calculated density π1, . . . , π6
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Fig. 5 shows the xt–diagram of the density function π for all six states. We
observe, that the mass in the states s = 2, 4, 6 moves to the left, what we
expected due to µ2, µ4, µ6 > 0. The mass moving to the left is interpreted as
an increasing number of waiting clients in the system, which grows since for
s = 2, 4, 6 the server fails and the petri net is in the state “down”. Due to
the coupling, the mass in state s = 3 moves to the right. µ3 is zero, but the
(by the coupling) in–flowing mass comes especially from the states s = 1 and
s = 5 (see above q1,3 = 5, q5,3 = 4), which have negative µ.

In Fig. 6 we plotted the discrete l2-error of the solution πn
1 when using the

approximated DTBC of Sec. 4 with L(s, τ ) = 30 and ν = 2. The error is com-
paratively big at the start of the evaluation, when most of the mass leaves the
computational domain. Then the error decreases. Due to the approximation
the error increases again moderately in time.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

n

Fig. 6. l2-error of solution πn
1 with approximate DTBC (L ≈ 30, ν = 2).

6.1 Stability

Finally, we want to check numerically the stability of the θ-scheme with
DTBCs for this example. Therefore, we have to assert that the l1-norm of
the numerical solution does not grow in time and we define

||πn||l1 :=
J−1∑

j=0

d∑

s=1

|πn
s,j| =

J−1∑

j=0

d∑

s=1

πn
s,j. (32)
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Fig. 7. The time dependent change in the l1-norm of the solution: 4+
t ||πn||l1

for exact and approximate (L ≈ 30, ν = 2) DTBC.

We consider its difference in time and insert the discrete equation (31) using
the fact that the row sum of Q equals zero

h2

k
4+||πn||l1 =

J−1∑

j=1

d∑

s=1

(
1

2
4+4−(σ2

s,jπ
n+θ
s,j ) − h

{
4+(µs,jρs,jπ

n+θ
s,j )

+4−(µs,j(1 − ρs,j)π
n+θ
s,j )

})
+

h2

k

d∑

s=1

(πn+1
s,0 − πn

s,0)

=
d∑

s=1




J∑

j=2

T+
s,jπ

n+θ
s,j −

J−1∑

j=1

(T+
s,j + T−

s,j)π
n+θ
s,j +

J−2∑

j=0

T−
s,jπ

n+θ
s,j +

h2

k
(πn+1

s,0 − πn
s,0)




=
d∑

s=1

(
−T+

s,1π
n+θ
s,1 + T−

s,0π
n+θ
s,0 +

h2

k
(πn+1

s,0 − πn
s,0) − T−

s,J−1π
n+θ
s,J−1 + T+

s,Jπn+θ
s,J

)

=
d∑

s=1

(
−T−

s,J−1π
n+θ
s,J−1 + T+

s,Jπn+θ
s,J

)
(33)

and use an index transformation for the first and third sum over j. The
last equality is just the reflecting boundary condition. The abbreviations are
T+

s,j = 1
2
σ2

s,j − hρs,jµs,j and T−
s,j = 1

2
σ2

s,j + h(1 − ρs,j)µs,j. The aim is now, to
show that (33) is non–positive. But using the DTBC does not yield any esti-
mate, because our information about properties of the convolution matrix is
to small. It remains the possibility to check the sign of (33) numerically. Fig. 7
shows the time dependent change in the l1-norm of the numerical solution us-
ing the exact and the approximate (L ≈ 30, ν = 2) DTBC. It is negative for
each time step n = 1, . . . , 5000. Thus, for this specific discretisation we used
a stable scheme.
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Conclusion

We have proposed new discrete transparent boundary conditions (DTBCs) for
the numerical solution of parabolic systems on unbounded domains. Since the
exact DTBCs are non–local in the time variable and therefore very costly for
long–time simulations we reduced the numerical effort drastically by introduc-
ing a ‘sum-of-exponential’ approximation to the DTBCs. Finally we presented
a numerical example in the application to second order fluid stochastic Petri
nets.
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