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Figure 1: The initial point set of the Venus torso (a) was disturbed with a 3% normal and tangential noise to produce the initial noisy point
set (b). Figures (c) and (d) show the point set after 20 respectively 50 iterations of the anisotropic fairing algorithm which detects and
emphasizes high principal curvature values. Figure (e) shows a denoised torso with varying point density in z-direction. The original low
resolution model of a Venus torso was subdivided to a resolution of 68K vertices and then disturbed with tangential noise to remove the
visible subdivision patterns. All point sets are colored by their maximal principal curvature which is calculated from the point set.

ABSTRACT
The use of point sets instead of meshes became more popular during
the last years. We present a new method for anisotropic fairing of a
point sampled surface using an anisotropic geometric mean curva-
ture flow. The main advantage of our approach is that the evolution
removes noise from a point set while it detects and enhances geo-
metric features of the surface such as edges and corners. We derive
a shape operator, principal curvature properties of a point set, and
an anisotropic Laplacian of the surface. This anisotropic Laplacian
reflects curvature properties which can be understood as the point
set analogue of Taubin’s curvature-tensor for polyhedral surfaces.
We combine these discrete tools with techniques from geometric
diffusion and image processing. Several applications demonstrate
the efficiency and accuracy of our method.
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1 INTRODUCTION
A classical approach to describe surfaces is to describe them by
local approximations. Many powerful and sophisticated methods
have been developed to describe and design complex surfaces us-
ing splines, finite elements, or other polynomial approximations of
higher order, and patch these local pieces of information together.
Using relatively few sample points, it is possible to describe quite
complex objects. Nevertheless, linear approximations, e.g. triangu-
lations, became very popular. The advantage of easy handling is
paid at the cost of a larger number of sample points needed for good
approximations. Modern computer equipment is not only capable of
handling large point sets, but also uses them: 3D-scanning devices
naturally hand back large points sets that represent a given surface.
An obvious direction of research aims therefore to associate struc-
ture (e.g. a triangulation) to these samples. By algorithms as the
crust algorithm presented by Amenta, Bern, and Kamvysselis [2]
such a mesh can be constructed. Moreover, it provably recovers the
type of the surface correctly if some conditions on the sampling rate
are satisfied. Once such a mesh is obtained, classical methods can
be used to manipulate the data.

A different direction that became more and more popular during
the last years is to deal with unstructured point samples only. At the
cost of larger sample sets, the advantage is that no mesh structure
has to be managed. Pure point based geometries are surprisingly
flexible: up- and downsampling of the point set can be done as a
postprocessing step as well as Gaussian fairing and surface editing;
a good starting point for these subjects are for example [1] and [10].

Very often the samples one has to deal with are not precisely
taken, that means, the sample points are obtained from measure-
ments which are more or less accurate. Higher accuracy might be
obtained at higher cost and/or more elaborate technical solutions,
but software engineering can also help to obtain improved results.

Note: http://www.zib.de/polthier/articles/pointSet
provides video animations of the experiments.



(a) (b) (c) (d)

Figure 2: A cylinder with constant positive mean curvature is intersected with a plane. The point set consists of the union of both surfaces (a).
3% tangential and normal noise are added to the point set (b). After 50 iterations (d) the planar area clearly shows zero mean curvature (blue)
while the cylindrical area (greenish) still has non-vanishing H. All figures are colored by the length of the anisotropic mean curvature vector.
Figure (c) is after 15 iterations. Positive mean curvature leads to shrinking, and intersecting geometries have no well-defined principal cur-
vature directions along the intersection line. Therefore this example demonstrates the behavior of our algorithm in two non-trivial test cases.
Despite of the low resolution of the point set the positive mean curvature of the cylinder is recovered. The intersection line is recognized as
an area of higher principal curvature and clearly separates the two areas, the curved cylinder and the flat plane.

A classical approach in denoising is the use of Laplacian curva-
ture evolution. This has been implemented for meshes as well as
for point based geometries. A side-effect of this isotropic Gaussian
fairing that uses mean curvature is a smoothing effect at pointed
features or edges. This is not wanted in general. We solve this prob-
lem by taking additional curvature information into account to ob-
tain an anisotropic fairing. The additional curvature information are
the principal curvatures and their directions. To obtain this data, we
use ideas from differential geometry: directional and principal cur-
vatures as well as the Weingarten map that is also known as shape
operator. It is well-known that the eigenvalues of the Weingarten
map are the principal curvatures and the Weingarten map can be
expressed as an integral over the directional and mean curvatures.
The main goal of this paper is to translate the directional curva-
tures, principal curvatures, and the Weingarten map into the setting
of meshless point samples as follows: directional curvatures gives
rise to a discretized Wingarten map via a discretized integral and
an eigenanalysis of this Weingarten map yields the principal curva-
tures and directions. We finish with an application of these objects
by presenting methods for anisotropic fairing of point sets which
use directional curvature information and principal curvatures to
detect features such as edges, see Figure 4 for example. A similar
approach in the completely different setting of polyhedral meshes
is described by Taubin [15, 16].

The paper is organized as follows:
1. We define directional curvatures for the points of the sample in

subsection 3.1. This is done in an obvious way: We consider an
approximation of directional curvatures for smooth surfaces.

2. We define a Weingarten map and principal curvatures for points
of a point cloud in subsection 3.2 and 3.3. This is achieved by
discretizing an integral formula for the smooth Weingarten map.
A major difficulty is that sample densities may vary in differ-
ent directions and one has to take this fact into account for the
discretization.

3. We apply the derived notions of curvature to modify the well-
known (isotropic) Laplacian to obtain an anisotropic Laplacian
and use this anisotropic Laplacian for mean curvature flow tech-
niques in Section 4. This enables us to fair noisy point samples
without smoothing edges, see Figures 5, 6, and 7 for a first im-
pression.

Independently, an anisotropic smoothing has been proposed that
uses an eigenanalysis of the covariance matrix [4, 5] instead of the
Weingarten map. We emphasize that this approach lacks curvature
information since the covariance matrix at a point gives informa-
tion of the tangential and normal directions at this point, not of their
change. But it is this curvature that tells us about features such as
edges.

1.1 Related Work

A moving least squares method to associate a manifold structure
to the point sample is considered for example in [9] and [1]. Levin
describes a general method in Rd that consists of two steps. Firstly,
an approximating hyperplane has to be determined for points p near
the (d− 1)-dimensional hypersurface S which is sampled by {pi}.
This is done by solving a non-linear minimization problem. Then
the hypersurface is interpolated locally by polynomials that have the
hyperplane defined in the first step as domain. In [1], this method
is applied to surfaces in R3. The non-linear minimization problem
is reformulated as an eigenvalue problem of an associated weighted
covariance matrix. The second step is a system of linear equations
whose size depends on the degree of the approximating polynomi-
als. The main idea of this method is to implicitly define an approxi-
mating surface. [1] also describes a method to up- and downsample
the set of sample points by using the implicitly defined surface.

Another point based model is described by Pauly, Kobbelt, and
Gross, [10], where no implicit surface is constructed. They use a
local approximation of the tangent space for each point of the sam-
ple that is also found by an appropriate eigenvector of a covari-
ance matrix. To proceed in this direction one needs the notion of
neighborhood of a point. Pauly, Kobbelt, and Gross consider k-
neighborhoods, i.e. the k nearest neighbors w.r.t. Euclidean dis-
tance. Laplacian and multilevel smoothing is covered as well as up-
and downsampling and surface editing.

From differential geometry we know how to compute the curva-
ture tensor of a surface in a point. This knowledge can be used for
an approximation of the curvature tensor for polyhedral surfaces at
any vertex of the polyhedral surface in R3, as already described by
Taubin [15]. Firstly, a normal vector is computed by averaging over
(weighted) normals of all polygons that contain p. Here it is essen-
tial that one deals with meshes instead of point sets. The tangent
plane at p is then defined, one has a projection of all edges ei that
contain p to this tangent plane, and a directional curvature in direc-
tion of ei can be computed. This gives rise to a (3× 3)-matrix that
can be transformed into a discretized Weingarten map. Its eigen-
values are 0 with eigenvector in normal direction and the principal
curvatures at p with principal directions as eigenvectors.

Isotropic Laplacian smoothing is discussed in the literature for
meshes as well as for point based models, [6] and [10] and the ref-
erences therein. A smooth Laplacian is linearly approximated in a
vertex p by the umbrella operator for which a neighborhood of p
must be specified. A discretized diffusion process (evolution) that
is solved using an Euler scheme gives the denoising evolution. A
well-known problem of this iterative smoothing is shrinkage. Dif-
ferent methods are introduced to cope with this: Taubin [16] varies
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Figure 3: In contrast to all other examples, we use here the adjacency of the points of the undisturbed original torus in order to demonstrate
the strong influence of correct neighbourhood information. Figures (b) and (c) after 15 respectively 50 iterations clearly demonstrate that the
original surface is perfectly recovered if the correct spatial neighbourhood is used. The undisturbed torus is included for convenience and
shown with reduced transparency.

a scale parameter, Desbrun, Meyer, Schröder, and Barr [6] rescale
after each evolution step by the factor of shrinkage while Pauly,
Kobbelt, and Gross [10] measure the shrinkage locally and displace
neighbors to compensate the downsized volume. The anisotropic
diffusion problem generalizes the model for isotropic smoothing. It
is discussed in [3], [13], and [14] and dates back to work of Perona
and Malik [11] who introduced this method as a smooth method for
edge-enhancing and denoising of pictures.

The paper started as an effort to transfer the recent results for
mesh optimization and noise removal of simplicial meshes [8] to
point sets. This includes the derivation of a discrete shape operator
to determine principal curvature directions.

2 REVIEW OF THE POINT BASED
MODEL

Point samples taken from a smooth surface sufficiently dense do
somehow reflect the structure of the surface. Points sufficiently
close together should be distributed nearby the tangent plane, so the
idea that the covariance matrix of neighboring vertices is somehow
related to the tangent space and its normal is not too surprising.

The first task is to translate the objects from differential geometry
to a point based model, that is in particular, we need a sensible def-
inition of a tangent space. This is done by in a common approach
using a notion of neighborhood. We interprete this in such a way
that the tangent plane minimizes a least squares energy functional.
If one has a notion of tangent space, it is straight-forward to transfer
the technique of mean curvature flows from triangulated spaces to
point clouds. This can also be found in the literature, [10].

The presented point based model is almost the same as the one
used in [10] where a linear approximation is done more or less in
the same way. The model differs from the one in [9] and [1] since
they add a second step which defines their implicit surface. For our
purposes a linear approximation is sufficient. The set of samples
will be denoted by P = { pi | 1 ≤ i ≤ N } and we assume that
P describes some underlying surface S that is embedded in R3. In
particular, all points pi are given by their 3 real-valued coordinates.

2.1 Neighborhoods
All computations will be based purely on neighborhoods induced
by the Euclidean notion of vicinity instead of combinatorial prox-
imity in the mesh setting. For fine samples and small Euclidean
neighborhoods, both notions will be similar; a number of ap-
proaches for point sets are studied in [7]. The notion of k-nearest
neighborhood Nk is used in [10]: Nk(pi) consists of the k nearest

neighbors of pi relative to the Euclidean distance. For the mov-
ing least-squares method normally all sample points are used and
weighted according to distance. We consider an -k-neighborhood
Nk(p) of a sample point p, i.e. the intersection of the k sample
points closest to p with the sample points contained in an -ball
around p. The parameters and k will be globally set, therefore we
use the shorthand Np or Ni for neighborhoods of p or pi.

2.2 Tangent Spaces
The neighborhood is now used to approximate the tangent space Ti
at pi which in turn is determined by a minimization problem: Let
b ∈ R3 be any point and minimize the least squares energy given
by

Ei(n, r) =
x∈Ni

(hx− b, ni− r)2,

where a 2-plane is given by its normal vector n and its distant r to b.
It turns out that the barycenter b̄ of Ni is distinguished in the sense
that the minimizing hyperplane must contain b̄. Moreover, a critical
normal direction n is necessarily an eigenvector of the covariance
matrix Mi := x∈Ni(x− b̄)(x− b̄)t of pi:

Mi · n = Ei(n, r) · n. (1)

We denote a unit-length eigenvector of the smallest eigenvalue of
Mi by ni and consider it as normal vector defining the approxima-
tion of the tangent space at pi.

Approximating the tangent plane is sufficient for our purposes.
We therefore do not use the higher order approximation proposed
in the second step of the projection procedure of [9] and [1].

2.3 Isotropic Gaussian Fairing
We shortly discuss some well-known facts and methods concern-
ing the isotropic Laplacian to fix notation. Section 3.1 will then be
concerned with the anisotropic case. As in differential geometry,
we think of the Laplacian as the composition of div and ∇. Once
a neighborhood is fixed, these operators have a combinatorial ana-
logue.

The discrete version of (∇)|pi is determined by the neighboring
vertices pj ∈ Ni of pi for vector-valued functions f :

(∇pj )|pi(f) = (f(pi)− f(pj))eij

and
(∇ )|pi(f) =

pj∈Ni
(f(pi)− f(pj))eij ,
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Figure 4: The octahedron is a standard test case for anisotropic smoothing. Our algorithm recognizes and recovers sharp edges. Note the
single vertex on top of the Figure (c) which got stuck because all of its principal curvatures are above the curvature threshold. The original
octahedron (a) with 32K vertices is obtained from a regular 4-1 subdivision. Figure (b) shows the initial point set with 1.5% tangential and
normal noise. (c) shows the recovery of features and after 100 iterations with anisotropic MC flow. For comparison, Figure (d) shows an
isotropic Laplacian smoothing which leads to lost sharpness of edges.

where eij denotes the vector pi − pj . The interpretation of div
at pi is as follows: For a vector v = pj∈Ni vjeij , the divergence
div|pi at pi is given as pj∈Nihv, eiji = pj∈Ni vj . The inner
product h , i is not the inner product of R3 but the combinatorial
inner product of RNi where the eij form an orthonormal basis. We
define the isotropic Laplacian ∆|pi at pi as (div ◦∇)|pi , i.e.

∆|pif =
pj∈Ni

(f(pi)− f(pj)).

This definition coincides with the definition of ∆ as umbrella oper-
ator. The Laplacian ∆ can be interpreted as a matrix, a sample pi is
mapped to a linear combination of its neighbors.

Isotropic Gaussian fairing is achieved via a PDE-method, i.e. by
the diffusion equation

∂S

∂t
= λ∆S,

which can be solved using a simple Euler scheme:

Sn+1 = (Id+λ∂t∆)Sn,

see [6] for details in case of meshes and [10] in case of point sets.
In each step the Laplacian has to be recomputed. For this compu-
tation, it has proven useful to keep the neighborhood of each point
determined in the beginning instead of reassigning a new neighbor-
hood at each step. Besides efficiency improvements, stability is also
meliorated since clustering effects are prevented, [10].

(a) (b)
Figure 5: The two figures show the same point sets as in Figure 4
without vertex coloring. The coloring by principal curvature is re-
placed with a constant yellow point color. Figure (a) shows the ini-
tial noise and (b) the result of 100 iterations.

3 CURVATURES OF POINT SETS
The main goal of this section is the derivation of equation (4) for
the Weingarten map Wi at each vertex pi of a point set.

3.1 Directional Curvature
Once a tangent plane is specified, directional curvatures for points
of the sample can be introduced by approximating a well-known
formula from differential geometry.

Let us start with with the notion of directional curvature κp(v),
where v denotes a unit length vector in the tangent space in p of a
smooth surface S. Such a directional curvature in differential ge-
ometry can be obtained by the following limit:

κp(v) = lim
s→0

2hn, γ(s)− pi
kγ(s)− pk2 ,

where n denotes the surface normal and γ is a certain curve in S
with γ(0) = p and γ0(0) = v. Since we have defined a tangent
space and a normal for each point pi of the sample, we now define
the directional curvature κij in pi in direction of pj ∈ Ni:

κij :=
2hni, pj − pii
kpj − pik2 , (2)

where ni denotes the normal vector in pi defined in the last para-
graph. It is worth to mention that the directional curvature κp is a
quadratic form and satisfies the identity

κp(eϕ) = etϕ
κ11p κ12p
κ21p κ22p

eϕ, (3)

where eϕ =
cosϕ
sinϕ relative to a basis {v1, v2} of TpS with

κ11p = κp(v1), κ22p = κp(v2), and κ12p = κ21p .

3.2 Weingarten Map
We now rewrite the Weingarten map in integral form where direc-
tional curvatures can be found in the integrand. This integral for-
mula is then approximated by a sum, but one has to be careful since
the sample density in different directions may vary. We take this
into account by estimating directional densities.

We can choose a basis that diagonalizes the matrix in (3). This
is done by the principal curvature directions. Let us assume that v1
and v2 are already the principal curvature directions with princi-
pal curvatures κ1p and κ2p. With respect to this basis the Weingarten
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Figure 6: The smooth Costa surface is a minimal surface where both principal curvatures have equal absolute value and different sign. The
points of a discrete Costa surface were randomly moved in normal and tangential direction with 3% noise (a) and then smoothed where
Figures (b) and (c) show the status after 20 respectively 50 iterations. The vectors show the anisotropic mean curvature vector H whose length
is also used for color coding of the vertices. The connectivity of the point set is taken from the noisy initial point set (a) and kept fixed during
the iteration. Figure (d) shows the result of 50 iterations when using the connectivity of the unnoised point set (which is still different than the
original connectivity of the triangle mesh).

mapWp reads as κ1p 0
0 κ2p

. The task is now to express the Wein-

garten map in integral form, i.e. we have to solve

Wp =
1

2π

2π

o

µϕeϕe
t
ϕ,

where µϕ = µ1 cos
2 ϕ+ µ2 sin

2 ϕ. This yields

µ1 =
3κ1p − κ2p

2
µ2 =

−κ1p + 3κ2p
2

.

We denote the mean curvature of S at p by Hp and get Wp in terms
of the directional curvatures κϕ:

κ1p 0
0 κ2p

=
1

π

2π

0

(2κϕ −Hp)eϕe
t
ϕ,

These computations can also be performed in the ambient
3-space. We now translate this integral formula of the smooth cat-
egory into a discrete formula in the point set setting by estimating
the Weingarten map by

pj∈Ni
wijκije

tan
ij (e

tan
ij )

t,

whereNi denotes the neighborhood of pi,wij are weights that have
to be determined in order to approximate the integral correctly, κij
is the directional curvature in pi in direction of pj , and etan

ij is the
normalized tangential part of the vector eij = (pi − pj).

The problem we face now is to estimate the weightswij . We will
cope with this problem by estimating the density of samples in dif-
ferent directions. The approach is to consider the tangential part of
the covariance matrix Mi (the covariance matrix encodes the distri-
bution around the barycenter), express it similarly in integral form
2π

0
δϕeϕe

t
ϕ where we approximate the density δϕ by the quadratic

form δϕ = δ1 cos
2 ϕ+ δ2 sin

2 ϕ. We obtain

δ1 =
3c1 − c2

2
δ2 =

−c1 + 3c2
2

,

where ci are the eigenvalues of theMi. All computations are similar
to those for µi earlier. If we now denote the normalized tangential
part of an edge eij by etan

ij and the tangential eigenvectors of Mi by
v1 and v2, we obtain for the density δij in eij direction

δij =
3c1 − c2

2
hetan
ij , v1i+ −c1 + 3c22

hetan
ij , v2i

= 2etan
ijMi(e

tan
ij )

t − 1

2
trace(Mi).

Since we know the result for regular |Ni|-gons of radius 1, we have
to normalize, i.e. rescale by a factor 2

Ni
. Moreover, since we want

integrative invariance, we have to substitute ∆x by 2πkpi−pjk
δij

in
a Riemannian sum approximation and are now able to define the
Weingarten map Wi at a vertex pi of the point set:

Wi =
1

π
pi∈Ni

4πkpi − pjk
|Ni|δij (2κij −Hi)e

tan
ij (e

tan
ij )

t. (4)

Note that this shape operator is a translation of the operator
Taubin [15] derived for polygonal meshes. The major difference in
the point set category is our incorporation of a discrete directional
density measure. This is not necessary in the mesh setting since
volumes and interior angles of triangles are naturally available to
incorporate directional denseties of the sample.

3.3 Principal Curvatures
The eigenvalues and eigenvectors of our discrete shape operatorWi

are the principal curvatures and principal curvature directions in pi.
They are fundamental in the next section to define the anisotropic
Laplacian and for the anisotropic fairing algorithm we present.

4 ANISOTROPIC MEAN CURVATURE
FLOW

We use an anisotropic Laplacian ∆A to fair the point sample. The
general idea of this approach as described in [13] and [3] can be
summarized to solve a parabolic PDE with boundary constraints
which reduces to the isotropic case for A ≡ 1. The modified PDE
we consider is a bit less general compared to the one in [13] and is
obtained by substituting the isotropic Laplacian by

∆A
|pi := div|pi ◦(Ai ·∇)|pi ,

with (Ai ·∇pj )|pi(f) := gij · (f(pi)−f(pj))eij . The real-valued
function g is called cut-off function and will normally have the unit
interval as range. The cut-off function can be used to further modify
the Laplacian and to consider further geometric data, for example,
we use it to distinguish between neighbors with small and high di-
rectional curvatures. Or we can detect features like an edge, for ex-
ample, by comparing the two principal curvatures: If one is almost
vanishing while the other is larger than a certain threshold, then we
may consider the sample point as being sampled from a straight
edge.
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Figure 7: This example shows how the anisotropic mean curvature vector changes direction and length during an iteration on a low resolution
model (<1K). The anisotropic shape operator recognizes the sharp edges and corner of the cube. The low resolution cube (a) has 2.5% noise,
(b) is after 50 iterations. The truncated octahedron has two type of edges with different dihedral angle. One set of edges has the same dihedral
angle as an octahedron (109.47◦) and the others (125.26◦) are about 15◦ larger. This difference makes it harder to distinguish edges on a
noisy version of the truncated octahedron. Figure (c) shows the truncated octahedron with 2% noise. After 60 iterations the edges are clearly
recovered as feature lines (d). All four surfaces show the anisotropic mean curvature vector and are colored by its magnitude.

5 EXPERIMENTAL RESULTS
The described ideas for computing directional and principal curva-
tures have been implemented using the JavaView environment [12].
We now discuss features of the implementation and observations
made while fairing examples.

As neighborhoods are concerned, we compute a Nk-
neighborhood for each sample from the noisy data. In accordance
to the well-established convention for isotropic denoising, [10], the
Nk-neighborhoods are computed once in the beginning and kept
fixed during the evolution unless an update is forced by the user.
Whenever Nk-neighborhoods are recomputed, the user can reas-
sign new global values for (the diameter of the ball containing the
neighbors of a vertex) and an upper bound for the number k of sam-
ples in a neighborhood. As a side remark, we made the following
interesting observation: the fairing works well if we determine the
Nk-neighborhood of a noisy point cloud. But assume one knows
for some reason the Nk-neighborhood of a point in case of a noise-
less configuration and applies these (noiseless) Nk-neighborhoods
to the samples after adding noise. The result of fairing under this
rather artificial condition is amazing, see Figures 3 and 6(d). This
leads to the observation that the proper notion of neighborhood is
extremely important for the whole process of denoising.

Tangent spaces, directional, principal curvatures, and the
anisotropic Laplacian are automatically computed after each step
of the Euler scheme.

The anisotropic Laplacian depends crucially on the choice of Ai

as described in the preceeding section. At the time of writing, we
offer two choices that are tuned by a threshold parameter λ: ei-
ther a sharp cut-off function gsharp

ij or a continuous cut-off function
gcont
ij . In the first case, the neighborhood might be lessened: a sam-

ple pj ∈ Ni is not considered for ∆A
|pi if |κij | ≥ λ, while in the

continuous case the sample is shaded out. More precisely we con-
sider

gsharp
ij =

1 |κij | < λ,

0 |κij | ≥ λ;

gcont
ij =

1 |κij | < λ,
λ2

λ2+10(κij−λ)2 |κij | ≥ λ.

The effect of this anisotropic fairing at each step of the mean curva-
ture flow can be summarized as follows. The fairing process prefers
to consider neighbors of a directional curvature less than λ. The
idea is that rather “flat directions” are flattened by the mean curva-
ture flow, while directions of “large” curvature remain such direc-
tions. The continuous cut-off function gcont

ij is a slight variation of
the cut-off function G described in [3].

In order to focus on the evolution in normal direction and to ne-
glect tangential drift, the user can choose the constrain interior op-
tion where the mean curvature vector is projected onto the normal
direction, and this projected vector is used in the evolution.

We color the samples according to their value of either the maxi-
mal principal curvature or the length of the anisotropic mean curva-
ture vector. We parametrize the color circle from 0 to 2π and con-
sider the linear function that assigns to the minumum the color that
corresponds to 0 and to the maximum the color that corresponds to
1.5π.

We can also use the principal curvatures instead of directional
curvatures to detect features of the point sample. Three different
approaches have been studies so far. The first focusses on a pa-
rameter we call edge quotient. The user chooses an edge quotient
threshold Q and for every point p of the sample the quotient qp of
the principal curvatures is computed. If qp < Q then p is contained
in features that should be enhanced. This approach works fine in
order to detect the edges of the cube, the octahedron and the edge
of the Costa surface. Unfortunately, manually tuning is required to
choose an appropriate value of Q. Secondly, we successfully detect
a point of a feature if the larger principal curvature is larger than a
threshold. Thirdly, we tried also to detect features by saying that a
point pi belongs to a feature if there is a directional curvature κij
such that |κij | > T , where T is a parameter that has to be chosen
sufficiently. This approach does not work well.

6 CONCLUSION AND FUTURE RE-
SEARCH

It is possible to fair noisy point samples by the anisotropic smooth-
ing presented in this paper. In contrast to the isotropic mean cur-
vature flow method for denoising, that converges to a sphere, the
presented method is able to recover edges of the original surface
as the polytopes and the Venus surface show where no underlying
mesh is used. Unfortunately, the features are not yet automatically
detected; manual choice a proper value for the edge quotient is nec-
essary.

Interesting is also the rôle which the choice of neighborhoods
plays: The result of anisotropic (and isotropic) fairing changes sig-
nificantly if different neighborhoods are chosen in the beginning.
The examples of the torus and the Costa surface show an even bet-
ter fairing if one determines the Nk-neighborhood of the surface
without noise, adds noise to the surface and starts anisotropic fair-
ing with the noiseless Nk-neighborhoods compared to the fairing
started with proposed Nk-neighborhoods determined from a noisy
sample. We admit that these true neighborhoods are artificial. But



interesting questions are related. So far, the effect of different ini-
tial neighborhoods has not been studied. Is it possible to determine
better neighborhoods than for example theNk-neighborhoods from
the noisy sample?
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