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Abstract

Periodic timetabling for railway networks is usually modeled by the Periodic Event Scheduling
Problem (PESP). This model permits to express many requirements that practitioners impose
on periodic railway timetables. We discuss a requirement practitioners are asking for, but which,
so far, has not been the topic of mathematical studies: the concept of symmetry.

Several motivations why symmetric timetables might seem promising will be given. However,
we provide examples showing that symmetry leads to suboptimality.

To integrate symmetry into the graph model of the PESP, there are many obstacles to over-
come. Nevertheless, adding symmetry requirements to mixed-integer programming formulations
explicitly, enables MIP solvers such as CPLEX c© to terminate earlier with good solutions.
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1 Motivations for Symmetry

In periodic timetabling, we are given a line-plan for a railway network. This includes the
running times of the lines, the passenger demand for every possible connection, infras-
tructure information, and the period time T of the lines, e.g. sixty minutes. For possible
extensions, we refer to Nachtigall[7].

Given this input, we have to decide for every event, at which time within the abstract
period time it should take place. We consider as an event a triplet consisting of a directed
traffic line, a railway station, and the property of modeling either a departure or an arrival.

Throughout our discussion of symmetry, we assume that for every directed line there
exists another directed line serving the same stations just in opposite order. Moreover,
the concept of symmetry makes only sense, if the running and stopping times are the
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same for both directions of the same traffic line, and if the passenger flow is symmetric,
as well.

A periodic railway timetable is called symmetric, if trains of the two opposite di-
rections of the same traffic line always meet each other at time 0. Large parts of the
timetables of central European countries, such as Germany and Switzerland, are sym-
metric within only small tolerances, see Figure 1 for an example. For example in Cologne 

 Station/Stop  Date  Time  Platform  Products  Comments 

Berlin Zoologischer Garten 05.06.03   dep  09:54 4 ICE 952 InterCityExpress 
BordRestaurantWolfsburg   dep  10:54

Hannover Hbf   dep  11:31
Bielefeld Hbf   dep  12:24
Hamm(Westf)   dep  12:54
Hagen Hbf   dep  13:25
Wuppertal Hbf   dep  13:42
Köln-Deutz   dep  14:11
Köln Hbf 05.06.03   arr  14:14 6

Köln Hbf 05.06.03   dep  15:13 8 ICE 14 InterCityExpress 
Onboard meeting placeAachen Hbf   dep  15:52

Aachen Süd(Gr)
Liege-Guillemins
Bruxelles-Midi 05.06.03   arr  17:46

Duration: 7:52; runs daily

 All information is issued without liability. Software/Data: HAFAS 5.00.DB.4.5 - 20.05.03  [5.00.DB.4.5/v4.05.p0.13_data:59e79704]   

 Station/Stop  Date  Time  Platform  Products  Comments 

Bruxelles-Midi 05.06.03   dep  12:16 ICE 15 InterCityExpress 
Onboard meeting placeLiege-Guillemins   dep  13:28

Aachen Süd(Gr)
Aachen Hbf   dep  14:10
Köln Hbf 05.06.03   arr  14:46 3

Köln Hbf 05.06.03   dep  15:47 2 ICE 953 InterCityExpress 
BordRestaurantKöln-Deutz   dep  15:51

Wuppertal Hbf   dep  16:17
Hagen Hbf   dep  16:35
Hamm(Westf)   dep  17:10
Bielefeld Hbf   dep  17:37
Hannover Hbf   dep  18:31
Wolfsburg   dep  19:05
Berlin Zoologischer Garten 05.06.03   arr  20:02 1

Duration: 7:46; runs Mo - Fr, not 29. May, 9. Jun, 21. Jul, 15. Aug, 11. Nov 
Hint: Prolonged stop 

 All information is issued without liability. Software/Data: HAFAS 5.00.DB.4.5 - 20.05.03  [5.00.DB.4.5/v4.05.p0.13_data:59e79704]  

Fig. 1. Symmetric timetables in practice

Central Station (Köln Hbf), the train from Berlin arrives at minute 14. The opposite
direction leaves Cologne at minute 47. Hence, they sum up to one, modulo the period
time of sixty minutes.

Trivially, under the assumptions made, symmetry is equivalent to the fact that the
times π ∈ [0, T ) assigned to two opposite events sum up to either 0 or the period time T .
Notice that the opposite event of an arrival event πa will always be a departure event πd,
of course. Here, one can think of time 0 as a symmetry axis. But of course, other
symmetry axis are possible. Since trains of the two opposite directions of the same traffic
line meet each other twice within their period time T , for the symmetry axis s we have
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w.l.o.g s ∈ [0, T
2
). In this more general case, symmetry is fulfilled, if

(πa + πd) mod T

2
= s.

But for ease of notation we assume s = 0 throughout this article.

When defining the timetable for the two directions of a traffic line manually, the two
characterizations suggest different approaches: either define the locations where the two
directions shall meet, or set for some important station the temporal distance from time 0
to a certain value.

A major advantage of symmetry is the following. One can imagine that a potential
customer will not travel by train, if for his itinerary only one of the two directions involves
a changeover waiting time that he considers to be too long. Consider, for example, the
relation Saarbrücken-Stuttgart where no direct trains exist. Imagine changeover times in
Mannheim of 10 minutes in one direction and 50 minutes in the opposite direction. With

an effective running time of less than two hours, would you accept a ratio offtime
ontime+offtime

of almost 30% for your return trip?

Moreover, for some fixed origin/destination (O&D) pair, consider timetables that
induce c time units for the sum of the two changeover times involved. Railway companies
naturally favor stable timetables, in which connections can be attained even with a certain
amount of random delay. Let P (t) denote the probability that a train has a delay of at
most time t, with t ≥ 0. For this distribution function P : R+

0 7→ [0, 1], we compare
the expected number of connections that hold in the symmetric timetable, i.e. 2P ( c

2
), to

the expected number of connections that hold in an asymmetric timetable which deviates
from exact symmetry by ∆ ∈ [0, c

2
], i.e. P ( c

2
−∆)+P ( c

2
+∆). If the distribution function P

is concave, as for example the exponential distribution, we conclude that the expected
number of connections that hold in the symmetric timetable will be at least as high as the
expected number of connections that hold in any asymmetric timetable with a waiting
time of c time units for the sum of the two changeover times. For that reason, symmetric
timetables tend to be robust.

Further, symmetric timetables have the essential advantage that they, by definition,
ensure identical changeover waiting times for any two opposite connections. The impact
of this fact gets even more obvious when considering a transportation network with ten
pairs of symmetric connections. Assume the network implies that at least four directed
connections must have an unacceptable amount of waiting time. An optimal timetable
might assign those four bad connections to four distinct origin/destination (O&D) pairs.
Then, practitioners might prefer a symmetric timetable that even neglects six directed
connections, since in this case, only three O&D pairs are involved. A further advantage
of symmetric timetables is that they simplify the planning process immensely[10].

Sometimes, symmetric timetables are mistaken in that they essentially depend on
so-called zero hubs. In fact, the latter are only an additional requirement for symmetric
timetables: When locating the meeting points of several lines at important stations, we
call these stations zero hubs. Obviously, at zero hubs, departure times can easily be kept
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in mind by customers 2 . And when planning the German ICE/IC network, the interfaces
to both international and regional networks, become better controllable when assuring
symmetry by the definition of zero hubs. However, such an approach has the bizarre effect
that planning the German ICE/IC network is started in Zurich[10], being a zero hub in
the Swiss railway network.

The possible benefit of symmetric timetables with zero hubs becomes particularly
obvious by visualizing train movements within a line-plan, see a nice animation of the
Swiss Federal Railways http://www.sbb.ch/bahn2000/e/illustration/konzept1.htm
and Figure 2. We assume right hand traffic and a period time of sixty minutes. The
running time between two stations is annotated in minutes next to the line that models
the corresponding track. The different traffic lines are represented by the colors black,

20

20

50

50 20

20

50

50

Fig. 2. Symmetric timetable immediately before resp. after minute 00

gray, and light-gray. Of course, vehicles are given the same color as the bars of the traffic
lines they serve.

If we are lucky, infrastructure permits trains always to meet within important stations.
In our example, only one pair of black trains and one pair of dark gray trains misses to
meet at minute 00 within one of our four major stations. But since we assume the lines to
be operated hourly, these two lines will meet at minute 30 within the remaining station.
Hence, when choosing stopping times of 10 minutes, every possible connection in our
example will have only 10 minutes of changeover time, including the time necessary to
change platforms.

To generalize the above phenomenon, consider the graph formed by the network’s
stations and tracks. If the running time between any pair of stations is slightly less
then some integral multiple of the period time T , then a symmetric timetable can be
constructed such that trains will always meet each other within stations, and no waiting
times will arise.

But since trains meet in a symmetric timetable at time T
2

as well, the sufficient
criterion for zero waiting time can be extended: Assume all running times to be slightly
less than some integer multiple of half the period time T

2
. For a track of running time k ·

T
2
− ε, k ∈

�
, introduce k − 1 artificial nodes on the edge modeling that track. A total

2 In fact, in hourly operated railway networks, the symmetry axis, is often shifted to about minute 57.
Hence, respecting a changeover time of five or six minutes, trains will leave the station precisely at
minute 00. . .
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waiting time of zero for the entire network can still be achieved, if the resulting graph is
bipartite. The nodes in one part of the bipartition usually are called zero hubs, and the
other nodes are called half hubs, because trains meet on the hour and on the half-hour,
respectively, assuming T = 60 minutes. As the project Rail 2000 of the Swiss Federal
Railways is currently establishing a half-hour frequency on most routes, half hubs are
served at minutes 15 and 45:

In the first phase of Rail 2000, the stations of Basel, Bern, Olten, Zurich and Chur
serve as hubs each hour or half-hour. In the stations of Lausanne, Biel, Lucerne and
St.Gallen, the trains will meet each time at a quarter to and a quarter past the hour.
(http://www.sbb.ch/bahn2000/e/fahrplan.htm)

But what if we are not lucky, if infrastructure does not permit running times of slightly
less than T

2
between major stations, or if the underlying graph is not bipartite?

On December 6th, 1987, the Swiss people agreed in a referendum to adapt the infras-
tructure of Swiss Federal Railways to the requests of future timetables:

The new line construction Mattstetten - Rothrist is the core part of Rail 2000. As from
12 December 2004, the Inter-City trains connect Bern with Zurich at a speed of 200
km/h. On this line, no station and no turnout will hinder their swift run. The journey
from Bern to Zurich will take 56 minutes only (currently 72 minutes).
(http://www.sbb.ch/bahn2000/e/projekte.htm)

On December 12th, 2004, the first phase of Rail 2000 will be ready for operation. Then,
most running times will satisfy the k · T

2
− ε property, as is illustrated in Figure 3.

Fig. 3. Running times in the Rail 2000 system (Swiss Federal Railways[11])

For example, Deutsche Bahn proceeds the same way in Saxony. The running time
between Leipzig and Chemnitz will be reduced from 85 minutes down to approximately
50 minutes. For the refurbishment of the tracks between Leipzig, Döbeln, and Meißen,
press release 042/2003 of Deutsche Bahn AG gives the following motivation:

5
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After completion of the refurbishment measurements, the running times Leipzig-Döbeln
and Döbeln-Meißen will be reduced to significantly less than one hour, in order to
guarantee their integration into the Sachsen-Takt (integrated fixed interval timetable
for Saxony).

And the regional government of Schleswig-Holstein, being financially responsible for the
public transport in its region, replies to the written request of a member of parliament:

Our planning envisages to reduce the running time on the track Kiel-Lübeck from
73 minutes down to less than one hour to integrate it into the integrated fixed interval
timetable.
(http://www.sh-landtag.de/infothek/wahl15/drucks/0300/drucksache-15-0342.pdf)

In summary, in several European national railway companies, there is a current trend
to define nodes of a railway network which shall become zero hubs in the periodic
timetable the railway company is willing to operate. Then, long-term investments in
infrastructure are initiated in order to reduce running times such that they permit the
desired timetable to be implemented.

Of course, such systems risk to become very inflexible. For example, there will be
no substantial incentive to reduce the current running time of 54 minutes between the
two zero hubs Basel and Zurich by, say, only five minutes. Improvements that would
fit into such a system must be of much bigger dimension. Hence, in some way, gradual
improvements are obstructed. Moreover, it would cause major disruptions to the complete
system if maintenance of some central track causes an increase of running time by ten
minutes for some weeks.

Instead of defining a railway timetable for the life-time of the infrastructure as it has
been set up, one could supply a flexible planning tool that constructs optimal periodic
timetables for the specific needs of the year to plan. Up to now, mathematical models
for periodic railway timetable optimization aim at satisfying operational constraints and
minimizing waiting times for both directed passenger flows and trains ([7] and [3]). But
those approaches could favor asymmetric timetables, cf. section 4. However, one could
enforce symmetry within this model by defining zero hubs, cf. section 2. But this risks
to result only in a poor degree of flexibility, similar to manual planning. For that reason,
we investigate in section 3 how the symmetry requirement can explicitly be integrated
into the standard mathematical models for periodic timetabling.

Finally, we want to point out that an optimization algorithm may define several
stations to become zero hubs, even without being forced by explicit constraints. If there
is a sufficient reduction in passenger waiting time, a station may always become a zero
hub, of course.

2 Modeling Periodic Railway Timetables

The key ingredient for modeling periodic timetables are so-called events. By an event i,
we consider the arrival or departure of a directed traffic line in some station. A timetable π
assigns a value πi ∈ [0, T ) to every event i, where T denotes the period time of the traffic
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network.

Of course, a huge number of restrictions has to be respected by a timetable. Serafini
and Ukovich[12] introduced the Periodic Event Scheduling Problem (PESP), which con-
sists of constraints of the following form, where ` and u are some constants, and i and
j are two events within the traffic network that we assume to be operated every T time
units:

(πj − πi − `ij) mod T ≤ uij − lij,(1)

or πj − πi ∈ [`ij, uij]T for short. Due to the periodicity, we may assume 0 ≤ lij < T .

Besides elementary constraints such as running and stopping times, even more tech-
nical restrictions such as safety distances and attention of single tracks can be modeled
easily. Notice that a timetable is not tied to a specific point in time: π is a feasible
timetable, if and only if (π + ∆ � ) mod T is a feasible timetable for any shift ∆ ∈ � .

With an appropriate objective function, we are able to minimize passenger waiting
times. And by simultaneously penalizing vehicle waiting times, we are even able to accept
additional vehicles only if a significant improvement for the changing passengers can be
achieved[5].

Of course, restrictions of the form given in equation (1) induce an immediate inter-
pretation in terms of digraphs. Since there are exactly two distinct events i and j related
by restriction (1), it can be modeled by an arc (i, j).

We are able to ensure zero hubs using only PESP constraints. The main idea is an
artificial node which represents time zero. Then, we have to ensure that, for a zero hub,
arrivals take place only a few time units before time zero, and departures must take place
immediately after time zero. Figure 4 shows a graph establishing Basel as zero hub. The

Basel

Germany

Bern Zurich

0

[3,5]
60

Fig. 4. Defining Basel to become a zero hub in the PESP

gray arcs model the running and stopping activities of the traffic lines passing Basel, the
black arcs ensure Basel to become a zero hub, and changeover arcs have been omitted in
this figure. As zero hubs are sufficient for symmetry, the PESP covers special symmetric
timetables. But these risk to be very inflexible.

Of course, defining too many stations as zero hubs might restrict the system too much.
In this situation, it would be an unsatisfying behavior of a PESP solver just to declare
infeasibility. Planners prefer to get a timetable with as many stations as zero hubs as
possible.
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Fortunately, even this can be modeled within the PESP. Instead of strictly requiring
πj − πi ∈ [`ij, uij]T for a constraint of minor importance, Nachtigall[7] proposed to model
this by soft constraints: Replace the original arc (i, j) by two artificial arcs having a large
weight M,

πj − πi ∈ [`ij, `ij + T )T and

πi − πj ∈ [−uij, T − uij)T .

These two arcs serve as an indicator function. For a feasible timetable, they contribute
to the objective value with M(uij − lij). However, infeasible timetables are penalized by
another M · T units.

Solution methods for periodic scheduling include Constraint Programming[2], Genetic
Algorithms[8], and of course Mixed Integer Programming[7].

In particular for the MIP approach, the graph-theoretic interpretation of the PESP
is essential. Several classes of valid inequalities are known which could be added to the
original problem formulation. They have in common that their coefficients must satisfy
a certain flow property[6]. A simple, but very important, special class is the class of
so-called cycle inequalities[9]. They are obtained when resolving the mod-operator in
constraint (1) by integer variables pij, which leads to

`ij ≤ πj − πi + pijT ≤ uij.(2)

Then, for every oriented cycle C in the directed graph associated with the PESP instance,
with forward arcs C+ and backward arcs C−, the following cycle inequalities are valid:











∑

(i,j)∈C+

`ij −
∑

(i,j)∈C−

uij

T











≤
∑

(i,j)∈C+

pij −
∑

(i,j)∈C−

pij ≤











∑

(i,j)∈C+

uij −
∑

(i,j)∈C−

`ij

T










.(3)

In fact, adding some of these valid inequalities to the original formulation of the MIP
improves the performance significantly. Reductions in running time by a factor of ten are
usual. And, of course, instances for which CPLEX c© reaches its limits, when faced with
the initial problem formulation, become solvable after adding only a few hundred valid
inequalities [3].

Of course, feasibility problems tend to benefit more from Constraint Programming
than optimization problems. Therefore, one may replace arcs with big weight and span

ratio
uij−lij

T
> 0.9 by stricter constraints with u′

ij = lij + T
k
. To prevent the system

from being overdetermined, cycle inequalities may indicate whether the flexibility on the
cycles passing through this arc remains sufficiently large, after strengthening the arc of
big weight.

To recapitulate, the PESP gives rise to an immediate graph-theoretic interpretation.
And some of the solution methods, that have been proposed for the PESP, benefit enor-
mously from this interpretation, in particular from finding short cycles which are defined
in the digraph associated with a PESP instance. Hence, a graph-theoretic interpretation
seems to be very important for periodic timetabling.
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3 Obstacles when Introducing Symmetry

We are going to examine changes to the event-activity model of the PESP that become
necessary when introducing symmetry. Our original definition of symmetry suggests to
define the locations where the trains of the two directions of the same traffic line shall
meet – at time zero, of course. But this is not compatible at all with our notion of events
and constraints: A constraint is defined for a pair of events, and every event is assigned
to a specific location. But as we want the algorithm to select an appropriate location
for the two trains to meet, a priori we are not able to define pairs of events, or locations
resp., by which we may express our quest for symmetry.

Similar effects appear when trying to express symmetry by requiring that distances
from time zero shall be the same for a pair of two opposite events. As in Figure 4, time
zero can be modeled by introducing an artificial event. Consider the departure event i at
the starting point of a directed traffic line, and the arrival event j of the opposite line in
the same station. The timetable of this line would be symmetric, if and only if

(πi − π0) mod T = (π0 − πj) mod T.(4)

By exploiting π0 mod T = 0, equation (4) can easily be simplified to

(πj + πi) mod T ≤ 0.(5)

But the sign of πi prevents inequalities (5) from being translated to PESP constraints (1).

Another way to cope with the symmetry request could be to consider a much simpler
digraph, in that we omit the events of exactly one direction of every traffic line, because
they are redundant for reasons of symmetry. Are we then able to ensure that the con-
straints that are necessary to model a railway network always relate two distinct events,
with distinct signs as well?

Unfortunately, the answer is no again. Consider for example a single track for that
we want to ensure that the trains of the two opposite directions of some traffic line do
not meet each other, cf. Figure 5. Let r denote the (fixed) running time between the two

r

reduced graphinitial graphtrack map

PSfrag replacements
[r, r]T

[s, T − s]T

[r, r]T

[r + s, T − (r + s)]T

Fig. 5. Modeling Single-tracks in the PESP

points where the two directions of that line are allowed to meet, and let s denote the
safety distance that has to pass from the arrival of the train leaving the single track to
the departure of the train entering the single track.

The middle part of Figure 5 shows the usual event-activity graph of the PESP. In
the right part, the arcs modeling fixed running times are contracted. The remaining
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restriction in the asymmetric model is

(πj − πi − (r + s)) mod T ≤ T − 2(r + s).

If we introduced symmetry by expressing event j by its distance to event i, we would
obtain

(−2πi − (r + s)) mod T ≤ T − 2(r + s),

which is again not compatible with the PESP constraints (1). Table 1 summarizes es-
sential properties of general periodic timetables, symmetric timetables, and symmetric
timetables with zero hubs.

property general symmetric zero hubs

expressible as PESP + unlikely +

expressible as MIP + + +

attractiveness ◦ + +

flexibility + + −

Table 1
Properties of different classes of periodic timetables

Although symmetry is a very nice mathematical property for a periodic timetable, it
is unlikely that we are able to introduce it properly into the PESP, although it is known
to incorporate many requirements that arise in practice.

4 Suboptimality of Symmetry

At this point, we want to discuss if one can always find a symmetric timetable among the
periodic timetables of minimal cost. Recall that we assume symmetric passenger flows
and identical running times for the two opposite directions of the same traffic line.

But even under these assumptions, we will provide railway networks in which an
optimal symmetric timetable has an objective value strictly greater than any optimal
unrestricted periodic timetable.

The first example makes use of single tracks forcing the two directions of a traffic line
to meet at specific locations. Figure 6 shows a railway network with three traffic lines,
which are marked black, gray, and light-gray. Each line has two single tracks. The single
tracks predefine the locations where the trains meet. Symmetry implies those trains to
meet either at time 00 or at time T

2
= 30. Hence, there are only two kinds of timetables:

Either the two directions of all lines meet at the same time, or the trains of one line meet
at time t0 ∈ {0, T

2
}, and the trains of the other two lines meet at time (t0 + T

2
) mod T .

An optimal symmetric timetable is shown in Figure 6. The two lines, whose directions
meet at the same time in the middle of their single tracks, arrive at their transfer station
at time 35, but departure has already been at time 25, hence, in both directions, we have

10
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35

35 35

35

35 35

00

Period Time T=60
Symmetric Timetable

Waiting Time (clockwise): 90
Waiting Time (counter−c’wise): 90

0030

Fig. 6. Optimal symmetric periodic timetable

a changeover time of 50 minutes 3 , the other four connections cause changeover times of
20 minutes each.

But there are other timetables with less waiting time. Consider the timetable shown
in Figure 7. For any of the three clockwise connections, the changeover time is only

35

35 35

35

35 35

00

2040

Period Time T=60

Waiting Time (counter−c’wise): 90

Asymmetric Timetable

Waiting Time (clockwise): 30

Fig. 7. Optimal periodic timetable

10 minutes. The remaining connections cause 30 minutes of waiting time each, i.e. in
total only 120 minutes compared to 180 minutes for an optimal symmetric timetable.

Even worse, by using single tracks we are able to define railway networks in which
every symmetric timetable will be infeasible. Consider the railway network in Figure 8
with again three hourly lines. Due to the single tracks, for every line, its two directions
must meet within the center node. Hence, only two lines can be operated symmetrically
such that they meet either at time zero or at time T

2
. But choosing the symmetry axis of

the three lines as marked in the endpoints of the lines, the single tracks as well as safety
constraints of five time units can be respected by an asymmetric timetable.

But we do not even have to introduce conditions for single tracks, or any other restric-
tion on infrastructure, in order to show suboptimality of symmetric timetables. Consider
the line-plan shown in Figure 9. We assume that all passenger weights are equal to one,

3 We neglect minimal changeover times for changing platforms in this example.
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25 255 5

00 00

30 30

1515

Fig. 8. Railway network infeasible for symmetric timetables

and that the minimal changeover time `ij is equal to two for each of the 32 connections
in any of the four stations.

99

4 5

T=10Period Time
Stopping Time (grey)
Stopping time (white) 0

2

Fig. 9. Line-plan preventing symmetric timetables from optimality

For symmetric timetables, the stopping times of two time units in the gray stations
make only two classes of timetables sufficiently attractive, as they cause zero effective

waiting time (πj − πi − `ij) mod T for the 16 connections within the two gray stations:
arrivals at time 9 and departures at time 1, or arrivals at time 4 and departures at time 6.
But in any combination of these, the effective waiting time sums up to 64 time units in
exactly one of the white stations. In the remaining station, still 24 time units accrue.

Now, assume that the two gray lines meet between time 9 and 1, and that the black
lines to meet between time 1 and time 3. The gray stations, again, show zero waiting
time. At the central station, we have an effective waiting time of five time units when
changing from the dark gray line to the black line but only one time unit in the opposite
direction. At the lower right station, we have an effective waiting time of 6 time units
for passengers changing from the black line to the light gray line, but zero time units for
the opposite connections.

Hence, an optimal symmetric timetable causes a total effective waiting time of 84 time
units, but there are asymmetric timetables with only 48 time units.
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5 Speed-up by Exploiting Symmetry

Although it is unlikely that symmetry can be introduced adequately into the Periodic
Event Scheduling Problem, we can model symmetry in an MIP-formulation by adding
extra constraints. We want to find out, whether symmetry helps or hinders CPLEX c©.

We will formulate the MIP with tension variables. In inequality (2), we substi-
tute πj − πi + pijT by a new periodic tension variable xij. These are restricted by
the cycle-arc incidence matrix Γ of some integral cycle basis, i.e. a set of |A| − |V | + 1
oriented cycles that permit to express every cycle of the directed graph as an integer
linear combination[4]. With this, the tension variables x enable us to reconstruct a node
potential, or timetable, π.

Our MIP formulation is then:

min cx

s.t. Γx = pT

p ∈
� |A|−|V |+1

` ≤ x ≤ u.

(6)

In order to introduce symmetry, we add arcs to and from the artificial event represent-
ing time zero. For a pair of opposite events i and j, we introduce artificial variables xi0

and x0j with “constraints” 0 ≤ xi0 < T and 0 ≤ x0j < T , and finally require xi0 = x0j .

Alternatively, we could have identified pairs of opposite change activities or sequencing
constraints and require the corresponding tension variables to be equal. But we have to
admit that in the data set, that Deutsche Bahn kindly made available to us, the running
times of the two opposite directions of the same traffic line have been slightly asymmetric
in many cases, so that the latter approach would not be feasible for our data.

The following computations have been executed on a railway network with eleven pairs
of directed lines. For 44 stopping activities there is the possibility to introduce additional
stopping time. The 55 most important connections have been taken into account, and of
course, vehicle waiting time is penalized, as well. Moreover, there are three single tracks
in the network. After elimination of redundancies, the resulting digraph contains 56 nodes
and 231 arcs. Since the passenger demand is not always symmetric, some connections
do only appear for one direction. For example, for one pair of connections, the weights
differ by a factor of more than eight. Hence, only one direction remains visible when
focusing on the TOP 55 connections. This is a further reason for introducing symmetry
only by additional arcs linking the endpoints of the lines to the artificial event modeling
time zero.

On an AMD Athlon c© XP 1500+ with 512 MB main memory, CPLEX c© 8.0 has not
been able to find an optimal solution for the instance without symmetry requirement
within one day – neither with standard settings, nor with the settings Bixby applied
when solving this instance to optimality (25 hours CPU time), using

the so-called relinking heuristic, a new feature in the upcoming version[1].

With strong branching as variable selection strategy and aggressive cut generation, a
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solution of 102.3% of the optimal value, which has been reported by Bixby, has been
achieved after 24 hours CPU time. At that time, the lower bound has only been 90.7%,
cf. Figure 10.
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Fig. 10. CPLEX c© running times with/without symmetry requirement, additional stop times

Even though we introduced additional variables to express symmetry, this bigger
formulation has been solved optimally after 15.5 hours. Interesting enough: compared to
an optimal periodic timetable, the objective value of a symmetric timetable is worse by
more than 7.6%.

With the same CPLEX c© parameters, we attacked a variant of the above instance: the
possibility to introduce additional stopping time has been removed, and approximately
half of the connections’ weights have been symmetrized by hand.

The solution behavior is very similar: The symmetric formulation has been solved
to optimality within only 41 minutes, whereas the more general formulation caused a
solution time of almost 3.5 hours. But again, the objective value of an optimal symmetric
timetable exceeds the global minimum by almost ten percent, see Figure 11.

Let us analyze this scenario in more detail. The penalized vehicle waiting time is the
same in both optimal timetables. Since in this scenario, passenger and vehicle cost are
more or less the same for the general optimal timetable, symmetry is paid by an increase
in passenger waiting time of about twenty percent.

The value of twenty percent is even more severe, when observing that there is a
certain unavoidable base weight included in our objective values. For example, there are
two hourly lines serving Frankfurt-Hanover, one coming from Stuttgart, the other from
Basel. On their common track, they are synchronized to a 30 minutes frequency. It is
clear that not both lines can have zero waiting time on a connection to Leipzig. Since
there are passenger weights of 481 and 650, any timetable will imply a waiting time of at
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Fig. 11. CPLEX c© running times with/without symmetry requirement, fixed stopping times

least T
2
·min{481, 650} = 14430. We obtain such an unavoidable base weight for about ten

pairs of connections. Removing this from the passengers’ contribution to the objective
value, the price of symmetry is a deterioration of at least 28.8% for the passengers who
change.

Although passenger flow has been symmetrized for the second pair of computations,
and thus it is not immediately comparable to the first pair, let us mention that fixing the
stopping time in every station in advance causes an increase of the objective value of less
than 0.1% for general timetables. Yet, for symmetric timetables, the increase has already
been approximately 2.5% in total, or 5% when only considering passenger changeover
times.

6 Conclusions

On the one hand, restricting the search for periodic railway timetables to symmetric
timetables implies a significant increase of the total passengers’ waiting time. Planners
should analyze whether important connections are indeed served very asymmetrically in
a globally optimal timetable. Then, the increase in the total waiting time could always
affect only one direction, and potential customers will take the train for neither of the
two directions because their return trip involves unacceptable changeover time.

On the other hand, it is good news that symmetry speeds up the optimization process.
However, the bad news for practitioners is that, in our examples, at almost any time, the
current feasible solution for the symmetric instance is worse than the feasible solution
for the more general problem. Hence, the speed-up of the complete optimization process
might not serve as a heuristic for quick generation of good (symmetric) solutions for the
general problem.
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Finally, we want to emphasize that symmetric timetables must not be confounded with
timetables defining zero hubs. The latter are only a special case of symmetric timetables,
and seem to be very restrictive and inflexible. However, contrary to symmetric timetables,
they are easily covered by the PESP.
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