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Abstract. We introduce revlex-initial 0/1-polytopes as the convex hulls of
reverse-lexicographically initial sets of 0/1-vectors. Thus for each n ≤ 2d, we
consider the 0/1-knapsack polytope given by all 0/1-vectors x = (x1, . . . , xd)

such that
∑d−1

i=0
xi2

i is at most n.
The revlex-initial 0/1-polytopes have remarkable extremal properties. In

particular, they have surprisingly low numbers of facets and small average
degrees. Thus we establish the existence of 0/1-polytopes of given dimension d
and prescribed number n of vertices, d < n ≤ 2d, with no more than 3d facets
and with average degree bounded by d + 8.

Despite these “lower bound” type extremal properties, we prove that the
revlex-initial 0/1-polytopes satisfy the Mihail–Vazirani conjecture, according
to which all graphs of 0/1-polytopes should have edge-expansion at least one.

1. Introduction

Let us call a subset X of {0, 1}d revlex-initial if, for every x ∈ X, all points in
{0, 1}d that are reverse-lexicographically smaller than x are contained in X. The
convex hulls of revlex-initial subsets of {0, 1}d are the revlex-initial 0/1-polytopes.
Phrased differently, the revlex-initial 0/1-polytopes are the convex hulls of those
sets of 0/1-vectors of length d that correspond to the binary representations of
all numbers 0, 1, . . . , n − 1 for some n. In particular, for every 1 ≤ n ≤ 2d there
is precisely one revlex-initial 0/1-polytope with n vertices in

�d.
Why should one be interested in such special polytopes? The general inter-

est in 0/1-polytopes stems from their importance in combinatorial optimization.
Investigations of 0/1-polytopes like traveling salesman polytopes, cut polytopes,
stable set polytopes, and matching polytopes have not only led to beautiful in-
sights into the interplay of combinatorics and geometry, but also to great algo-
rithmic progress with respect to the corresponding optimization problems. From
that work on such special 0/1-polytopes quite a few general questions on 0/1-
polytopes have emerged, such as, e.g., the question for the maximal number of
facets a d-dimensional 0/1-polytope may have (see Ziegler [14]).

With respect to this extremal question, Bárány and Pór [2] obtained a re-
markable result. They showed that a random d-dimensional 0/1-polytope with
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roughly 2d/log
2

d vertices in expectation has at least (roughly) dd/4 facets. Re-
cently, this bound was even improved to dd/2 by Gatzouras, Giannopoulos, and
Markoulakis [5]. The best known upper bound currently is O((d − 2)!) (due to
Fleiner, Kaibel, and Rote [4]). It turns out that the revlex-initial 0/1-polytopes
studied in this paper give some answers to two opposite extremal questions: How
few facets or edges can a d-dimensional 0/1-polytope with a specified number of
vertices have?

In contrast to the situation of general polytopes, the number of vertices of
a 0/1-polytope may impose severe restrictions on the combinatorial type. For
instance, a 0/1-polytope is simple if and only if it is a product of simplices
(Kaibel and Wolff [8]). Thus, d-dimensional simple 0/1-polytopes with n vertices
do only exist if there is a factorization n =

∏

ni of n with d =
∑

(ni − 1) .
Therefore, within the realm of 0/1-polytopes, it seems interesting to investigate
extremal questions for all (reasonable) pairs (d, n).

Our paper contains three main results.
(1) Revlex-initial 0/1-polytopes in

�d have no more than 3d facets (Theo-
rem 2); from this we deduce that the smallest number of facets gnfac(d, n) of a
d-dimensional 0/1-polytope with exactly n vertices satisfies gnfac(d, n) ≤ 3d for
all d and n and gnfac(d, n(d)) ≤ d + o(d) if n(d) grows subexponentially with d
(Theorem 6).

(2) The average degree of every revlex-initial 0/1-polytope in
�d is at most d+8

(Theorem 4); from this we deduce that the smallest average degree gavdeg(d, n) of
a d-dimensional 0/1-polytope with exactly n vertices satisfies gavdeg(d, n) ≤ d+8
(Theorem 7).

Since revlex-initial 0/1-polytopes have extremely sparse graphs, at first sight
they look like candidates for counter-examples to an important conjecture due to
Mihail and Vazirani (cited, e.g., in [3, 9]) that the graph of every 0/1-polytope
has edge-expansion at least one. However, supporting that conjecture, we prove:

(3) Revlex-initial 0/1-polytopes have edge-expansion at least one (Theorem 5);
from this we deduce that, for every (reasonable) pair (d, n), there are d-dimensional
0/1-polytopes with n vertices, sparse graphs, and edge-expansion at least one
(Theorem 8).

The context in which we came to study the special class of revlex-initial 0/1-
polytopes is described in Section 3.4. They appeared from investigating an ap-
pearently strange behaviour of certain convex hull algorithms on random 0/1-
polytopes.

The notion of revlex-initial subsets of {0, 1}d, or, equivalently, of a system of
subsets of {1, . . . , d}, is not new. It is related to the notion of compression of a
set system, which plays an important role in the Kruskal-Katona theorem (see,
e.g., [13, Thm. 8.32]) characterizing the f -vectors of simplicial complexes. Here,
a system S of subsets of {1, . . . , d} (corresponding to a subset X ⊆ {0, 1}d) is
called compressed if, for every i, the subsystem of S containing all sets from S of
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cardinality i is reverse-lexicographically initial within the i-subsets of {1, . . . , d}.
Clearly, every revlex-initial subset of {0, 1}d corresponds to a compressed system
of subsets of {1, . . . , d}, but the converse is not true.

In the context of the Kruskal-Katona theorem only compressed set systems
that are closed under taking subsets are considered. Of course, all revlex-initial
0/1-polytopes correspond to compressed set systems with that property (i.e.,
revlex-initial 0/1-polytopes are monotone). But even more: Exploiting the in-
terpretation in terms of binary representations of numbers, one finds that revlex-
initial 0/1-polytopes are a special kind of knapsack polytopes (see Section 2).

Note that the term ’compressed polytope’ has already been coined with a
different meaning (see, e.g., [12]).

Acknowledgements. We are grateful to Jens Hillmann for computer imple-
mentations and for performing several computer experiments, to Michael Joswig
for stimulating discussions, and to Günter M. Ziegler for useful comments on an
earlier version of the paper.

2. Definitions

Throughout the paper, we assume that d is a positive integer number. We
start with fixing some notions and notation.

Definition 1 (Index ranges). For a positive integer number k, let

[k] := {1, 2, . . . , k} and [k]0 := {0, 1, . . . , k − 1} .

We will identify
�d with

�[d]0, i.e. vectors x ∈
�d have components x0, x1, . . . ,

xd−1, similarly for �d.

Definition 2 (Reverse-lexicographical order). A point x ∈ {0, 1}d is reverse-
lexicographically smaller than another point y ∈ {0, 1}d\{x} (x ≺rlex y) if ximax

<
yimax

holds for imax := max{i : xi 6= yi}. For x, y ∈ {0, 1}d, we denote x �rlex y
if x = y or x ≺rlex y hold.

For x ∈ {0, 1}d denote S(x) := {i ∈ [d]0 : xi = 1}. Then we have

x ≺rlex y ⇔ max(S(x) 4 S(y)) ∈ S(y)

for all x, y ∈ {0, 1}d (x 6= y), where 4 denotes the symmetric difference of two
sets.

Definition 3 (Revlex-Initial 0/1-polytope). A subset X ⊆ {0, 1}d is revlex-
initial if, for every x ∈ X, it contains all y ∈ {0, 1}d with y ≺rlex x.

X≺v := {x ∈ {0, 1}d : x ≺rlex v} .

A revlex-initial 0/1-polytope is the convex hull of any revlex-initial 0/1-set. We
denote

P≺v := conv X≺v .
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Since ≺rlex defines a total ordering of {0, 1}d, every revlex-initial 0/1-set X
with |X| < 2d is of the form X≺v for some v ∈ {0, 1}d \ {�}. Note that v 6∈ P≺v.

Definition 4 (Signature of a 0/1-point). Let v ∈ {0, 1}d\{�}. Its weight w(v) :=�T v is the number of ones of v. Its signature is the vector

(σ1(v), . . . , σw(v)(v))

with

S(v) = {σ1(v), . . . , σw(v)(v)} and σ1(v) > σ2(v) > · · · > σw(v)(v) .

Further we define the set index-set of all zero-components

S(v) := [d]0 \ S(v).

Definition 5 (Block decomposition). For a 0/1-point v ∈ {0, 1}d \ {�} with
signature (σ1(v), . . . , σω(v)), we call

X≺v
q := {x ∈ {0, 1}d : xσq(v) = 0, xσq(v)+1 = vσq(v)+1, . . . , xd−1 = vd−1}

(for q ∈ [w(v)]) the blocks of P≺v. Clearly, X≺v is the disjoint union

X≺v = X≺v
1 ] · · · ] X≺v

ω

of its blocks. The faces P≺v
q := conv X≺v

q are the block faces of P≺v. The vector

(dim P≺v
1 , . . . , dim P≺v

ω ) = (σ1(v), . . . , σω(v))

is the signature of the revlex-initial 0/1-polytope P≺v.

Table 1. Example illustrating some of the definitions: We have
d = 10, w(v) = 5, S(v) = {0, 2, 3, 6, 9}, and S(v) = {1, 4, 5, 7, 8}.

v 1 0 1 1 0 0 1 0 0 1

indices 0 1 2 3 4 5 6 7 8 9

signature σ5(v) σ4(v) σ3(v) σ2(v) σ1(v)

P≺v
1 ? ? ? ? ? ? ? ? ? 0

P≺v
2 ? ? ? ? ? ? 0 0 0 1

P≺v
3 ? ? ? 0 0 0 1 0 0 1

P≺v
4 ? ? 0 1 0 0 1 0 0 1

P≺v
5 0 0 1 1 0 0 1 0 0 1

As mentioned in the introduction, revlex-initial 0/1-polytopes are a special
kind of knapsack polytopes. Indeed, for d ∈ � we define a ∈ �d as ai := 2i. Then
for two 0/1-vectors v, w ∈ {0, 1}d we have v ≺rlex w if and only if a>v < a>w
holds. Thus we can identify all 0/1-vectors v ∈ {0, 1}d with vd−1 = 1 uniquely
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with the set of natural numbers � via n = a>v. And we can write P <n with
n ∈ � instead of P≺v with v ∈ {0, 1}d with vd−1 = 1. Also note that P <n has
exactly the n vertices 0, 1, . . . , n− 1. In other words, P≺v with v ∈ {0, 1}d is the
knapsack polytope conv{x ∈ {0, 1}d : a>x ≤ a>v − 1}.

3. The Facets of Revlex-Initial 0/1-Polytopes

3.1. Optimizing Linear Functions. For c ∈
�d and I ⊆ [d]0, define

c+(I) :=
∑

i∈I

max{ci, 0} .

The following statement follows immediatedly from the block decomposition of
revlex-initial 0/1-polytopes.

Proposition 1. For every v ∈ {0, 1}d \ {�} and c ∈
�d, we have

max{cT x : x ∈ P≺v} = max
{

q−1
∑

p=1

cσp(v) + c+([σq(v)]0) : q ∈ S(v)
}

.

In particular, the optimization problem max{cT x : x ∈ P≺v} (for given v ∈
{0, 1}d and c ∈ �d) can be solved in polynomial time.

3.2. A Linear Description. If i ∈ S(v) and x ∈ X≺v with xi = 1, then xj = 0
must hold for some j ∈ S(v) with j > i. Let us denote

S>i(v) := {j ∈ S(v) : j > i} and S
>i

(v) := {j ∈ S(v) : j > i} .

We will use similar notations with respect to <, ≤ and ≥. Thus, the inequalities

(1) xi +
∑

j∈S>i(v)

xj ≤ | S>i(v)| for all i ∈ S(v)

and (since v 6∈ P≺v)

(2)
∑

j∈S(v)

xj ≤ | S(v)| − 1

are valid for P≺v.

Theorem 1 (Linear descriptions of revlex-initial 0/1-polytopes). For every v ∈
{0, 1}d \ {�} the revlex-initial 0/1-polytope P≺v has the following linear descrip-
tion:

(3) P≺v = {x ∈
�d : � ≤ x ≤

�
, x satisfies (1) and (2)}
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Proof. Denote the polytope defined by the right-hand side of (3) by Q(v). Thus,
Q(v) is the set of all x ∈

�d satisfying the following system of inequalities:

−xi ≤ 0 for all i ∈ [d]0(4)

xi ≤ 1 for all i ∈ [d]0(5)
∑

j∈S(v)

xj ≤ w(v) − 1(6)

xi +
∑

j∈S>i(v)

xj ≤ | S>i(v)| for all i ∈ S(v)(7)

Since all these inequalities are valid for P≺v, we have P≺v ⊆ Q(v). In order
to prove the theorem, it therefore suffices to show that every vertex of Q(v) is
contained in P≺v.

Let z? be any vertex of Q(v). Thus, there is some c ∈
�d such that the linear

functional cT x is uniquely maximized by z? over Q(v). We may assume that
there is also a unique x? ∈ X≺v that maximizes cT x over P≺v. It suffices to show
that c can be obtained as a conic combination (i.e., a linear combination with
nonnegative coefficients) of the coefficient vectors of (the left-hand sides of) those
inequalities (4), (5), (6), and (7) that are satisfied with equality by x? (since this
proves that x? even maximizes cT x over Q(v) – thus showing z? = x? ∈ P≺v).

Let

q? := min{q ∈ [w(x?)] : x?
σq(v) = 0}

be the number of the block face of P≺v containing x? and

α := σq?(v) .

The following table illustrates the most important parameters used in the proof
(some of which will be definied only later). In the example displayed, we have
q? = 4:

β L L L α

v 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1

x? ? ? 0 1 1 1 1 0 0 1 0 0 1 0 0 1

Let us denote, for i ∈ S(v), the coefficient vector of (the left-hand-side) of (7)
by a(i) ∈

�d, and the coefficient vector of (6) by a ∈
�d. Clearly, the coefficient

vectors of (4) and (5) are −�i and �i, respectively. Let C? be the set of all
coefficient vectors of those among the inequalities (4) , (5) , (6), and (7) that are
satisfied at equality by x?. By cone C? we denote the set of all conic combinations
of vectors from C?. Thus, we have to show c ∈ cone C?.

For each i ∈ [d]0, let us define type(i) := (vi, x
?
i ). Thus, we have type(i) ∈

{(0, 0), (1, 1)} for all i > α. In particular, S
>α

(v) = {i > α : x?
i = 0} holds, and
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thus we have

c′ :=
∑

i>α

x?
i
=0,ci≤0

(−ci)(−�i) +
∑

i>α

x?
i
=0,ci>0

cia
(i) ∈ cone C?

with c′i = ci for all i > α with x?
i = 0.

If cα ≤ 0, then define

c′′ := c′ + (−cα)(−�α) ∈ cone C? .

Let us consider the other case cα > 0. If x? = v − �α, then a ∈ cone C?, and
thus we have

c′′ := c′ + cαa ∈ cone C? .

Otherwise, we set

β := max
(

{−1} ∪ {k ∈ [α]0 : type(k) = (1, 0)}
)

.

We conclude

L := {l : β < l < α, type(l) = (0, 1)} 6= ∅ ,

since if this was not the case, then switching the α-th component of x? from 0
to 1 would yield a point in P≺v (note x? 6= v − �α), contradicting the optimality
of x? due to cα > 0. Because type(k) 6= (1, 0) holds for all β < k < α, we have

a(l) ∈ C? for all l ∈ L .

Moreover, we derive
∑

l∈L cl ≥ cα from the optimality of x?. Thus, there are
coefficients 0 ≤ λl ≤ cl (l ∈ L) with

cα =
∑

l∈L

λl

(recall cα > 0). We define (for the case cα > 0)

c′′ := c′ +
∑

l∈L

λla
(l) .

Clearly, we have

(8) c′′l = λl ≤ cl for all l ∈ L .

In fact, it will be important for our purposes to choose the coefficients λl carefully.
One way to do this is to choose them such that

∑

l′∈L,l′≥l λl′ is maximized for all
l ∈ L. This implies

c′′i ≤ cα −
∑

l∈L,l>i

cl for all β < i < α, type(i) = (1, 1) .

On the other hand, we can conclude for each β < i < α with type(i) = (1, 1) that

cα ≤ ci +
∑

l∈L,l>i

cl
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must hold (since otherwise switching x?
α from 0 to 1 as well as x?

i and x?
l (l ∈ L,

l > i) from 1 to 0 would produce some x̃ ∈ P≺v from x? with cT x̃ > cT x?,
contradicting the optimality of x?). ¿From these two inequalities we derive

(9) c′′i ≤ ci for all β < i < α, type(i) = (1, 1) .

In both cases (cα ≤ 0 and cα > 0), we have c′′ ∈ cone C? with c′′i = ci for all
i ≥ α with x?

i = 0. For all i > α with x?
i = 1, we have

ci ≥
∑

α≤j<i

x?
j
=0

cj ≥ c′′i

since, if the first inequality was not true, switching x?
i from 1 to 0 and all x?

j

(α ≤ j < i) from 0 to 1 would change x? into some x̃ ∈ P≺v with cT x̃ > cT x?

(contradicting the optimality of x?). Thus

c′′′ := c′′ +
∑

i>α,x?
i
=1

(ci − c′′i )�i ∈ cone C?

with c′′′i = ci for all i ≥ α.
For i < α, we have (where, in the first case cα ≤ 0, we set L := ∅ and β := α)

c′′′i = 0 for all i ≤ β

c′′′i = 0 for all β < i < α, i 6∈ L, type(i) 6= (1, 1)

c′′′l ≤ cl for all l ∈ L by (8)

c′′′i ≤ ci for all β < i < α, type(i) = (1, 1) by (9) .

Clearly, due to the (unique) optimality of x?, we have ci > 0 for all i < α with
x?

i = 1 and ci < 0 for all i < α with x?
i = 0. Therefore, adding to c′′′

(−ci)(−�i) for all i ≤ α, x?
i = 0 and

(ci − c′′′i )�i for all i ≤ α, x?
i = 1

yields the desired nonnegative linear combination of c from vectors in C?.
�

3.3. The Facet Defining Inequalities. Let us first describe the dimension of
a revlex-initial 0/1-polytope.

Proposition 2. For each v ∈ {0, 1}d \ {�} the dimension of the revlex-initial
0/1-polytope P≺v is

dim P≺v = 1 + max ({i ∈ [d]0 : �i ≺rlex v} ∪ {−1}) ,

if v 6= �0. For the latter case we have dim P≺�0 = 0.
In our knapsack notation we have for n ∈ �

dim P <n = 1 + max{i ∈ � ∪ {−1} : 2i < n} = min{j ∈ � : n ≤ 2j} .

Proof. This follows from the block decomposition of P≺v. �
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In particular, P≺v is full-dimensional if and only if �d−1 ≺rlex v. The follow-
ing three propositions describe the facets of full-dimensional revlex-initial 0/1-
polytopes.

Proposition 3. For each v ∈ {0, 1}d with �d−1 ≺rlex v, and for every i ∈ [d]0,
the inequality xi ≥ 0 defines a facet of P≺v.

Proof. By Theorem 1, the inequalities (4)–(6) provide a linear description of P≺v.
Since the trivial inequalities (4) are the only ones in this description which have
negative coefficients, none of them can be conically combined from others. Hence,
they all define facets of P≺v (since P≺v is full-dimensional). �

Proposition 4. For each v ∈ {0, 1}d with �d−1 ≺rlex v, the inequality
∑

j∈S(v) xj ≤

w(v) − 1 defines a facet of P≺v.

Proof. The inequality
∑

j∈S(v) xj ≤ w(v) − 1 is the only inequality in the linear

description (4)–(6) of P≺v provided by Theorem 1 that is violated by the point
v, which is not contained in P≺v. Thus, that inequality must define a facet
of P≺v. �

Proposition 5. For each v ∈ {0, 1}d with �d−1 ≺rlex v, and for every i ∈ [d]0,
the inequality xi ≤ 1 defines a facet of P≺v unless

w(v) = 2 and i ∈ S(v)
or

σ2(v) < d − 2 and σ2(v) < i ≤ d − 1

(in which cases they do not define facets).

Proof. Unless one of the exceptions listed in the proposition holds, all inequalities
from the linear description (4)–(6) of P≺v provided by Theorem 1 that have a
positive i-th coefficient have right-hand-side at least two. Since the only ones
with negative i-th coefficient have right-hand-side zero, the inequality xi ≤ 1
cannot be conically combined from the others in that linear description. Hence
it defines a facet of P≺v (since P≺v is full-dimensional).

In case of w(v) = 2 and i ∈ S(v), let j be such that S(v) = {i, j}. Thus, xi ≤ 1
is the sum of inequality (6) and −xj ≤ 0. Hence, it does not define a facet of P≺v.

Finally, consider the case σ2(v) < d−2. If σ2(v) < i < d−1, then the type-(7)
inequality xi +xd−1 ≤ 1 implies xi ≤ 1 by adding −xd−1 ≤ 0. If i = d−1 then the
type (7) inequality xj + xd−1 ≤ 1 for any σ2(v) < j < d − 1 implies xd−1 ≤ 1 by
adding −xj ≤ 0. Thus, in both cases, xi ≤ 1 does not define a facet of P≺v. �

Proposition 6. For each v ∈ {0, 1}d with �d−1 ≺rlex v, and for every i ∈ S(v), the
inequality xi +

∑

j∈S>i(v) xj ≤ | S>i(v)| defines a facet of P≺v unless i < σw(v)(v)

(in which case they do not define facets).

Proof. For each i ∈ S(v) with i > σw(v)(v), the inequality xi +
∑

j∈S>i(v) xj ≤

| S>i(v)| is the only inequality in the linear description (4)–(6) of P≺v provided
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by Theorem 1 that is violated by the point v + �i − �w(v), which is not contained
in P≺v. Thus, that inequality must define a facet of P≺v.

If i < σw(v)(v), then xi +
∑

j∈S>i(v) xj ≤ | S>i(v)| does not define a facet since

it equals the sum of the two inequalities
∑

j∈S(v) xj ≤ w(v) − 1 and xi ≤ 1. �

Combining Theorem 1 and the five preceding propositions, we obtain the fol-
lowing result.

Theorem 2 (Facets of revlex-initial 0/1-polytopes). Let v ∈ {0, 1}d with �d−1 ≺rlex

v, i.e., P≺v is a full-dimensional revlex-initial 0/1-polytope. Let

D(v) := D1(v) ∪ D2(v)

with

D1(v) :=

{

S(v) if w(v) = 2

∅ otherwise

and

D2(v) :=

{

{σ2(v) + 1, . . . , d − 1} if σ2(v) < d − 2

∅ otherwise
.

(1) The following system is a linear description of P≺v by inequalities defining
pairwise disjoint facets of P≺v:

xi ≥ 0 for all i ∈ [d]0
xi ≤ 1 for all i ∈ [d]0 \ D(v)

xi +
∑

j∈S>i(v)

xj ≤ | S>i(v)| for all i ∈ S(v), i > σw(v)(v)

∑

j∈S(v)

xj ≤ w(v) − 1

.

(2) The number of facets of P≺v is

fd−1(P
≺v) = 2d +

∣

∣{σw(v)(v) < i < σ2(v) : vi = 0}
∣

∣ + ε ,

where

ε :=











−1 if w(v) = 2

0 if w(v) > 2, vd−2 = 0

1 otherwise (i.e., w(v) > 2, vd−2 = 1)

.

We have
2d − 1 ≤ fd−1(P

≺v) ≤ 3d − 2 .

The minimum number 2d−1 of facets is attained if and only if w(v) = 2,
and the maximum fd−1(P

≺v) = 3d− 2 is achieved only by v = �0 + �d−2 +
�d−1 (for d ≥ 3).

See Figure 2 for an illustration of the facet numbers of revlex-initial 0/1-
polytopes.
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3.4. Incremental Convex-Hull Algorithms. The origin of our investigations
on revlex-initial 0/1-polytopes lies in some experiments on computing the con-
vex hulls of random 0/1-polytopes that we performed with the polymake system.
Some of the results of the experiments are illustrated in Figure 1, showing the run-
ning times for computing the convex hulls of (uniformly) random 0/1-polytopes
in

�d depending on the number n of vertices. The picture shows two curves,
one for the beneath-beyond and one for the double-description method (where
polymake uses Komei Fukuda’s implementation cdd for the latter method).

 0
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 30
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tim
e 

in
 s

vertices

double description
beneath beyond

Figure 1. Incremental convex hull algorithms: runnig times on
9-dimensional random 0/1-polytopes.

These two methods are incremental in the sense that they iteratedly compute
the convex hull of the first i + 1 vertices from the convex hull of the first i
vertices. Since n − 1 vertices of a random 0/1-polytope with n vertices should
make a random 0/1-polytope with n − 1 vertices, we had expected the curves to
be monotonically increasing. However, the first n − 1 vertices do only make a
(uniform) random 0/1-polytope with n − 1 vertices if the order of the n vertices
is (uniformly) random.

As it turned out, this is not the case for random 0/1-polytopes produced by
the polymake system. Instead, the rand01 client of polymake is implemented in
such a way that the vertices of the random 0/1-polytope that is produced appear
in lexicographic order. This led us to studying revlex-initial 0/1-polytopes.

And in fact, our results on the facet numbers of revlex-initial 0/1-polytopes
make the curves in Figure 1 plausible: For 0/1-polytopes with large numbers of
vertices, which furthermore are lexicographically ordered, the intermediate poly-
topes appearing during the runs of incremental convex hull algorithms are quite
close to revlex-initial 0/1-polytopes. Therefore, it is plausible that these inter-
mediate polytopes have extremely few facets compared to random 0/1-polytopes
with the same numbers of vertices.
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In particular, if the 2d vertices of the entire cube are ordered lexicographically,
then the total number of facets of all intermediate polytopes produced by an
incremental convex hull algorithm is bounded from above by 3d · 2d, while for
an arbitrary (even for a random ordering) there might be intermediate polytopes
with super-exponentially many vertices (due to the results of Bárány and Pór [2]
and Gatzouras, Giannopoulos, and Markoulakis [5]).

These results indicate that it might be a good strategy to sort the vertices
lexicographically before applying an incremental convex hull algorithm to a 0/1-
polytope. However, we do not yet have any thorough computational study to
suppport this.

4. The Graphs of Revlex-Initial 0/1-Polytopes

4.1. Characterization of Adjacency. The one-dimensional faces of a polytope
(forming its 1-skeleton or graph) are particularly important, for instance, since
the simplex algorith for linear programming proceeds along them. Moreover,
in the special case of 0/1-polytopes, the graphs are important also for different
reasons (see Section 4.3).

Here, we describe the graphs of revlex-initial 0/1-polytopes.

Definition 6. For v ∈ {0, 1}d \ {�} and 1 ≤ p < q ≤ w(v) and x ∈ {0, 1}[d]0 we
define the sets

A≺v
p,q(x) :=

{

z ∈ P≺v
p : zi = xi for all 0 ≤ i < σq(v),

zσq(v) = 0, zσr(v) = 1 for all p < r < q
}

and

B≺v
p,q(x) :=

{

z ∈ P≺v
p : zzi = xi for all 0 ≤ i < σq(v),

zσq(v) = 1, zσr(v) = 1 for all p < r < q
}

.

Theorem 3 (Graphs of revlex-initial 0/1-polytopes). For v ∈ {0, 1}d \ {�},
the graph of the corresponding revlex-initial 0/1-polytope P≺v has the following
structure.

(1) Let x ∈ X≺v be a vertex of P≺v contained in the block P≺v
q . Let p be some

block number with 1 ≤ p < q.
(a) The pyramid over A≺v

p,q(x) with apex x is a face of P≺v; in particular,

x is adjacent to all vertices of A≺v
p,q(x).

(b) If max({i ∈ [σq(v)]0 : xi 6= vi} ∪ {−1}) 6∈ S(v), then the pyramid
over B≺v

p,q(x) with apex x is a face of P≺v; in particular, x then is also

adjacent to all vertices of B≺v
p,q(x).

(2) The graph of P≺v does not contain any other edges than the (cube-)edges of
the blocks P≺v

1 ,. . . ,P≺v
w(v) and the edges described in part (i) of this theorem.
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Table 2. Illustration of the definitions (with p = 1, q = 4, and x =
(1, 0, x2, x3, x4, x5, x6, x7, x8, x9) ∈ {0, 1}10 \ {�}) at the example
from the introduction.

v 1 0 1 1 0 0 1 0 0 1

indices 0 1 2 3 4 5 6 7 8 9

signature σ5(v) σ4(v) σ3(v) σ2(v) σ1(v)

P≺v
1 ? ? ? ? ? ? ? ? ? 0

A≺v
1,4(x) 1 0 0 1 ? ? 1 ? ? 0

B≺v
1,4(x) 1 0 1 1 ? ? 1 ? ? 0

P≺v
4 ? ? 0 1 0 0 1 0 0 1

Proof. For the proof of part (1), let us denote by F the face of P≺v that is defined
by the following equations:

zi = xi (0 ≤ i < σq(v))(10)

zσr(v) = 1 (p < r < q)(11)

zi = vi (σp(v) < i)(12)

The claim in (a) follows from the fact that the only vertices of the face
{z ∈ F : zσq(v) = 0} of P≺v are the vertices of A≺v

p,q(x) and x itself. Since A≺v
p,q(x)

is contained in the hyperplane defined by zσp(v) = 0, while x is not, that face
must be the claimed pyramid.

In order to prove part (b), assume max({i ∈ [σq(v)]0 : xi 6= vi}∪{−1}) 6∈ S(v).
Thus, there is no block P≺v

r with r > q that has a common vertex with the face
{z ∈ F : zσq(v) = 1}. Hence, the only vertices of that face are the vertices of
B≺v

p,q(x) and x itself. Again, since B≺v
p,q(x) is contained in the hyperplane defined

by zσp(v) = 0, while x is not, that face must be the claimed pyramid.
For the proof of part (2), suppose that x and y are adjacent vertices of P≺v

not contained in the same block. We may assume x ∈ P≺v
q and y ∈ P≺v

p with
1 ≤ p < q ≤ w(v).

We will first show that y is contained in the face F of P≺v defined in the proof
of part (1). Therefore, we have to prove that (10)–(12) is satisfied by z = y.

Let us assume (10) was not satisfied by z = y, i.e., there is some 0 ≤ i < σq(v)
with xi 6= yi. If we denote, for a, b ∈ {0, 1}d, by a⊕b the componentwise addition
modulo two, then we have x⊕ �i ∈ P≺v (since i < σq(v)) and y⊕ �i ∈ P≺v (since
i < σq(v) < σp(v)) with

{x ⊕ �i, y ⊕ �i} 6= {x, y}
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(since xσp(v) = 1 6= 0 = yσp(v)). But then

1
2
(x + y) = 1

2
(x ⊕ �i + y ⊕ �i)

contradicts the adjacency of x and y. Thus, z = y satisfies (10).
If (11) would not be satisfied by z = y, then there was some p < r < q with

yσr(v) = 0. Due to x ∈ P≺v
q , xσr(v) = 1 holds. Thus, we have x− �σr(v) ∈ P≺v and

y + �σr(v) ∈ P≺v (since y ∈ P≺v
p with r < p). Again,

{x − �σr(v), y + �σr(v)} 6= {x, y}

holds, and therefore,

1
2
(x + y) = 1

2

(

(x − �σr(v)) + (y + �σr(v))
)

contradicts the adjacency of x and y. Hence, (11) is satisfied by z = y.
Since q > p and x ∈ P≺v

q , y ∈ P≺v
p , we clearly have xi = yi = vi for all

i > σp(v). Therefore, also (12) is satisfied by z = y, and thus, the claim y ∈ F is
proved.

We obtain y ∈ A≺v
p,q(x) ∪ B≺v

p,q(x). It hence suffices to show that, in case of

y ∈ B≺v
p,q(x), we have

max({i ∈ [σq(v)]0 : xi 6= vi} ∪ {−1}) 6∈ S(v) .

Therefore, suppose we have y ∈ B≺v
p,q(x) and there is some q < s ≤ w(v) with

xσs(v) = 0 and xi = vi for all σs(v) < i < σq(v). Then we have y − �σq(v) ∈ P≺v

(due to y ∈ P≺v
p , p < q, and yσq(v) = 1) and x + �σq(v) ∈ P≺v (in fact: x + �σq(v) ∈

P≺v
s ). Also here, we have

{x + �σq(v), y − �σq(v)} 6= {x, y} ,

and thus,
1
2
(x + y) = 1

2

(

(x + �σq(v)) + (y − �σq(v))
)

contradicts the adjacency of x and y.
�

4.2. The Number of Edges. Having the structural description given in The-
orem 3 at hands, we can now derive a formula for the number odf edges of a
revlex-initial 0/1-polytope.

Theorem 4 (Edge numbers of revlex-initial 0/1-polytopes). For v ∈ {0, 1}d\{�},
the graph of the corresponding revlex-initial 0/1-polytope P≺v has

w(v)
∑

p=1

2σp(v)
(

σp(v)
2

+

w(v)
∑

q=p+1

2p−q
(

2 − (w(v) − q)2σq(v)
)

)

edges. In particular, its average node degree is bounded from above by d + 8.
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Proof. The statement on the average degree follows from the exact expression for

the number of edges: Inside the (outmost) brackets, the fraction σp(v)
2

is bounded

from above by d
2

while the remaining sum clearly is at most 4. Thus the number

of edges is at most (d
2

+ 4) times the number
∑

2σp(v) of vertices of P≺v.
In order to determine the total number of edges, let 1 ≤ p < q ≤ w(v). We

have

dim A≺v
p,y(x) = dim B≺v

p,q(x) = (p + σp(v)) − (q + σq(v)) =: δp,q

for each x ∈ X≺v
q .

Clearly, the number of edges between P≺v
q and P≺v

p described in part (1a) of
Theorem 3 thus is

2σq(v) · 2δp,q = 2p+σp(v)−q .

The number of x ∈ P≺v
q that do not satisfy the condition of part (1b) of Theorem 3

is w(v) − q. Thus, the number of edges between P≺v
q and P≺v

p described in
part (1b) is

(

2σq(v) − (w(v) − q)
)

· 2δp,q = 2p+σp(v)−q .

Therefore, the total number of edges is

w(v)
∑

p=1

σp(v)2σp(v)−1 +
∑

1≤p<q≤w(v)

(

2 · 2p+σp(v)−q − (w(v) − q)2(p+σp(v))−(q+σq(v))
)

,

where the first some accounts for the edges inside the blocks and the second
one (the double-sum) counts the edges running across different blocks. That
expression can easily be simplified to the one stated in the theorem.
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Figure 2. The numbers of facets and the average degrees of all
full-dimensional revlex-initial 0/1-polytopes for d = 13.
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4.3. The Edge-Expansion. The geometry of a 0/1-polytope P (more precisely:
its 1-skeleton, i.e., its graph) defines a natural neighborhood structure on the set
system S corresponding to the vertices of P . Such a neighborhood structure
can be used in order to design random walk algorithms for generating elements
from S at random (according to a certain prespecified probability distribution).
Random walk algorithms are of great importance, for instance with respect to
randomized approximative counting algorithms (see, e.g., [6]).

In many cases, the neighborhood structure defined geometrically via the as-
sociated 0/1-polytope has turned out to be quite appropriate for designing such
random walk algorithms. A crucial parameter with respect to the time complex-
ity of these methods is the edge expansion of the neighborhood structure. The
rule of thumb here is that the expansion should be bounded from below polyno-
mially in 1/d (where d is the dimension of the polytope) in order to achieve an
efficient time algorithm.

Definition 7. The edge expansion X (G) of a graph G = (V, E) is defined as

X (G) :=min

{

|δ(S)|

|S|
: S ⊂ V, 0 < |S| ≤

|V |

2

}

(with δ(S) denoting the set of all edges with one end node in S and the other one
in V \ S).

It has been conjectured by Mihail and Vazirani (cited, e.g., in [3, 9]) that
the graph of every 0/1-polytope has edge expansion at least one. In fact, this
conjecture is known to be true for several classes of 0/1-polytopes, including stable
set polytopes, (perfect) matching polytopes, and polytopes associated with the
bases of balanced (in particular: regular) matroids (see [9, 3, 7]). For more details
and references, we refer to [7].

Here, further supporting the Mihail-Vazirani conjecture, we prove that despite
the sparsity of their graphs, revlex-initial 0/1-polytopes have edge expansion at
least one.

Theorem 5 (Edge expansion of revlex-initial 0/1-polytopes). For v ∈ {0, 1}d \
{�}, the graph of the corresponding revlex-initial 0/1-polytope P≺v has edge ex-
pansion at least one.

In order to bound the edge expansion of a graph G = (V, E) from below we will
construct certain flows in the (uncapacitated) network N (G) = (V, A), where A
contains for each edge {u, v} ∈ E both arcs (u, v) and (v, u). This strategy dates
back to the method of “canonical paths” developed by Sinclair (see [11]). The
extension to flows was explicitly exploited by Morris and Sinclair [10]. Feder and
Mihail [3] use random canonical paths, which can equivalently be formulated in
terms of flows.

The crucial idea is to construct for each ordered pair (x, y) ∈ V × V a flow
φ(x,y) : A −→ �≥0 in the network N (G) sending one unit of some commodity
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from x to y. Define the multi commodity flow (MCF) φ :=
∑

(x,y)∈V ×V φ(x,y) as
the sum of all the flows φ(x,y). By

φmax := max{φ(a) : a ∈ A}

we denote the maximal amount of φ-flow on any arc. By construction of φ, the
total amount φ(S : V \S) of φ-flow leaving S is at least |S| · (n − |S|), where
n = |V |. On the other hand, we have φ(S : V \S) ≤ φmax · |δ(S)|. This implies
|S| · (n − |S|) ≤ φmax · |δ(S)|, and hence, if |S| ≤ n

2
holds,

|δ(S)|

|S|
≥

n

2 · φmax
.

Thus, we have proven

(13) X (G) ≥
n

2 · φmax
.

In the light of inequality (13) it is clear that the task is to construct a flow φ
as above with φmax ≤ n

2
(where n = |V |).

Proof of Theorem 5. We will use the notations P <n := P≺v ⊂
�d and X<n :=

X≺v, where n ∈ � is the number having binary representation v (i.e., n is the
number of vertices of P <n = P≺v). Clearly, we may assume vd−1 = 1, i.e.,
n > 2d−1 and dim P <n = d. Thus, in particular, the dimension d and the 0/1-
vector v ∈ {0, 1}d are uniquely determined by the vertex number n.

We will prove the theorem by showing via induction on n that, for every n ∈ �,
there is an MCF Φn =

∑

(x,y)∈X<n×X<n Φn
(x,y) on N (G(P <n)) such that Φn

max ≤ n
2
.

The statement obviously holds for n = 2, since in that case, the polytope P <n

consists of two vertices joint by an edge.
Thus let us suppose that for all 2 ≤ n′ < n there is such an MCF Φn′

on
N

(

G(P <n′

)
)

with Φn′

max ≤ n′

2
. The induction step, i.e., the construction of an

appropriate MCF Φn, will be subdivided into two cases.
Let G := G(P <n). For a subset A of the nodes of G, we denote by G[A] the

subgraph of G induced by A (similarly, we use N (G) [A]). Two 0/1-polytopes P
and Q are called 0/1-equivalent if they can be transformed into each other by
(potentially) lifting one of them into the space of the other and applying a sym-
metry of the cube (i.e., by flipping and permuting coordinates). Of course, such
a transformation induces an isomorphism between the graphs of P and Q. Note
that for w ∈ {0, 1}d the vertex w ⊕ �0 is the one obtained by flipping the first
coordinate of w.
Case 1 (v0 = 0). Define the following faces of P <n and the corresponding vertex
sets:

FA := {w ∈ P <n : w0 = 0} FB := {w ∈ P <n : w0 = 1}

XA := {w ∈ X<n : w0 = 0} XB := {w ∈ X<n : w0 = 1}
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Then, for every x ∈ XA, we have x ⊕ �0 ∈ XB (and vice versa). Thus P <n is a
prism over FA. In particular, FA and FB are 0/1-equivalent. Furthermore, they
both are 0/1-equivalent to P <n′

with n′ = n
2
. Thus, G[XA] and G[XB] both are

isomorphic to G(P <n′

).
Let ΦA and ΦB be the MCFs induced by Φn′

on N (G) [XA] and N (G) [XB],
respectively. Thus ΦA

max = ΦB
max = Φn′

max ≤ n
4

by the induction hypothesis. Now
we construct the MCF Φn on N (G) by defining each Φn

(x,y) in the following way

(note that G[XA] and G[XB] are edge-disjoint):

x, y ∈ XA : Φn
(x,y) := ΦA

(x,y)

x, y ∈ XB : Φn
(x,y) := ΦB

(x,y)

x ∈ XA, y ∈ XB : Φn
(x,y) := Ψ(x,x⊕�0) + ΦB

(x⊕�0,y)

x ∈ XB, y ∈ XA : Φn
(x,y) := Ψ(x,x⊕�0) + ΦA

(x⊕�0,y).

Here, Ψ(x,x⊕�0) denotes the flow just sending one unit along the arc (x, x⊕�0) ∈ A
(and nothing along any other arc). In the resulting MCF Φn, every arc (x, x⊕ �0)
with x ∈ XA carries one unit of flow for each of the |XB| = n

2
pairs (x, y),

y ∈ XB. The same holds for the reverse arcs (x, x ⊕ �0), x ∈ XB. Thus we have
Φ(x, x ⊕ �0) = n

2
for every such arc, and we conclude

Φn
max ≤ max

{

n
2
, 2 · Φn′

max

}

=
n

2
.

Case 2 (v0 = 1). Let x̂ ∈ {0, 1}d be the revlex-predecessor of v, i.e., the 0/1-vector
corresponding to the number (n − 1). Then x̂ is the “last” vertex of P <n and
{x̂} = P <n

w(n) is the “last” block of P <n. Define the following faces of P <n and the

corresponding vertex sets (see Fig. 3):

FA := {w ∈ P <n : w0 = 0} FB := {w ∈ P <n : w0 = 1}

XA := {w ∈ X<n : w0 = 0} XB := {w ∈ X<n : w0 = 1} ∪ {x̂}

X ′
A := XA \ {x̂} X ′

B := XB \ {x̂}

Thus P <n is a partial prism over FA, i.e., P <n arises from a true prism over FA

via removing the vertex (x̂ + �0) correspoding to x̂ (and taking the convex hull).
We will first prove that there is a subgraph of G[XB] that is isomorphic to

G[XA]. Indeed, this is a simple consequence of the fact that P <n is a partial
prism over FA (with x̂ being the “not duplicated vertex”): Every edge {a, a′} of
FA with a, a′ 6= x̂ gives rise to a quadrangular 2-face {a, a′, a⊕ �0, a

′ ⊕ �0} of the
partial prism (showing that {a ⊕ �0, a

′ ⊕ �0} is an edge of G), and every edge
{x̂, a} of FA yields a triangular 2-face {x̂, a, a⊕ �0} of the partial prism (showing
that {x̂, a ⊕ �0} is an edge of G).

Hence, there is a subgraph of G[XB] that is isomorphic to G[XA]. Furthermore,
the face FA of P <n is 0/1-equivalent to P <n′

with n′ = (n + 1)/2. Therefore, the
MCF Φn′

induces MCFs ΦA and ΦB on N (G) [XA] and N (G) [XB], respectively,
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x̂
XA

XA′

XB

XB′

Figure 3. Illustration of the sets used in case 2 of the proof of Theorem 5.

with

ΦA
max = ΦB

max = Φn′

max ≤ n+1
4

by the induction hypothesis.
With α := n−1

n+1
< 1 we have (1+α)Φn′

max ≤ n
2
. Thus we can increase each of the

flows ΦA and ΦB by an α-fraction without making the flow exceed the desired
limit of n/2 at any arc. We construct the MCF Φn on N (G) by defining each
Φn

(x,y) in the following way (note that G[XA] and G[XB] are edge-disjoint):

x, y ∈ XA : Φn
(x,y) := ΦA

(x,y)

x, y ∈ XB : Φn
(x,y) := ΦB

(x,y)

x ∈ X ′
A, y ∈ X ′

B : Φn
(x,y) := α

(

Ψ(x,x⊕�0) + ΦB
(x⊕�0,y)

)

+ (1 − α)
(

ΦA
(x,x̂) + ΦB

(x̂,y)

)

x ∈ X ′
B, y ∈ X ′

A : Φn
(x,y) := α

(

Ψ(x,x⊕�0) + ΦA
(x⊕�0,y)

)

+ (1 − α)
(

ΦB
(x,x̂) + ΦA

(x̂,y)

)

Here, as in the first case, Ψ(x,x⊕�0) is the flow sending one unit along the arc
(x, x ⊕ �0) ∈ A and nothing along any other arc.

It is easy to see that this is a valid MCF (i.e. for each pair (x, y) the flow
Φn

(x,y) really sends one unit of flow). Thus let us check Φn
max. Firstly, in order to

estimate the flow on the arcs inside G[XA] and G[XB], we determine the multiplier
by which each flow ΦA

(s,t) respectively ΦB
(s,t) appears in the definition of Φn. By

symmetry, it suffises to do this for all pairs s, t ∈ XA.
Each pair s, t ∈ X ′

A is used once with multiplier one (for (x, y) = (s, t)) and
once with multiplier α (for (x, y) = (s ⊕ �0, t)). Thus, each ΦA

(s,t) appears with

multiplier (1 + α) for s, t 6= x̂.
Each pair s = x̂ and t ∈ X ′

A is used once with multiplier one (for (x, y) = (s, t))
and, for each of the (n − 1)/2 pairs x ∈ XB and y = t, with multiplier (1 − α).
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Each pair s ∈ X ′
A and t = x̂ is used once with multiplier one (for (x, y) = (s, t))

and, for each of the (n − 1)/2 pairs x = s and y ∈ XB, with multiplier (1 − α).
Thus, due to

(1 − α)
n − 1

2
=

n + 1 − (n − 1)

n + 1

n − 1

2
=

n − 1

n + 1
= α ,

each ΦA
(s,t) with s = x̂ or t = x̂ appears with multiplier (1 + α).

Secondly, we estimate the flow along the arcs (x, x ⊕ �0) with x 6= x̂. By
symmetry we restrict our attention to the case x ∈ X ′

A and y ∈ X ′
B, and we find

that each arc (x, x ⊕ �0) is used (n − 1)/2 times with flow-value α.
Alltogether, this yields

Φn
max ≤ max

{

(1 + α) · Φn′

max,
n − 1

2
· α

}

≤
n

2
,

which concludes the inductive step, and thus, the proof. �

5. Towards a Lower-Bound-Theorem for 0/1-Polytopes

In the subsequel, we will exploit the following construction (using revlex-initial
0/1-polytopes) several times.

Proposition 7. For d, n ∈ � with d+1 ≤ n ≤ 2d there exist d̃ ∈ � such that for
ñ := n − (d − d̃) the following inequalities hold.

0 ≤ d̃ ≤ d(14)

2d̃−1 ≤ ñ ≤ 2d̃(15)

d̃ ≤ 1 + log2 n(16)

Furthermore P <ñ is a d̃-dimensional revlex-initial 0/1-polytope with ñ vertices.

Proof. To see that such a d̃ and ñ exist, observe that with ñ(k) := n− (d− k) we
have ñ(k) ≥ 2k−1 for k = 0 and ñ(k) ≤ 2k for k = d; note that for these estimates
we need d + 1 ≤ n ≤ 2d. Then, we have that

d̃ := min{k ∈ � : ñ(k) ≤ 2k} ≤ d

satisfies (14).

By definition, we have ñ(d̃) ≤ 2d̃. If d̃ = 0, then (as stated above) also ñ(d̃) ≥

2d̃−1 is true, and otherwise, from the minimality of d̃ we conclude ñ(d̃−1) > 2d̃−1,

which, of course, implies ñ(d̃) ≥ 2d̃−1. Hence, d̃ also satisfies (15).
Finally, (16) trivially follows from (15).

Thus, with ñ := ñ(d̃), by (15) and Proposition 2 the revlex-initial 0/1-polytope

P <ñ has dimension d̃. �
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Definition 8. For arbitrary d, n ∈ � with d + 1 ≤ n ≤ 2d and d̃, ñ ∈ � as
in Proposition 7 we define P (d, n) to be the d-dimensional 0/1-polytope with n

vertices obtained by building the (d − d̃)-fold pyramid over P <ñ.

We denote the parameters d̃ and ñ by d̃(d, n) and ñ(d, n).

Proposition 7 guarantees that this construction works always as claimed in the
definition of P (d, n).

5.1. An Upper Bound on the Minimal Number of Facets.

Definition 9. For d, n ∈ � with d+1 ≤ n ≤ 2d, denote by gnfac(d, n) the minimal
number of facets of a d-dimensional 0/1-polytope with n vertices.

Note that a k-dimensional 0/1-polytope in
�d (with k < d) can isometrically

be projected to a k-dimensional 0/1-polytope in
�k. Thus, the definition is inde-

pendent of the ambient spaces of the polytopes.

Proposition 8. For every d + 1 ≤ n ≤ 2d we have gnfac(d, n) ≤ d + 2 log2 n.

Proof. By Theorem 2(2), the revlex-initial 0/1-polytope P <ñ(d,n) has at most

3d̃− 2 facets. Thus P (d, n) has at most 3d̃ − 2 + n − ñ = 2d̃ + d− 2 facets. The
claim of the proposition follows by (16). �

The proposition immediately implies the following results.

Theorem 6.

(1) For every d + 1 ≤ n ≤ 2d we have gnfac(d, n) ≤ 3d.
(2) For d + 1 ≤ n(d) ≤ 2o(d) we have gnfac(d, n(d)) = d + o(d).
(3) For 1 < α < 2 and n(d) := bαdc we have gnfac(d, n(d)) ≤ (1+2 log2 α)d+

o(d).

The upper bounds on gnfac(d, n) provided by the polytopes P (d, n) in Propo-
sition 8 are not sharp, at least not for all parameters d and n. This follows, for
instance, from the examples of Cartesian products of r 0/1-simplices of dimension
d1,. . . ,dr (which are precisely the simple 0/1-polytopes, see Kaibel and Wolff [8]).
Such a product is a 0/1-polytope of dimension d =

∑

di with
∏

(di + 1) vertices
and d + r facets. In particular, this yields

g
(

d, (bd
2
c + 1)(dd

2
e + 1)

)

= d + 2 ,

while the polytopes P (d, n) have d + Ω(log2 d) facets.
The right part of Figure 4 shows that for d = 5 the polytopes P (5, n) achieve

the respective minimum number of facets in all but 10 cases (i.e., in 17 out of 27
cases). Figure 5 depicts the numbers of facets (and the average degrees) of the
polytopes P (13, n).

For subexponential numbers of vertices, Part (2) of Theorem 6 shows that the
minimum number of facets is asymptotically as small as the number of facets of
any d-dimensional polytope can be (up to an additive o(1)-term). The range of
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Figure 4. Comparison of the lower bounds on gnfac(5, n) and
gavdeg(5, n) obtained from the polytopes P (5, n) in the proofs
of Propositions 7 and 8 with the true values of gnfac(5, n) and
gavdeg(5, n) obtained from Aichholzer’s enumeration [1].

subexponential vertex numbers is particularly interesting for two reasons: Firstly,
many 0/1-polytopes that are relevant in Combinatorial Optimization have subex-
ponentially many vertices (e.g., cut polytopes of complete graphs and travelling
salesman polytopes). Secondly, the papers by Bárány and Pór [2] and Gatzouras,
Giannopoulos, and Markoulakis [5] show that within subexpontial ranges of ver-
tex numbers a random 0/1-polytope has very many facets. In fact, it may well
be that the maximum numbers of facets of 0/1-polytopes is (roughly) attained
by these polytopes.

The examples of products of simplices (i.e., simple 0/1-polytopes) seem to
indicate that it might be hopeless to derive an explicit formula for gnfac(d, n), i.e., a
sharp lower bound theorem for the facet numbers of 0/1-polytopes. Nevertheless,
the question for the (asymptotic) best upper bound on gnfac(d, n) that does only
depend on d (and not on n) might be within reach. In particular, we do not know
whether there is some constant α < 3 such that gnfac(d, n) ≤ αd + o(d) holds for
all d and n. This might even be true for α = 2.

5.2. An Upper Bound on the Minimal Number of Edges.

Definition 10. For d, n ∈ � with d + 1 ≤ n ≤ 2d, denote by gavdeg(d, n) the
minimal average degree among all graphs of d-dimensional 0/1-polytopes with n
vertices.

Revlex-initial 0/1-polytopes and the pyramidal construction yield the following
bound of the minimum average degrees.

Theorem 7. For d + 1 ≤ n ≤ 2d, we have gavdeg(d, n) ≤ d + 8.

Proof. Set d̃ := d̃(d, n) and ñ := ñ(d, n). By Theorem 3, the revlex-initial 0/1-

polytope P <ñ has at most (d̃+8)ñ edges. Thus, P (d, n) (the (d− d̃)-fold pyramid
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over P <ñ has at most

(d̃ + 8)ñ + (d − d̃)n ≤ (d + 8)n

edges. �

The left part of Figure 4 shows that for d = 5 the polytopes P (5, n) achieve
the respective minimum average degree in all but 8 cases (i.e., in 19 out of 27
cases).
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Figure 5. Numbers of facets and average degrees of the polytopes
P (13, n) providing the upper bounds on gnfac(13, n) and
gavdeg(13, n).
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Figure 6. Average degrees of the polytopes P (10, n) and uni-
formly random 10-dimensional 0/1-polytopes (by sampling).

Finally, the polytopes P (d, n) yield examples of 0/1-polytopes with remarkably
sparse graphs, satisfying, nevertheless, the Mihail-Vazirani conjecture.
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Figure 7. The graph densities of the polytopes P (10, n) used in
the proof of Theorem 7 versus the graph densities of random 0/1-
polytopes with the same parameters (by sampling).

Theorem 8. For every d + 1 ≤ n ≤ 2d, there is a d-dimensional 0/1-polytope
with n vertices, at most (d + 8)n edges, and edge expansion at least one.

Proof. By Theorem 7 the polytope P (d, n) has at most (d + 8)n edges. Since
P (d, n) is a k-fold pyramid over the revlex-initial 0/1-polytope P <ñ(d,n) the multi
commodity flow constructed in the proof of 5 can be easily extended to a multi
commodity flow of P (d, n) sending one unit of flow from every vertex to every
other vertex. �

6. Concluding Remarks

The contributions of this paper concern three topics: (1) Investigations of a
’natural’ class of 0/1-polytopes, (2) lower bound theorem(s) for 0/1-polytopes,
and (3) support of the Mihail-Vazirani conjecture on the edge expansion of the
graphs of 0/1-polytopes.

With respect to the first topic, one may be interested also in studying the
convex hulls of sets of 0/1-vectors that are only gradually revlex-initial (the 0/1-
polytopes corresponding to compressed set systems), i.e., convex hulls of sets X
of 0/1-vectors which, with every x ∈ X, contain all 0/1-vectors y which have the
same number of ones as xand are revlex-smallerthan x. Due to the important role
played by the monotone ones among them (more precisely: by the corresponding
set systems) in the theory of simplicial complexes, it might be that these objects
bear some connections between 0/1-polytopes and combinatorial topology. This
would be quite interesting.

It seems that precise lower bound theorems on the number of facets (edges, or
even other-dimensional faces) are hard to obtain. Neverthelesss, with respect to
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topic (2) some questions remain open that may be tractable, e.g., the question
whether there is some α < 3 (maybe α = 2?) with gnfac(d, n) ≤ αd + o(d).

Another observation is that the 0/1-polytopes with small average degrees that
we constructed have, in general, quite large maximum degrees. We have no idea
how small the maximum degree of the graph of a d-dimensional 0/1-polytopee
with n vertices can be.

Perhaps the most interesting and promising line to follow up this research
concerns topic (3). Extending our techniques for construction of the multi-
commodity flows showing that revlex-initial 0/1-polytopes (as special knapsack-
polytopes) have edge expansion at least one to all knapsack polytopes (or even
to all monotone polytopes) would be a big support for the Mihail-Vazirani con-
jecture (which itself is of great importance in the theory of random generation
and approximate counting, as mentioned in Section 4.3). It follows from work of
Morris and Sinclair [10] that the edge-expansion of the graphs of d-dimensional
0/1-knapsack polytopes is bounded from below by a polynomial in 1/d. Their
proof in fact shows that this is true even for the subgraph that is formed by those
edges which are also edges of the cube. Since our flows extensively use non-cube
edges, the techniques used in the proof of Theorem 5 seem to have good potential
to improve the current lower bound, maybe even to ’one’ as conjectured by Mihail
and Vazirani.
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