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Abstract

In this work we are interested in the numerical solution of a coupled model of
differential algebraic equations (DAEs) and partial differential equations (PDEs).
The DAEs describe the behavior of an electrical circuit that contains semiconductor
devices and the partial differential equations constitute drift-diffusion equations
modelling the semiconductor devices in the circuit.

After space discretization using a finite element method, the coupled system re-
sults in a differential-algebraic system with a properly stated leading term. We
investigate the structure and the properties of this DAE system. In particular, we
develop structural criteria for the DAE index. This is of basic interest since DAE
properties like stability, existence and uniqueness of solutions depend strongly on
its index.

Key words: differential algebraic equation, partial differential equation,
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1 Introduction

Nowadays semiconductor devices in an electrical circuit are modelled by small
circuits containing basic network elements (capacitors, resistors, inductors,
voltage and current sources) described by algebraic and ordinary differential
equations. But these equivalent circuits may depend on hundreds of parame-
ters and its correct adjustment has become a very difficult task for the network
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design. This has motivated the idea of using distributed device models, repre-
sented by a system of partial differential equations, to describe the behavior
of the semiconductor devices within the circuit [1]. The resulting mathemat-
ical models couple the differential algebraic equations (DAEs) describing the
behavior of the circuit and the partial differential equations (PDEs) modelling
semiconductor devices.

In this work we are interested in the numerical solution of the system that is
obtained when high frequency devices in an electrical circuit are modelled via
drift-diffusion equations. In section 2 the equations resulting from the Mod-
ified Nodal Analysis (MNA) of the circuit are explained. The drift-diffusion
equations are presented in section 3 as well as its discretization by a finite
element method.

Finally, in section 4 the DAE that results from the coupling of the MNA
equations and the discrete drift-diffusion equations is constructed and its in-
dex is studied. The knowledge about the DAE index allows us to determine
the conditions that consistent initial values must satisfy and which numerical
methods are feasible for its solution.

2 Circuit Equations

The mathematical model that results from Modified Nodal Analysis applied
to an electrical network containing resistors, capacitors, inductors and inde-
pendent voltage and current sources 1 has the form [3]

AC
d

dt
qC(ATCe, t) + ARg(A

T
Re, t) + ALjL + AV jV + AIiS(t) = 0, (1)

d

dt
φ(jL, t) − ATLe= 0, (2)

ATV e− vS(t) = 0. (3)

The unknowns e(t) : R → R
nN , jL(t) : R → R

nL and jV (t) : R → R
nV

represent the node potentials, excepting the mass node, the currents through
inductors and the currents through voltage sources respectively. The matrices
AC , AR, AL, AV and AI are the element-related (reduced) incidence matrices,
they have entries from {−1, 0, 1}. Let the following assumptions on the circuit
equations be satisfied in the forthcoming sections:

(1) the input functions vS(t) and iS(t), associated to the independent voltage
and current sources respectively, are continuous,

1 Controlled sources have been neglected to simplify matters.
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(2) the functions qC(u, t), φ(j, t) and g(u, t) are continuously differentiable
and have positive definite partial Jacobians

C(u, t) =
∂qC(u, t)

∂u
, L(j, t) =

∂φ(j, t)

∂j
, G(u, t) =

∂g(u, t)

∂u
,

(3) and the circuit contains neither loops of voltage sources only nor cut
sets of current sources only. These two conditions hold if and only if the
matrices AV and (AC AR AL AV )T have full column rank, respectively.

The second assumption concerning the Jacobians reflects local passivity of ca-
pacitances, inductances and resistances [4]. The third assumption is necessary
from the electric point of view in order to prevent short-circuits.

Under these assumptions it was shown [18,3] that the index of the circuit
equations (1)-(3) does not exceed two. More precisely, the index equals two if
and only if the circuit contains LI-cut sets (cut sets of inductors and current
sources) or CV-loops (loops of capacitors and voltage sources) with at least
one voltage source.

Additionally, the previous assumptions allow the circuit equation systems to
be formulated as DAEs with a properly stated leading term [15].

3 Drift-Diffusion Equations

3.1 Model Equations

We will consider the non-stationary drift-diffusion model of a semiconductor
device. For convenience, we formulate the model equations in only one spatial
dimension. The segment Ω̄ = [0, l] ⊂ R describes the range of the device,
including its contacts and t ∈ [ta, tb] represents the time. The scaled 2 model
equations are given by the Poisson equation

−
∂

∂x

(

λ2∂ ψ

∂ x

)

= C + p− n, ∀x ∈ Ω (4a)

for the electrostatic potential ψ = ψ(x, t) and the continuity equations

−
∂ n

∂ t
+
∂ Jn

∂ x
= R,

∂ p

∂ t
+
∂ Jp

∂ x
= −R, ∀x ∈ Ω (4b)

2 Scaling is of importance for the numerical simulation since the original variables
have highly different orders of magnitude [17].
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for the densities of electrons n = n(x, t) and holes p = p(x, t). The current den-
sities caused by electrons and holes, Jn and Jp respectively, can be described
as a composition of a drift and a diffusion current,

Jn = µn

(

∂ n

∂ x
− n

∂ ψ

∂ x

)

, Jp = −µp

(

∂ p

∂ x
+ p

∂ ψ

∂ x

)

. (4c)

In (4) C = C(x) is the doping profile of the semiconductor, the function
R = R(n, p) describes the balance of generation and recombination of electrons
and holes and µn and µp are assumed to be nonnegative, bounded functions
of x.

The boundary and initial conditions for the model are

ψ(0, t) =
1

UT
(ψbi(0) + ω0 (e(t))) , ψ(l, t) =

1

UT
(ψbi(l) + ωl (e(t))) , (4d)

n(0, t) =
C(0) +

√

C(0)2 + 4η2
i

2
, n(l, t) =

C(l) +
√

C(l)2 + 4η2
i

2
, (4e)

p(0, t) =
−C(0) +

√

C(0)2 + 4η2
i

2
, p(l, t) =

−C(l) +
√

C(l)2 + 4η2
i

2
, (4f)

n(x, ta) = na(x), p(x, ta) = pa(x). (4g)

The function ψbi(x) is the built-in potential and ω0, ωl are the externally ap-
plied biases. In this work we want to consider the semiconductor devices as
part of an electrical circuit modelled by (1)-(3). Then the biases applied to
the semiconductor boundaries depend on the node potentials of the circuit,
that is why in (4d) we have written ω0 and ωl as functions of e.

3.2 Coupling Current Equation

The electric currents







j0(t)

jl(t)





 =







J(0, t)

−J(l, t)





 with J(x, t) = Jn(x, t) + Jp(x, t) − λ2 ∂

∂t

∂ψ

∂x
(x, t),

represent the semiconductor’s output to the potentials applied to its bound-
ary. The values of j0(t) and jl(t) satisfy jl(t) = −j0(t), ∀t ∈ [ta, tb]

3 . This
means that we may choose one of the terminals of the semiconductor device
as reference terminal, let us say the terminal at x = l, the current through it

3 This is a consequence of charge conservation. Differentiating (4a) with respect to

time and adding (4b) yields
∂J

∂x
≡ 0.
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may be calculated in terms of the current leaving the other terminal. In what
follows we will refer to j0(t) as the semiconductor’s current.

For a more detailed description of mathematical models for semiconductors
and results about existence and uniqueness of solutions of these models see
e.g. [16,17,5,13,6,8].

3.3 Energy Conservation Equation

In [7] it is pointed out that not only for the numerical solution of this problem,
but also for the study of its analytical properties, it is convenient to replace
the Poisson equation (4a) by the energy conservation equation

∂J

∂x
=

∂

∂x

(

Jn + Jp − λ2 ∂

∂x

∂ψ

∂t

)

= 0, (5)

that is obtained after differentiation of the Poisson equation with respect to

time and elimination of
∂n

∂t
and

∂p

∂t
from the continuity equations. If the initial

value for ψ(x, ta) = ψa(x) is chosen such that the functions ψa(x), na(x) and
pa(x) satisfy the Poisson equation,

−
∂

∂x

(

λ2∂ ψa

∂ x

)

= C + pa − na (6)

the equivalence between (4a) and (5) is guaranteed [7].

3.4 Finite Element Method for the Numerical Solution of the Drift-Diffusion
Equations

The functions (ψ(x, t), n(x, t), p(x, t)) are a weak solution of (4) if

ψ(x, t), n(x, t), p(x, t) ∈ L2

(

(ta, tb), H
1(Ω)

)

,

have generalized derivatives

∂ψ

∂t
∈ L2([ta, tb], H

1(Ω)),
∂n

∂t
,
∂p

∂t
∈ L2

(

(ta, tb), H
−1(Ω)

)

and satisfy the equations
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λ2
∫ l

0

∂ψ

∂x

∂ϕ

∂x
dx =

∫ l

0
(C − n+ p)ϕdx, (7a)

−
∫ l

0

∂n

∂t
ϕ dx−

∫ l

0
Jn
∂ϕ

∂x
dx =

∫ l

0
Rϕ dx, (7b)

∫ l

0

∂p

∂t
ϕ dx−

∫ l

0
Jp
∂ϕ

∂x
dx = −

∫ l

0
Rϕ dx, (7c)

for all functions ϕ ∈ H1
0 (Ω) and almost all t ∈ [ta, tb] as well as the boundary

and initial conditions in (4d)-(4g). The integrals involving
∂n

∂t
and

∂p

∂t
have to

be understood in the sense of distributions.

Remark We have asked for more regularity conditions on ∂tψ in order to be
able to calculate the current through the semiconductor device. Note that if
v(x) is a function in H1(Ω) that satisfies v(0) = 1, v(l) = 0, the current j0(t)
may be written as [7]

j0(t) = J(0, t)h(0) = −
∫

Ω
J(x, t)

dv

dx
dx

=−
∫

Ω

(

Jn(x, t) + Jp(x, t) − λ2 ∂
∂t

∂ψ

∂x
(x, t)

)

dx. (8)

An approximation (ψh(x, t), nh(x, t), ph(x, t)) of the weak solution of this prob-
lem can be determined by the finite element method. For sake of simplicity, let
us divide the interval [0, l] into equally-spaced subintervals [xi−1, xi] with h =
xi−xi−1, x1 = 0, xm = l for i = 2, . . . ,m. In what follows ψi(t), ni(t) and pi(t)
denote the approximations to ψ(xi, t), n(xi, t) and p(xi, t) (i = 1, 2, . . . ,m) re-
spectively.

Discretization of the Poisson equation. Using the Galerkin ansatz

ψh(x, t) =
m
∑

j=1

ψj(t)ϕj(x), (9)

the function ψh(x, t) is obtained by solving the system consisting of the equa-
tion (7a) for all basis functions ϕi(x), i = 2, . . . ,m−1 as well as the boundary
and initial conditions in (4d)-(4g). As basis functions ϕi(x) we choose the
polynomials of degree one satisfying

ϕi(xj) =











1, if i = j,

0, else.
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for all j = 1, 2, . . . ,m. The integral in the right-hand-side of (7a) is approxi-
mated with the trapezoidal rule. The equation

TΨ −

(

h

λ

)2

(C −N + P ) − Ψ0(e) = 0

for the unknown coefficients Ψ(t) = (ψ2(t), . . . , ψm−1(t))
T in (9) is obtained.

The function Ψ0(e) has the components Ψ0(e) = (ψ1(e) 0 . . . 0 ψm(e))T , ψ1 =
ψ(0, t) and ψm = ψ(l, t) and T ∈ R

(m−2)×(m−2) is the tridiagonal matrix with
elements

T (i, i) = 2, T (i+ 1, i) = T (i, i+ 1) = −1 i = 1, 2, . . . ,m− 2.

The vector C has components C(xi+1) for i = 1, 2, . . . ,m− 2 and

N(t) = (n2(t), . . . , nm−1(t))
T
, P (t) = (p2(t), . . . , pm−1(t))

T
.

Discretization of the Continuity Equations. To obtain the approxima-
tions nh(x, t) and ph(x, t) equations (7b) and (7c) are not discretized in the
usual way, but by the so-called Scharfetter-Gummel discretization [16]. This
way, the area of convergence is usually larger than that one for the standard
discretization. The Scharfetter-Gummel discretization is based on the assump-
tion that Jn(x, t) and Jp(x, t) can be approximated by constant functions on
each subinterval (xj−1, xj], j = 2, . . . ,m. A description of this discretization in
the one dimensional case can be found in [16] and in higher spatial dimensions
in [13].

The resulting function nh(x, t) that approximates n(x, t) for x ∈ (xj−1, xj]
and t ∈ [ta, tb] has the form,

nh(x, t) =











nj

(

e
zj(x−xj−1)/h

−1
e
zj−1

)

− nj−1

(

e
zj(x−xj−1)/h

−e
zj

e
zj−1

)

, if zj 6= 0,

nj−1 + (nj − nj−1)
x−xj−1

h
, else.

(10)

with zj = ψj − ψj−1. The expression for ph(x, t) is very similar to this one.
The coefficients that define nh(x, t) and ph(x, t) satisfy

− h
d

dt
nj +

1

h
µj+1
n f(zj+1)nj+1 +

1

h
µjnf(−zj)nj−1−

1

h

(

µj+1
n f(−zj+1) + µjnf(zj)

)

nj − hRj = 0, (11)

h
d

dt
pj −

1

h
µj+1
p f(−zj+1)pj+1 −

1

h
µjpf(zj)pj−1+

1

h

(

µj+1
p f(zj+1) + µjpf(−zj)

)

pj + hRj = 0, (12)
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n1 = n(0, t), nm = n(l, t), p1 = p(0, t), pm = p(l, t),

nj(ta) = na(xj), pj(ta) = pa(xj), for j = 2, 3, . . . ,m− 1.

In the first two equations,

f(z) =











z
ez

−1
, if z 6= 0,

1, else.

Discretization of the Coupling Current Equation. The current of the
semiconductor can be approximated by 4

j0(t) ≈ Jn,h(0, t) + Jp,h(0, t) − λ2 ∂
∂t

∂ψh

∂x
(0, t) = jcS(t) −

d
dt
jdS(t), (13)

with

jcS(t) = Jn,h(0, t) + Jp,h(0, t) (14)

describes the conduction current. The time derivative of jdS forms the dis-
cretized displacement current and

jdS(t) = β (ψ2(t) − ψ1(t)) = β
(

ψ2(t) −
1
UT

[ψbi(0) + ω0(e(t))]
)

, β = λ2

h
.

(15)

Remark: If standard finite elements are used to obtain the approximations
nh(x, t) and ph(x, t), i.e., if nh(x, t) =

∑m
j=1 nj(t)ϕj(x) instead of (10), the

equations that define the coefficients nj(t) and pj(t) have the same form as
(11) and (12), but f(z) = 1 − z

2
. Note that only when zj = 0 one obtains the

same approximation to n(x, t) and p(x, t), x ∈ (xj−1, xj].

For the proof of convergence of the discretization scheme presented here we
refer to [16].

3.5 Resulting Initial Value Problem

The resulting initial value problem for Ψ, N and P can be written as the semi-
explicit DAE

4 Choosing the function v(x) in (8) equal to ϕ1(x).
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TΨ −

(

h

λ

)2

(C −N + P ) − Ψ0(e) = 0, (16a)

d

dt
N −

1

h2
g1(e,Ψ, N) +R(N,P ) = 0, (16b)

d

dt
P +

1

h2
g2(e,Ψ, P ) +R(N,P ) = 0 (16c)

with

Ψ(ta) = Ψa, N(ta) = Na, P (ta) = Pa

The vector R has components R(N(i), P (i)) for i = 1, 2, . . . ,m− 2. The func-
tions g1 and g2 are vector-valued functions easily identifiable from the dis-
cretized equations. Since their expressions depend on the node potentials of
the circuit, we have written them as functions of e too. The vectors Na and Pa
represent the initial values for N(t) and P (t), Na = (na(x2), . . . , na(xm−1))

T ,
Pa = (pa(x2), . . . , pa(xm−1))

T . If the initial value for Ψ(t) is such that

Ψa = T−1

(

h

λ

)2

(C −Na + Pa) + T−1Ψ0(ea), (17)

then (16) has a locally unique solution.

When the model consisting of the continuity equations and the energy con-
servation equation is discretized using a finite element method as described
above the ODE

d

dt
Ψ + T−1 1

λ2
(g1(e,Ψ, N) + g2(e,Ψ, P )) − T−1 d

dt
Ψ0(e) = 0, (18a)

d

dt
N −

1

h2
g1(e,Ψ, N) +R(N,P ) = 0, (18b)

d

dt
P −

1

h2
g2(e,Ψ, P ) +R(N,P ) = 0. (18c)

for the coefficients of ψh(x, t), nh(x, t) and ph(x, t) is obtained.

Note that (16) is a DAE with differentiation index one. If its index is reduced,
the ODE (18) is obtained, with the same initial values their exact solutions
give us the same approximations to ψ(x, t), n(x, t) and p(x, t).
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4 Coupling of the Network and Space-Discretized Drift-Diffusion

Equations

In [19], the partial differential algebraic equation that results from the coupling
between the circuit equations and drift-diffusion equations for the semiconduc-
tor devices was studied as abstract differential algebraic system [12]. There it
was proved that the coupled system has an index not greater than two if the
assumptions in section 2 are satisfied. More precisely, it has index 2 if and only
if the circuit contains LI-cut sets (cut sets of inductors and current sources)
or CVS-loops (loops of capacitors, voltage sources and semiconductor devices)
with at least one voltage source or one semiconductor device.

In this work we study the coupling between the circuit equations and dis-
cretized drift-diffusion equations for the semiconductor devices in the circuit
and prove that this system has the same index under the same conditions on
the circuit as the system considered in [19].

Suppose we want to couple nS semiconductor devices, described by discretized
drift-diffusion models, to an electrical circuit. The vector jS = (j01, . . . , j0nS

)T

represents the current through the semiconductors. The incidence of these
currents in the circuit may be described by ASjS (AS ∈ R

nN×nS). Hence, if
δi,n represents the i-th unitary vector of length n, we find

ASδk,nS
= δik,nN

− δjk,nN

for the k-th semiconductor device connected to nodes ik and jk. Furthermore,
the biases applied to the semiconductor terminals can also be described in
terms of AS







ω0k
(e)

ωlk(e)





 =







eik(t)

ejk(t)





 =







δTik,nN
e

δTjk,nN
e





 =







δTik,nN
e

δTik,nN
e− δTk,nS

ATSe





 .

The system that describes the behavior of the circuit containing nS semi-
conductor devices is formed by the scaled modified nodal analysis equations,
where the first one changes to [20]

AC
d

dt
qC(ATCe, t) + ARg(A

T
Re, t) + ALjL + AV jV + AIiS(t) + ASjS = 0 (19)

in order to include the incidence of the semiconductor devices currents into
the circuit and the discretized drift-diffusion models of the nS semiconductor
devices we want to couple to the circuit.
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4.1 The Coupled System Formulated as DAE with Porperly Stated Leading
Term

For better reading, we will formulate the equation system for circuits with
only one semiconductor. But the following results remain the same for circuits
with several semiconductors. Suppose the semiconductor is located between
the nodes i and j with its reference terminal connected to node j. In this
case, the DAE that results from the coupling of the circuit equations with the
discretized semiconductor equations reads

AC
d

dt
qC(ATCe, t) +ARg(A

T
Re, t) +ALjL +AV jV +AIiS(t) +ASjS = 0, (20a)

d

dt
φ(jL, t) −ATLe= 0, (20b)

ATV e− vS(t) = 0, (20c)

jdS − β

(

δT1,m−2Ψ − 1
UT
ψbi(0) −

1

UT
ei

)

= 0, (20d)

jS(t) − jcS(e,Ψ, N, P ) +
d

dt
jdS = 0, (20e)

TΨ −
(

h
λ

)2
(C −N + P ) − Ψ0(e) = 0, (20f)

d

dt
N −

1

h2
g1(e,Ψ, N) +R(N,P ) = 0, (20g)

d

dt
P +

1

h2
g2(e,Ψ, P ) +R(N,P ) = 0, (20h)

where the function Ψ0(e) is

Ψ0(e) =
(

1
UT

(ψbi(0) + ei) , 0, . . . , 0, 1
UT

(ψbi(l) + ej)
)T

and AS is a column vector, AS = δi,nN
− δj,nN

. The first three equations corre-
spond to the MNA equations (1)-(3) with the first one rewritten as described
above (see (19)). The equations (20f)-(20h) are obtained after discretizing the
drift-diffusion model in space. Regarding (14), the equations (20d)-(20e) cor-
respond to (13), (15).

In order to study the properties of (20), we will rewrite it as a DAE of the
form

A
d

dt
d(y, t) + b(y, t) = 0 (21)

with unknowns y =
(

e, jL, jV , jS, j
d
S,Ψ, N, P

)T
∈ R

nN+nL+nV +1+1+3(m−2). The
matrix A and the vectors d and b are

A =











AC 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 I











, d(y, t) =







qC(AT
Ce,t)

φ(jL,t)

jd
S
N
P





 , (22a)
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b(y, t) =



























ARg(A
T
Re,t)+ALjL+AV jV +AI iS(t)+ASjS

−AT
Le

AT
V e−vS(t)

jd
S−β

(

δT
1,m−2Ψ−

1
UT

ψbi(0)−
1

UT
ei

)

jS−j
c
S(e,Ψ,N,P,t)

TΨ−(h
λ)

2
(C−N+P )−Ψ0(e)

−
1

h2 g1(e,Ψ,N)+R(N,P )
1

h2 g2(e,Ψ,P )+R(N,P )



























. (22b)

The null space of A is given by kerA = kerAC × {0} × {0} × {0} × {0}. The
image space of

D(y, t) :=
∂d(y, t)

∂y
=







C(AT
Ce,t)A

T
C 0 0 0 0 0 0 0

0 L(jL,t) 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I







is imD(y, t) = imC(AT
Ce, t)A

T
C × R

nL × R × R
m−2 × R

m−2. The positive
definiteness of C(AT

Ce, t) implies that kerAC ∩ imC(AT
Ce, t)A

T
C = {0} and

dim(kerAC) + dim(imC(AT
Ce, t)A

T
C) = nC . Then, A and D(y, t) satisfy

kerA⊕ imD(y, t) = R
nC+nL+1+2(m−2). (23)

The DAE (21) with A, d and b as in (22) has a properly stated leading
term [10] if, besides (23), the spaces kerA and imD(y, t) are independent
of y and have bases that are continuously differentiable in t and d(y, t) ∈
imD(y, t), ∀y, ∀t ∈ [ta, tb]. In (22), kerA is constant, but imD(y, t) depends
on y, with R̃ = A+A it can be reformulated as 5

A
d

dt

(

R̃d(y, t)
)

+ b(y, t) = 0 (24)

that has a properly stated leading term [15]. Due to AR̃ = A, Backward
Differentiation Formulas (BDF) and Runge–Kutta (RK) methods applied to
(21) and (24) are equivalent and there is no need to compute R̃ in practice.

4.2 Index of the Discretized Coupled DAE System

Since the network equations usually do not fulfill high smoothness conditions,
we use the tractability index concept [15] for the index determination. Addi-
tionally, this concept leads us easily to network topological conditions charac-
terizing the index of the discretized coupled DAE system.

Theorem 1 If the assumptions in section 2 are satisfied and the circuit con-
tains neither LI-cut sets nor CVS-loops with at least one voltage source or one
semiconductor device, the DAE (24) has index one.

5 A+ denotes the Moore-Penrose pseudo inverse of A.
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PROOF. We only need to compute the first two links of the matrix chain.

G0(y, t) =AR̃D = AD, B0(y, t) =
∂b

∂y
(y, t),

G1(y, t) =G0(y, t) +B0(y, t)Q0(y, t)

with Q0 being a projector onto N0 = kerG0(y, t) and P0 = I −Q0. The DAE
(24) has tractability index one if G0 is singular with constant rank and G1 is
non-singular. Note that

N0(y, t) =
{

y | ye ∈ kerATC , yL = 0, ydS = 0, yN = yP = 0
}

and, if QC denotes a projector onto kerAT
C , the matrix

Q0 =











QC 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0











is a projector onto N0. Consequently,

G1 =





























ACC(AT
Ce,t)A

T
C+ARG(AT

Re,t)A
T
RQC 0 AV AS 0 0 0 0

−AT
LQC L(jL,t) 0 0 0 0 0 0

AT
V QC 0 0 0 0 0 0 0

β
UT

δT
i,nN

QC 0 0 0 0 −βδT
1,m−2 0 0

−

∂jc
S

∂e
QC 0 0 1 1 −

∂jc
S

∂Ψ
0 0

−
1

UT
(δi,nN

0 ... δj,nN )
T
QC 0 0 0 0 T 0 0

−
1

h2
∂g1
∂e

QC 0 0 0 0 −
1

h2
∂g1
∂Ψ

I 0

1
h2

∂g2
∂e

QC 0 0 0 0 1
h2

∂g2
∂Ψ

0 I





























.

The vector y =
(

ye yL yV yS y
d
S yΨ yN yP

)T
belongs to kerG1 if and only if it

satisfies

yL = L(·)−1ATLQCye, yN = 1
h2

(

∂g1
∂e
QCye + ∂g1

∂Ψ
yΨ

)

(25a)

yP = − 1
h2

(

∂g2
∂e
QCye + ∂g2

∂Ψ
yΨ

)

, ydS =
∂jc

S

∂e
QCye − yS +

∂jc
S

∂Ψ
yΨ, (25b)

yΨ = 1
UT
T−1 (δi,nN

0 · · · 0 δj,nN
)T QCye, (25c)

ACC(·)AT
Cye + ARG(·)ATRQCye + AV yV + ASyS = 0, (25d)

ATVQCye = 0, (25e)
1
UT
δTi,nN

QCye − δT1,m−2yΨ = 0. (25f)

Inserting yΨ from (25c) into (25f) yields AT
SQCye = 0 because T satisfies 6

T−1(1, 1) + T−1(1,m− 2) = 1.

6 The matrix T of size k ∈ N is a symmetric matrix of the form

Tk =
(

αk+1+αk −αkδ
T
1,k−1

−αkδ1,k−1 Tk−1

)

.
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Let QV S be a projector onto ker
(

AT
V QC

AT
SQC

)

, then QV Sye = ye and

QT
V SQ

T
CAV = 0, QT

V SQ
T
CAS = 0.

Multiplying equation (25d) by QT
V SQ

T
C one obtains that ye must also satisfy

ATRQCye = 0 (remember that G(·) is positive definite). Consequently, QCye
belongs to ker (AC AV AR AS)

T if we take into account that AT
CQCye = 0.

Since QCRV S is a projector onto ker (AC AR AV AS)
T , it holds that

QCRV S QC ye = QC ye.

Then, equation (25d) implies

ACC(·)AT
Cye + AV yV + ASyS = 0.

Multiplying this relation by QT
C one obtains that yV , yS fulfill

QT
CAV yV +QT

CASyS = 0,

i.e., (yV yS)
T ∈ ker

(

QT
CAV Q

T
CAS

)

.

If the circuit does not have LI-cut sets, the matrix (AC AR AV AS)
T has

full column rank and QCye = 0. If the circuit does not contain CVS-loops
with at least one voltage source or one semiconductor device, the matrix
(

QT
CAV Q

T
CAS

)

has full column rank and then (yV yS)
T = 0. Hence, con-

dition (25d) implies ye ∈ kerACC(·)AT
C = kerATC , i.e., ye = QCye = 0. Finally,

yL = 0, yΨ = yN = yP = 0, ydS = 0 and G1 is a non-singular matrix. 2

Due to the results in [10] it can be assured that, under the assumptions of
Theorem 1, the system (24) has also perturbation index one. Furthermore, if
the initial value ya = (ea, jLa, jV a, jSa, j

d
Sa,Ψa, Na, Pa)

T satisfies

QT
C(ARg(A

T
Rea, ta) + ALjLa + AV jV a + AIiS(ta) + ASjSa) = 0, (26a)

ATV ea − vS(ta) = 0, (26b)

TΨa −
(

h
λ

)2
(C −Na + Pa) − Ψ0(ea, ta) = 0, (26c)

jdSa − β
(

δT1,m−2Ψa −
1
UT

(

ψbi(0) + δTi,nN
ea
))

= 0 (26d)

This means that its inverse is also a symmetric matrix that can be written as
T−1
k =

(

a bT

b C

)

with b a (k− 1)-dimensional vector and C a (k− 1)× (k− 1) matrix,
the scalar a and the vector b must then satisfy the k relations (αk+1 + αk) a −
αkδ

T
1,k−1b = 1 and −αkδ1,k−1a + Tk−1b = 0, adding the last k − 1 equations one

obtains that αkb1+α1bk−1 = αka that together with the first relation implies that
αk+1a+ α1bk−1 = 1.
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the DAE (24) is uniquely solvable. In addition, BDF and RK methods are
convergent for this DAE system. Since imD(y, t) is constant, the formulated
system is even numerically qualified [11]. For such DAE systems, the decou-
pling of the inherent dynamics and the discretization commute. This way, the
numerical solution inherits important properties known from ODE theory.

Theorem 2 If the assumptions in section 2 are satisfied, the circuit contains
LI-cut sets or CVS-loops with at least one voltage source or one semiconductor
device and N and P are always greater than zero, the DAE (24) has index 2.

PROOF. Now, we need to compute one further link of the matrix chain.

G2(y, t) = G1(y, t) +B0(y, t)P0Q1(y, t)

with Q1(y, t) being a projector onto kerG1(y, t). The DAE (24) has index two
if G1(y, t) is singular and has constant rank and G2(y, t) is non-singular for
all y and t in their definition domain.
Suppose the circuit contains LI-cut sets or CVS-loops with at least one volt-
age source or one semiconductor device. Let QC−V S denote a projector onto
kerQT

C (AV AS). Then, the vector y belongs to kerG1(y, t) if conditions (25a)-
(25c) are satisfied and

ACC(·)AT
CPCye+AV yV +ASyS = 0, QCye = QCRV SQCye, ( yV

yS ) = QC−V S ( yV
yS ) .

Since imQCRV S ⊆ imQC , the projector QCRV S may be constructed such that
kerQC ⊆ kerQCRV S. The vector y ∈ kerG1 may then be described by condi-
tions (25a)-(25c) and

PCye =−HC(·)−1 (AV AS)QC−V S (yV yS)
T
, (27a)

QCye =QCRV S (ye +QCye − ye) = QCRV Sye, ( yV
yS ) = QC−V S ( yV

yS ) , (27b)

where the matrix HC(·) = ACC(·)AT
C +QT

CQC is positive definite. Because of
P T
CHC(·) = HC(·)PC , we get

QCHC(·)−1 (AV AS)QC−V S = HC(·)−1
(

QT
CAV Q

T
CAS

)

QC−V S = 0

and PCHC(·)−1 (AV AS)QC−V S = HC(·)−1 (AV AS)QC−V S.

If we denote CL = L(·)−1ATL, CN = 1
h2 (

∂g1
∂e

+ ∂g1
∂Ψ
CΨ), CP = − 1

h2 (
∂g2
∂e

+ ∂g2
∂Ψ
CΨ),

Cjd
S

= (
∂jc

S

∂e
+

∂jc
S

∂Ψ
CΨ) and CΨ = 1

UT
T−1(δi,nN

0 · · · 0 δj,nN
)T , a projector Q1

onto kerG1 can be written as

Q1 =















QCRV S 0 −HC(·)−1(AV AS)QC−V S 0 0 0 0
CL QCRV S 0 0 0 0 0 0

0 0 QC−V S 0 0 0 0
C

jd
S
QCRV S 0 (0...0−1)QC−V S 0 0 0 0

CΨQCRV S 0 0 0 0 0 0
CNQCRV S 0 0 0 0 0 0
CPQCRV S 0 0 0 0 0 0















.
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It can be proved that if N and P are always greater than zero the matrix G1

has constant rank 7 . It remains to show that G2 is non-singular.

In B0P0Q1 only the first, third and fourth columns are different from zero.
The following column vectors represent the first and the third-fourth columns
of B0P0Q1,

























ALCLQCRV S
0
0

C
jd
S
QCRV S

−

(

∂jc
S

∂N
CN+

∂jc
S

∂P
CP

)

QCRV S

(h
λ)

2
(CN−CP )QCRV S

((− 1
h2

∂g1
∂N

+ ∂R
∂N )CN+ ∂R

∂P
CP )QCRV S

(( 1
h2

∂g2
∂P

+ ∂R
∂P )CP + ∂R

∂N
CN)QCRV S

























,





























−ARG(·)AT
RHC(·)−1(AV AS)QC−V S

AT
LHC(·)−1(AV AS)QC−V S

−AT
V HC(·)−1(AV AS)QC−V S

−
β

UT
δT
i,nC

HC(·)−1(AV AS)QC−V S+(0 ··· 0 −1)QC−V S

∂jc
S

∂e
HC(·)−1(AV AS)QC−V S

1
UT

(δi,nN
0 ··· 0 δj,nN )

T
HC(·)−1(AV AS)QC−V S

1
h2

∂g1
∂e

HC(·)−1(AV AS)QC−V S

−
1

h2
∂g2
∂e

HC(·)−1(AV AS)QC−V S





























.

Suppose the vector y = (ye yL yV yS ySd yΨ yN yP )T belongs to the null space
of G2. Multiplying the first equation of G2y = 0 by QT

CRV S one obtains
QT
CRV SALL(·)−1ATLQCRV Sye = 0. Since L(·) is positive definite, this is equiv-

alent to AT
LQCRV Sye = 0. Due to the assumption that the circuit does not

contain cut sets of current sources only, the matrix (AC AL AR AV AS)
T has

full column rank and, consequently, AT
LQCRV Sye = 0 ⇔ QCRV Sye = 0.

Inserting yΨ from the sixth equation of G2y = 0 into the fourth and taking
into account that the matrix T satisfies that T−1(1, 1) + T−1(1,m − 2) = 1,
the components ye, yV and yS of y must satisfy

δATS

(

QCye −HC(·)−1 (AV AS)QC−V S ( yV
yS )

)

=
(

0 · · · 0 1
β

)

QC−V S ( yV
yS ) (28)

where δ = T−1(1,m−2)
UT

. The third equation of G2y = 0 is

ATVQCye − ATVHC(·)−1 (AV AS)QC−V S ( yV
yS ) = 0. (29)

Conditions (28) and (29) may be written as

(

AT
V

AT
S

)

QCye−
(

AT
V

AT
S

)

HC(·)−1 (AV AS)QC−V S ( yV
yS ) =





0 ··· 0 0
...

...
...

...
0 ··· 0 1

βδ



QC−V S ( yV
yS ) .

Multiplying it by QT
C−V S, we get

QT
C−V S





(AV AS)
T
HC(·)−1 (AV AS) +







0 ··· 0 0
...

...
...

...
0 ··· 0 0
0 ··· 0 1

βδ











QC−V S ( yV
yS ) = 0.

7 By looking at the structure of Q1 one sees that it has constant rank if the
products CNQCRV S , CPQCRV S and Cjd

S
QCRV S have constant rank. Using that

dim(imAB) = dim(imB) − dim(imB ∩ kerA) the desired result is obtained.
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Because the matrices in this sum are positive semi-definite, it is zero if and
only if

(AV AS)QC−V S ( yV
yS ) = 0 and QC−V S ( yV

yS ) ∈ ker







0 ··· 0 0
...

...
...

...
0 ··· 0 0
0 ··· 0 1

βδ





 .

If (v1 v2)
T = QC−V S ( yV

yS ), the above conditions imply v2 = 0 and AV v1 +
AS v2 = 0. SinceAV has full column rank we find v1 = 0. RegardingQCRV Sye =
0 and QC−V S ( yV

yS ) = 0, it holds that B0P0Q1y = 0. Thus, y belongs to kerG2

if and only if it belongs to kerG1, i.e., if y = Q1y. But QCRV Sye = 0 and
QC−V S ( yV

yS ) = 0 imply that Q1y = 0, so 0 = Q1y = y. 2

Due to the results in [14], it can be assured that, under the assumptions of
Theorem 2, the DAE (24) has also perturbation index two.

Following the steps in Theorems 1 and 2, it is easy to prove that the results
remain the same for a nonuniform spatial mesh 8 and circuits containing more
than one semiconductor device. Furthermore, the index results do not change
when standard finite elements are used to approximate the functions n(x, t)
and p(x, t).

8 If a nonuniform spatial mesh is considered the first equation in (16) has the form

ThΨ −
1

λ2
Dh(C −N + P ) − Ψ0,h(e) = 0

where Dh is a diagonal matrix, Th is a tridiagonal and symmetric matrix with

Th(i, i) =
1

hi+1
+

1

hi+2
, Th(i, i+ 1) = −

1

hi+2
, i = 1, 2, . . . ,m− 2,

hi = xi − xi−1, x1 = 0, xm = l. The vector Ψ0,h(e) is

Ψ0,h(e) =

(

−
1

h2

1

UT
(ψbi(0) + ei) , 0, . . . , 0, −

1

hm

1

UT
(ψbi(l) + ej)

)T

.

When following the steps in lemmata 1 and 2 for proving the index of the coupled
system in this case, it is important that Th is such that

1

h2
T−1
h (1, 1) +

1

hm
T−1
h (1,m− 2) = 1.

The matrix Th fulfills this condition as mentioned in the proof of Theorem 1.
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4.3 Coupled system with discretized energy conservation equation

In most numerical simulations of semiconductor devices the Poisson equation
is replaced by the energy conservation formula. In this section we study the
properties of the DAE that results when the ODE (18) is coupled to the circuit
equations.

Theorem 3 The DAE that originates from the coupling of the ODE (18) to
the circuit equations can also be written as a DAE with properly stated leading
term and has the same index as the DAE previously analyzed.

PROOF. This differential-algebraic system can be written as a DAE of the
form Ā d

dt
d̄(y, t) + b̄(y, t) = 0 with

Ā=











AC 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I











, d̄(y, t) =











qC(AT
Ce,t)

φ(jL,t)

jd
S

TΨ−Ψ0
N
P











,

b̄(y, t) =



























ARg(A
T
Re,t)+ALjL+AV jV +AI iS(t)+ASjS

−AT
Le

AT
V e−vS(t)

jd
S−β

(

δT
1,m−2Ψ−

1
UT

(ψbi(0)+ei)

)

jS−j
c
S(e,Ψ,N,P )

1
λ2 (g1(e,Ψ,N)+g2(e,Ψ,N))

−
1

h2 g1(e,Ψ,N)+R(N,P )
1

h2 g2(e,Ψ,P )+R(N,P )



























.

In this case, ker Ā⊕ im D̄(y, t) = R
nC+nL+3(m−2)+1. The null space N̄0 of Ḡ0 is

N̄0 = N0 ∩
{

y | yΨ =
1

UT
T−1 (δi,nN

0 . . . 0 δj,nN
)T ye

}

and a projector Q̄0 onto N̄0 can then be written as

Q̄0 = Q0 +













0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
UT

T−1(δi,nN
0 ··· 0 δj,nN )

T
QC 0 0 0 0 −I 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0













.

Following the steps in the proof of Theorem 1 it can be proved that the DAE
has index one if the circuit contains neither LI-cut sets nor CVS-loops with
at least one voltage source or one semiconductor device. A projector Q̄1 onto
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the null space of Ḡ1 is now

Q̄1 =















QCRV S 0 −HC(·)−1(AV AS)QC−V S 0 0 0 0
CL QCRV S 0 0 0 0 0 0

0 0 QC−V S 0 0 0 0
C

jd
S
QCRV S 0 (0...0−1)QC−V S 0 0 0 0

C̄ΨQCRV S 0 −CΨHC(·)−1(AV AS)QC−V S 0 0 0 0
CNQCRV S 0 0 0 0 0 0
CPQCRV S 0 0 0 0 0 0















with C̄Ψ = CΨ −
(

h
λ

)2
T−1 (CN − CP ).

In a very similar way as in Theorem 2 it can be proved that also in this case the
DAE has tractability index two if the circuit contains LI-cut sets or CVS-loops
with at least one voltage source or one semiconductor device. 2

5 Summary

Electrical circuits containing semiconductor devices can be modelled as a cou-
pled system of differential algebraic and partial differential equations. An ap-
proximate solution of such a system can be obtained, as proposed here, by
discretizing the partial differential equations in space and solving numerically
the resulting DAE. In order to gain information about how to choose con-
sistent initial values, what type of numerical methods may be used for the
solution of this DAE, etc., it is important to determine its index.

In the Theorems 1 and 2, the special case of an electrical circuit containing
only one semiconductor device modelled by one-dimensional drift-diffusion
equations was studied. We proved that the resulting DAE has always index
smaller or equal to two. It can be determined by topological conditions on
the circuit only. These results can easily be generalized to circuits with more
semiconductor devices. We expect that if drift-diffusion equations in two or
three spatial dimensions are used to model the semiconductor devices in the
circuit the index conditions will be very similar.

Because for the numerical solution of the drift-diffusion equations it is some-
times recommended to replace the Poisson equation by the energy conservation
equation we also studied the DAE resulting from the coupling of the circuit
equations and the ODE (18). In Theorem 3 it was proved that the results
about the tractability index are also valid for this DAE.

For the numerical solution of the coupled system we have made some experi-
ments with a coupling between the device simulator TeSCA [9] developed at
Weierstrass Institute in Berlin and DASSL [2]. It is our intention now to im-
plement a software for the solution of the whole DAE that is not based on the
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coupling of the two simulators. Comparisons between both approaches will be
the subject of a future work.
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