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Abstract

Given a directed graph D = (V, A), we consider its cycle space Cp, i.e. the vector
subspace of Q4! spanned by the incidence vectors of the oriented cycles of D. An
oriented cycle of D is just any cycle of the underlying undirected graph of D along
with an orientation; its incidence vector is 0 on the arcs not included, while, for the
included arcs, it is +1 on the arcs oriented according to the orientation and —1 on
the arcs going backward. Assume a nonnegative weight w, € R, is associated to
each arc a of D. We can extend the weighting w to subsets F' of A and to families F
of such subsets by defining w(F) := 3 cpw(f) and w(F) = > pcrw(F). Given
the pair (D, w), we are interested in computing a minimum weight basis of Cp.

This problem is strongly related to the classical problem of computing a minimum
cycle basis of an undirected graph. In 1987, Horton developed the first polynomial
time algorithm for computing a minimum cycle basis of an undirected graph. As for
directed graphs, the first algorithm for computing a minimum directed cycle basis
is due to Kavitha and Mehlhorn. Its asymptotic complexity is O(m4n).

In this paper, we show how the original approach of Horton can be actually pur-
sued also in the context of directed graphs, while retaining its simplicity. This both
allows for a practical O(m*n) adaptation of Horton’s original algorithm requiring
only minor modifications in the actual code and for a more involved O(m®*!n)
solution. At the end, we discuss the applicability of this approach to more spe-
cialized classes of directed cycle bases, namely, integral cycle bases and generalized
fundamental cycle bases.
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1 Introduction

The task of computing a minimum cycle basis of a graph is well-studied.
Besides its beauty, the problem is motivated by its practical relevance as a
preprocessing step in various application fields, such as electric circuits [2] or
chemical ring perception [5].

Undirected graphs. The cycle space of an undirected graph G = (V, E) is the
vector space Cg over GF(2) generated by the incidence vectors of the cycles
of G. Assume a nonnegative weight w. € R is associated to each edge e of G.
We can extend the weighting w to subsets F' of F/ and to families F of subsets
of £ by defining w(F) := X jcpw(f) and w(F) := X pcrw(F).

Horton [8] developed the first polynomial time algorithm for computing a min-
imum cycle basis of a graph. His approach was based on two main observations:
First, the incidence vectors of the cycles of a graph form a matroid, when con-
sidering standard linear independence over GF'(2). Second, he identified a set
of O(mn) cycles! | which includes the elements of all minimum cycle bases.
These ideas delivered an O(m?n) greedy algorithm. Later, Golinsky and Hor-
ton [6,7] could blend them into a more sophisticated recursion scheme based
on fast matrix multiplication. Hereby the running time is O(m“n), with w
being the constant of fast matrix multiplication, thus w < 2.376.

Recently, there have been published new algorithms to solve this problem. The
approaches of Berger, Gritzmann, and de Vries [1] and Kavitha et al. [10] —
which share in fact some ideas that can already be found in [3] — subsequently
build up a minimum cycle basis by adding in each iteration a shortest cycle,
which is in a sense orthogonal to the ones chosen in previous iterations. More
technically spoken, these algorithms rely on certificates of independence to
be updated meanwhile new cycles enter the basis. Along this line, the best
running time culminated to only O(m?*n + mn?logn).

Directed graphs. Given a directed graph D = (V,A), and FF C A, we de-
note by F™* the arc set obtained from F' by reversing all arcs, that is, F™* :=
{(u,v) |(v,u) € F}. An oriented cycle C of D = (V, A) is a pair (CT,C7) of
disjoint subsets of A such that C*U(C™)* is a directed cycle, in which all arcs
point into the same direction. The arcs in C* (resp., in C'~) are called the
forward (resp., backward) arcs of C. The incidence vector xc of an oriented
cycle C' is a vector in {—1,0,1}™, with entry 1 (—1) in component a, if and
only if a is a forward (backward) arc of C. The cycle space of D is the vector
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space Cp over Q generated by the incidence vectors of oriented cycles of D.
Assume a nonnegative weight w, € R, is associated to each arc a of D. We
can extend the weighting w to subsets F' of A and to families F of such subsets
by defining w(F) := ¥ jepw(f) and w(F) := X perw(F'). Given a weighted
digraph (D, w), our task is to compute a minimum weight basis of Cp.

Notice that a set of oriented cycles, which projects onto a cycle basis for the un-
derlying undirected graph, is already a cycle basis of the directed graph ([12]).
Hence, by computing a minimum cycle basis for the underlying undirected
graph, one can obtain a short cycle basis for the directed graph. But there
exist directed graphs that have a minimum cycle basis which does not project
onto a cycle basis for the underlying undirected graph. A node-minimal simple
digraph for this phenomenon is any oriented version of K¢. This example has
been introduced in [12], and cited recently in [9] to justify the proposal of
algorithms specifically designed to compute directed cycle basis of minimum
weight. Nevertheless, if one takes any minimum undirected cycle bases of K,
then the corresponding directed cycles do still form a minimum directed cycle
basis in every orientation of Kg. This is because in K¢ there exist undirected
cycle bases whose weight is as small as the minimum weight of a directed one.
Hence, the justification provided by this one example was only partial.

Kavitha and Mehlhorn [9] gave the first algorithm for computing a minimum
cycle basis of a directed graph, by generalizing the ideas in [10]. But as the
concept of orthogonality becomes much more complex when switching from

GF(2) to Q, its running time can only be bounded by O(m*n).

Contribution. We provide a directed graph no minimum cycle basis of which
projects onto a cycle basis of the underlying undirected graph. Hence, for
computing a minimum cycle basis of a directed graph, it is mot an option
simply to compute an MCB for the underlying undirected graph. Rather, new
algorithmic approaches—as they can be found in [9] and in this paper—are
necessary.

We adapt Horton’s original ideas to the setting of directed graphs. Conceptu-
ally, this approach stays very simple. Concerning complexity, and by omitting
polylogarithmic terms, we pay a multiplicative slow-down factor of m, as arith-
metics are now performed on non-binary numbers with up to O(mlogm) bits.
In particular, if the test for linear independence is simply based on iterative
Gaussian elimination as in [8], then a practical O(m*n) algorithm is obtained.
Moreover, if we build on the recursion scheme sketched in [7], then we achieve
a complexity of O(m“*n), thus in particular of O(m33™n). Finally, we show
that the greedy approach does not apply to more specialized classes of cycle
bases, such as integral or generalized fundamental cycle bases.



2 A directed cycle basis smaller than any undirected one

Consider the generalized Petersen graph P o, cf. Figure 1. We call an edge e =
{u,v} an inner edge if {u,v} C {0,...,6}. Similarly, we call an edge e =
{u,v} an outer edge if {u,v} C {a,...,g}. The seven edges that remain are
called spokes. We define the weight function w as follows. Assign weight two
to the seven inner edges. The outer edges and the spokes get weight three.

Fig. 1. The generalized Petersen graph P7 o (left) and a template cycle in an orien-
tation of Pro (right).

Claim 1 (Pry,w) has girth 14, and there are precisely eight cycles having
weight 14.

Proof. We will analyze the cycles of Pry according to the number of spokes
they involve.

There are precisely two cycles which do not contain any spoke. The outer cycle
has weight 21, and the inner cycle is one of the eight cycles having weight 14.

Any other cycle uses an even number of spokes, and at least one of the outer
edges and one of the inner edges. Hereby, any cycle using more than two spokes
has weight at least 16 > 14.

Consider therefore a cycle C' taking precisely two spokes. If C' contains pre-
cisely one outer edge, then C' must traverse at least three of the inner edges,
which yields w(C) > 15. If C' contains at least three outer edges, already
the weights of the outer edges plus the weights of the spokes sum up to 15.
Among the cycles that use two outer edges and two spokes, the seven cycles
that respect the template displayed in Figure 1 on the right have weight 14,
and the remaining ones have weight 24. U



Observe that every edge of P75 belongs to precisely two of the eight cycles
with weight 14. Therefore, in the undirected case, these 8 = m —n + 1 cycles
are not independent over GF(2). Thus, in the undirected case, every cycle
basis of (P79, w) has weight at least 113.

Notice that in the directed case, linear independency over Q is invariant under
re-orienting edges and cycles. This follows from the fact that the determinant
of a directed cycle basis ([11]) is invariant under these operations, too. Hence,
we may orient the edges of P according to Figure 1 on the right. Further, we
orient the template cycles as to follow the orientations of the outer arcs, and
the inner cycle to traverse its arcs forwardly. We collect these eight oriented
cycles in the set B.

Claim 2 B is a directed cycle basis.

Proof. Assume to have a combination > ~cp Acxc that cancels out. Unless
all multipliers A¢ are zero, there exists an oriented template cycle C’ with
multiplier A\ev = a # 0.

By considering the arcs that are spokes, we conclude that A\ = « for every
oriented cycle C' € B respecting the template. Then, the arcs in the outer
cycle have charge amounting to 2a.. But the multiplier of the remaining inner
cycle cannot affect their charge. 0

Corollary 3 For every orientation of Pro there exists a directed cycle basis
having weight 112. But every cycle basis of (P72, w) has weight at least 113.

Alternatively, one may consider the determinant of B. As the definition of
the determinant of a directed cycle basis ([11]) generalizes to arbitrary sets
of m —n + 1 oriented cycles, this would also be well-defined, if B was not
independent over Q. We compute det(B) = 2. Hence, we conclude that B is a
directed cycle basis, which does not project onto an undirected one.

Notice that we may easily derive an unweighted graph to which our consid-
erations apply as well. To that end, subdivide each edge e of P74 precisely
w(e) — 1 times. The result is an unweighted graph with 49 nodes and 56 edges.

3 Computing a Minimum Cycle Basis of a Directed Graph

Much like in the undirected case, the p := m — n + 1 dimensional vector
subspace spanned by the incidence vectors of oriented cycles obviously leads
to a linear matroid, applying standard linear independence over Q. In order
for the greedy algorithm to become a sufficiently fast procedure, we need to
identify a small set of cycles including the union of all minimum cycle bases.



In the undirected case, where working over GF'(2), Horton [8] considers only
the cycles of the form C' = P,, + uv + P, for some edge uv and some node w
in the input graph, where P,;, denotes a shortest path between a and b.

In principle, these could still be an exponential number of cycles. Horton
observed however that if one perturbs the weights on the edges such that
there exists a unique minimum path between any pair of nodes, then the
Horton family contains at most mn different circuits.

An appropriate perturbation is easy to come along: simply assume the original
weights were integers and add 27° to the original weight of the i-th edge of
G for v = 1,...,m. We assume such a perturbation has been performed and
propose to consider the family of those oriented circuits which project onto
cycles in the Horton family once the directions of the arcs are ignored.

Our first preparatory lemma concerns the underlying undirected graph Gp of
the digraph D and the Horton family for Gp.

Lemma 4 Let H be the Horton family of a weighted graph (G,w) in which
there exists a unique minimum path between any pair of nodes. Let C be a
cycle of G not in 'H. Then there exists a minimum path P, , between u and v,
internally disjoint from C', and with u and v nodes of C.

Proof. Let ab be an edge of maximum weight in C'. Then there exists a node y
of C' such that the two unique paths C, , and Cy; in C, which do not contain
ab, are minimum paths in C' between y and a, or b respectively.

Now, since C' ¢ 'H, and w.l.o.g., we can assume that C, , is not the minimum
path between y and a in G. Let P, , be the minimum path between y and a
in G. Let P be a subpath of P, , which is internally disjoint from C' and with
endpoints on C'. Being a subpath of a minimum path, P is a minimum path
between its endpoints. O

Lemma 5 All oriented cycles which belong to some minimum cycle basis of
the directed graph D are in the Horton family for Gp, once directions are
disregarded.

o

Proof. Let B° = C7,...,Cy,...,C} be some minimum cycle basis of a given
directed graph D. We may assume it to be obtained by applying the greedy
algorithm to the set of all cycles of D. Assume that C} is the first cycle not
contained in the Horton family, which the greedy algorithm selects.

By Lemma 4, there are two nodes u and v in C}, such that the shortest
path P, , between u and v is internally disjoint from C7. Hence, for the two
cycles Cy and Cy in CY U P, , different from Cy, we have w(C;) < w(Cy) and
w(Cy) < w(CY). We choose their orientations as to disagree on P, .



The greedy algorithm ensures that both C; and C5 can be generated from
{Cy,...,Cp 1} — otherwise they would have been added instead of C7. But
then, since Cy = C+Cy, Cf can also be generated from {C7, ..., C;_ }, which
contradicts the fact that C; was chosen. O

Hence, we propose two algorithms for computing a minimum cycle basis of a
digraph. The first one is extremely simple and follows the ideas of Horton [8]:

1. Compute the Horton family H;
2. Sort the elements of H according to their weights;
3. Perform the greedy algorithm to extract a minimum cycle basis out of H.

Notice that Step 3 dominates the total runtime of this procedure. This remains
true, even if we perform successive Gaussian elimination.

In more detail, assume the cycles C1,...,C; to be already selected by the greedy
algorithm. Consider the matrix I'y, having their incidence vectors «; as columns.
For testing linear independence, w.l.0.g. we may omit n — 1 rows which correspond
to the arcs of some spanning tree and hereby obtain T';. Let

U,
RT! — :
0

where U; denotes a ¢t dimensional regular upper triangular matrix.

The greedy algorithm has to decide for the next cycle C' with incidence vector +,
whether {C,...,Cy,C} are independent. But this is equivalent to the property that
R has a non-zero entry in one of the rows t + 1,..., u. The computation of R;y
involves O(tu) arithmetic operations and is performed once for every C' in the Hor-
ton family H. Since |H| < mn, testing independence requires O(u?mn) arithmetic
operations over the whole execution.

In case {C1,...,Cy, C} are linearly independent, we must also provide Ry in order
to continue the above procedure. We have in fact R;y1 = Fi11 Ry, where the regular
matrix Fyy1 encodes the operations necessary to obtain zero entries in the last
(11— (t+1)) columns of the vector Ryy'. The computation of Fy 11 involves O(u —t)
operations. Apart from an occasional row exchange, computing R;y1 touches at
most two values per column of R;, and hence costs O(tu) arithmetic operations.
Notice that these two types of operations appear no more than p times.

Since every arithmetic operation costs O(m), we already obtain an overall

runtime of only O(m®n), being asymptotically as fast as the more technical
algorithm proposed in [9].

But we may even reduce this runtime down to O(m**'n). For our second algo-
rithm, we may follow the lines of the divide-and-conquer approach of Golynski
and Horton [7]:



1. Compute the Horton family H;

2. Encode the linear matroid with ground set H C Cp by standard matrix
representation;

3. Recursively decide for the two halves of the non-basic elements, which of
its elements belong to a minimum basis.

Still, Step 3 dominates the total runtime. By analyzing the proposed recursion,
which we shortly postpone until the next section, one can bound the number of
arithmetic operations by O(m“n). Considering the coding length of numbers,
we obtain the following corollary.

w+1

Corollary 6 A minimum cycle basis of a digraph can be computed in O(m n).

Complexity of Golynski and Horton’s Algorithm [7]

As a detailed analysis of the complexity of Golynski and Horton’s algorithm for
computing a minimum cycle basis of a linear matroid is not publicly available in
the literature so far, we provide one in this report. To that end, we follow closely
the notation of the original paper.

We start by recapitulating in detail the definition of the standard matrix represen-
tation of a linear matroid M = (E’,Z) subject to a fixed basis B of M. Consider
the matrix

C:= [deeE’

in which the elements of the ground set E’ are immediately given as vectors. We
set n' := rank(M) and m’ := |E’| — n’/. Let B = {eq,..., e, } be some basis of M.
Finally, denote by Cp the submatrix of C' corresponding to B. Then, the standard
matrix representation A’ of M with respect to B is defined by

Cp'C = [Iy]A).

Notice that the identity matrix I, enables us to relate the basic elements of M to
the rows of A’, and the current cobase elements to its columns.

Before we are able to analyze the complexity of the algorithm of Golynski and
Horton [7], we are going to present that recursive algorithm.

The input is a linear matroid M given in standard matrix representation A’ with
respect to a basis B of M. The output is a minimum basis B°® of M. Start with
an arbitrary basis B of M. Let X denote the set of the indices of the current basic
elements, and let Y = {1,...,m/} \ X denote the indices of the current cobasic
elements. Split Y into even parts Y7 and Y5. Use recursion on Y7 to obtain a minimum
basis B; of the matroid M \ Y. Compute the standard matrix representation A’
of M with respect to Bj. Finally, use recursion to compute a minimum basis B°
of M, i.e. to decide which elements of Y5 must replace elements of Bj.



A key issue of this algorithm is to provide the standard matrix representation
of M with respect to Bp as input for the second recursion. Assume the cobasic
elements Y71 C Y; to replace the basic elements X; C X and consider four subma-
trices of A’

Yii1 | YUY,
A= x| F G
X5 H J

Then, the standard matrix representation A of M with respect to B; = BUY1; \ X1
can be obtained by the following group pivot

X1 | YUY, X1 Yio UYs
Al = Y11 F G = Y1 F1 F-lq
X5 H J Xy | —HF~ ' | J—HF'G

This becomes most clear, when re-introducing columns for the current basic elements
temporarily:

X1 | Xo | Y1 | Yi2UY,
1 0
1 I|X1| 0 F G -
—-HF I|X2|

0 |Ixy | H| 7
X1 Xo | Y11 YUY,
F-1 0 I|X1| F-'G

—HF~! I|X2| 0 J—-HF™'qG

Let f(a,b,c) denote the number of arithmetic operations required to multiply
an a X b matrix with a b x ¢ matrix. If we assume b to be minimum among
a,b, c, and if we assume both 3 and 7 to be integer, then we have

(1)

which can be seen easily by partitioning the two input matrices into b x b
submatrices.



Depending on k := | X;|, computing the four submatrices of A’ involves

X YioUY>
Y | O(°) | flk k,m —k) (2)
Xo || fO R R) | f(0/ kym! — k)

arithmetic operations, where we compute J as J — HG. We know that k < n’
and k < (m' 4+ 1) — k, thus in particular & < m'. Notice that if one is not
interested in the standard matrix representation of M with respect to B°,
then neither H nor the entries of the columns of Y, have to be computed at
any node of the recursion.

Under asymptotic notation, plugging (1) into (2) yields a total complex-
ity T'(k,m’,n’) for the group pivot of

T(k,m',n")=0(k) + O((m' — k)k* 1) + Ok~ 1) + O((m’ — k)n'k“~?)
(' (k)2

(m

O
O

'n' min{m/, n'}7?).

In total, the number of arithmetic operations required for computing a mini-
mum cycle basis of a linear matroid with m’ elements and rank n’ is bounded
by the following recursive function

T(m') = 2T( [%’b + O(m/n’ min{m/, n'}*=2),
T(1) = O(n).

Hence, in total we obtain

T(m') = O(m'n' min{m’,n'}*~2). (3)

In order to apply (3) to the MCB problem of a directed graph, observe that
we omit the n —1 rows of C, which correspond to some spanning tree. Further
notice that we may restrict the ground set of M to the Horton family H in
order to compute an MCB of a given directed graph. With these settings, we
have the following correspondences

uw — n' and  mn — m'.
Thus, the number of arithmetic operations required to compute an MCB of a
directed graph is O(m“n).

10



4 Is the Greedy Algorithm Suited for Other Classes of Cycle Bases?

There are four important subclasses of cycle bases of directed graphs, where
each one is a subset of its predecessors ([11]):

(1) Cycle bases projecting onto bases of the underlying undirected graph;
(2) Integral cycle bases; [12]
(3) Generalized fundamental cycle bases; [14]
(4)

4) (Strictly) Fundamental cycle bases. [14]

Since cycle bases of both, directed and undirected graphs form a matroid, the
greedy algorithm provides a simple polynomial time algorithm for finding such
minimum cycle bases. We may ask, whether this approach can also be used
for more specialized classes of cycle bases. But “unfortunately, integral cycle
bases do not form a matroid” [13].

A cycle basis of a directed graph D is called integral, if every cycle in D can
be expressed as an integer linear combination of the basic cycles. Equivalently,
the regular p x p submatrices of its cycle matrix, i.e. its arc-cycle incidence
matrix, have absolute value one ([11]). Integral cycle bases play an important
role in cyclic railway timetabling ([12]). A cycle basis {C1,...,C,} is called
generalized fundamental, if there is a permutation o, such that

Ca(i) \ {Ca(l)a ceey Ca(i—l)} 7£ @, Vi = 2, e, U

A direct way to define an independence system related to integral cycle bases
is to consider the set of oriented cycles of a directed graph as the ground set F,
and the subsets of integral cycle bases as the set of independent sets Z.

Proposition 7 The independence system (E,T) is not a matroid.

Proof. We provide two integral cycle bases with cycle matrices I and T,
such that we can select one cycle to leave I, but none of the cycles of I" can
complete this m x (u — 1) matrix to another integral cycle basis.

Consider the directed “envelope graph” shown in Figure 2. The four oriented

Fig. 2. The envelope graph.
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cycles, whose incidence vectors form the rows of I'?| cf. Equation (4), form
an integral cycle basis, because the regular 4 x 4 submatrices of I'” have de-
terminants of absolute value one

1 000(0-110-1

| 1100[0-101-1

1010}1-11-10
100 1-1 01 0-1

Another integral cycle basis is obtained by the cycles whose incidence vectors
compose the cycle matrix

_— = O
S O = =
O == =
— O =
=
O = = O
— = e o
O = O O
_ O = O

Since I is an integral cycle basis, the integer matrix

— =
— = =W
O = O O
_ o O O

is the unique solution to the system ['U = T'. Since the det function is dis-
tributive, U must be an unimodular matrix, in fact det U = 1.

Now, choose the first column of I'” to exit that basis. Of course, neither the
third nor the fourth column of I' can become its substitute, because they
already appear in I”. But putting the first or the second column of I" to I
results in a matrix having a determinant of absolute value different from one,
which is induced by the entry in the first row of column one or two, resp.,
of matrix U. Thus, the first column of I” cannot be replaced by any of the
columns of I', providing that integral cycle bases do not form a matroid. [J

Corollary 8 For I being family set of subsets of generalized fundamental
cycle bases, the independence system (E,Z) is not a matroid, either.

Proof. The two cycle bases, which we consider in the proof of Proposition 7
are in fact generalized fundamental cycle bases. Replacing the first column of
IV with the first or the second column of I' results in a directed cycle basis,
which hits every arc at least twice. 0

12



Remark 9 Finding a minimum (strictly) fundamental cycle basis is MAX-
SNP hard ([4]).

5 Conclusions

We investigated the problem of computing a minimum cycle basis of a directed
graph. We provided a digraph no minimum cycle basis of which projects onto
a cycle basis of the underlying undirected graph. Hence Horton’s original al-
gorithm can not be employed as a black-box to solve the above problem. We
also showed however that Horton’s general approach can be adapted as to
work with the directed case as well. This leads to a very simple algorithm,
which is asymptotically as fast as the one previously known, as well as to an
even faster one. Due to this relationship, the directed case may profit from
further improvements obtained for the undirected case. Finally, we showed
that this approach cannot be applied to more specialized classes of cycle bases
of directed graphs.

References

[1] Berger, F., Gritzmann, P, and de Vries, S. (2004) Minimum Cycle Bases for
Network Graphs. Algorithmica 40 (1), 51-62

[2] Bollobas, B. (1998) Modern Graph Theory. Springer, GTM 184

[3] de Pina, J.C. (1995) Applications of Shortest Path Methods. Ph.D. Thesis,
University of Amsterdam, The Netherlands

[4] Galbiati, G. and Amaldi, E. (2003) On the Approximability of the Minimum
Fundamental Cycle Basis Problem. In: WAOA 2003, Springer LNCS 2909,
edited by Klaus Jansen and Roberto Solis-Oba

[5] Gleiss, P.M. (2001) Short cycles: minimum cycle bases of graphs from chemistry
and biochemistry. Ph.D. Thesis, Universitat Wien

[6] Golynski, A. (2002) A polynomial time algorithm to find the minimum cycle
basis of a regular matroid. Master’s thesis, University of New Brunswick

[7] Golynski, A., Horton, J.D. (2002) A Polynomial Time Algorithm to
Find the Minimum Cycle Basis of a Regular Matroid. In: SWAT 2002,
Springer LNCS 2368, edited by M. Penttonen and E. Meineche Schmidt

[8] Horton, J.D. (1987) A polynomial-time algorithm to find the shortest cycle
basis of a graph. STAM Journal on Computing 16, 358366

13



[9] Kavitha, T. and Mehlhorn, K. (2004) A polynomial time algorithm for minimum
cycle basis in directed graphs. Kurt Mehlhorn’s List of Publications, 185,
MPI Saarbriicken,
http://www.mpi-sb.mpg.de/ mehlhorn/ftp/DirCycleBasis.ps,
to appear in Proceedings of STACS 2005

[10] Kavitha, T., Mehlhorn, K., Michail, D., and Paluch, K. (2004) A
faster algorithm for Minimum Cycle Basis of graphs. In: ICALP 2004,
Springer LNCS 3142, edited by J. Diaz et al., 846857

[11] Liebchen, C. (2003) Finding Short Integral Cycle Bases for Cyclic Timetabling.
In: Algorithms 2003, Springer LNCS 2832, edited by G. di Battista and
U. Zwick, 715-726

[12] Liebchen, C., Peeters, L. (2002) On Cyclic Timetabling and Cycles in Graphs.
Technical Report 761/2002, TU Berlin

[13] Schrijver, A. (2002) Personal Communication

[14] Whitney, H. (1935) On the Abstract Properties of Linear Dependence.
American Journal of Mathematics 57, 509-533

14



Reports from the group

“Combinatorial Optimization and Graph
Algorithms”

of the Department of Mathematics, TU Berlin

2004/31 Christian Liebchen and Romeo Rizzi: A Greedy Approach to Compute a
Minimum Cycle Bases of a Directed Graph

2004/235 Laura Heinrich-Litan and Marco E. Libbecke: Rectangle Covers Revisited
Computationally

2004/27 FEkkehard Koéhler and Rolf H. Mohring and Gregor Wiinsch: Minimizing
Total Delay in Fixed-Time Controlled Traffic Networks

2004/26 Rolf H. Mohring and Ekkehard Kohler and Ewgenij Gawrilow and Bjorn
Stenzel: Conflict-free Real-time AGV Routing

2004/21 Christian Liebchen and Mark Proksch and Frank H. Wagner: Performance
of Algorithms for Periodic Timetable Optimization

2004/20 Christian Liebchen and Rolf H. Mohring: The Modeling Power of the Peri-
odic Event Scheduling Problem: Railway Timetables — and Beyond

2004/19 Ronald Koch and Ines Spenke: Complexity and Approximability of k-
splittable flow problems

2004/18 Nicole Megow, Marc Uetz, and Tjark Vredeveld: Stochastic Online Schedul-
ing on Parallel Machines

2004/09 Marco E. Libbecke and Uwe T. Zimmermann: Shunting Minimal Rail Car
Allocation

2004/08 Marco E. Libbecke and Jacques Desrosiers: Selected Topics in Column Gen-
eration

2003/050 Berit Johannes: On the Complexity of Scheduling Unit-Time Jobs with
OR-Precedence Constraints

2003/49 Christian Liebchen and Rolf H. Mdéhring: Information on MIPLIB’s
timetab-instances

2003/48 Jacques Desrosiers and Marco E. Libbecke: A Primer in Column Generation

2003/47 Thomas Erlebach, Vanessa Kddb, and Rolf H. Mdhring: Scheduling
AND/OR-Networks on Identical Parallel Machines

2003/43 Michael R. Bussieck, Thomas Lindner, and Marco E. Libbecke: A Fast
Algorithm for Near Cost Optimal Line Plans

2003/42 Marco E. Libbecke: Dual Variable Based Fathoming in Dynamic Programs
for Column Generation

2003/37 Sdndor P. Fekete, Marco E. Libbecke, and Henk Meijer: Minimizing the
Stabbing Number of Matchings, Trees, and Triangulations



2003/25 Daniel Villeneuve, Jacques Desrosiers, Marco E. Libbecke, and Frangois
Soumis: On Compact Formulations for Integer Programs Solved by Column
Generation

2003/24 Alex Hall, Katharina Langkau, and Martin Skutella: An FPTAS for Quick-
est Multicommodity Flows with Inflow-Dependent Transit Times

2003/23 Sven O. Krumke, Nicole Megow, and Tjark Vredeveld: How to Whack Moles

2003/22 Nicole Megow and Andreas S. Schulz: Scheduling to Minimize Average Com-
pletion Time Revisited: Deterministic On-Line Algorithms

2003/16 Christian Liebchen: Symmetry for Periodic Railway Timetables

2003/12 Christian Liebchen: Finding Short Integral Cycle Bases for Cyclic Timetabling

762/2002 Ekkehard Kohler and Katharina Langkau and Martin Skutella: Time-
Expanded Graphs for Flow-Dependent Transit Times

761/2002 Christian Liebchen and Leon Peeters: On Cyclic Timetabling and Cycles
in Graphs

752/2002 FEkkehard Kéhler and Rolf H. Mohring and Martin Skutella: Traffic Net-
works and Flows Over Time

739/2002 Georg Baier and Ekkehard Kohler and Martin Skutella: On the k-splittable
Flow Problem

736/2002 Christian Liebchen and Rolf H. Mohring: A Case Study in Periodic

Timetabling
Reports may be requested from: Sekretariat MA 6-1
Fakultt IT — Institut fr Mathematik
TU Berlin

Strafle des 17. Juni 136
D-10623 Berlin — Germany

e-mail: klink@math.TU-Berlin.DE

Reports are also available in various formats from
http://www.math.tu-berlin.de/coga/publications/techreports/
and via anonymous ftp as

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-number-year.ps



