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MATHEMATIK UND
NATURWISSENSCHAFTEN

Institut für Mathematik

Finding Short Integral Cycle

Bases

for Cyclic Timetabling

by

Christian Liebchen

TU Berlin, Institut für Mathematik, Sekr. MA 6-1

Straße des 17. Juni 136, D-10623 Berlin, Germany
liebchen@math.tu-berlin.de

No. 2003/12



Finding Short Integral Cycle Bases

for Cyclic Timetabling∗

Christian Liebchen
TU Berlin, Institut für Mathematik, Sekr. MA 6-1
Straße des 17. Juni 136, D-10623 Berlin, Germany

liebchen@math.tu-berlin.de

June 2, 2003

Abstract

Cyclic timetabling for public transportation companies is usually modeled by the periodic
event scheduling problem. To deduce a mixed-integer programming formulation, artificial in-
teger variables have to be introduced. There are many ways to define these integer variables.

We show that the minimal number of integer variables required to encode an instance is
achieved by introducing an integer variable for each element of some integral cycle basis. An
integral cycle basis consists of |A| − |V |+ 1 oriented cycles of a directed graph D = (V, A) that
enable any oriented cycle of the directed graph to be expressed as an integer linear combination.

The solution times for the originating application vary extremely with different integral
cycle bases. However, our computational studies show that the width of integral cycle bases
is a good empirical measure for the solution time of the MIP. Clearly, integral cycle bases
permit a much wider choice than the former standard approach, in which integer variables are
associated with the co-tree arcs of some spanning tree. Hence, to formulate better solvable
integer programs, we present algorithms that construct integral cycle bases of small width.

To that end, we investigate classes of directed cycle bases that are closely related to integral
cycle bases, namely (generalized) fundamental and undirected cycle bases. This gives rise to
both, a compact classification of directed cycle bases and notable reductions of running times
for cyclic timetabling.

1 Introduction and Scope

Cycle bases play an important role in various applications. Recent investigations cover ring per-
ception in chemical structures ([7]) and the design and analysis of electric networks ([3]). What
cyclic timetabling shares with these applications is that the construction of a short cycle basis is
an important preprocessing step to improve solution methods for real world problems.

Since the pioneering work of Serafini and Ukovich[23], the construction of periodic timetables for
public transportation companies, or cyclic timetabling for short, is usually modeled by the periodic
event scheduling problem (PESP). For an exhaustive presentation of practical requirements that
the PESP is able to meet, we refer to Krista[11]. The feasibility problem has been shown to be
NP-complete, by reductions from Hamiltonian Cycle ([23] and [17]) or Coloring ([19]). With a
linear objective given, NP-hardness has been deduced by a reduction from Linear Ordering ([14]).
We want to solve such instances by using the mixed integer solver of the CPLEX c©[4] optimization
suite.

Related Work. Of course, the performance of implicit enumeration algorithms can be improved
by reducing the number of integer variables. It has already been Serafini and Ukovich to detect that
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there is no need to introduce an integer variable for every arc of the directed constraint graph.Rather,
one can restrict the integer variables to those that correspond to the co-tree arcs of some spanning
tree. These arcs can be interpreted to be the representatives of a strictly fundamental cycle basis.
Of course, there is a huge number of those cycle bases.

Nachtigall[16] did immediately profit from the spanning tree approach when switching to a
tension-based problem formulation. Notice that our results on integral cycle bases apply to that
tension-perspective as well.

Odijk[19] provided box constraints for the remaining integer variables. Hereby, it becomes pos-
sible to quantify the differences of cycle bases. But the implied objective function is rather bulky.

De Pina[21] observed that a cycle basis that minimizes a much simpler function also minimizes
our original objective. What remains to solve is a variant of the minimal cycle basis problem.

Contribution and Scope. In our computational studies we show that the width of a cycle basis
is highly correlated with the solution time of the mixed-integer solver. Thus, it serves as a good
empirical measure for the run time and provides a way to speed up the solver by choosing a short
basis.

Hence, in order to supply MIP solvers with promising problem formulations, we are going to
compute short cycle bases. But there is a certain dilemma when analyzing the two most popular
types of directed cycle bases: On the one hand, there are directed cycle bases that induce undirected
cycle bases. For these, we can minimize a linear objective function efficiently, due to a polyno-
mial time algorithm by Horton[10]. But, contrary to a claim of de Pina[21], undirected cycle bases
unfortunately are not applicable to cyclic timetabling in general, which we will demonstrate by
giving a counter-example. On the other hand, cycle bases that stem from spanning trees, or strictly
fundamental cycle bases for short, form a feasible choice. But for them, minimization is NP-hard,
as has been proved by Deo et al.[5]

To cope with this dilemma, we investigate if there is a class of cycle bases lying in between
general undirected cycle bases and strictly fundamental cycle bases, hopefully combining both
good algorithmic behavior and the usability to express PESP instances. To that end, a compact
classification of directed cycle bases will be given. Efficient characterizations will be based on
properties of the corresponding cycle matrices, e.g. its determinant, which we find out to be well-
defined. This allows a natural definition of the determinant of a directed cycle basis.

The first important special class are integral cycle bases. We will show them to be the most
general structure when limiting an instance of the PESP to only |A| − |V | + 1 integer variables.
However, the complexity status of minimizing a linear objective function over the integral cycle
bases remains unknown to the author.

Since (generalized) fundamental cycle bases1 are a subset of integral cycle bases, they will play
a central role in the powerful algorithms presented for constructing short integral cycle bases. For
example, being unsatisfied with a running time of O(m3n) for his initial algorithm to find a shortest
cycle basis of a graph, Horton proposed an approximation-algorithm with running time O(n2m).
We will prove that this algorithm in fact always constructs a fundamental – and in particular
integral – cycle basis.

The computational results provided in section 6 show the enormous benefit of generalizing the
spanning tree approach to integral cycle bases for the originating application of cyclic timetabling.
These results point out the need of deeper insights into integral cycle bases and related structures.
Some open problems are stated at the end of this paper.

2 Periodic Scheduling and Short Cycle Bases

An instance of the Periodic Event Scheduling Problem (PESP) consists of a directed constraint
graph D = (V, A, `, u), where ` and u are lower resp. upper time bounds for the arcs, together with
a period time T of the transportation network. A solution of a PESP instance is a node potential π :
V → [0, T ) – or time vector for the periodically recurring departure/arrival events within the

1We follow the notation of Whitney[24] where he introduced the concept of matroids.
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public transportation network – that fulfills periodic constraints of the form (πj − πi − `ij) mod T ≤
uij − `ij , which we resolve by introducing artificial integer variables pij ,

`ij ≤ πj − πi + pijT ≤ uij , (i, j) ∈ A. (1)

Our computational results will show that the running times of a mixed-integer solver on instances
of cyclic timetabling correlate with the volume of the polytope spanned by the box constraints
provided for the integer variables. Formulation (1) can only yield 0 ≤ pa ≤ 2 for a ∈ A in general,2

even with scaling to 0 ≤ `ij < T .
Serafini and Ukovich observed that the above problem formulation may be simplified by eli-

minating |V | − 1 integer variables that correspond to the arcs a of some spanning tree H , when
relaxing π to be some real vector. Formally, we just fix pa := 0 for a ∈ H . Then, in general, the
remaining integer variables may take more than three values. For example, think of the directed
cycle on n arcs, with ` ≡ 0 and u ≡ T − 1

n
, as constraint graph. With π = 0, the integer variables

of every arc will be zero. But πi = (i − 1) · (T − 1
n
), i = 1, . . . , n would be a feasible solution as

well, implying pn1 = n − 1 for the only integer variable that we did not fix to zero. Fortunately,
theorem 1 provides box constraints for the remaining integer variables.

Theorem 1 (Odijk[19]). A PESP instance defined by the constraint graph D = (V, A, `, u) and
a period time T is feasible if and only if there exists an integer vector p ∈

� |A| satisfying the cycle
inequalities

aC ≤
∑

a∈C+

pa −
∑

a∈C−

pa ≤ bC , (2)

for all (simple) cycles C ∈ G, where aC and bC are defined by

aC =

⌈

1

T

(

∑

a∈C+

`a −
∑

a∈C−

ua

)⌉

, bC =

⌊

1

T

(

∑

a∈C+

ua −
∑

a∈C−

`a

)⌋

, (3)

and C+ and C− denote the sets of arcs that, for a fixed orientation of the cycle, are traversed
forwardly resp. backwardly.

For any co-tree arc a, the box constraints for pa can be derived by applying the cycle inequalities (2)
to the unique oriented cycle in H ∪ {a}.

Directed Cycle Bases and Undirected Cycle Bases

Let D = (V, A) denote a connected directed graph. An oriented cycle C of D consists of forward
arcs C+ and backward arcs C−, such that C = C+ ∪̇C− and reorienting all arcs in C− results in
a directed cycle. A directed cycle basis of D is a set of oriented cycles C1, . . . , Ck with incidence
vectors γi ∈ {−1, 0, 1}|A| that permit a unique linear combination of the incidence vector of any
(oriented) cycle of D. By k we denote the cyclomatic number k = |A|− |V |+1 of D, and of course,
arithmetic is performed over the field � .

For a directed graph D, we obtain the underlying undirected graph G by removing the directions
from the arcs. A cycle basis of an undirected graph G = (V, E) is a set of undirected cycles C1, . . . , Ck

with incidence vectors φi ∈ {0, 1}|E|, that again permit to combine any cycle of G. But here,
arithmetic is over the field GF(2). A set of directed cycles C1, . . . , Ck projects onto an undirected
cycle basis, if by removing the orientations of the cycles, we obtain a cycle basis for the underlying
undirected graph G.

Lemma 2. Let C = {C1, . . . , Ck} be a set of oriented cycles in a directed graph D. If C projects
onto an undirected cycle basis, then C is a directed cycle basis.

2For T = 10, `ij = 9, and uij = 11, πj = 9 and πi = 0 yield pij = 0; pij = 2 is achieved by πj = 0 and πi = 9.
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This can easily be verified by considering the mod 2 projection of C, cf. Liebchen and Peeters[13].
But the converse is not true, as is illustrated in the following example.

Example 1. The following set of ten cycles defined on K6, with edges oriented arbitrarily, con-
stitutes a directed cycle basis. But since every arc is hit exactly twice, it does not project onto an
undirected cycle basis.

(1, 2, 3) (1, 2, 4) (1, 3, 5) (1, 4, 6) (1, 5, 6)
(2, 3, 6) (2, 4, 5) (2, 5, 6) (3, 4, 5) (3, 4, 6)

Moreover, it is a minimal directed cycle basis, and altogether this is a node-minimal example for
this effect.

Objective Function for Short Cycle Basis

Considering the co-tree arcs in the spanning tree approach as representatives of the elements of a
directed cycle basis enables us to formalize the desired property of cycle bases we need to construct
a promising MIP formulation for cyclic timetabling instances.

Definition 1 (Width of a Cycle Basis). Let C = {C1, . . . , Ck} be a directed cycle basis of a
constraint graph D = (V, A, `, u). Let T be a fixed period time. Then, for aCi

and bCi
as defined

in (3), we define the width of C by

W (C) :=

k
∏

i=1

(bCi
− aCi

+ 1). (4)

The width is just our empirical measure for the estimated running time of the MIP solver on
instances of the originating application. Hence, for the spanning tree approach, we should construct
a spanning tree whose cycle basis minimizes the width function. Especially, if many constraints
have small span da := ua − `a, the width will be much smaller than the corresponding value of 3|A|

for the initial formulation of the PESP.
To manage the product and the rounding operation for computing aCi

and bCi
, we consider a

slight relaxation of the width:

W (C) ≤
k
∏

i=1

⌈

1

T

∑

a∈Ci

da

⌉

. (5)

De Pina[21] proved that an undirected cycle basis that minimizes the linearized objective

k
∑

i=1

∑

a∈Ci

da (6)

does also minimize the right-hand-side in (5). However, there are pathological examples in that a
minimal cycle basis for the linearized objective (6) does not minimize the initial width function (4):
Consider K7 with ` ≡ 3, u ≡ 4, and T = 10. A minimal cycle bases with respect to (6) consists of
15 triangles that lead to width one. But every cycle basis that contains one of the infeasible cycles
through seven arcs results in zero width.

Applying the above linearization to spanning trees yields the problem of finding a minimal
strictly fundamental cycle basis. But two decades ago, Deo et al.[5] showed this problem to be
NP-hard. Currently, Amaldi[1] is even working out MAX-SNP-hardness.

General Cycle Bases are Misleading

De Pina[21] proposed to keep an integer variable in the PESP only for each of the cycles of arbi-
trary undirected cycle bases. Consequently, he could exploit Horton’s[10] O(m3n)-algorithm3 for

3Golynski and Horton[8] adapted it to O(msn), with s being the exponent of fast matrix multiplication. And by
a substantially different approach, de Pina[21] achieved a nice O(m3 + mn2 log n)-algorithm for the same problem.
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constructing a minimal cycle basis according to (6), in order to find a cycle basis which is likely to
minimize the width function.

In more detail, for some directed cycle basis C, define the cycle matrix Γ to be the arc-cycle-in-
cidence matrix of C. He claimed that the solution spaces stay the same, in particular

{p ∈
� m | p allows a feasible solution}

?
⊆ {Γq | q ∈

� C , q satisfies (2) on C}. (7)

We show that, in general, inclusion (7) does not hold. Hartvigsen and Zemel[9] provided a nice
cycle basis C, cf. figure 1. Assume the PESP constraints of D allow only the first unit vector e1

PSfrag replacements

D

C1 C2 C3 C4

1

24
5

6

7

8

Figure 1: Cycle basis C = {C1, . . . , C4} for which de Pina’s approach fails

for p in any feasible solution, choosing the spanning tree H with p|H = 0 to be the star tree rooted
at the center node.

For C, the transpose of the cycle matrix Γ is

Γt =









1 1 1 0 −1 1 0 0
0 1 1 1 0 −1 1 0
1 0 1 1 0 0 −1 1
1 1 0 1 1 0 0 −1









.

Restricting Γ to the rows that correspond to A \H , the submatrix Γ′ becomes regular and has the
inverse matrix

(Γ′)−1 =
1

3









1 1 1 −2
−2 1 1 1

1 −2 1 1
1 1 −2 1









.

Hence, the unique inverse image of p = e1 is q = (Γ′)−1p|A\H 6∈
�

k. Thus, the only feasible solution
will never be seen, when working only on

� C . In the following section we will establish that the
crux in this example, is the fact that there is a regular k×k submatrix of the cycle matrix Γ having
determinant of absolute value different from one.

Thus, key information is lost, when only integer linear combinations of the cycles of some
arbitrary cycle basis are considered. To summarize, our dilemma is the following: Cycle bases, over
which minimization is easy, do not fit our purpose. But minimization over cycle bases that would
be suitable to formulate instances of cyclic timetabling, becomes NP-hard.

3 Matrix-Classification of Directed Cycle Bases

In order to develop algorithms that construct short cycle bases which we may use for expressing
instances of cyclic timetabling, we want to identify an appropriate class of cycle bases. Fortunately,
there is indeed some space left between directed cycle bases that project onto undirected ones, and
cycle bases which stem from spanning trees. As our classification of what is in between will be
based on properties of cycle matrices, we start by giving two algebraic lemmata.
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Lemma 3. Let C be a directed cycle basis of a connected digraph D. A subset of k rows Γ′ of its
m × k cycle matrix Γ is maximal linearly independent, if and only if the arcs chosen constitute the
co-tree arcs of some spanning tree.

Proof. To prove sufficiency, consider a spanning tree H of D, and {a1, . . . , ak} to become co-tree
arcs. Consider the cycle matrix Φ with the incidence vector of the unique cycle in H ∪ {ai} in
column i. As C is a directed cycle basis, there is a unique matrix B ∈ � k×k for combining the
cycles of Φ, i.e.

ΓB = Φ.

By construction, the restriction of Φ to the co-tree arcs of H is just the identity matrix. Hence, B
is the inverse matrix of Γ′.

Conversely, if the n− 1 rows we remove contain a cycle C, consider its incidence vector γC . As
C is a directed cycle basis, we have a unique solution xC 6= 0 to the system Γx = γC . But removing
n − 1 rows that contain C cause xC to become a non-trivial linear combination of the zero vector,
proving Γ′ to be singular in this case.

Lemma 4. Let Γ be the m × k cycle matrix of some directed cycle basis C. Denote by A1 and A2

two regular k × k submatrices of Γ. Then we have det A1 = ± detA2.

Proof. By lemma 3, the k rows of A1 are the co-tree arcs a1, . . . , ak of some spanning tree H . Again,
consider the cycle matrix Φ with the incidence vector of the unique cycle in H ∪ {ai} in column i.
Then,

ΦA1 = Γ, (8)

cf. Berge[2] for instance. From Schrijver[22], we know that Φ is totally unimodular. Restricting
system (8) to the rows of A2, we obtain Φ′A1 = A2. Because det Φ′ = ±1, and since the det-function
is distributive, we get det A1 = ± det A2.

The above lemma allows to define the determinant of a directed cycle basis.

Definition 2 (Determinant of a Directed Cycle Basis). For a directed cycle basis C with
m × k cycle matrix Γ and regular k × k submatrix Γ′, we define the determinant of C by

det C := | det Γ′|.

We first collect how this determinant behaves for general directed cycle bases, as well as for those
who project onto undirected cycle bases.

Corollary 5. The determinants of directed cycle bases are positive integers.

Theorem 6. A directed cycle basis C projects onto a cycle basis for the underlying undirected graph,
if and only if det C is odd.

Due to space limitations, we omit a formal proof and just outline that taking the mod 2 projection
after every step of the Laplace expansion for the determinant of an integer matrix maintains oddness
simultaneously over both, � and GF(2).

The following definition introduces the largest class of cycle bases from that we may select
elements to give compact formulations of instances of the PESP.

Definition 3 (Integral Cycle Basis). Let C = {C1, . . . , Ck} be cycles of a digraph D, where k
is the cyclomatic number k = |A| − |V | + 1. If for every cycle C in D, we can find λ1, . . . , λk ∈

�
,

such that C =
∑k

i=1 λiCi, then C is called an integral cycle basis.

Theorem 7 (Liebchen and Peeters[13]). A directed cycle basis C is integral, if and only if
det C = 1.
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Proof. Sufficiency can be seen immediately by applying Cramer’s rule. To prove necessity, we
use the fact that the columns of cycle matrices Γ of integral cycle bases generate the lattice of
integers

�
k, when restricted to k linear independent rows Γ′. There, it is an elementary equivalence

that Γ′x = γ′ has an integral solution x for every integral vector γ ′, if and only if det Γ′ = ±1,
cf. Schrijver[22].

By definition, for every pair of a strictly fundamental cycle basis and an integral cycle basis with
cycle matrices Γ and Φ, respectively, there are unimodular matrices B1 and B2 with ΓB1 = Φ and
ΦB2 = Γ. Thus, integral cycle bases immediately inherit the capabilities of strictly fundamental
cycle bases for expressing instances of cyclic timetabling. Moreover, the example in figure 1 illus-
trates that, among the classes we consider in this paper, integral cycle bases are the most general
structure for keeping such integer transformations. Hence, they are the most general class of cycle
bases allowing to express instances of the periodic event scheduling problem.

Corollary 8. Every integral cycle basis projects onto an undirected cycle basis.

The cycle basis in figure 1 did already provide an example of a directed cycle basis that is not
integral, but projects onto an undirected cycle basis.

Theorem 7 provides an efficient criterion for recognizing integral cycle basis. But this does not
immediately induce an (efficient) algorithm for constructing a directed cycle basis being minimal
among the integral cycle bases. Interpreting integral cycle bases in terms of lattices (Liebchen and
Peeters[13]) might allow to apply methods for lattice basis reduction, such as the prominent L3[12]
and Lovász-Scarf[15] algorithms. But notice that our objective function has to be adapted carefully
in that case.

4 Special Classes of Integral Cycle Bases

There are two important special subclasses of integral cycle bases. Both give rise to good heuristics
for minimizing the linearized width function. We follow the notation of Whitney[24], where he
introduced the concept of matroids.

Definition 4 ((Strictly) Fundamental Cycle Basis). Let C = {C1, . . . , Ck} be a directed cycle
basis. If for some, resp. any, permutation π, we have

∀ i = 2, . . . , k : Cπ(i) \ (Cπ(1) ∪ · · · ∪ Cπ(i−1)) 6= ∅,

then C is called a fundamental resp. strictly fundamental cycle basis.

The following lemma provides a much more popular notion of strictly fundamental cycle bases.

Lemma 9. The following properties of a directed cycle basis C for a connected directed graph D
are equivalent:

1. C is strictly fundamental.

2. The elements of C are induced by the chords of some spanning tree.

3. There are at least k arcs that are part of exactly one cycle of C.

We leave the simple formal proof to the reader.
Concerning fundamental cycle bases, by excluding minors, Hartvigsen and Zemel[9] gave a

characterization of graphs in which every cycle basis is fundamental. Moreover, it is an elementary
property of every fundamental cycle basis C, that the first k rows of their arc-cycle incidence
matrices Γ constitute an upper triangular matrix with diagonal elements in {−1, +1}, assuming
C being given such that π ≡ id complies with the definition. As an immediate consequence of
theorem 7, we get

7



Corollary 10. Fundamental cycle bases are integral cycle bases.

The following example shows that the converse is not true.

Example 2 (Liebchen and Peeters[13]). Consider the following 21 directed cycles in the di-
graph K8 with arcs directed arbitrarily:

(1, 2, 3) (1, 2, 4) (1, 2, 5) (1, 3, 4) (1, 3, 5) (1, 4, 6) (1, 5, 7)
(1, 6, 8) (1, 7, 8) (2, 3, 6) (2, 3, 7) (2, 4, 7) (2, 5, 8) (2, 6, 8)
(3, 4, 8) (3, 5, 6) (3, 7, 8) (4, 5, 6) (4, 5, 8) (4, 6, 7) (5, 6, 7)

This is a minimal directed cycle basis of K8, because it involves only triangles. As there are 15 ×
15 submatrices with determinant one, it is in fact an integral cycle basis. But every arc is contained
in more than one cycle, therefore this cycle basis cannot be fundamental. The node-minimality of
this example has been discussed in Liebchen and Peeters[13].

To complete our discussion, we provide another example.

Example 3. Consider the directed cycle basis of K5 shown in figure 2. Permuting the cycles
by π = (3, 4, 1, 2, 5, 6) establishes fundamentality. It is a minimal directed cycle basis, since it
contains only triangles. Finally, this cycle basis is not strictly fundamental, as the set of arcs that

PSfrag replacements
D

C1 C2 C3 C4 C5 C6

Figure 2: Fundamental cycle basis that is not strictly fundamental

are part of several cycles contains a cycle itself.
To prove node-minimality of this example, consider K4, which has exactly four triangles. Every

minimal cycle basis selects three of them. In order that the set of arcs that are hit more than once
contains a cycle, simple counting tells that such a cycle must have less than four arcs. But the
arcs of the only non-basic triangle are exactly those that are covered only once by the three basic
triangles.

The Venn-diagram in figure 3 summarizes the relationship between the four major subclasses of
directed cycle bases.

5 Algorithms

A first approach for constructing short integral cycle bases is to run one of the algorithms that
construct a minimal undirected cycle basis. By orienting both edges and cycles arbitrarily, the
determinant of the resulting directed cycle basis can be tested for being one. Notice that reversing
an arc’s or cycle’s direction would translate into multiplying a row or column by minus one, which

8



fundamental
strictly generalized

fundamental

K3 K6M1K5 K8

upper triangular nonzero det.

directed

odd det.

undirected

det. one

integral

diagonal

Figure 3: Map of directed cycle bases

is of no effect for the determinant of a cycle basis. But if our constructed minimal undirected cycle
basis is not integral, it is worthless for us and we have to run other algorithms.

Deo et al.[6] introduced two sophisticated algorithms for constructing short strictly fundamental
cycle bases: In the procedure UV (unexplored vertices), they grow the spanning tree by adding
nodes that are adjacent to many non-tree nodes. In the procedure NT (non-tree edges), they grow
the tree by selecting nodes that induce many non-tree edges in the current forest. Since every
non-tree edge completes a fundamental cycle, they hope to get many short fundamental cycles from
nodes added at the beginning, and only few long fundamental cycles from the last nodes.

But the computational results we are going to present in the next section demonstrate that we
can do much better. The key are (generalized) fundamental cycle bases. As the complexity status
of constructing a minimal cycle basis among the fundamental cycle bases is unknown to the author,
we present several algorithms for constructing short fundamental – and thus integral – cycle bases,
which will be formulated for undirected graphs.

Fundamental Improvements to Spanning Trees

The first algorithm that we mention has been proposed by Berger[3]. To a certain extent, the ideas
of de Pina[21] were simplified in order to maintain fundamentality. The algorithm is as follows:

1. Set C := ∅.

2. Compute some spanning tree H with edges {ek+1, . . . , em}.

3. For i = 1 to k do

3.1. For ei = {j, l}, find a shortest path Pi between j and l which only
uses arcs in {e1, . . . , ei−1, ek+1, . . . , em}, and set Ci := ei ∪ Pi.

3.2. Update C := C ∪ Ci.

Obviously, the above procedure ensures ei ∈ Ci \ {C1, . . . , Ci−1}. Hence, C is a fundamental cycle
basis. Although this procedure is rather elementary, section 6 will point out the notable benefit
it achieves even when starting with a rather good strictly fundamental cycle basis, e.g. the ones
resulting from the procedures NT or UV. Similar ideas can be found in Nachtigall[18].

Horton’s Approximation Algorithm Produces a Fundamental Cycle Basis

The next algorithm for constructing a short fundamental cycle basis in an undirected graph G is due
to Horton[10]. When he published the well-established first polynomial algorithm to construct a
minimal cycle basis of an undirected graph, he has not been content with its running time O(m3n).

9



This is why he added a fast algorithm for a suboptimal cycle basis. Its running time is only
O(n2m), and it is guaranteed to construct a cycle basis with no more than 3(n − 1)(n − 2)/2
edges in the unweighted case. In particular, when considering Kn, this algorithm even constructs
a minimal fundamental cycle basis – but here the still simpler star trees achieve the minimum as
well.

Further, the guarantee has to be compared to length Ω(n3) for the worst-case solutions that
are known for the tree-heuristics proposed by Deo et al.[5]. We are going to show that Horton’s
heuristic always constructs a fundamental cycle basis for a weighted connected graph G.

1. Set C := ∅ and G′ := G.

2. For i = 1 to n − 1 do

2.1. Choose a vertex xi of minimum degree ν in G′.

2.2. Find all shortest paths lengths in G′ \ xi between neighbors xi1 , . . . , xiν
of xi.

2.3. Define a new artificial network Ni by

2.3.1. introducing a node s for every edge {xi, xis
} in G′ and

2.3.2. defining the length of the branch {s, t} to be the length of a shortest path between xis

and xit
in G′ \ xi.

2.4. Find a minimal spanning tree Hi for Ni.

2.5. Let Ci1 , . . . , Ciν−1
be the cycles in G′ that correspond to branches of Hi.

2.6. Update C := C ∪ {Ci1 , . . . , Ciν−1
} and G′ := G′ \ xi.

First, observe that none of the edges {xi, xis
} can be part of any cycle Cr·

of a later iteration r >
i, because at the end of iteration i the vertex xi is removed from G′. Hence, fundamentality follows
by ordering, within each iteration i, the edges and cycles such that eij

∈ Cij
\ (Ci1 , . . . , Cij−1

) for
all j = 2, . . . , ν − 1. Moreover, every leaf s of Hi encodes an edge {xi, xis

} that is part of only one
cycle. Finally, as Hi is a tree, by recursively removing branches that are incident to a leaf of the
remaining tree, we process every branch of the initial tree Hi.

We order the branches b1, . . . , bν−1 of Hi according to such an elimination scheme, i.e. for every
branch bj = {sj , tj}, node sj is a leaf subject to the subtree

Hi \

j−1
⋃

l=1

{bl}.

Migrating back to the original graph G′, for j = 1, . . . , ν − 1, we define eij
to correspond to the

leaf sν−j , and Cij
to be modeled by the branch bν−j . This just complies with the definition.

General Rules for Bases Changes

Finally, by interpreting an integral cycle basis C of a directed graph D as a basis for the lattice of
integer circulations in D, we develop a very general rule for improvements. Let Γ denote the cycle
matrix of C. Then, we can construct every integral cycle basis C ′ of D by Γ′ = ΓU , with U being
an unimodular matrix. From lattice theory (cf. Schrijver[22]), we may borrow that unimodular
matrices encode precisely elementary column operations.

The only elementary column operation relevant for our purpose is the addition of an integer
multiple of one column to another column. One may think of it as a neighborhood, a rather small
one, and far from being exact. But we may also combine several cycles within one step. The only
restriction we have to obey is to exchange a basic cycle for another cycle, only if we must traverse
the exiting basic cycle exactly once in the unique integer linear combination of the new cycle.
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As this neighborhood becomes much bigger, we propose to analyze it – still heuristically – the
other way round. Consider the current basis C = {C1, . . . , Ck} and detect some very short non-basic
cycle C. By analyzing its integer combination of basic cycles

γC =
k
∑

i=1

λiγCi
, λi ∈

�
, (9)

we may exchange C for any basic cycle Ci with |λi| = 1. If C is shorter than the largest one of
these cycles, the exchange will be effected. By the way, this approach is exactly what is realized in
the fundamental improvement heuristic, in a prudent and well-defined order, of course.

6 Computational Results

At this point, we are able to report the benefit of the above considerations for the initial application.
We are going to solve two instances of the cyclic timetabling problem.

The first one has been made available to us by Deutsche Bahn AG. In that, we want to minimize
simultaneously both the number of vehicles required to operate ten given pairs of hourly served
ICE/IC railway lines, and the waiting times faced by passengers along the 40 most important
connections. Single tracks and optional additional stopping times of up to five minutes at major
stations cause an average span of 75.9% of the period time for the 186 arcs that remain, after
elimination of redundancies within the initial model with 4104 periodic events.

The second instance models the Berlin Underground. For the eight pairs of directed lines, which
are operated every 10 minutes at a precision of 30 seconds, we consider any of the 144 connections
for passengers. Additional stopping time is allowed to insert for 22 stopping activities. Hereby,
the 188 arcs of the contracted graph have an average span of 69.5% of the period time. In an
optimal solution, 3.5 minutes of additional stopping time will be inserted, and the weighted average
passengers’ effective waiting time is less than one and a half minutes.

In tables 1 and 2 we start by giving the base ten logarithm of the width of the cycle bases that
are constructed by the heuristics proposed in Deo et al.[6] These have been applied for the arcs’
weights chosen as one, the span da = ua − la, or the negative of the span T − da. In addition,
minimal spanning trees have been computed for two of these weight functions. Then, to each of
those strictly fundamental cycle bases, the fundamental improvement heuristic has been applied.
For sake of completeness, the width of a minimal cycle basis subject to the linearized objective (6)
is given as well. Only the heuristic proposed by Horton has not been implemented, so far.

Subsequently, we report the behavior of CPLEX c©[4] when faced with the different problem
formulations. We use version 8.0 with standard parameters, except for strong branching as variable
selection strategy and aggressive cut generation. The computations have been performed on an
AMD Athlon c© XP 1500+ with 512 MB main memory.

A key observation are the considerable positive correlations (> 0.44 and > 0.67, resp.) between
the base ten logarithm of the width of the cycle basis and the running time of the MIP solver. With
the exception of only one case, the fundamental improvement either results in a notable speed-up,
or enables an instance to be solved to optimality, in case that limits are reached when not applying
the heuristic.

But there is another phenomenon, we want to point out. Compare the behavior of the MIP solver
for MST span without improvement with the one for MST nspan plus the heuristic in table 1.
Although the cycle bases involved differ significantly in size, their solution behavior is rather similar.
We assume that this is due to the fact, that strictly fundamental cycle bases, which are encoded
by cycle matrices that contain the unit matrix, might be much more advantageous for an LP-based
MIP solver, than only triangular matrices which are contained in the cycle matrices of (generalized)
fundamental cycle bases. Peeters[20] gives similar explanations when faced with this effect in his
computations.

Now, let us have a detailed look at the cycle bases. We will investigate the distribution of
the number of possible values for the integer variables. For the ICE/IC instance, in the initial
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algorithm global MST UV NT
weight minima span nspan unit span nspan unit
initial width 34.3 65.9 88.4 59.7 58.6 61.2 58.5
fund. improve – 41.0 43.2 42.9 42.2 42.9 42.7
without fundamental improvement
time (s) – 14720 > 28800 20029 23726 6388 > 28800
memory (MB) – 13 113 29 30 10 48
status – opt timelimit opt opt opt timelimit
solution 620486 667080 629993
fundamental improvement applied
time (s) – 807 11985 9305 17963 1103 > 28800
memory (MB) – 1 23 24 30 3 114
status – opt opt opt opt opt timelimit
solution – 626051

Table 1: Influence of cycle bases on running times for timetabling (hourly served ICE/IC lines)

algorithm global MST UV NT
weight minima span nspan unit span nspan unit
initial width 39.4 62.7 84.9 67.0 71.1 65.9 67.0
fund. improve – 46.6 48.2 46.4 46.6 46.5 46.4
without fundamental improvement
time (s) – 94 > 28800 747 9453 74 748
memory (MB) – 1 87 1 10 1 1
status – opt timelimit opt opt opt opt
solution 39820 39915
fundamental improvement applied
time (s) – 137 159 65 265 19 65
memory (MB) – 1 1 1 1 1 1
status – opt opt opt opt opt opt
solution –

Table 2: Influence of cycle bases on running times for timetabling (Berlin Underground)

MST cycle basis with arcs’ spans as weights, only 73% of the integer variables can be limited to at
most four values. But after applying the fundamental improvement, there are more than 78% of
the variables bounded to at most two values, cf. figure 4. This causes reductions of more than 92%
for both, time and memory usage.

Notice that the reported running times are influenced by our quest for comparability of the
results. In practice, our system will add a certain number of additional valid inequalities to the
initial MIP formulation. But their coefficients depend on the problem formulation, and, in turn,
the latter heavily depends on the cycle basis. Thus, we did not add valid inequalities in any of the
above calculations. Let us however mention that even for the instance of Deutsche Bahn AG, an
optimal solution has been achieved after only 66 seconds of CPU time for a formulation refined by
115 additional valid inequalities that where separated in less than 80 seconds.
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Figure 4: Shift in distribution of cycle widths due to the fundamental improvements

7 Conclusions

We generalized the standard approach for formulating instances of the cyclic timetabling problem,
which is based on strictly fundamental cycle bases. Integral cycle bases have been established to
be the most general class of directed cycle bases that enable the modeling of cyclic timetabling
problems. Finally, we presented algorithms that construct short fundamental cycle bases with
respect to a reliable empirical measure for estimating the running time of a mixed-integer solver for
the originating application.

But some questions remain open. The greatest impact on cyclic timetabling would emerge from
the classification of the computational complexity of minimizing a (linear) objective function over
the class of fundamental, or even integral, cycle bases. Moreover, we would profit from progress
achieved in the area of integer lattices. And, to adapt a question of Hartvigsen and Zemel[9]:

Does every graph have a fundamental cycle basis,
which is minimal among all cycle bases?
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762/2002 Ekkehard Köhler and Katharina Langkau and Martin Skutella: Time-Expanded Graphs for
Flow-Dependent Transit Times

761/2002 Christian Liebchen and Leon Peeters: On Cyclic Timetabling and Cycles in Graphs
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