
“ad04˙qn” — 2005/1/25 — 14:28 — page 1 — #1
i

i

i

i

i

i

i

i

1

Application of AD-based Quasi-Newton

Methods to Stiff ODEs ?

Sebastian Schlenkrich1 and Andrea Walther1 and Andreas Griewank2

1 Technische Universität Dresden, Institute for Scientific Computing, Dresden,
Germany

2 Humboldt Universität Berlin, Department of Mathematics, Berlin, Germany

Summary. Systems of stiff ordinary differential equations (ODEs) can be inte-
grated properly only by implicit methods. For that purpose, one usually has to
solve a system of nonlinear equations at each time step. This system of equations
may be solved by variants of Newton’s method. Here, the main computing effort lies
in forming and factoring the Jacobian or a suitable approximation to it.

In this paper, we examine a new approach of constructing an appropriate quasi-
Newton approximation for solving stiff ODEs. The method makes for the first time
explicit use of tangent and adjoint information that can be obtained using the for-
ward and the reverse mode of algorithmic differentiation (AD). We elaborate the
conditions for invariance with respect to linear transformations of the state space
and thus similarity transformations of the Jacobian. One new updating variant that
yields such an invariant method is presented. Numerical results for Runge-Kutta
methods and linear multi-step methods are discussed.

Key words: quasi-Newton, stiff ODE, adjoint-based update, scaling invari-
ance

1.1 Introduction

For many time-dependent simulations, the underlying system can be modelled
as the solution of an initial value problem (IVP)

ẋ(t) = f(x(t)) t ∈ (0, T ) x(0) = η ∈ R
n (1.1)

on a given time interval [0, T ], where x(t) denotes the state variable. To com-
pute a numerical approximation of the solution x, we perform a discretization
{t0, . . . , tN} of the time interval [0, T ] using the step size hk = tk − tk−1.
Applying a numerical integration method yields the discrete solution vectors

? Partially supported by the DFG Research Center MATHEON

”Mathematics for Key Technologies” in Berlin



“ad04˙qn” — 2005/1/25 — 14:28 — page 2 — #2
i

i

i

i

i

i

i

i

2 Sebastian Schlenkrich et. al.

xk = xk−1 + hkΦ(xk , xk−1, . . . , xk−l, hk) k = 1, . . . , N, x0 = η

at the times tk. Here, Φ = Φ(xk , . . .) represents the step function of the inte-
gration method. If Φ does not depend on the so far unknown xk , the integra-
tion method is called explicit and is well suited for a wide range of ordinary
differential equations (ODEs).

However, as soon as the underlying problem is described by stiff ODEs, for
example due to very different time scales (see [HW91]), it is advantageous to
employ implicit methods in order to allow a reasonable size of the time steps.
Then, the step function Φ also depends on the unknown value xk. Therefore,
the new state xk can be obtained by solving the n-dimensional system of
equations

Fk(xk) := xk − xk−1 − hkΦ(xk , xk−1, . . . , xk−l, hk) = 0 ∈ R
n. (1.2)

Since f is usually nonlinear, the system (2) is often also nonlinear, although
there are classes of linearly implicit ODE solvers. To compute the next state
xk, one may apply an iterative Krylov method. As an alternative, one may
solve a system of mostly nonlinear equations in each integration step using an
iteration of the form

x(i+1) = x(i) − A−1
i Fk(x(i)), (1.3)

where the sequence {x(i)}i∈N should converge to the solution x∗ = xk of (2)
for given values of xk−1, . . . , xk−l. For that purpose, Newton’s method can
be applied by setting Ai = F ′(xk) if the complete Jacobian is available at
a reasonable cost. Since factoring the Jacobian at each time step is usually
quite expensive, we present here a new adjoint-based quasi-Newton method
that provides a factorized approximation of the Jacobian. First studies in
this direction were made by Brown et al. [BHW85] for Broyden’s method.
However, the usage of quasi-Newton methods is not widespread, which may
be explained by the following two reasons. First, the quasi-Newton methods
proposed up to now were not scaling invariant. Hence, a simple scaling of the
variables may strongly effect the convergence behaviour. Second, so far it is
not possible to perform adaptive time stepping with a cost that is quadratic
in the dimension of the problem, because the factorization that is updated
can not be adapted to the new time step in a cheap fashion. Hence, one
has to perform a new QR-factorization as soon as the time step changes.
Therefore, the most well-known packages for the integration of stiff ODEs,
as for example DASPK [BHP94] and CVODE [CH96], only provide several
variants of Newton’s method as direct methods or Krylov methods as indirect
variants but no low-rank updating approach.

The quasi-Newton updates that we propose in this paper make for the first
time explicit use of tangent and adjoint information that can be obtained using
methods of algorithmic differentiation (AD). One of them has the property of
scaling invariance to overcome the first problem of quasi-Newton updates in



“ad04˙qn” — 2005/1/25 — 14:28 — page 3 — #3
i

i

i

i

i

i

i

i

1 Application of AD-based Quasi-Newton-Methods to stiff ODEs 3

the context of stiff ODEs. Future work will be dedicated to a new factorization
procedure that allows also a comparatively cheap change of the time step size.
These two ingredients would form a powerful combination that should allow a
more extensive use of quasi-Newton methods for the integration of stiff ODEs.

The paper has the following structure. The new quasi-Newton updates are
presented in Section 2. Furthermore, we elaborate the conditions for invari-
ance with respect to similarity transformations of the Jacobian. The resulting
update formulas are implemented using C/C++ as the programming language
and the AD-tool ADOL-C for providing the required derivatives. Implemen-
tation details will be described in Section 3. The numerical results obtained
for two Runge-Kutta methods and two BDF methods will be discussed in
Section 4. Finally, a summary as well as an outlook of future work are given
in Section 5.

1.2 Quasi-Newton Approximations

Applying Newton’s method to the system (2), the complete Jacobian of F is
required for each time step. Additionally, one has to factorize the Jacobian
to solve the linear system. For large dimensions n, the derivative information
F ′(xi) can be computed within machine accuracy using AD but the computa-
tional complexity may grow linearly in n, for example if the Jacobian is dense.
Together with the cubic effort required for the factorization this cost is often
not acceptable.

An alternative idea is to use information on F from previous iterations and
to update an approximation of the Jacobian. For this purpose, one may apply
for example rank-1 updates. Then the approximation Ai+1 of the Jacobian at
xi+1 is given by

Ai+1 = Ai + uvT

with two vectors u and v ∈ R
n to be determined in the remainder of the

section. For almost all proposed quasi-Newton methods so far, the two vectors
are chosen such that the direct tangent condition

Ai+1si = F ′

k(x(i+1))si (1.4)

or the secant condition

Ai+1si = Fk(x(i+1)) − Fk(x(i)) ≡ yi (1.5)

is fulfilled with si = xi+1 − xi. Since the forward mode of AD provides the
information F ′

k(x(i+1))si at a very moderate cost, we will use the exact direct
tangent condition (4) throughout this paper. The secant condition (5) is used
for example in Broyden’s method given by



“ad04˙qn” — 2005/1/25 — 14:28 — page 4 — #4
i

i

i

i

i

i

i

i

4 Sebastian Schlenkrich et. al.

Ai+1 = Ai +
(yi − Aisi)s

T
i

sT
i si

.

Applying the reverse mode of AD, one can evaluate the product zT
i F ′

k(x(i+1))
for a given vector zi also at a moderate cost. In the context of solving nonlin-
ear equations using quasi-Newton methods, this property yields the adjoint
tangent condition given

zT
i Ai+1 = zT

i F ′

k(x(i+1)). (1.6)

Provided zT
i Aisi 6= zT

i F ′

k(x(i+1))si the two tangent conditions (4) and (5)
are consistent, and there is exactly one rank-1 update of Ai satisfying them,
namely

Ai+1 = Ai +
(F ′

k(x(i+1))si − Aisi)(z
T
i F ′

k(x(i+1)) − zT
i Ai)

(zT
i F ′

k(x(i+1)) − zT
i Ai)si

. (1.7)

This formula is referred to as Two-sided Rank-1 (TR1) update and has already
been exploited in the context of nonlinear optimization [GW02]. Whereas we
choose naturally si = x(i+1) − x(i) the question remains how we select the
adjoint directions zi. However, for integrating stiff ODEs, there is no obvious
choice for the weight vector zi appearing in the adjoint tangent condition.
This situation differs significantly from the nonlinear optimization context
where the adjoint weight vectors can be defined as corrections of the Lagrange
multipliers in a natural way. Since this is not possible for the pure integration
of stiff ODEs, we will discuss two alternatives for choosing the adjoint weight
vector zi. Nevertheless, this setting will be completely changed if the ODEs
form equality constraints in an optimal control setting. Then, once more, the
adjoint weight vector can be defined on the base of Lagrange multipliers.

Least-squares approach

To motivate the definition of zi, we employ the linear model

M(x) := Fk(x(i+1)) + Ai+1(x − xi+1)

of F in xi+1. Then, the first approach refers to a minimization problem cor-
responding to (2). With J(x) := ‖Fk(x)‖2

2 it is given by

J(x∗) = min
x

J(x) ⇐⇒ Fk(x∗) = 0.

We suppose that the gradient of J(x(i+1)) provides a decent direction. Then
the gradient of the minimization problem J̃(x) := ‖M(x)‖2

2 → min of the
model M should be the same in x(i+1). This yields the condition

∇J(x(i+1)) = ∇J̃(x(i+1)) ⇐⇒ zi = Fk(x(i+1)),

and we call the resulting formula for Ai+1 Least-squares update.



“ad04˙qn” — 2005/1/25 — 14:28 — page 5 — #5
i

i

i

i

i

i

i

i

1 Application of AD-based Quasi-Newton-Methods to stiff ODEs 5

Scaling invariance

A favored property of the iterative method (3) would be the independence
with respect to linear transformations in the state space of the ODE. Suppose
additionally to (1) one has a transformed IVP

˙̃x(t) = f̃(x̃(t)) t ∈ (0, T ) x̃(0) = η̃ ∈ R
n. (1.8)

This is related to the original problem by a linear transformation of the state
space with a regular T ∈ R

n×n such that,

f̃(x̃(t)) = Tf(T−1x̃(t)) t ∈ (0, T ) and η̃ = Tη. (1.9)

Then for the solutions of the original problem (1) and the transformed problem
(8) x̃(t) = Tx(t) is valid for t ∈ (0, T ).

For the implicit Euler’s method, transformation (9) yields with x̃ = Tx

F̃k(x̃) = x̃ − x̃k−1 − hf̃(x̃) = Tx − Txk−1 − hTf(x)

= TFk(T−1x̃).

This holds in a similar way for Runge-Kutta and BDF methods. According to
such a transformation of Fk to F̃k the iteration (3) should yield x̃(i) = Tx(i)

for all iterations i when a linear transformation x̃(0) = Tx(0) is applied to
the state. Analysing the TR1 update, one obtains the following result with
respect to scaling invariance:

Theorem 1 (Conditions for Scaling Invariance).
Suppose T ∈ R

n×n is a regular matrix and F : R
n → R

n a given vector func-
tion. For x ∈ R

n, define x̃ = Tx and F̃ : R
n → R

n with F̃ (x̃) = TF (T−1x̃).
Then one has for the rank-1 updates given by

Ai+1 = Ai +
(F ′(x(i+1)) − Ai)siz

T
i (F ′(x(i+1)) − Ai)

zT
i (F ′(x(i+1)) − Ai)si

(1.10)

and

Ãi+1 = Ãi +
(F̃ ′(x̃(i+1)) − Ãi)s̃iz̃

T
i (F̃ ′(x̃(i+1)) − Ãi)

z̃T
i (F̃ ′(x̃(i+1)) − Ãi)s̃i

(1.11)

that Ãi = TAiT
−1 holds for all i if

x̃(0) = Tx(0), Ã0 = TA0T
−1, s̃i = Tsi, z̃i = T−T zi (1.12)

is valid for all i.

Proof: We prove the assertion by induction. For i = 0, one has

x̃(1) = x̃(0) − Ã−1
0 F̃ (x̃(0)) = T

(

x(0) − A−1
0 F (x(0))

)

= Tx(1).



“ad04˙qn” — 2005/1/25 — 14:28 — page 6 — #6
i

i

i

i

i

i

i

i

6 Sebastian Schlenkrich et. al.

It follows immediately that F̃ ′(x̃(1)) = TF ′(x(1))T−1. Furthermore, one ob-
tains

Ã1 = TA0T
−1+

(TF ′(x(1))T−1 − TA0T
−1)Ts0z

T
0 T−1(TF ′(x(1))T−1 − TA0T

−1)

zT
0 T−1(TF ′(x(1))T−1 − TA0T−1)Ts0

= TA0T
−1 + T

(F ′(x(1)) − A0)s0z
T
0 (F ′(x(1)) − A0)

zT
0 (F ′(x(1)) − A0)s0

T−1

= T

(

A0 +
(F ′(x(1)) − A0)s0z

T
0 (F ′(x(1)) − A0)

zT
0 (F ′(x(1)) − A0)s0

)

T−1

= TA1T
−1,

and the assertion is shown for i = 0.
The induction step i 7→ i+1 can be proven in the same way by substituting

the subscripts 0 and 1 with the subscripts i and i + 1, respectively, in the last
two equations.

For the direction si = x(i+1) − x(i), condition s̃i = Tsi is naturally fulfilled.
Unfortunately, this is not true for the weight vector zi = Fk(x(i+1)) used in
the Least-squares update. Hence, it yields only the same invariance properties
with respect to scaling in the range as the so-called Bad Broyden update.

Another aspect, that has to be considered, is that the denominator in (7)
might vanish before the iteration converged. In this situation several strate-
gies are conceivable. An approach is to disturb the vectors si and zi. In the
implementation we choose to perform no update and reuse the current ap-
proximation. A further solution for this problem could be choosing the adjoint
direction as zi = (F ′(x(i+1)) − Ai)si. With this the denominator is greater
zero as long as the iteration did not yet converge and the approximation is
not exact. However this update is not invariant with respect to linear trans-
formations in the state space.

Therefore, we also present an alternative definition of zi to maintain full
transformation invariance in the domain and range.

Adjoint approach

Quite often one has a problem-dependent functional φ(x) in addition to the
initial value problem to be solved, e.g. the output of one product, the concen-
tration of all ingredients for a chemical reaction or the total loss of energy.
Then one can use an adjoint vector to quantify the influence of discretization
errors or errors in the solution of (2) on the problem-dependent functional
φ(x). For that purpose, we define the adjoint vector λ ∈ R

n as solution of the
adjoint system

Gxk
(λ) := F ′

k(xk)T λ −∇φ(xk) = 0. (1.13)



“ad04˙qn” — 2005/1/25 — 14:28 — page 7 — #7
i

i

i

i

i

i

i

i

1 Application of AD-based Quasi-Newton-Methods to stiff ODEs 7

Consequently λ can be interpreted as the sensitivity of φ(xk) with respect
to changes in the equation Fk(xk) = 0. Solving (13) by the quasi-Newton
iteration

λ(i+1) = λ(i) − A−T
i

(

F ′(x(i+1))T λ(i) − φ(x(i+1))
)

(1.14)

yields the direct tangent condition AT
i+1σi = F ′(x(i+1))T σi with σi = λ(i+1)−

λ(i) for the system Gxk
(λ) = 0. This is equivalent to an adjoint tangent

condition with zi = σi for the system Fk(x) = 0. Hence, two quasi-Newton
iterations are performed simultaneously: The first one to solve (2), and the
second one to solve (13). However, due to the definition of both nonlinear
systems of equations the system matrix is exactly the same and therefore
can be reused. The second approach is called Adjoint update. Because the
functional φ relates to the problem, it depends on the state, too. Therefore, a
transformation of x forces a consistent transformation of φ which ensures the
transformation invariance. To prove this assertion, we first show the following
theorem:

Theorem 2 (Scaling Invariance of the Adjoint Information).
Suppose T ∈ R

n×n is a regular matrix and F : R
n → R

n a given vector func-
tion. For x ∈ R

n, define x̃ = Tx and F̃ : R
n → R

n with F (x̃) = TF (T−1x̃).
Furthermore, assume that φ, φ̃ : R

n → R are given with φ̃(x̃) = φ(x). Let
λ, λ̃ : R

n → L(Rn, R) be the solutions of

λ(x)T F ′(x) = ∇φ(x)T and λ̃(x̃)T F̃ ′(x̃) = ∇̃φ̃(x̃)T .

Then, the equality

λ̃(x̃)T = λ(x)T T−1 (1.15)

is valid

Proof: One has F̃ ′(x̃)−1 = TF ′(x)−1T−1. Furthermore, the equality φ̃(x̃) =
φ(T−1x̃) holds. It follows that

∇̃φ̃(x̃)T =
d

dx̃
φ̃(x̃) =

d

dx̃
φ(T−1x̃

︸ ︷︷ ︸

x

) =
d

dx
φ(x)T−1 = ∇φ(x)T T−1.

Therefore, one obtains

λ̃(x̃)T = ∇̃φ̃(x̃)T F̃ ′(x̃)−1 = ∇φ(x)T T−1TF ′(x)−1T−1 = λ(x)T T−1,

and the assertion is proven.

The property (15) can be transfered directly to the quasi-Newton iteration to
solve (13) if λ̃(0) = T−T λ(0). Hence, one obtains that



“ad04˙qn” — 2005/1/25 — 14:28 — page 8 — #8
i

i

i

i

i

i

i

i

8 Sebastian Schlenkrich et. al.

z̃i = λ̃(i+1) − λ̃(i) = T−T (λ(i+1) − λ(i)) = T−T zi

holds, and therefore the Adjoint update is scaling invariant. Although it did
not occour in the numerical tests, with this update it is also possible that
the denominator in (7) vanishes. Disturbing the directions si and zi would
destroy the transformational invariance. Therefore performing no update is
appropriate to keep invariance of the iteration.

1.3 Implementation Details

The software to test and compare the proposed rank-1 updates is written in
C/C++. It provides three different integration methods, namely the implicit
Euler method, the 3-stage Radau IIA method and BDF formulas [HW91].

Applying the implicit Euler method, the system to be solved is given by
Fk(x) = x−xk−1−hf(x) = 0 and therefore has dimension n. The convergence
order of this method is 1. Using the 3-stage Runge-Kutta method Radau IIA,
one has to solve a nonlinear system of dimension 3n. Hence, the complexity
increases, but on the other hand the method has order 5. The BDF formulas
correspond to linear multi-step methods, where the system of equations is
given by

Fk(x) = α0x −

l∑

j=1

αjxk−j − hkf(x) = 0 ∈ R
n

with certain scalars αj . These methods are of order l.
For the solution of the nonlinear systems, we implemented Newton’s

method in the following way. To compute the complete Jacobian of the right
hand side function f(x(t)), we employ the AD-tool ADOL-C [GJU96] that
provides exact first and higher order derivatives for C/C++ function evalua-
tions using operator overloading. Subsequently, the Jacobian of the nonlinear
system is easily computed from the Jacobian of the right-hand side using vec-
tor forward mode of AD. Finally, a QR-factorization is performed to compute
the next Newton step.

Furthermore, we coded Broyden’s method as well as the two new quasi-
Newton approaches to approximate the Jacobian information during the solu-
tion of the nonlinear system. Once more, we maintain a QR-factorization of the
corresponding updates in order to compute the next iteration step efficiently.
As starting point we compute the exact Jacobian for the initial value x0.
The derivative information required by the TR1 update namely F ′

k(x(i+1))si

and zT
i F ′

k(x(i+1)) are calculated using the scalar forward and reverse mode
provided by ADOL-C.

For stabilizing the Newton as well as the quasi-Newton approach we per-
form a line search with quadratic and cubic interpolation, respectively, as
described in [DS96]. Furthermore, we incorporated a simple adaptive time
stepping according to the approach analyzed in [SW95].



“ad04˙qn” — 2005/1/25 — 14:28 — page 9 — #9
i

i

i

i

i

i

i

i

1 Application of AD-based Quasi-Newton-Methods to stiff ODEs 9

1.4 Numerical Results

For the numerical tests, we take two initial value problems from the Testset
for Initial Value Problem Solvers, University of Bary, Italy [Tes]. The first one
is the Pollution Problem, a stiff system of 20 non-linear ODEs. It describes a
chemical reaction as part of the air pollution model developed at The Dutch
National Institute of Public Health and Environmental Protection (RIVM),
and consists of 25 reaction and 20 reacting compounds. The second test is the
Medical Akzo Nobel Problem consisting originally of two partial differential
equations. Semi-discretization of this system yields 400 stiff ODEs. The Akzo
Nobel research laboratories formulated this problem in their study of the
penetration of radio-labeled antibodies into a tissue that has been infected by
a tumor. Both problems have in common that the right-hand side of the ODE
is nonlinear.

Pollution Problem

To suit our software, we reformulate the Pollution Problem as autonomous
ODE system with 21 component functions. For comparison, the tests were
performed using Newton’s method with AD based Jacobians as described
in Section 3, the Broyden update, which is a secant method using only in-
formation of F , and the two presented variants of the TR1 update. Since
the Pollution Problem describes a chemical reaction, we chose the problem-
dependent functional φ(x) to be the concentration of CO2. For this problem
we use adaptive time stepping where the step size criteria are the same for all
numerical tests.

h0 = 10−2
h0 = 10−3

Newt LS Adj Broy Newt LS Adj Broy

time steps 412 412 412 — 4077 4077 4077 4077

iterations 713 716 918 — 4512 4504 4521 11319

CPU-time (s) 0.33 0.15 0.20 — 2.07 0.98 1.05 1.69

Table 1.1. Euler method with adaptive time stepping

The numerical results achieved with the Euler method are given in Table 1.
The integration was performed for the time interval [0, 60], i.e. T = 60. As
can be seen, the integration fails using a larger time step h0 as initialization if
Broyden’s method is applied. All other approaches yield the results reported as
solutions at the test suite website [Tes]. The number of time steps is the same
for all methods where the integration over the whole time interval was possible.
However, the numbers of iterations for solving the nonlinear systems differ
remarkably. These numbers are again almost the same for Newton’s approach
and the Least-squares update, i.e. the TR1 update with zi = Fk(x(i+1)), but
due to the computation of the complete Jacobian and its factorization required



“ad04˙qn” — 2005/1/25 — 14:28 — page 10 — #10
i

i

i

i

i

i

i

i

10 Sebastian Schlenkrich et. al.

for Newton’s method the corresponding run time is naturally significantly
larger. The iteration count for the adjoint update, i.e. the TR1 update with zi

based on the problem dependent function, is higher which is reflected also in
the run times. Since one has to perform two reverse mode differentiations the
factor between the run times is larger than the factor between the iteration
counts. The iteration count for Broyden’s method is even higher but since no
derivative calculations are performed, the run time is less than the run time
for the Newton’s method.

h0 = 10−2
h0 = 10−3

Newt LS Adj Broy Newt LS Adj Broy

time steps 412 412 412 412 565 565 565 —

iterations 708 723 1081 2661 1037 1041 1462 —

CPU-time (s) 5.66 0.85 1.30 2.42 8.34 1.24 1.80 —

Table 1.2. Radau IIA with adaptive time stepping

l = 3 l = 6
Newt LS Adj Broy Newt LS Adj Broy

time steps 412 412 412 412 412 412 412 —

iterations 693 702 929 2144 690 695 933 —

CPU-time (s) 0.37 0.21 0.27 0.40 0.37 0.19 0.28 —

Table 1.3. BDF-formula with adaptive time stepping

The numerical results achieved with Radau IIA and with two BDF for-
mulas, i.e. l = 3 and l = 6, are given in Tables 2 and 3, respectively. Once
more, the integration was performed for the time interval [0, 60] to verify the
results. Now, the integration fails using a smaller time step h0 as initialization
(Radau IIA) or a higher order method (BDF) if Broyden’s method is applied.
The numbers for the methods where the integration converges confirm the be-
haviour of the solution methods for the nonlinear system of equations already
observed for the Euler method.

Medical Akzo Nobel Problem

We reformulate this problem as an autonomous ODE system yielding a sys-
tem of 401 ODEs. For this example, it was not possible to get results using
Broyden’s method despite the fact that intensive testing with respect to step
sizes was done. As functional φ in the Adjoint update we choose the product
of the concentrations of the reacting components. Furthermore, we do not ap-
ply varying step sizes since our step size heuristic is not appropriate for this



“ad04˙qn” — 2005/1/25 — 14:28 — page 11 — #11
i

i

i

i

i

i

i

i

1 Application of AD-based Quasi-Newton-Methods to stiff ODEs 11

problem. Furthermore, the sparsity of the Jacobian is not taken into account.

h = 10−1
h = 10−2

Newt LS Adj Newt LS Adj

time steps 200 200 200 2000 2000 2000

iterations 570 1290 2012 3912 4891 7121

CPU-time (s) 1209.62 70.54 124.01 8370.17 254.39 425.75

Table 1.4. Euler method with constant time steps

The numerical results achieved with the Euler method are given in Table 4.
All approaches yield the results reported as solutions at the test suite website
[Tes]. However, it was necessary to provide the exact Jacobian at t = 5 if
h = 10−1 applying the TR1 updates since the right hand side jumps exactly
at that place and is therefore not continuous. As can be seen, the iteration
increases when using the inexact derivative information provided by the Least-
squares and Adjoint update. However, due to the lower cost to perform one
iteration the factor of the run times equals 17 for the Least-squares and 10
for the Adjoint update with h = 10−1 and 33 for the Least-squares and 20 for
the Adjoint update with h = 10−2.

This observation is also confirmed by examining the runtimes needed for
the calculation of one Jacobian and its factorization compared to one rank-1
update of an approximation. For the computation of the Jacobian 0.051 sec-
onds are needed while its factorization lasts 2.1 seconds. In contrast to this,
computing the new factorized approximation in the Least-squares update only
needs 0.054 seconds. This shows that the main computing computing effort
lies in the factorization of the Jacobian to solve the linear system.

h = 10−1

Newt LS Adj

time steps 200 200 200

iterations 591 1705 2842

CPU-time (s) 32175.02 988.96 1756.97

Table 1.5. Radau IIA with constant time steps

The numerical results achieved with Radau IIA and with two BDF for-
mulas, i.e. l = 3 and l = 6, are given in Tables 5 and 6, respectively. The
behaviour already observed for the Euler method is confirmed: The iteration
count increases due to the approximation of the Jacobian, but the overall
run time is drastically reduced due to the much lower computation effort re-
quired by one quasi-Newton iteration in comparison to the calculation and
factorization of the complete Jacobian.



“ad04˙qn” — 2005/1/25 — 14:28 — page 12 — #12
i

i

i

i

i

i

i

i

12 Sebastian Schlenkrich et. al.

l = 3 l = 6
Newt LS Adj Newt LS Adj

time steps 2000 2000 2000 2000 2000 2000

iterations 3880 4771 6684 3798 4667 6730

CPU-time (s) 8228.23 266.97 418.12 7932.48 266.80 425.66

Table 1.6. BDF-formula with constant time steps h = 10−2

1.5 Conclusions and Outlook

So far the use of quasi-Newton methods for the solution of nonlinear systems
that arise during the integration of stiff ODEs is not widespread. We present
two new variants of the Two-sided Rank-1 update (TR1). These AD-based
quasi-Newton methods fulfill the exact direct tangent condition as well as
exact adjoint tangent condition. Here, the selective choice of tangents and
adjoints facilitates invariance and therefore norm independence of the state
space. The proposed update formulas were tested using a well-known IVP test
suite. For the examples considered during this project the achieved numerical
results are very promising. Usually the Least-squares and the Adjoint updates
perform significantly better than Broyden’s method.

However, there are several open questions. First, detailed convergence anal-
ysis of the TR1-update for the solution of nonlinear equations is needed. This
theoretical examination may also motivate alternative choices of si and zi.
Additionally, the maintaining or adjustment of a suitable factorization in the
case of varying time step sizes has to be studied for a successful integration of
the quasi-Newton methods for the integration of stiff ODEs. Here the task is
to find a factorization that allows a change in the step size without performing
a complete factorization again.

References

[BHP94] P. Brown, A. C. Hindmarsh, and L. R. Petzold. Using krylov methods
in the solution of large-scale differential-algebraic systems. SIAM J. Sci.

Comp., 15:1467–1488, 1994.
[BHW85] P. Brown, A. C. Hindmarsh, and H. Walker. Experiments with quasi-

newton methods in solving stiff ODE systems. SIAM J. Sci. Stat. Comput.,
6:297–313, 1985.

[CH96] S. D. Cohen and A. C. Hindmarsh. Cvode, a stiff/nonstiff ode solver in c.
Computers in Physics, 10:138–143, 1996.

[DS96] J. E. Jr. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Classics in Applied Mathematics,
SIAM, 1996.

[GJU96] A. Griewank, D. Juedes, and J. Utke. Griewank1996AAp: A package
for automatic differentiation of algorithms written in C/C++. TOMS,
22:131–167, 1996.



“ad04˙qn” — 2005/1/25 — 14:28 — page 13 — #13
i

i

i

i

i

i

i

i

1 Application of AD-based Quasi-Newton-Methods to stiff ODEs 13

[GW02] A. Griewank and A. Walther. On constrained optimization by adjoint
based quasi-newton methods. Opt. Meth. and Soft., 17:869–889, 2002.

[HW91] E. Hairer1991SOD and G. Wanner. Solving Ordinary Differential Equa-

tions II. Springer-Verlag, 1991.
[SW95] L. F. Shampine and A. Witt. A simple stepsize selection algorithm for

ODE codes. J. Comput. Appl. Math., 58:345–354, 1995.
[Tes] http://www.dm.uniba.it/~testset.


