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Summary. We consider a time-dependent optimal control problem, where the state
evolution is described by an ODE. There is a variety of methods for the treatment
of such problems. We prefer to view them as boundary value problems and apply to
them the Riccati approach for non-linear BVPs with separated boundary conditions.

There are many relationships between multiple shooting techniques, the Ric-
cati approach and the Pantoja method, which describes a computationally efficient
stage-wise construction of the Newton direction for the discrete-time optimal control
problem.

We present an efficient implementation of this approach. Furthermore, the well-
known checkpointing approach is extended to a ‘nested checkpointing‘ for multiple
transversals. Some heuristics are introduced for an efficient construction of nested
reversal schedules. We discuss their benefits and compare their results to the optimal
schedules computed by exhaustive search techniques.

Key words: Optimal control, Newton method, Riccati approach, Nested
checkpointing

1.1 Introduction

Consider the following unconstrained primal control problem

min
u

φ(x(T )), (1.1)

where the system is described by

ẋ = f(x(t),u(t), t), x(0) = x0. (1.2)
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2 Julia Sternberg and Andreas Griewank

Here, x : [0, T ] → Rn, u : [0, T ] → Rm, f : Rn × Rm × [0, T ] → R, and
φ : Rn → R.

The task is to find the function u(t) that minimizes (1.1). In order to
characterize an optimal control function u(t) for the minimization problem
(1.1) and (1.2) we consider the following adjoint state equation

˙̄x = −HT
x = −fT

x x̄, x̄(T ) = φT
x (x(T )), (1.3)

where the Hamiltonian function H is given by

H(x(t),u(t), x̄(t), t) = x̄T (t) f(x(t),u(t), t). (1.4)

Note, that here ˙̄x represents the total time derivative of x̄ rather than a di-
rectional derivative as is customary in parts of the AD literature. At each
point along the solution path the Hamiltonian function must be minimal with
respect to the control value u(t). Therefore, we have the First Order Nec-
essary Optimality Condition

(

∂H

∂u

)T

= 0, 0 ≤ t ≤ T, (1.5)

for the optimal control problem (1.1) - (1.2).
A large variety of numerical methods for solving optimal control problems

has been proposed and used in various fields of applications. Their relations
amongst each other are often not very clear due to the lack of a generally
accepted terminology. One fairly popular concept is to juxtapose approaches
that first discretize and then optimize with those that first optimize and then
discretize. Methods of the first type are sometimes called direct (see e.g. [1])
as they treat the discretized control problem immediately as a finite dimen-
sional nonlinear program, which can be handed over to increasingly sophisti-
cated and robust NLP codes. In the alternative approach one firstly derives
optimality conditions in a suitable function space setting and then discretizes
the resulting boundary value problem with algebraic side constraints. Often
such indirect methods (see e.g. [7]) yield highly accurate results, but they
have some disadvantages as well. Sometimes it is not possible to construct
the boundary-value problem explicitly, as it requires that we can express the
control function u in terms of x and x̄ from the relation (1.5). The second
disadvantage is that often we have to find a very good initial guess including
good estimates for the adjoint variables to achieve convergence to the solution.
Alternatively one can solve the problem as a DAE with (1.5) representing a
possibly discontinuous algebraic constraint.

Obviously, there is a range of intermediate strategies as one may for ex-
ample discretize at first the controls and then the states only later. Chris-
tianson [3] makes a different distinction between direct and indirect methods,
depending on whether the adjoint variables are integrated only backward or
also forward. For stability reasons we consider here only the first option and
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1 Reduction of storage requirement by checkpointing 3

show how the memory requirement can be kept within reasonable bounds
nevertheless.

The BVP (1.2) - (1.3) is in general non-linear with separated (BC). We
use a quasilinearization scheme to solve it iteratively. First, we linearize (1.2) -
(1.3), and (1.5); after that we solve the resulting linear BVP using the Riccati
approach.

This paper is organized as follows. Sect. 1.2 introduces the quasilineariza-
tion scheme. Nested checkpointing techniques and their main properties are
discusses in Sect. 1.3. Sect. 1.4 gives a numerical example. Finally, in Sect. 1.5
we present some conclusions.

1.2 Quasilinearization techniques

In the present section we introduce the quasilinearization techniques, which
can be applied for a stable solution of the optimal control problem (1.1) -
(1.2).

1.2.1 Quasilinearization scheme

We linearize (1.2), (1.3), and (1.5) about a reference solution x(t), u(t), x̄(t)
and obtain the following equations for variations δx(t), δx̄(t), and δu(t)

δẋ − fxδx− fuδu = 0, (1.6)

δ ˙̄x + HT
xx

δx + HT
xu

δu + HT
xx̄

δx̄ = 0, (1.7)

HT
u

+ HT
ux

δx + HT
uu

δu + HT
ux̄

δx̄ = 0, (1.8)

with the linearized initial and terminal conditions
(

I 0
0 0

)(

δx(0)
δx̄(0)

)

+

(

0 0
−φxx(T ) I

) (

δx(T )
δx̄(T )

)

= −

(

x(0) − x0

x̄(T ) − φT
x
(T )

)

. (1.9)

After expressing δu in terms of δx and δx̄ from the relation (1.8) we obtain

δu = −H−1
uu

(

HT
u

+ HT
ux

δx + HT
ux̄

δx̄
)

. (1.10)

Substitution of this expression into (1.6 - 1.7) yields the following linear BVP

(

δẋ
δ ˙̄x

)

= S(t)

(

δx
δx̄

)

+ q(t), (1.11)

where

S(t) =

(

S11 S12

S21 S22

)

=

(

fx − fu H−1
uu Hxu | −fu H−1

uu fT
u

−Hxx + Hux H−1
uu

Hxu | Hux H−1
uu

fT
u
− fT

x

)

(1.12)
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4 Julia Sternberg and Andreas Griewank

is the system matrix, and

q(t) =

(

q1

q2

)

=

(

−fu H−1
uu HT

u

Hux H−1
uu HT

u

)

(1.13)

is the non-homogeneous part. The BC for this problem are given by the rela-
tion (1.9). Rather than solving this linear BVP using collocation or another
‘global‘ discretization scheme we prefer the Riccati approach which computes
the solution in a sequence of forward and backward sweeps through the time
interval [0, T ]. In order to achieve a suitable decoupling of the solution com-
ponents we consider a linear transformation of the form

(

δx(t)
δx̄(t)

)

=

(

I 0
K(t) I

) (

δx(t)
a(t)

)

. (1.14)

In order to determine a suitable K(t) and the corresponding a(t) we substitute

the

(

δx
δx̄

)

in terms of

(

δx
a

)

in (1.11), which yields

d

dt

(

I 0
K I

) (

δx
a

)

=

(

S11 S12

S21 S22

) (

I 0
K I

)(

δx
a

)

+

(

q1

q2

)

. (1.15)

Now if we choose K(t) as the solution of the Riccati equation

K̇(t) = S21 − K(t)S11 + S22K(t) − K(t)S12K(t), (1.16)

then the new variables (δx, a) satisfy the block system

(

δẋ
ȧ

)

=

(

S11 + S12K | S12

0 | S22 − KS12

) (

δx
a

)

+

(

q1

q2 − Kq1

)

, (1.17)

with the separated BC

(

I 0
0 0

) (

δx(0)
a(0)

)

+

(

0 0
−φxx(T ) + K(T ) I

) (

δx(T )
a(T )

)

= −

(

x(0) − x0

x̄(T ) − φT
x (T )

)

.

(1.18)
This approach leads to the following conceptual algorithm.
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1 Reduction of storage requirement by checkpointing 5

Algorithm 1 Quasilinearization scheme for solving optimal control prob-

lems using the Riccati method

Choose initial control trajectory u0(t), t ∈ [0, T ], k = 0.
Do:

Original initialization:

xk(0) = x0.

Original sweep: t : 0 → T

Integrate forward ẋk = f(xk(t),uk(t), t).
Adjoint initialization:

Set x̄k(T ) = φT
x (T ).

Set K(T ) = φxx(T ) and a(T ) = 0.
Adjoint sweep: t : T → 0

Integrate backward ˙̄xk = −fT
x (xk(t),uk(t), t) x̄k.

Integrate backward K̇(t) = S21 − K(t)S11 + S22K(t) − K(t)S12K(t).
Integrate backward ȧ(t) =

`

−K(t)S12 + S22
´

a(t) − K(t)q1 + q2.

Final initialization:

Set δxk(0) = 0.
Final sweep: t : 0 → T

Integrate forward δẋk = (S11 + S12K)δxk + S12a + q1.

Evaluate δuk = −H−1
uu

`

HT
u +HT

ux δxk+HT
ux̄(Kδxk+a)

´

.

uk+1(t) = uk(t) + δuk(t).
k = k + 1.

While: ‖δuk(t)‖2 ≥ TOL and k < MAX ITER.

Discretizing the scheme in time one obtains Pantoja’s method [2, 8], which
represents a computationally efficient stage-wise construction of the Newton
direction for the discrete-time optimal control problem. Moreover, this scheme
can also be viewed as Newton’s method applied to the solution of the non-
linear BVP (1.2), (1.3), and (1.5) using a particular LU-matrix factorization.
The relation between Algorithm 1 and Pantoja’s method is discussed in detail
in [9].

1.2.2 Information flow by the Quasilinearization scheme

From Algorithm 1 we can see that each iteration of the quasilinearization
scheme consists of three sweeps through the time window [0, T ], which are
referred to as original, adjoint and final sweep. In Fig. 1.1 the dimensions
of the data objects flowing between these three sweeps are shown.

The horizontal arrows represent informational flow between the three
sweeps that are represented by slanted lines. Two cameras pointing at the
original and adjoint sweeps represent the information which has to be stored
if the current composite state is saved as a checkpoint. Here B(t) is a n × m

matrix path that must be communicated from the adjoint to the final sweep.
In any case the adjoint sweep requires much more computational effort

than the original and the final sweeps because it involves matrix computations
and factorizations. The final sweep proceeds forward in time and propagates
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Fig. 1.1. Information flow for Riccati/Pantoja computation of Newton step

vectors of dimension (n + m). Computations on the final sweep proceed as
soon as required information from the previous sweeps is available. The final
sweep can be combined with the original sweep of a subsequent Newton step.

The simplest strategy is to implement Algorithm 1 with straightforwardly
storing all intermediate states of each sweep on a sequential data file and to
restore them when they are needed. The memory requirement for the basic
algorithm, where all intermediate values are stored, is of order O(l n2), where
l gives the number of time steps between 0 and T . However, this approach can
be realized only when there is a sufficiently large amount of memory available.
If this is not the case then we can apply checkpointing techniques.

As developed in [4, 5, 10] checkpointing means that not all intermediate
states are saved but only a small subset of them is stored as checkpoints. In
previous work we have treated cases where checkpoints are stored only for a
reversal consisting of a single forward and an adjoint, or reverse sweep. But
because of the triple sweep within each Newton iteration (see Algorithm 1
and Fig. 1.1) we are faced here with a new kind of checkpointing task. Since
now checkpoints from various sweeps must be kept simultaneously, we refer
to this situation as nested checkpointing.

Since the information to be stored on the original sweep differs from that
needed on the adjoint sweep, we have two classes of checkpoints. Hence, we
call the checkpoints thin on the original sweep and fat on the adjoint sweep.
Thin checkpoints save a state space of dimension n, and fat checkpoints save
a state space whose size has order n2. While the length of steps may vary
arbitrarily with respect to the physical time increment they represent, we
assume throughout that the total number l of time steps is a priori known.
When this is not the case, an upper bound on l may be used, which results of
course in some loss of efficiency. Fully adaptive nested reversal schedules are
under development.
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1 Reduction of storage requirement by checkpointing 7

1.3 Nested reversal schedules

In the present section we introduce a formal concept for nested checkpointing.
Some heuristics are introduced for an efficient construction of nested reversal
schedules. We discuss their benefits and compare their results to the optimal
schedules computed by exhaustive search techniques.

1.3.1 Formalism

Let us consider a multiple sweep evolution E3(l) containing three sweeps. Each
sweep consists of l consecutive time steps. An example of such an evolution
is shown in Fig. 1.2. Time steps are shown as horizontal arrows. Their direc-
tions denote the information flow. Nodes denote different intermediate states.
Each sweep is characterized by a specified direction, i.e. direction of horizontal

PSfrag replacements

original sweep

adjoint sweep

final sweep

F̂

F1 F2 F3 Fl−1 Fl

F̄

F̄1 F̄2 F̄3 F̄l−1 F̄l

¯̄F1
¯̄F2

¯̄F3
¯̄Fl−1

¯̄Fl

x0 x1 x2 xl−1 xl

x̄0 x̄1 x̄2 x̄l−1 x̄l

¯̄x0 ¯̄x1 ¯̄x2 ¯̄xl−1
¯̄xl

Fig. 1.2. Multiple sweep evolution E3(l)

arrows within a single sweep. A direction shows the corresponding informa-
tion flow between neighboring intermediate states of a single sweep. Note that
the information flow within a single sweep has a constant direction. An ad-
ditional information flow exists between nodes, which are intermediate states
of different successive sweeps. This is shown in Fig. 1.2 by vertical lines.

We denote intermediate states of the original, adjoint and final sweeps
as xi, x̄i, and ¯̄xi, 0 ≤ i ≤ l, respectively. In the same manner we identify
intermediate steps or time steps of various sweeps as Fi, F̄i, and ¯̄Fi, 1 ≤ i ≤ l.
Then we have

xi = Fi(xi−1), x̄i−1 = F̄i(xi−1, x̄i), ¯̄xi = ¯̄Fi(x̄i, ¯̄xi−1), 1 ≤ i ≤ l. (1.19)

We assume that dimensions of intermediate states within a single sweep are
constant. Therefore, we denote them as

d ≡ dim {xi}, d̄ ≡ dim {x̄i},
¯̄d ≡ dim {¯̄xi}, 0 ≤ i ≤ l. (1.20)

Moreover, we introduce evaluation costs, i.e. the computational effort for in-
termediate steps of different sweeps. We assume that within each single sweep
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8 Julia Sternberg and Andreas Griewank

we have uniform step costs, i.e. there exist three constants t, t̄ and ¯̄t, such
that

t ≡ TIME(Fi), t̄ ≡ TIME(F̄i), ¯̄t ≡ TIME( ¯̄Fi), 1 ≤ i ≤ l. (1.21)

Further, we assume that

d̄ >> d and t̄ >> t. (1.22)

Thus, the dimension d̄ of an intermediate state of an adjoint sweep is much
higher than the dimension d of an intermediate state on the original sweep.
Correspondingly the evaluation of time steps during an adjoint sweep is much
more expensive than the evaluation of time steps during an original sweep.
The assumptions (1.22) agree with the scenario presented in the Algorithm 1.

1.3.2 Definition of nested reversal schedules and its characteristics

The goal is to implement an evolution E3(l) using nested checkpointing. The
question is how to place different checkpoints to implement the evolution E3(l)

most efficiently. We call each possible strategy a nested reversal schedule
because checkpoints are set and released at two different levels.

Thus, it is clearly not required to store intermediate states of the final
sweep as checkpoints since information computed during this sweep is required
just for subsequent time steps within this sweep, but not for previous sweeps.
If only a restricted amount of memory is available, it is convenient to measure
its size in terms of the number of fat checkpoints that it can accommodate.
Since fat checkpoints, i.e. checkpoints of dimension d̄, have to be stored during
the adjoint sweep, we can use available memory on the original sweep to store
thin checkpoints, i.e. checkpoints of dimension d, to reduce the total number of
evaluated original steps Fi. On the adjoint sweep we remove thin checkpoints
sequentially and store fat checkpoints instead of them as soon as required
memory is available, i.e. as soon as a sufficient number of thin checkpoints
is removed. We denote by S(d3(l), C) any admissible nested reversal schedule
that can be applied to a multiple sweep evolution E3(l) with a dimension

distribution d3(l) = (d, d̄, ¯̄d) and a given number C of fat checkpoints. More
formally we use the following definition.

Definition 1 (Nested Reversal Schedule S(d3(l), C)). Consider an evo-
lution E3(l) traversing l time steps in three alternative sweeps. Let C ∈ N

fat checkpoints be available each of which can accommodate one intermediate
state vector of the dimension d̄, i.e. one intermediate state x̄i, 0 ≤ i ≤ l.
Moreover, assume that checkpoints can be stored during original and adjoint
sweeps, provided sufficient memory is available. Assume that c thin check-
points can be stored in place a single fat one, i.e. d̄ = c d. Then a nested
reversal schedule S(d3(l), C) initializes j = 0 and j̄ = l, and subsequently
performs a sequence of following basic actions
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A ≡ Increment j by 1
Ā ≡ Decrement j̄ by 1 if j̄ − j = 1
Wi ≡ Copy state j to a thin checkpoint i ∈ {0, 1, . . . , (C − 1)c}
W̄i ≡ Copy state j̄ to a fat checkpoint i ∈ {1, 2, . . . , C}
Ri ≡ Reset state j to a thin checkpoint i ∈ {0, 1, . . . , (C − 1)c}
R̄i ≡ Reset state j̄ to a fat checkpoint i ∈ {1, 2, . . . , C}
D ≡ Decrement l by 1 if j̄ = 1 and j̄ − j = 1

until l has been reduced to 0.

It has to be arranged that each nested reversal schedule begins with the
action R0, such that the original state x0 is read from the thin checkpoint 0.

One example of a nested reversal schedule S(d3(9), 2) for an evolution E3(9)

with the corresponding dimension distributions d3(9) = (1, 3, 1) is shown in
Fig. 1.3. Two fat checkpoints are available, i.e. 2 intermediate states on the
adjoint sweep can be kept in memory simultaneously. Each of these states is
of dimension d̄ = 3. Moreover, 3 thin checkpoints of dimension d = 1 can be
stored instead of a single fat one. Further, the original state x0 is stored as
an additional 0th thin checkpoint.
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Fig. 1.3. Example of nested reversal schedule S(d3(9), 2)

In Fig. 1.3 physical steps are plotted along the vertical axis, and time
required for the implementation of the evolution E3(9) measured in number
of executed steps is represented by the horizontal axis. Hence, the horizontal
axis can be thought of as a computational axis. Each solid thin horizontal
line including the horizontal axis itself represents a thin checkpoint, i.e. a
checkpoint of dimension d = 1. Each solid thick horizontal line represents a
fat checkpoint, i.e. a checkpoint of dimension d̄ = 3. Solid slanted thin lines
represent original steps Fi, whereas adjoint steps F̄i are visualized by dotted
slanted lines. Final steps ¯̄Fi are drawn by slanted dashed-dotted thick lines.
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One starts with the action R0 restoring the original state x0 from the 0th
thin checkpoint. Three actions A are executed by performing three original
steps F1, F2, and F3 consecutively. The state x3 is stored into the first thin
checkpoint by the action W1. Now again the action A is applied to perform
one original step F4, and the state x4 is stored into the second thin checkpoint
by the action W2. Further another three original steps are executed by the
three actions A, and the state x7 is stored in the third thin checkpoint. Then
two further original steps are evaluated by the two actions A. Finally the state
x̄9 is initialized and is stored in the first fat checkpoint by the action W̄1. The
adjoint sweep is started by this action.

Further, the state x7 is restored from the third thin checkpoint by the
action R3, the state x8 is reevaluated by the action A, and the states x̄8 and
x̄7 are evaluated by the application of the action Ā twice. In this manner we
come to the state x̄3, which is stored in the second fat checkpoint. On the way
backward all thin checkpoints are removed, all fat checkpoints are occupied
consecutively, and we have no more memory available to store fat or even
thin checkpoints. Then one goes back to the adjoint state x̄1 by reevaluating
required intermediate states. Consequently the first final step ¯̄F1 is performed.
Further, one stores the current original state x1 in the 0th thin checkpoint
and continues in the same manner to execute all other final steps ¯̄F2, ...,

¯̄F9.
Using the nested reversal schedule S(d3(9), 2) from Fig. 1.3 one needs to

perform 28 original steps Fi, 18 adjoint steps Ḟi, and 9 final steps ¯̄Fi.

Definition 2 (Repetition Numbers). Consider a nested reversal schedule
S(d3(l), C). The repetition numbers ri ≡ r(i), r̄i ≡ r̄(i), and ¯̄ri ≡ ¯̄r(i),
defined as functions

r, r̄, ¯̄r : [1, l] → N, (1.23)

count how often the ith original, the ith adjoint and the ith final step, is
evaluated during the execution of the nested reversal schedule S(d3(l), C).

Provided a schedule is admissible in the sense that given d3(l), C, and the
initial l, it successfully reduces l to 0, its total runtime complexity can be
computed from the additional problem parameters t3(l) = (t, t̄, ¯̄t). The tem-
poral complexity of a nested reversal schedule S(d3(l), C), i.e. the run-time
effort required to execute this nested reversal schedule can be computed as

T(S(d3(l), C), t3(l)) = t

l
∑

i=1

ri + t̄

l
∑

i=1

r̄i + ¯̄t
l

∑

i=1

¯̄ri. (1.24)

The optimal nested reversal schedule from the set of all admissible nested
reversal schedules is required to minimize the evaluation cost, i.e. to achieve

Tmin(t3(l),d3(l), C) ≡

min
{

T(S(d3(l), C), t3(l)), S(d3(l), C) is admissible
}

.
(1.25)
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1 Reduction of storage requirement by checkpointing 11

The set of optimal nested reversal schedules is denoted by Smin(t3(l),d3(l), C),
so that

T(Smin(t3(l),d3(l), C)) ≡ Tmin(t3(l),d3(l), C). (1.26)

Now we face the task of constructing an appropriate optimal nested reversal
schedule Smin(t3(l),d3(l), C). By brute force an optimal nested reversal sched-
ule can be constructed using an exhaustive search algorithm (for more details
see [9]). Using this approach one examines all possible distributions for thin
and fat checkpoints and chooses from them the most efficient one. Clearly,
such an exhaustive search is very expensive. In contrast to the situations for
simple reversals involving only an original and an adjoint sweep, we have not
been able to find a closed form characterization of optimal reversal schedules.
Therefore, we have developed a heuristic for the construction of appropriate
nested reversal schedules.

1.3.3 Heuristic

The intent of this heuristic is to restrict slightly the placements of thin check-
points. Due the assumption (1.22), it is more convenient to reduce the freedom
of movement of thin checkpoints, since even a considerable increment of the
number of evaluated original steps does not cause a significant increase in the
resulted evaluation cost wrt. the minimal evaluation cost Tmin(t3(l),d3(l), C)
(accordingly (1.22) and (1.24)). Since one fat checkpoint can be stored as soon
as the required memory is available, we store thin checkpoints such that after
the removal of a sufficient number of thin checkpoints (c thin checkpoints), a
corresponding fat checkpoint has to be stored at the same moment. Therefore,
a nested reversal schedule can be decomposed into two nested subschedules
and one simple reversal schedule as shown in Fig. 1.4.
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Fig. 1.4. Decomposition of a nested reversal schedule Sh(t3(l), d3(l), C)

Here, Sh(t3(l), d3(l), C) denotes a corresponding nested reversal schedule,
constructed using the heuristic described above. This schedule is decomposed
into two parts Sh(t3(m),d3(m), C − 1) and Sh(t3(m,l),d3(m,l), C) as shown in
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Fig. 1.4 by the storing of the second fat checkpoint. An adjoint state stored in
the second fat checkpoint corresponds to m. Sbin(l−m, c) denotes the binomial
reversal schedule with up to c checkpoints, which is applied for the reversal of
(l − m) original steps using minimal run-time and memory requirement (for
details see e.g. [9]).

Then, an appropriate nested reversal schedule Sh(t3(l),d3(l), C) can be
constructed recursively by minimizing the evaluation cost

Th(t3(l),d3(l), C) =min
m

{

Th(t3(l),d3(l), C, m)
}

= min
m

{

Th(t3(m),d3(m), C − 1)

+ Th(t3(m,l),d3(m,l), C) + tadd(t3(m,l),d3(m,l), c)
}

,

(1.27)

where tadd(t3(m,l),d3(m,l), c) denotes an additional run-time effort required for
placing x̄m in the second fat checkpoint. From (1.27) it is clear that the evalu-
ation cost Th(t3(l),d3(l), C) and consequently a corresponding nested reversal
schedule Sh(t3(l),d3(l), C) can be evaluated using dynamic programming.

Instead of using dynamic programming we have developed a Local-
Descent Method, which allows us to construct Sh(t3(l),d3(l), C) using a
linear run-time and memory requirement with respect to a number l of time
steps and a number C of fat checkpoints (for details see [9]).

1.4 Numerical Example

We consider a control problem that describes the laser surface hardening of
steel (see [6]). The mode of operation of this process is depicted in Fig. 1.5.
A laser beam moves along the surface of a workpiece, creating a heated zone

PSfrag replacements

heated zone

workpiece

laser beam

moving direction

Fig. 1.5. Sketch of a laser hardening process
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around its trace. The heating process is accompanied by a phase transition,
in which the high temperature phase in steel, called austenite, is produced.
Since one usually try to keep the moving velocity of the laser beam constant,
the most important control parameter is the laser energy. Whenever the tem-
perature in the heated zone exceeds the melting temperature of steel, the
work-piece quality is destroyed. Therefore, the goal of surface hardening is to
achieve a desired hardening zone, in our case described by a desired phase
distribution ad of austenite inside the workpiece Ω, but to avoid a melting
of the surface. Hence we consider an optimal control problem with the cost
functional J(u) defined as

J(u) =
β1

2

∫

Ω

(a(x, T ) − ad(x))2dx +
β2

2

∫ T

0

∫

Ω

[θ − θm]2+dx dt +
β3

2

∫ T

0

u2dt,

(1.28)
where u is the laser energy and βi i = 1, 2, 3 are positive constants. The second
term in (1.28) penalizes temperatures above the melting temperature θm.

Let Ω := [0, 5] × [−1, 0] with Lipschitz boundary Q = Ω × (0, T ), Σ =
∂Ω×(0, T ), T = 5.25. The system of state equations (1.29) - (1.33) consists of a
semi-linear heat equation coupled with the initial-value problem for the phase
transitions. a is the volume fraction of austenite, θ the temperature, τ a time
constant and [x]+ = max{x, 0} the positive part function. The equilibrium
volume fraction aeq is such that the austenite volume fraction increases during
heating until it reaches some value a < 1. During cooling we have at = 0, and
the value a is kept. The homogeneous Neumann conditions were assumed on
the boundary. The term −ρLat describes the consumption of latent heat due
to the phase transition. The term u(t)α(x, t) is the volumetric heat source due
to laser radiation, where the laser energy u(t) will serve as a control parameter.
The density ρ, the heat capacity cp, the heat conductivity k, and the latent
heat L are assumed to be positive constants.

at =
1

τ(θ)
[aeq(θ) − a]+, in Q, (1.29)

a(0) = 0, in Ω, (1.30)

ρcρθt − k4θ = −ρLat + uα, in Q, (1.31)

∂θ

∂ν
= 0, on Σ, (1.32)

θ(0) = θ0, in Ω. (1.33)

We study the following state and control constrained optimal control problem
for the cost functional J(u) as defined in (1.28):

min J(u), s.t. (θ, a, u) solves (1.29)− (1.33) and u ∈ Uad, (1.34)

where Uad = {u ∈ L2(0, T ) : ‖u‖L2(0,T ) ≤ 2800} is the closed, bounded, and
convex set of admissible controls. The numerical implementation is obtained
by a semi-implicit FE Galerkin scheme. The FE triangulation of Ω is done
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by a nonuniform mesh. The optimal control problem (1.34) is solved using
the Quasilinearization scheme from the Sect. 1.2 (see Algorithm 1). Nested
reversal schedules are utilized for the reduction of memory requirement during
the implementation of the Algorithm 1 applied to the optimal control problem
(1.34).

1.5 Conclusion and Outlook

The iterative solution of optimal control problems in ODEs by various meth-
ods leads to a succession of triple sweeps through the discretized time inter-
val. The second (adjoint) sweep relies on information from the first (original)
sweep, and the third (final) sweep depends on both of them. This flow of
information is depicted in Fig. 1.1. Typically the steps on the adjoint sweep
involve more operations and require more storage than the other two. In or-
der to avoid storing full traces of the original and adjoint sweeps we consider
nested reversal schedules that require only the storage of selected original and
adjoint intermediate states called thin and fat checkpoints. The schedules are
designed to minimize the overall execution time given a certain total amount of
storage for the checkpoints. While we have not found a closed form solution
for this discrete optimization problem we have developed a cheap heuristic
for constructing nested reversals that are quite close to optimality. Here we
demonstrated that the dependence on l can be arranged polylogarithmically
[4] by nested checkpoint strategies. Consequently, the operations count also
grows as a second power of logC l, which needs not result in an increase of the
actual run-time due to memory effects.

We are currently applying the proposed scheduling schemes to laser hard-
ening of steel [6] and other practical optimal control problems. As has been
done in case of simple reversal schedules that involve only an original and an
adjoint sweep our results should be extended to scenarios with nonuniform
step costs and parallel computing systems.
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