On classification of normal matrices in indefinite inner product spaces: the complex case

Christian Mehl

January 24, 2005

Abstract

Canonical forms are developed for several sets of complex matrices that are normal with respect to an indefinite inner product induced by a nonsingular Hermitian, symmetric, or skew-symmetric matrix. The most general result covers the case of polynomially normal matrices, i.e., matrices whose adjoint with respect to the indefinite inner product is a polynomial of the original matrix. From this result, canonical forms for matrices that are selfadjoint, skewadjoint, or unitary with respect to the given indefinite inner product are derived.

1 Introduction

Let \mathbb{F} denote one of the fields \mathbb{R} or \mathbb{C} , and let $H \in \mathbb{F}^{n \times n}$ be invertible. If H is (skew-) symmetric, then H induces a nondegenerate (skew-)symmetric bilinear form on \mathbb{F}^n via $[x, y] := y^T \mathcal{H}x$ for $x, y \in \mathbb{F}^n$. Analogously, if $\mathbb{F} = \mathbb{C}$ and H is Hermitian, then H induces a nondegenerate Hermitian sesquilinear form on \mathbb{C}^n via $[x, y] := y^* \mathcal{H}x$ for $x, y \in \mathbb{C}^n$.

For a matrix $M \in \mathbb{F}^{n \times n}$, the *H*-adjoint of *M* is defined to be the unique matrix $M^{[\star]}$ satisfying

$$[x, My] = [M^{[\star]}x, y] \quad \text{for all } x, y \in \mathbb{C}^n.$$

Thus, $M^{[\star]} = H^{-1}M^{\star}H$. (Here and throughout the remainder of the paper, M^{\star} denotes M^{T} in the case that $[\cdot, \cdot]$ is a bilinear form, and M^{*} (the conjugate transpose of M) in the case that $[\cdot, \cdot]$ is a sesquilinear form.) A matrix $M \in \mathbb{F}^{n \times n}$ is called \mathcal{H} -selfadjoint, \mathcal{H} -skew-adjoint, or \mathcal{H} -unitary, respectively, if $M^{[\star]} = M$, $M^{[\star]} = -M$, or $M^{[\star]} = M^{-1}$, respectively. These three types of matrices have been widely discussed in the literature, both in terms of theory and numerical analysis, in particular for the case of a sesquilinear form or under the additional assumptions $\mathbb{F} = \mathbb{R}$. Extensive lists of references can be found in [1, 13, 17, 19].

H-selfadjoint, *H*-skewadjoint, and *H*-unitary matrices are special cases of *H*-normal matrices. A matrix $M \in \mathbb{C}^{n \times n}$ is called *H*-normal if *M* commutes with its *H*-adjoint,

i.e., if $MM^{[\star]} = M^{[\star]}M$. Observe that the structure of pairs (M, H) is invariant under transformations of the form

$$(M, H) \mapsto (P^{-1}MP, P^{\star}HP), \quad P \in \mathbb{F}^{n \times n}$$
 nonsingular. (1.1)

(This corresponds to a change of bases $x \mapsto Px$ in the space \mathbb{F}^n .) Thus, M is H-selfadjoint, H-skewadjoint, H-unitary, or H-normal, respectively, if and only if $P^{-1}MP$ is P^*HP -selfadjoint, P^*HP -skewadjoint, P^*HP -unitary, or P^*HP -normal, respectively.

Canonical forms for *H*-selfadjoint and *H*-skewadjoint matrices under transformations of the form (1.1) are well known for the case of Hermitian *H* (see, e.g., [3, 6, 13]) and for $\mathbb{F} = \mathbb{R}$ in the case of symmetric or skew-symmetric *H* (see, e.g., [3, 4, 13]). They are implicitly known for $\mathbb{F} = \mathbb{C}$ and the case of symmetric or skew-symmetric *H* by the canonical forms for pairs of complex symmetric or skew-symmetric matrices given in [23]. (Observe that, for example, for symmetric *H*, a matrix $M \in \mathbb{C}^{n \times n}$ is *H*-selfadjoint if and only if *HM* is symmetric. Thus, a canonical form for the pair (*M*, *H*) under transformations of the form (1.1) can be easily obtained from the canonical form for the pair (*HM*, *H*) of symmetric matrices under simultaneous congruence.)

Canonical forms for H-unitary matrices seem to be less familiar. For the case of Hermitian H, they have been developed in [8], and for $\mathbb{F} = \mathbb{R}$ and the case of skew-symmetric H, they can be obtained from [21, Theorem 5]. For the case $\mathbb{F} = \mathbb{R}$ and symmetric H, a canonical form is given in [2] for the special case that M is diagonalizable (over the complex field). In addition, canonical forms for H-unitary matrices for some particular choices of H have been developed in [16, 20] under similarity transformations that leave H invariant.

On the other hand, the problem of finding a canonical form for H-normal matrices has been proven to be as difficult as classifying pairs of commuting matrices under simultaneous similarity, see [7]. So far, a classification of \mathcal{H} -normal matrices has only been obtained for some special cases, see [7, 10, 11].

From this point of view, the set of all H-normal matrices is "too large" and it makes sense to look for proper subsets for which a complete classification can be obtained. A first approach in this direction has been made in [8], where *block-Toeplitz* H-normal matrices have been defined (see Section 2 for the definition). A complete classification for block-Toeplitz H-normal matrices has then be given in [9] for the case that H is Hermitian and defines a Hermitian sesquilinear forms. However, in the case that H defines a complex or real bilinear form that is symmetric or skew-symmetric, there exist H-selfadjoint, Hskewadjoint, or H-unitary matrices that fail to be block-Toeplitz H-normal (see Section 2 for details). Thus, the approach via block-Toeplitz H-normal matrices only makes sense for the case of a Hermitian sesquilinear form.

In [18], several subsets of the set of *H*-normal matrices have been considered with the emphasis of finding a subset that is 'large enough' in order to contain all *H*-selfadjoint, *H*-skewadjoint, and *H*-unitary matrices, but that is still 'small enough' such that a complete classification its elements can be obtained. A suitable set with there properties is the set of polynomially *H*-normal matrices. A matrix $X \in \mathbb{C}^{n \times n}$ is called polynomially *H*-normal if there exists a polynomial $p \in \mathbb{C}[t]$ such that $X^* = p(X)$.

In this paper, we develop canonical forms for polynomially H-normal matrices. It will turn out that canonical forms for H-selfadjoint, H-skewadjoint, and H-unitary matrices are special cases of the general form. We only consider the complex case here, i.e., His Hermitian and defines a Hermitian sesquilinear form on \mathbb{C}^n or H is (skew-)symmetric and defines a (skew-)symmetric bilinear form on \mathbb{C}^n . The real case will be discussed in a subsequent paper.

The paper is organized as follows. In Section 2, we compare block-Toeplitz H-normal matrices and polynomially H-normal matrices and we introduce the notion of H-decomposability. In Section 3, we discuss how to decompose a matrix into a block diagonal matrix with indecomposables diagonal blocks. Section 4 is devoted to similarity transformations that leave the set of upper triangular Toeplitz matrices invariant. These similarity transformations will be used in Section 5 to obtain canonical forms for polynomially H-normal matrices that are similar to a Jordan block. Finally, we present canonical forms for polynomially H-normal matrices and deduce from the general result canonical forms for H-selfadjoint, H-skewadjoint, and H-unitary matrices. Section 6 contains the case of Hermitian H, Section 7 the case of symmetric H, and Section 8 the case of skew-symmetric H.

Throughout the paper, we use the following notation. If it is not explicitly stated otherwise, H always denotes an $n \times n$ invertible matrix that is either Hermitian and induces a sesquilinear form $[\cdot, \cdot]$, or it is symmetric or skew-symmetric and induces a bilinear form $[\cdot, \cdot]$. A matrix $A = A_1 \oplus \cdots \oplus A_k$ denotes a block diagonal matrix A with diagonal blocks A_1, \ldots, A_k (in that order). e_i is the *i*-th unit vector in \mathbb{F}^n . $A = (a_{\alpha(i),\beta(j)}) \in \mathbb{F}^{m \times n}$, where $\alpha(i), \beta(j)$ are functions of the row and column indices *i* or *j*, respectively, denotes a matrix A whose (i, j)-entry is given by $a_{\alpha(i),\beta(j)}$ for $i = 1, \ldots, m; j = 1, \ldots, n$. The symbols R_n , Σ_n , and $\mathcal{J}_n(\lambda)$ denote the $n \times n$ reverse identity, the $n \times n$ reverse identity with alternating signs, and the Jordan block of size *n* associated with the eigenvalue λ , respectively, i.e.,

$$R_{n} = \begin{bmatrix} 0 & 1 \\ & \ddots & \\ 1 & & 0 \end{bmatrix}, \quad \Sigma_{n} = \begin{bmatrix} 0 & (-1)^{0} \\ & \ddots & \\ (-1)^{n-1} & & 0 \end{bmatrix}, \quad \mathcal{J}_{n}(\lambda) = \begin{bmatrix} \lambda & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & \\ 0 & & \lambda \end{bmatrix}.$$

A matrix $A \in \mathbb{F}^{n \times n}$ is called anti-diagonal if $R_n A$ is diagonal. Also, recall that M^* is the conjugate transpose of the matrix M and that M^* (or $M^{[\star]}$, respectively) stands for M^T (or $H^{-1}M^T H$, respectively) whenever we consider the case of symmetric or skew-symmetric H, and it stands for M^* (or $H^{-1}M^*H$, respectively) whenever we consider the case of Hermitian H. Finally, $M^{-\star} := (M^{\star})^{-1} = (M^{-1})^{\star}$.

2 Block-Toeplitz *H*-normal matrices and polynomially *H*-normal matrices

An important notion in the context of classification of matrices that are structured with respect to indefinite inner products is the notion of *H*-decomposability. A matrix $X \in \mathbb{F}^{n \times n}$ is called *H*-decomposable if there exists a nonsingular matrix $P \in \mathbb{F}^{n \times n}$ such that

$$P^{-1}XP = X_1 \oplus X_2, \quad P^{\star}HP = H_1 \oplus H_2,$$

where $X_1, H_1 \in \mathbb{F}^{m \times m}$ and $X_2, H_2 \in \mathbb{F}^{(n-m) \times (n-m)}$ for some 0 < m < n. Otherwise, X is called *H*-indecomposable. Clearly, any matrix X can always be decomposed as

$$P^{-1}XP = X_1 \oplus \dots \oplus X_k, \quad P^*HP = H_1 \oplus \dots \oplus H_k, \tag{2.1}$$

where X_j is H_j -indecomposable, j = 1, ..., k. Thus, it remains to classify indecomposable matrices.

As pointed out in the introduction, block-Toeplitz *H*-normal matrices have been investigated in [8, 9] in order to obtain a complete classification for matrices from a subset of the set of *H*-normal matrices. An *H*-normal matrix *X* is called *block-Toeplitz* if there exists a decomposition as in (2.1) such that each indecomposable block X_j is similar to either one Jordan block or to a matrix with two Jordan blocks associated with two distinct eigenvalues. The reason for the notion "block-Toeplitz *H*-normal" is obvious by the following theorem (proved in [8]).

Theorem 2.1 Let $X \in \mathbb{C}^{n \times n}$. Then X is block-Toeplitz H-normal if and only if there exists a nonsingular matrix $P \in \mathbb{C}^{n \times n}$ such that

$$P^{-1}XP = X_1 \oplus \dots \oplus X_k$$
 and $P^*HP = H_1 \oplus \dots \oplus H_k$ (2.2)

where, for each j, the matrices X_j and H_j have the same size, X_j is indecomposable, and the pair (X_j, H_j) has one and only one of the following forms.

- 1) $H_j = \varepsilon R_{p_j}$, where $\varepsilon \in \{1, -1\}$ and X_j is an upper triangular Toeplitz matrix with nonzero superdiagonal element;
- 2) $X_j = X_{j1} \oplus X_{j2}$ and $H_j = R_{2p_j}$, where $X_{j1}, X_{j2} \in \mathbb{C}^{p_j \times p_j}$ are upper triangular Toeplitz matrices with nonzero superdiagonal elements and the spectra of X_{j1} and X_{j2} are disjoint.

In [18], it has been shown that polynomially H-normal matrices are block-Toeplitz Hnormal for the case of Hermitian H. (The converse, however, is false, i.e., there are block-Toeplitz H-normal matrices that are not polynomially H-normal, see [18].) However, this is no longer true for the case of real or complex H that is symmetric or skew-symmetric, because the following examples show that already H-selfadjoint and H-skewadjoint matrices need not be block Toeplitz H-normal. **Example 2.2** Let $S = \mathcal{J}_2(0)$. Then there exists no invertible symmetric $H \in \mathbb{F}^{2\times 2}$ such that S is H-skewadjoint. Indeed, setting $H = (h_{ij}), h_{21} = h_{12}$, we obtain from the identity $S^T H = -HS$ that

$$\begin{bmatrix} 0 & 0 \\ h_{11} & h_{12} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} = -\begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -h_{11} \\ 0 & -h_{12} \end{bmatrix}.$$

This implies $h_{11} = h_{12} = 0$ in contrast to the invertibility of H. Next consider

$$\tilde{S} = \begin{bmatrix} \mathcal{J}_2(0) & 0\\ 0 & -\mathcal{J}_2(0) \end{bmatrix}, \quad \tilde{H} = R_4$$

It is easily seen that \tilde{S} is \tilde{H} -skewadjoint. By the above, \tilde{S} must be \tilde{H} -indecomposable, but \tilde{S} has two Jordan blocks associated with 0. Thus, \tilde{S} is not block-Toeplitz *H*-normal.

Example 2.3 Let $A = 0 \in \mathbb{F}^{2 \times 2}$ and $H = \Sigma_2$. Then H is skew-symmetric and A is H-selfadjoint. Clearly, A is H-indecomposable, because there do not exist invertible diagonal skew-symmetric matrices. But A has two Jordan blocks associated with 0. Thus, A is not block-Toeplitz H-normal.

These examples show that the set of block-Topelitz *H*-normal matrices does not contain all *H*-selfadjoint and *H*-skewadjoint matrices in the case of symmetric or skew-symmetric *H*. (One can also find examples of *H*-unitary matrices that are not block-Topelitz *H*normal.) Therefore, we suggest to investigate polynomially *H*-normal matrices instead. Indeed, any *H*-selfadjoint matrix *A*, *H*-skewadjoint matrix *S*, and *H*-unitary matrix *U* is always polynomially *H*-normal. This follows immediately from the identities $A^* = A$, $S^* = -S$, and $U^* = U^{-1}$, using in the latter case that the inverse of an invertible *U* is a polynomial in *U*. We conclude this section by providing some properties of polynomially *H*-normal matrices that will frequently be used in the following.

Proposition 2.4 Let $H \in \mathbb{F}^{n \times n}$ be nonsingular and $X \in \mathbb{F}^{n \times n}$ be polynomially *H*-normal.

- 1) There is a unique polynomial $p \in \mathbb{F}[t]$ of minimal degree such that $X^{[\star]} = p(X)$.
- 2) If (v_1, \ldots, v_l) is a (possibly complex) Jordan chain for X associated with $\lambda \in \mathbb{C}$, then

$$p(X)v_j = \sum_{\nu=0}^{j-1} \frac{1}{\nu!} p^{(\nu)}(\lambda) v_{j-\nu}, \qquad j = 1, \dots l.$$
(2.3)

3) We have $p(\mathcal{J}_k(\lambda)) = p(\lambda)I_k + p_0(\mathcal{J}_k(0))$, where

$$p_0(t) = p'(\lambda)t + \frac{1}{2!}p''(\lambda)t^2 + \dots + \frac{1}{(k-1)!}p^{(k-1)}(\lambda)t^{k-1}.$$
 (2.4)

4) $p'(\lambda) \neq 0$ for all eigenvalues $\lambda \in \mathbb{C}$ of X having partial multiplicities larger than one.

5) If H is Hermitian, then $\overline{p}(p(X)) = X$. If H is (skew-)symmetric, then p(p(X)) = X.

Proof. 1) follows easily from [12, Theorem 6.1.9] noting that the Lagrange-Hermite interpolation problem always has a unique solution, while 2) and 3) follow from [12] formula 6.1.8 which is

$$p\left(\mathcal{J}_{n}(\lambda)\right) = \begin{bmatrix} p(\lambda) & p'(\lambda) & \frac{1}{2!}p''(\lambda) & \dots & \frac{1}{(n-1)!}p^{(n-1)}(\lambda) \\ 0 & p(\lambda) & p'(\lambda) & \ddots & \vdots \\ \vdots & 0 & p(\lambda) & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & p'(\lambda) \\ 0 & \dots & \dots & 0 & p(\lambda) \end{bmatrix}.$$
 (2.5)

The same formula implies 4), because $p(X) = H^{-1}X^T H$ in the case of a bilinear form and $p(X) = H^{-1}X^T H$ in the case of a sesquilinear form. Thus, the dimensions of the eigenspaces $\operatorname{Eig}(X)$ and $\operatorname{Eig}(p(X))$ of X and p(X), respectively, must be equal. Finally, the additional assumption on H implies $X = (X^{[\star]})^{[\star]}$ and then 5) follows from

$$X = (X^{[T]})^{[T]} = (p(X))^{[T]} = H^{-1}p(X)^{T}H = p(H^{-1}X^{T}H) = p(X^{[T]}) = p(p(X))$$

in the case that H is symmetric or skew-symmetric, and in the case that H is Hermitian, 5) follows from

$$X = (p(X))^{[*]} = H^{-1}p(X)^*H = H^{-1}\overline{p}(X^*)H = \overline{p}(H^{-1}X^*H) = \overline{p}(X^{[*]}) = \overline{p}(p(X)). \quad \Box$$

Definition 2.5 Let $H \in \mathbb{F}^{n \times n}$ be nonsingular and let $X \in \mathbb{F}^{n \times n}$ be polynomially H-normal. Then the unique polynomial $p \in \mathbb{F}[t]$ of minimal degree such that $X^{[\star]} = p(X)$ is called the H-normality polynomial of X.

3 Decomposition of polynomially *H*-normal matrices

In this section, we investigate decomposability of polynomially H-normal matrices and discuss spectral properties of indecomposable polynomially H-normal matrices.

Proposition 3.1 Let $X \in \mathbb{C}^{n \times n}$ be polynomially *H*-normal with *H*-normality polynomial p and let $\lambda, \mu \in \mathbb{C}$ be eigenvalues of X. Furthermore, let (v_1, \ldots, v_l) be a Jordan chain for X with respect to λ and let (w_1, \ldots, w_m) be a Jordan chain for X with respect to μ , where $m \geq l$. Then for all $i = 1, \ldots, l, j = 1, \ldots, m$, and $\eta = 0, \ldots, \min(i - 1, m - j)$ the following conditions are satisfied:

1) if H is Hermitian:

a)
$$[w_j, v_i] = \left(\overline{p'(\lambda)}\right)^{\eta} [w_{j+\eta}, v_{i-\eta}]$$
 if $\mu = \overline{p(\lambda)}$ and if $[w_{\sigma}, v_{\nu}] = 0$ for $\sigma + \nu < i + j$;

b) $[w_j, v_i] = 0$ if $i + j \le m$; c) $[w_j, v_i] = 0$ if i + j > m and $\mu \ne \overline{p(\lambda)}$.

2) if H is symmetric or skew-symmetric:

a)
$$[w_j, v_i] = \left(p'(\lambda)\right)^{\eta} [w_{j+\eta}, v_{i-\eta}]$$
 if $\mu = p(\lambda)$ and if $[w_{\sigma}, v_{\nu}] = 0$ for $\sigma + \nu < i + j$;

- b) $[w_j, v_i] = 0 \text{ if } i + j \le m;$
- c) $[w_j, v_i] = 0$ if i + j > m and $\mu \neq p(\lambda)$;

Proof. We only prove the result for the case that H is Hermitian. The proof in the symmetric or skew-symmetric case proceeds completely analogously. Let $v_0 := 0$ and $w_0 := 0$. Then

$$p(X)v_i = \sum_{\nu=0}^{i} \frac{1}{\nu!} p^{(\nu)}(\lambda)v_{i-\nu}$$
 and $Xw_j = \mu w_j + w_{j-1}$

for i = 1, ..., l; j = 1, ..., m, because of (2.3) and because $(w_1, ..., w_m)$ is a Jordan chain. If $\mu = \overline{p(\lambda)}$ and if j < m and i > 1 are such that $[w_{\sigma}, v_{\nu}] = 0$ for $\sigma + \nu < i + j$ then

$$[w_{j}, v_{i}] = [Xw_{j+1}, v_{i}] - \mu[w_{j+1}, v_{i}] = [w_{j+1}, p(X)v_{i}] - \overline{p(\lambda)}[w_{j+1}, v_{i}]$$
$$= \left[w_{j+1}, \sum_{\nu=0}^{i} \frac{1}{\nu!} p^{(\nu)}(\lambda)v_{i-\nu}\right] - [w_{j+1}, p(\lambda)v_{i}]$$
$$= \left[w_{j+1}, \sum_{\nu=1}^{i} \frac{1}{\nu!} p^{(\nu)}(\lambda)v_{i-\nu}\right] = \overline{p'(\lambda)}[w_{j+1}, v_{i-1}].$$

Repeating this argument implies a). The remainder of the proof proceeds by induction on k = i + j (including the cases i = 0 and j = 0). The case k = 1 is trivial. Thus, assume k > 1. If i = 0 or j = 0 then there is nothing to prove. Thus, let i, j > 0. First let us assume $\overline{p(\lambda)} = \mu$ and $k \leq m$. Using j + i - 1 < m, the induction hypothesis $[w_{\sigma}, v_{\nu}] = 0$ for $\sigma + \nu < k$, and a), we obtain that

$$[w_j, v_i] = \left(\overline{p'(\lambda)}\right)^{i-1} [w_{j+i-1}, v_1] = \left(\overline{p'(\lambda)}\right)^{i-1} \left([Xw_{j+i}, v_1] - \mu[w_{j+i}, v_1] \right)$$
$$= \left(\overline{p'(\lambda)}\right)^{i-1} \left([w_{j+i}, p(X)v_1] - \overline{p(\lambda)}[w_{j+i}, v_1] \right) = 0.$$

Next consider the case $\overline{p(\lambda)} \neq \mu$. Then the induction hypothesis yields $[w_{j-1}, v_i] = 0$ and $[w_j, v_\nu] = 0$ for $\nu < i$. Thus, we obtain that

$$\mu[w_j, v_i] = [\mu w_j, v_i] = [X w_j, v_i] - [w_{j-1}, v_i] = [X w_j, v_i] = [w_j, p(X) v_i]$$
$$= \left[w_j , \sum_{\nu=0}^{i} \frac{1}{\nu!} p^{(\nu)}(\lambda) v_{i-\nu} \right] = \overline{p(\lambda)} [w_j, v_i]$$

which implies $[w_j, v_i] = 0$. This concludes the proof of b) and c). \Box

Proposition 3.2 Let $X \in \mathbb{C}^{n \times n}$ be polynomially *H*-normal, and let \mathcal{V} be a nontrivial *X*-invariant subspace that is *H*-nondegenerate. Then *X* is *H*-decomposable.

Proof. Without loss of generality, we may assume that (e_1, \ldots, e_m) is a basis of \mathcal{V} . (Otherwise apply a suitable transformation on X and H.) Then X and H have the block forms

$$X = \begin{bmatrix} X_{11} & X_{12} \\ 0 & X_{22} \end{bmatrix} \text{ and } H = \begin{bmatrix} H_{11} & H_{12} \\ \pm H_{12}^{\star} & H_{22} \end{bmatrix},$$

where $X_{11}, H_{11} \in \mathbb{C}^{m \times m}$. Then $1 \leq m \leq n-1$, because \mathcal{V} is nontrivial. Since \mathcal{V} is *H*-nondegenerate, we obtain that H_{11} is nonsingular. Setting

$$P = \left[\begin{array}{cc} I_m & H_{11}^{-1}H_{12} \\ 0 & I_{n-m} \end{array} \right].$$

we obtain that

$$\tilde{X} = P^{-1}XP = \begin{bmatrix} X_{11} & \tilde{X}_{12} \\ 0 & X_{22} \end{bmatrix} \quad \text{and} \quad \tilde{H} = P^{\star}HP = \begin{bmatrix} H_{11} & 0 \\ 0 & \tilde{H}_{22} \end{bmatrix}.$$

with suitable matrices $\tilde{X}_{12}, \tilde{H}_{22}$. Note that with \tilde{X} also $p(\tilde{X})$ is block upper triangular. Then the identity $\tilde{X}^{\star}\tilde{H} = \tilde{H}p(\tilde{X})$ implies $\tilde{X}_{12} = 0$. Hence, X is H-decomposable.

Proposition 3.3 Let $X \in \mathbb{C}^{n \times n}$ be polynomially *H*-normal with *H*-normality polynomial *p*. Furthermore, let (v_1, \ldots, v_l) be a Jordan chain for *X* and let $\mathcal{V} := \text{Span}(v_1, \ldots, v_l)$.

- i) \mathcal{V} is nondegenerate if and only if $[v_1, v_l] \neq 0$.
- ii) Let $\mathcal{B} := (v_1, \ldots, v_n)$ be an extension of (v_1, \ldots, v_l) to a basis of \mathbb{C}^n that consists of Jordan chains for X. If any Jordan chain in \mathcal{B} different from (v_1, \ldots, v_l) has length smaller than l, then \mathcal{V} is nondegenerate.

Proof. If $[v_1, v_l] = 0$, then by condition b) in Proposition 3.1 we have $[v_1, v_j] = 0$ for $j = 1, \ldots, l$ and hence \mathcal{V} is degenerate. To prove the converse, assume \mathcal{V} is degenerate and let $v \in \mathcal{V} \setminus \{0\}$ be such that $[v_j, v] = 0$ for $j = 1, \ldots, l$. Then $v = c_1v_1 + \cdots + c_lv_l$ for some $c_1, \ldots, c_l \in \mathbb{C}$. Let ν be the largest index such that $c_{\nu} \neq 0$. Then

$$0 = [v, v_{l-\nu+1}] = c_{\nu}[v_{\nu}, v_{l-\nu+1}] = \zeta^{l-\nu}c_{\nu}[v_l, v_1],$$

by conditions a) and b) in Proposition 3.1. Here $\zeta = p'(\lambda)$ in the case of a bilinear form or $\zeta = \overline{p'(\lambda)}$ in the case of a sesquilinear form, where λ is the eigenvalue associated with the Jordan chain (v_1, \ldots, v_l) . In particular, $\zeta^{l-\nu} \neq 0$. (For l > 1 this follows from condition 4) in Proposition 2.4 and for l = 1 the exponent $l - \nu$ is zero.) But then, we necessarily have $[v_l, v_1] = 0$. This concludes the proof of i).

For the prove of ii), assume that \mathcal{V} is degenerate. Then by i) we have $[v_l, v_1] = 0$. Moreover, the fact that all Jordan chains in (v_{l+1}, \ldots, v_n) have size smaller than l and condition b) in Proposition 3.1 imply that $[v_j, v_1] = 0$ for $j = 1, \ldots, n$. This contradicts H being nonsingular and the inner product being nondegenerate. Consequently, \mathcal{V} is nondegenerate. \Box **Proposition 3.4** Let $X \in \mathbb{C}^{n \times n}$ be an *H*-indecomposable polynomially *H*-normal matrix with *H*-normality polynomial *p* and let $\operatorname{Eig}(X)$ be the space of all eigenvectors of *X*.

- a) dim $\operatorname{Eig}(X) \leq 2$.
- b) If dim Eig(X) = 1 and if λ is the eigenvalue of X, then $p(\lambda) = \overline{\lambda}$ in the case of Hermitian H and $p(\lambda) = \lambda$ in the case of symmetric or skew-symmetric H.
- c) If dim Eig(X) = 2, then there exist two Jordan chains (v_1, \ldots, v_m) and (w_1, \ldots, w_m) for X associated with the eigenvalues λ and μ , respectively, such that $\mathbb{C}^n = \mathcal{V} + \mathcal{W}$, where $\mathcal{V} := \operatorname{Span}(v_1, \ldots, v_m)$ and $\mathcal{W} := \operatorname{Span}(w_1, \ldots, w_m)$ are H-neutral. In particular, n = 2m is even.

Moreover, if H is Hermitian, then $\overline{p(\lambda)} = \mu \neq \lambda = \overline{p(\mu)}$. If $H^T = \varepsilon H$, where $\varepsilon = \pm 1$, then $p(\lambda) = \mu$ and $p(\mu) = \lambda$ and we have $\mu = \lambda$ only if $\varepsilon p'(\lambda)^{m-1} = -1$.

Proof. Let (v_1, \ldots, v_m) be a Jordan chain for X of maximal length m and let $\lambda \in \mathbb{C}$ denote the eigenvalue associated with that chain.

If $[v_m, v_1] \neq 0$ then $\mathcal{V} = \text{Span}(v_1, \dots, v_m)$ is nondegenerate by condition i) in Proposition 3.3. But if \mathcal{V} is nondegenerate, then Proposition 3.2 implies n = m and hence X has only one eigenvector up to scalar multiplication which implies dim Eig(X) = 1. Moreover, condition c) in Proposition 3.1 implies $p(\lambda) = \overline{\lambda}$ in the case of Hermitian H and $p(\lambda) = \lambda$ in the case of symmetric or skew-symmetric H.

If $[v_m, v_1] = 0$, then the fact that the inner product is nondegenerate implies that there exists a Jordan chain (w_1, \ldots, w_l) for X associated with an eigenvalue $\mu \in \mathbb{C}$ such that $[w_l, v_1] \neq 0$. Then condition c) of Proposition 3.1 implies $\mu = p(\lambda)$ in the case of symmetric or skew-symmetric H and $\mu = \overline{p(\lambda)}$ in the case of Hermitian H. Now, condition b) in Proposition 3.1 implies $l \geq m$, in fact l = m due to the maximality assumption. Furthermore, $[w_m, w_1] = 0$, because otherwise $\operatorname{Span}(w_1, \ldots, w_m)$ would be nondegenerate in constrast to the H-indecomposability of X. We claim that $\mathcal{U} = \operatorname{Span}(v_1, \ldots, v_m, w_1, \ldots, w_l)$ is nondegenerate. Indeed, let

$$v = \alpha_1 v_1 + \dots + \alpha_m v_m + \beta_1 w_1 + \dots + \beta_m w_m, \quad \alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_m \in \mathbb{C}$$

be such that [v, z] = 0 for all $z \in \mathcal{V}$. Assume $v \neq 0$ and let k be the largest index such that $\alpha_k \neq 0$ or $\beta_k \neq 0$. Then conditions a) and b) in Proposition 3.1 and $[v_m, v_1] = 0 = [w_m, w_1]$ (or, equivalently, $[v_k, v_{m-k+1}] = 0 = [w_k, w_{m-k+1}]$ imply

$$0 = [v, w_{m-k+1}] = \alpha_k [v_k, w_{m-k+1}] = \zeta \alpha_k [v_m, w_1],$$

$$0 = [v, v_{m-k+1}] = \beta_k [w_k, v_{m-k+1}] = \xi \beta_k [w_1, v_m],$$

where ζ and ξ are nonzero constants. Thus, we obtain $\alpha_k = \beta_k = 0$, a contradiction. Hence v = 0, i.e., \mathcal{U} is nondegenerate. Then Proposition 3.2 implies n = 2m and, therefore, dim $\operatorname{Eig}(X) \leq 2$. Next, we show that the Jordan chains (v_1, \ldots, v_m) and (w_1, \ldots, w_m) can be chosen in such a way that they span *H*-neutral subspaces. We consider two cases.

Case (i): $\mu \neq \lambda$. By condition c) in Proposition 3.1, we obtain from $[w_m, v_1] \neq 0$ that $\lambda = p(\mu)$ in the case of symmetric or skew-symmetric H and $\lambda = \overline{p(\mu)}$ in the case of Hermitian H. This implies $\lambda \neq p(\lambda)$, or $\lambda \neq \overline{p(\lambda)}$, respectively. Hence, by condition c) in Proposition 3.1, both \mathcal{V} and \mathcal{W} are necessarily H-neutral.

Case (ii): $\mu = \lambda$. First, we consider the case of Hermitian H. Then

$$[w_1, v_m] = \overline{p'(\lambda)}^{m-1}[w_m, v_1] = \overline{p'(\lambda)}^{m-1}\overline{[v_1, w_m]}.$$

Now let $\alpha \in \mathbb{C}$ and consider $(v_1 + \alpha w_1, \ldots, v_m + \alpha w_m)$ which is a Jordan chain associated with λ . Clearly, α can be chosen such that

$$[v_1 + \alpha w_1, v_m + \alpha w_m] = \alpha [w_1, v_m] + \overline{\alpha} [v_1, w_m] = \alpha \overline{p'(\lambda)}^{m-1} \overline{[v_1, w_m]} + \overline{\alpha} [v_1, w_m] \neq 0$$

(For example, choose $\alpha = 1$ if $[v_1, w_m] \neq -\overline{p'(\lambda)}^{m-1} \overline{[v_1, w_m]}$ and $\alpha = i$ else.) But then $\operatorname{Span}(v_1 + \alpha w_1, \ldots, v_m + \alpha w_m)$ is nondegenerate by Proposition 3.3 in contrast to the indecomposability of X. Thus, case (ii) does not occur in the case of Hermitian H.

Next, consider the case that $H^T = \varepsilon H$, where $\varepsilon = \pm 1$. Repeating the argument just made with $\alpha = 1$, we obtain that $(v_1 + w_1, \ldots, v_m + w_m)$ is a Jordan chain associated with λ satisfying

$$[v_1 + w_1, v_m + w_m] = (1 + \varepsilon p'(\lambda)^{m-1})[v_1, w_m]$$

which is nonzero unless $\varepsilon p'(\lambda)^{m-1} = -1$. Thus, case (ii) only occurs in the case that $\varepsilon p'(\lambda)^{m-1} = -1$, because otherwise X would be H-decomposable.

Assume that the Jordan chains (v_1, \ldots, v_m) and (w_1, \ldots, w_m) associated with λ and $\mu = p(\lambda)$, respectively, are chosen in such a way that

$$[v_m, v_j] = 0 = [w_m, w_j]$$

for j = 1, ..., k, where k is maximal. Then $k \ge 1$ because $[v_m, v_1] = 0 = [w_m, w_1]$. Let $\mathcal{V} = \operatorname{Span}(v_1, \ldots, v_m)$ and $\mathcal{W} = \operatorname{Span}(w_1, \ldots, w_m)$. Clearly, \mathcal{V} and \mathcal{W} are H-neutral if and only if k = m. Assume k < m. Then $[v_m, v_{k+1}] \ne 0$ or $[w_m, w_{k+1}] \ne 0$. Without loss of generality, we may assume that $[v_m, v_{k+1}] \ne 0$. Then by condition a) in Proposition 3.1, we have that

$$[v_m, v_{k+1}] = \varepsilon[v_{k+1}, v_m] = \varepsilon p'(\lambda)^{m-k-1}[v_m, v_{k+1}],$$

which implies $\varepsilon p'(\lambda)^{m-k-1} = 1$. Set

$$c := -\frac{[v_m, v_{k+1}]}{2[v_m, w_1]} \quad \text{and} \quad \tilde{v}_j := \begin{cases} v_j & \text{for } j \le k \\ v_j + cw_{j-k} & \text{for } j > k \end{cases}$$

Then $(\tilde{v}_1, \ldots, \tilde{v}_m)$ is a Jordan chain for X associated with λ and

$$[\tilde{v}_m, \tilde{v}_j] = [v_m, v_j] + c[w_{m-k}, v_j] = 0$$

for j = 1, ..., k because of $m - k + j \le m$ and condition b) in Proposition 3.1. On the other hand, we obtain from

$$[w_{m-k}, v_{k+1}] = \varepsilon[v_{k+1}, w_{m-k}] = \varepsilon p'(\lambda)^{m-k-1}[v_m, w_1] = [v_m, w_1]$$

and $[w_{m-k}, w_1] = 0$ that

$$[\tilde{v}_m, \tilde{v}_{k+1}] = [v_m, v_{k+1}] + c[v_m, w_1] + c[w_{m-k}, v_{k+1}] + c^2[w_{m-k}, w_1] = 0$$

If necessary, an analogous modification of the Jordan chain (w_1, \ldots, w_m) yields a Jordan chain $(\tilde{w}_1, \ldots, \tilde{w}_m)$, where $[\tilde{w}_m, \tilde{w}_j] = 0$ for $j = 1, \ldots, k + 1$. (Note that the vectors $\tilde{v}_1, \ldots, \tilde{v}_m, \tilde{w}_1, \ldots, \tilde{w}_m$ are linearly independent, because the vectors $\tilde{v}_1 = v_1$ and $\tilde{w}_1 = w_1$ are.) This contradicts the maximality assumption on k. Hence k = m, and \mathcal{V} and \mathcal{W} are H-neutral. \Box

Corollary 3.5 Let $X \in \mathbb{C}^{n \times n}$ be an *H*-indecomposable polynomially *H*-normal matrix with *H*-normality polynomial *p*. If there exist two linearly independent eigenvectors of *X*, then n = 2m is even and there exists a nonsingular matrix $P \in \mathbb{F}^{n \times n}$ such that

$$P^{-1}XP = \begin{bmatrix} \mathcal{J}_m(\lambda) & 0\\ 0 & p(\mathcal{J}_m(\lambda))^{\star} \end{bmatrix}, \quad P^THP = \begin{bmatrix} 0 & I_m\\ \varepsilon I_m & 0 \end{bmatrix}$$
(3.1)

where $\varepsilon = 1$ and $\lambda \neq \overline{p(\lambda)}$ in the case of Hermitian H, and $\lambda \neq p(\lambda)$ or $\lambda = p(\lambda)$ and $\varepsilon p'(\lambda)^{m-1} = -1$ in the case that $H^T = \varepsilon H$, where $\varepsilon = \pm 1$.

Proof. By Proposition 3.4, we may assume that, after an appropriate change of bases, X and H have the forms

$$X = \begin{bmatrix} \mathcal{J}_m(\lambda) & 0\\ 0 & \mathcal{J}_m(\mu) \end{bmatrix}, \quad H = \begin{bmatrix} 0 & H_{12}\\ H_{21} & 0 \end{bmatrix}.$$

It is clear that H_{12} is nonsingular and $H_{21} = \varepsilon H_{12}^{\star}$, where ε and λ satisfy the conditions in the statement of the corollary. Hence, setting $P = I_m \oplus H_{12}^{-1}$, we obtain using $X^{\star} = p(X)$ that $P^{-1}XP$ and P^*HP have the forms (3.1). \Box

4 Transforming upper triangular Toeplitz matrices

In this section, we will collect some technical results that will be used in the following section for the reduction of polynomially *H*-normal matrices towards canonical form. We include the real case her, i.e., \mathbb{F} may be either \mathbb{C} or \mathbb{R} . Let us start with a nilpotent Jordan block $\mathcal{J}_n(0)$. If *H* is such that $\mathcal{J}_n(0)$ is polynomially *H*-normal with *H*-normality polynomial *p*, then $\mathcal{J}_n(0)^*H = \mathcal{J}_n(0)^TH = Hp(\mathcal{J}_n(0))$ or, equivalently,

$$(R_nH)^{-1}\mathcal{J}_n(0)R_nH = p\Big(\mathcal{J}_n(0)\Big)$$

which implies that the similarity transformation with $R_n H$ transforms $\mathcal{J}_n(0)$ to an upper triangular Toeplitz matrix. (Here, we used that $R_n \mathcal{J}_n(0)R_n = \mathcal{J}_n(0)^T$ or, more generally, $R_n T R_n = T^T$ for any Topelitz matrix $T \in \mathbb{F}^{n \times n}$.) In this section, we will focus on transformation matrices like $R_n H$ and analyze their structure. It is well known that a matrix T commutes with $\mathcal{J}_n(0)$ if and only if T is an upper triangular Toeplitz matrix, see [5]. These matrices will play an important role in the following and we use the following notation for them: for $a_0, \ldots, a_{n-1} \in \mathbb{C}$ we denote

$$T(a_0,\ldots,a_{n-1}) = \begin{bmatrix} a_0 & a_1 & \ldots & a_{n-1} \\ 0 & a_0 & \ddots & \vdots \\ 0 & 0 & \ddots & a_1 \\ 0 & 0 & 0 & a_0 \end{bmatrix}.$$

As a general convention, we interprete a matrix denoted by $T(a_0, a_1, a_2, \ldots, a_{n-1})$ as the scalar a_0 if n = 1, as $T(a_0, a_1)$ if n = 2 and as $T(a_0, a_1, a_2)$ if n = 3. Moreover, we denote

 $\mathcal{T}(n)$: set of all $n \times n$ upper triangular Toeplitz matrices $\mathcal{T}_k(n)$: set of all $n \times n$ upper triangular Toeplitz matrices $T(a_0, a_1, \dots, a_{n-1})$, where $a_0 = \dots = a_{k-1} = 0, a_k \neq 0$.

In particular, $\mathcal{T}_1(n)$ consists of all upper triangular Toeplitz matrices that are similar to the Jordan block $\mathcal{J}_n(0)$. This means that for $a_1, \ldots, a_{n-1} \in \mathbb{F}$, $a_1 \neq 0$, there exists a nonsingular matrix Q such that $Q^{-1}\mathcal{J}_n(0)Q = T(0, a_1, \ldots, a_{n-1})$. The set of all transformations of this form will be denoted by $\mathcal{G}(n)$, i.e.,

$$\mathcal{G}(n) = \{ Q \in \mathbb{F}^{n \times n} \, | \, Q^{-1} \mathcal{J}_n(0) Q \in \mathcal{T}_1(n) \}.$$

Proposition 4.1 The set $\mathcal{G}(n)$ is a group. Moreover, if $Q \in \mathcal{G}(n)$, then $R_n Q^* R_n \in \mathcal{G}(n)$ and $R_n Q^T R_n \in \mathcal{G}(n)$.

Proof. Clearly, $\mathcal{G}(n)$ is closed under matrix multiplication, because elements of $\mathcal{T}_1(n)$ are just sums of powers of $\mathcal{J}_n(0)$. Let $Q \in \mathcal{G}(n)$, that is, $T := Q^{-1}\mathcal{J}_n(0)Q \in \mathcal{T}_1(n)$. We show by induction on k that $Q\mathcal{J}_n(0)^k Q^{-1} \in \mathcal{T}_k(n)$ for $k = n - 1, \ldots, 1$. Then the statement for k = 1 implies $Q^{-1} \in \mathcal{G}(n)$. First, let k = n - 1. Then

$$Q^{-1}\mathcal{J}_n(0)^{n-1}Q = T^{n-1} = \alpha \mathcal{J}_n(0)^{n-1}$$

for some $\alpha \in \mathbb{F} \setminus \{0\}$, because $T^{n-1} \in \mathcal{T}_{n-1}(n)$. This implies $Q\mathcal{J}_n(0)^{n-1}Q^{-1} = \frac{1}{\alpha}\mathcal{J}_n(0)^{n-1}$. Next, let k < n-1. Then

$$Q^{-1}\mathcal{J}_n(0)^k Q = T^k = \sum_{j=k}^{n-1} \beta_j \mathcal{J}_n(0)^j$$

for some $\beta_k, \ldots, \beta_{n-1} \in \mathbb{F}$, where $\beta_k \neq 0$. The induction hypothesis for $k+1, \ldots, n-1$ implies

$$Q\mathcal{J}_n(0)^k Q^{-1} = \frac{1}{\beta_k} \left(\mathcal{J}_n(0)^k - \underbrace{\sum_{j=k+1}^{n-1} \beta_j \mathcal{J}_n(0)^j}_{\in \mathcal{T}_{k+1}} \right) \in \mathcal{T}_k(n)$$

which concludes the induction proof. Hence, $\mathcal{G}(n)$ is a group. For the remainder of the proof, let $Q \in \mathcal{G}(n)$ be such that

$$Q^{-1}\mathcal{J}_n(0)Q = T(0, a_1, \dots, a_{n-1}).$$

Then noting that $R_n T^* R_n = \overline{T}$ for any $T \in \mathcal{T}(n)$, we obtain that

$$(R_n Q^{-*} R_n)^{-1} \mathcal{J}_n(0) (R_n Q^{-*} R_n) = (R_n Q^* R_n) (R_n \mathcal{J}_n(0)^T R_n) (R_n Q^{-*} R_n) = R_n Q^* \mathcal{J}_n(0)^T Q^{-*} R_n = R_n (Q^{-1} \mathcal{J}_n(0) Q)^* R_n = R_n T(0, a_1, \dots, a_{n-1})^* R_n = T(0, \overline{a_1}, \dots, \overline{a_{n-1}}).$$

Thus, $R_n Q^{-*} R_n \in \mathcal{G}(n)$ and since $\mathcal{G}(n)$ is a group, we also have $R_n Q^* R_n \in \mathcal{G}(n)$. The proof for $R_n Q^T R_n \in \mathcal{G}(n)$ is analogous. \Box

What do the elements of $\mathcal{G}(n)$ look like? The answer is given in a more general sense in the next result.

Proposition 4.2 Let $a_1, \ldots, a_{n-1} \in \mathbb{F}$, $a_1 \neq 0$, let $T = T(0, a_1, \ldots, a_{n-1}) \in \mathcal{T}_1(n)$, and let $p \geq n$. Then for any $q \in \mathbb{F}^n$, the matrix $\tilde{Q} = (q_{ij}) \in \mathbb{F}^{p \times n}$ given by

$$\tilde{Q} = {n \atop p-n} \begin{bmatrix} Q \\ 0 \end{bmatrix}, \quad Q = \begin{bmatrix} q^T \\ q^T T \\ \vdots \\ q^T T^{n-1} \end{bmatrix}$$
(4.1)

satisfies

$$\mathcal{J}_p(0)\tilde{Q} = \tilde{Q}T. \tag{4.2}$$

On the other hand, any matrix \tilde{Q} satisfying (4.2) is uniquely determined by its first row, say q^T , and has the form (4.1). In particular, Q is upper triangular, and for k = 1, ..., n, l = 0, ..., n - k, we obtain that

$$q_{kk} = a_1^{k-1} q_{11}; (4.3)$$

$$q_{k,k+l} = \sum_{i=1}^{i+1} a_i q_{k-1,k+l-i};$$
(4.4)

$$q_{k,k+l} = (k-1)a_1^{k-2}a_{l+1}q_{11} + a_1^{k-1}q_{1,l+1} + f_{kl}(a_1,\ldots,a_l,q_{11},\ldots,q_{1l}), \qquad (4.5)$$

where $f_{kl} \in \mathbb{F}$ depends on $a_1, \ldots, a_l, q_{11}, \ldots, q_{1l}$, but not on a_{l+1} or $q_{1,l+1}$, and where $a_n := 0$.

Proof. It is well known (see, e.g., [5] chapter VIII, §1) that the solutions X of the equation $\mathcal{J}_p(0)X = XT$ form a vector space of dimension n. A straight forward computation shows that any Q of the form (4.1) is indeed a solution to $\mathcal{J}_p(0)X = XT$. Thus, Q is uniquely determined by the n entries of the first row q^T and we immediately obtain the identities (4.3) and (4.4) by comparing the two sides in (4.1). We will now prove

identity (4.5) by induction on k. If k = 1, then (4.5) is trivially satisfied with $f_{1l} = 0$ for $l = 0, \ldots, n-k$. If k > 1 and $l \in \{0, \ldots, n-k-1\}$, then (4.4) implies

$$q_{k+1,k+1+l} = \sum_{j=1}^{l+1} a_j q_{k,k+l-j+1} = a_{l+1} q_{kk} + a_1 q_{k,k+l} + \sum_{j=2}^{l} a_j q_{k,k+l-j+1}.$$
 (4.6)

By the induction hypothesis, we obtain that $q_{k,k+l-j+1}$ does neither depend on a_{l+1} nor on $q_{1,l+1}$ for $j = 2, \ldots, l$. Moreover, using (4.3) and the induction hypothesis for $q_{k,k+l}$, we obtain that

$$\begin{aligned} q_{k+1,k+1+l} &= a_{l+1}q_{kk} + a_1q_{k,k+l} + \widetilde{f}_{kl} \\ &= a_1^{k-1}a_{l+1}q_{11} + a_1\left((k-1)a_1^{k-2}a_{l+1}q_{11} + a_1^{k-1}q_{1,l+1} + f_{kl}\right) + \widetilde{f}_{kl} \\ &= ka_1^{k-1}a_{l+1}q_{11} + a_1^kq_{1,l+1} + f_{k+1,l}, \end{aligned}$$

where $\tilde{f}_{kl} \in \mathbb{F}$ and $f_{k+1,l} = \tilde{f}_{kl} + a_1 f_{kl}$ may depend on $a_1, \ldots, a_l, q_{11}, \ldots, q_{1l}$, but do neither depend on a_{l+1} nor on $q_{1,l+1}$. This concludes the proof. \Box

Example 4.3 If n = p = 4, then any $Q \in \mathbb{F}^{4 \times 4}$ satisfying $\mathcal{J}_n(0)Q = QT(0, a_1, a_2, a_3)$ has the form

$$Q = \begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ 0 & a_1q_{11} & a_2q_{11} + a_1q_{12} & a_3q_{11} + a_2q_{12} + a_1q_{13} \\ 0 & 0 & a_1^2q_{11} & 2a_1a_2q_{11} + a_1^2q_{12} \\ 0 & 0 & 0 & a_1^3q_{11} \end{bmatrix}$$

for some $q_{11}, q_{12}, q_{13}, q_{14} \in \mathbb{F}$.

Proposition 4.4 Let $n \ge 2$ and let H be such that $R_n H \in \mathcal{G}(n)$, i.e., there exists a matrix $T := T(0, a_1, \ldots, a_n) \in \mathcal{T}_1(n)$ such that $\mathcal{J}_n(0)^T H = HT$.

- 1. If H is symmetric, then $a_1 = 1$ if n is even, or $a_1 = \pm 1$ if n is odd.
- 2. If H is skew-symmetric, then n is even and $a_1 = -1$.
- 3. If H is Hermitian, then $a_1 = \frac{h_{\nu+1,\nu}^2}{|h_{\nu+1,\nu}|^2}$ if $n = 2\nu$ is even or $a_1 = \pm \frac{h_{\nu+2,\nu}^2}{|h_{\nu+2,\nu}|^2}$ if $n = 2\nu + 1$ is odd.

If one of the conditions 1)-3) is satisfied and if, in addition, the last row of H is a multiple of the first unit vector e_1^T , then $a_2 = \cdots = a_{n-1} = 0$ and H is anti-diagonal.

Proof. Let $M = R_n H = (m_{ij}) = (h_{n+1-i,j})$. Then

$$\mathcal{J}_n(0)M = R_n(R_n\mathcal{J}_n(0)R_n)H = R_n\mathcal{J}_n(0)^T H = MT$$

and M is upper triangular by Proposition 4.2. Since M is nonsingular, we have furthermore that $m_{11} \neq 0$. First, let $n = 2\nu$ be even. Then Proposition 4.2 implies that

$$m_{\nu\nu} = \begin{cases} m_{\nu+1,\nu+1} = a_1 m_{\nu\nu}, & \text{if } H \text{ is symmetric;} \\ -m_{\nu+1,\nu+1} = -a_1 m_{\nu\nu}, & \text{if } H \text{ is skew-symmetric;} \\ \overline{m_{\nu+1,\nu+1}} = \overline{a_1} \overline{m_{\nu\nu}}, & \text{if } H \text{ is Hermitian.} \end{cases}$$

Thus, $a_1 = 1$ if H is symmetric, $a_1 = -1$ if H is skew-symmetric, and $a_1 = \frac{m_{\nu\nu}^2}{|m_{\nu\nu}|^2}$ if H is Hermitian. On the other hand, if $n = 2\nu + 1$ is odd, then Proposition 4.2 implies that

$$m_{\nu\nu} = \begin{cases} m_{\nu+2,\nu+2} = a_1^2 m_{\nu\nu}, & \text{if } H \text{ is symmetric;} \\ \overline{m_{\nu+2,\nu+2}} = \overline{a_1}^2 \overline{m_{\nu\nu}}, & \text{if } H \text{ is Hermitian.} \end{cases}$$

Thus, $a_1 = \pm 1$ if H is symmetric and $a_1 = \pm \frac{m_{\nu,\nu}^2}{|m_{\nu,\nu}|^2}$ if H is Hermitian. (The case that H is skew-symmetric does not appear, because H is assumed to be invertible.)

Finally, assume that the last row of H is a multiple of the first unit vector, that is, $m_{12} = \cdots = m_{1n} = 0$. Then Proposition 4.2 implies that M has the form

$$M = m_{11} \begin{bmatrix} e_1^T \\ e_1^T T \\ \vdots \\ e_1^T T^{n-1} \end{bmatrix},$$

i.e., the rows of M are just the first rows of I, T, \ldots, T^{n-1} multiplied by m_{11} . Since each T^k is an upper triangular Toeplitz matrix, it is completely determined by its first row and we immediately obtain that

$$T^{k} = \frac{m_{k+1,k+1}}{m_{11}} \mathcal{J}_{n}(0)^{k} + \dots + \frac{m_{k+1,n}}{m_{11}} \mathcal{J}_{n}(0)^{n-1}, \quad k = 1, \dots, n-1.$$
(4.7)

Assume that not all a_j , j = 2, ..., n - 1 are zero. Let $l \in \{2, ..., n - 1\}$ be the smallest index such that $a_l \neq 0$, i.e.,

$$T = a_1 \mathcal{J}_n(0) + a_l \mathcal{J}_n(0)^l + \dots + a_{n-1} \mathcal{J}_n(0)^{n-1}.$$
(4.8)

By (4.7), $\frac{m_{n-l+1,n}}{m_{11}}$ is the coefficient of $\mathcal{J}_n(0)^{n-1}$ in T^{n-l} . On the other hand, using (4.8) to compute T^{n-l} , we obtain that

$$T^{n-l} = a_1^{n-l} \mathcal{J}_n(0)^{n-l} + (n-l)a_1^{n-l-1}a_l \mathcal{J}_n(0)^{n-1}.$$

This implies $m_{n-l+1,n} = m_{11}(n-l)a_1^{n-l-1}a_l$. However, we have that $m_{n-l-1,n} = \pm m_{1l}$ if H is (skew-)symmetric or $m_{n-l-1,n} = \pm \overline{m_{1l}}$ if H is Hermitian, and we have that $m_{1l} = 0$. This implies $a_l = 0$ in contradiction to the assumption. Thus, $a_2 = \cdots = a_{n-1} = 0$. In particular, T is just a scalar multiple of a Jordan block and it follows from (4.7) that $m_{k+1,j} = 0$ for $j = k + 2, \ldots, n, k = 1, \ldots, n-1$. Thus, M is diagonal, i.e., H is anti-diagonal. \Box

5 *H*-normal matrices similar to a Jordan block

As an application of the results in Section 4, we obtain a canonical form for H-normal matrices that are similar to a Jordan block. Since the reduction process in the real case is similar to the one in the complex case, we include the real case here, i.e., \mathbb{F} may be either \mathbb{C} or \mathbb{R} . For the case of Hermitian H, the reduction technique is based on ideas that are similar to the ideas used in [9]. In particular, the canonical form (5.1) and (5.2) in Theorem 5.2 could be derived starting with Theorem 1 and 2 in [9]. However, an independent proof is given here in order to make the paper self-contained and to be able to emphasize the differences in the cases of Hermitian H, (real or complex) symmetric H, and (real or complex) skew-symmetric H. We start with a remark that can be verified straight forward.

Remark 5.1 Let $A = (a_{ij}), B = (b_{ij}), C = (c_{ij})$ be $n \times n$ matrices and $D = (d_{ij}) = ABC$.

- 1) $R_n A = (a_{n+1-i,j})$ and $A R_n = (a_{i,n+1-j})$.
- 2) If A, B, and C are upper triangular, then for l, k = 1, ..., n we have

$$d_{lk} = \sum_{i=l}^{k} \sum_{j=l}^{i} a_{lj} b_{ji} c_{ik}$$

Theorem 5.2 Let $H \in \mathbb{F}^{n \times n}$ be nonsingular and Hermitian or (skew-)symmetric, and let $A \in \mathbb{F}^{n \times n}$ be polynomially H-normal with H-normality polynomial $p \in \mathbb{F}[t]$. Furthermore, let A be similar to the Jordan block $\mathcal{J}_n(\lambda)$. Then $p(\lambda) = \overline{\lambda}$ and $|p'(\lambda)| = 1$ if H is Hermitian, or $p(\lambda) = \lambda$ and $p'(\lambda) = \pm 1$ if H is symmetric or skew-symmetric. Moreover, one of the following cases applies:

1) if H is Hermitian, then there exists a nonsingular matrix $Q \in \mathbb{C}^{n \times n}$ such that

$$Q^{-1}AQ = \lambda I_n + e^{i\theta} T(0, 1, ir_2, \dots, ir_{n-1})$$
(5.1)

$$Q^*HQ = \varepsilon R_n, \tag{5.2}$$

where the parameter $\varepsilon = \pm 1$ is uniquely determined, and the parameters $\theta \in [0, \pi)$ and $r_2, \ldots, r_n \in \mathbb{R}$ are uniquely determined by λ and the coefficients of the polynomial p and can be computed from the identity

$$\overline{\lambda}I_n + e^{-i\theta}T(0, 1, -ir_2, \dots, -ir_{n-1}) = p\Big(\lambda I_n + e^{i\theta}T(\lambda, 1, ir_2, \dots, ir_{n-1})\Big);$$

2) if $H^T = \pm H$ and $p'(\lambda) = 1$, then H is symmetric and there exists a nonsingular matrix Q such that

$$Q^{-1}AQ = \mathcal{J}_n(\lambda), \quad Q^T HQ = \varepsilon R_n, \tag{5.3}$$

where ε is uniquely determined and $\varepsilon = 1$ if $\mathbb{F} = \mathbb{C}$ and $\varepsilon = \pm 1$ if $\mathbb{F} = \mathbb{R}$;

3) if $H^T = \pm H$ and if $p'(\lambda) = -1$, then H is symmetric if n is odd and H is skewsymmetric if n is even; moreover there exists a nonsingular matrix Q such that

$$Q^{-1}AQ = T(\lambda, 1, a_2, a_3, \dots, a_{n-1}) = T(\lambda, 1, a_2, 0, a_4, 0, \dots)$$
(5.4)

$$Q^T HQ = \varepsilon \Sigma_n,$$
(5.5)

where $\varepsilon = is$ uniquely determined and $\varepsilon = 1$ if $\mathbb{F} = \mathbb{C}$ or $\varepsilon = \pm 1$ if $\mathbb{F} = \mathbb{R}$, and where $a_j = 0$ for odd j and the parameters a_j for even j are uniquely determined by λ and the coefficients of the polynomial p and can be computed from the identity $T(\lambda, -1, a_2, 0, a_4, 0, ...) = p(T(\lambda, 1, a_2, 0, a_4, 0, ...)).$

Proof. Without loss of generality, we may assume that $A = \mathcal{J}_n(\lambda)$. From the identity $A^* = p(A)$, we immediately obtain that $p(\lambda) = \overline{\lambda}$ in the case of Hermitian H and $p(\lambda) = \lambda$ in the case of (skew-)symmetric H. Without loss of generality, we may assume $\lambda = 0$. Indeed, it follows from Proposition 2.4.3 that $Y = A - \lambda I_n = \mathcal{J}_n(0)$ is polynomially H-normal with H-normality polynomial p_0 , where p_0 is given in (2.4), because of

$$H^{-1}Y^*H = H^{-1}(X^* - \overline{\lambda}I_n)H = p\left(\mathcal{J}_n(\lambda)\right) - \overline{\lambda}I_n = p_0\left(\mathcal{J}_n(0)\right) = p_0(Y)$$

in the case of Hermitian H or

$$H^{-1}Y^{T}H = H^{-1}(X^{T} - \lambda I_{n})H = p\left(\mathcal{J}_{n}(\lambda)\right) - \lambda I_{n} = p_{0}\left(\mathcal{J}_{n}(0)\right) = p_{0}(Y)$$

in the case of (skew-)symmetric H. (Recall that by (2.4), the coefficients of p_0 depend on λ and on the coefficients of p.)

Thus, let $\lambda = 0$ and $p(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_{n-1} t^{n-1}$. Then the fact that A is polynomially *H*-normal implies

$$\mathcal{J}_n(0)^T H = Hp\Big(\mathcal{J}_n(0)\Big) = HT(\alpha_0, \dots, \alpha_n).$$
(5.6)

Clearly, we have $\alpha_0 = 0$. Moreover, (5.6) implies $\mathcal{J}_n(0)R_nH = R_nHT(\alpha_0, \ldots, \alpha_n)$, that is, $R_nH \in \mathcal{G}(n)$ and hence, R_nH is upper triangular. The main idea is now to simplify H by applying a congruence transformation on H with a matrix $Q = (q_{ij}) \in \mathcal{G}(n)$. By Proposition 4.2, the matrix Q satisfying $Q^{-1}\mathcal{J}_n(0)Q = T(0, a_1, \ldots, a_{n-1})$ is uniquely determined by the parameters $q_{11}, \ldots, q_{1n}, a_1, \ldots, a_{n-1}$. It is our aim to choose these parameters in a way such that the transformed matrices A and H become as simple as possible. We will consider two different cases.

Case (1): *H* is Hermitian. Then Proposition 4.4 implies that $|\alpha_1| = 1$. Consider the matrix $M := (m_{ij}) := R_n Q^* H Q = (R_n Q^* R_n)(R_n H)Q$. Then by Remark 5.1, the elements of the first row of *M* satisfy

$$m_{1k} = \sum_{i=1}^{k} \sum_{j=1}^{i} \overline{q_{n-j+1,n}} h_{n-j+1,i} q_{ik}, \qquad k = 1, \dots, n.$$
(5.7)

By (4.5), the only summands in (5.7) that possibly depend on a_k or q_{1k} (where $a_n := 0$) are $\overline{q_{nn}} h_{n1}q_{1k}$ and $\overline{q_{n-k+1,n}} h_{n-k+1,k}q_{kk}$. Proposition (4.3) implies that $h_{n-k+1,k} = \alpha_1^{k-1}h_{n1}$ and $q_{kk} = a_1^{k-1}q_{11}$. Using this and (4.5), we obtain that m_{1k} has the form

$$m_{1k} = \overline{a_1^{n-1}} \,\overline{q_{11}} \, h_{n1} q_{1k} + \left((n-k) \overline{a_1^{n-k-1}} \,\overline{a_k} \,\overline{q_{11}} + \overline{a_1^{n-k}} \,\overline{q_{1k}} \right) \alpha_1^{k-1} h_{n1} a_1^{k-1} q_{11} + \mathcal{S}_k, \tag{5.8}$$

where $S_k = S_k(a_1, \ldots, a_{k-1}, q_{11}, \ldots, q_{1,k-1})$ does neither depend on a_k nor on q_{1k} . Now choose $a_1 = e^{i\theta}$ to be the square root of $\overline{\alpha_1}$ with argument $\theta \in [0, \Pi)$. (Recall that $|\alpha_1| = 1$.) Then $\alpha_1 = \overline{a_1}^2$ and (5.8) becomes

$$m_{1k} = \overline{a_1^{n-1}} \overline{q_{11}} h_{n1} q_{1k} + \left((n-k) \overline{a_1^{n-2}} \overline{a_k} \overline{q_{11}} + \overline{a_1^{n-1}} \overline{q_{1k}} \right) q_{11} h_{n1} + \mathcal{S}_k,$$

$$= \overline{a_1^{n-1}} h_{n1} \left(\overline{q_{11}} q_{1k} + \overline{q_{1k}} q_{11} + (n-k) a_1 \overline{a_k} |q_{11}|^2 + \frac{a_1^{n-1}}{h_{n1}} \mathcal{S}_k \right).$$
(5.9)

Note that $\overline{a_1^{n-1}} h_{n1}$ is real. Indeed,

$$\overline{\overline{a_1^{n-1}} h_{n1}} = a_1^{n-1} \overline{h_{n1}} = a_1^{n-1} h_{1n} = a_1^{n-1} \alpha_1^{n-1} h_{n1} = \overline{a_1^{n-1}} h_{n1}$$

Then we set $q_{11} = 1/\sqrt{|\overline{a_1^{n-1}} h_{n1}|}$ and we successively choose

$$a_{k} = \frac{1}{(n-k)q_{11}^{2}} \operatorname{Im}\left(\frac{a_{1}^{n-1}}{h_{n1}} \mathcal{S}_{k}\right) i e^{i\theta}, \quad q_{1k} = \frac{1}{2q_{11}} \operatorname{Re}\left(\frac{a_{1}^{n-1}}{h_{n1}} \mathcal{S}_{k}\right), \quad k = 2, \dots, n-1$$

which implies $m_{1k} = 0$ for k = 2, ..., n - 1. Observe that (5.9) for k = n takes the form

$$m_{1n} = \overline{a_1^{n-1}} h_{n1} q_{11} \left(q_{1n} + \overline{q_{1n}} \right) + \mathcal{S}_n.$$

Since $\overline{a_1^{n-1}} h_{n1}$, q_{11} , and $m_{1n} = h_{nn}$ are real, so must be S_n . Then choosing

$$q_{1n} = -\frac{1}{2q_{11}} \frac{a_1^{n-1}}{h_{n1}} \mathcal{S}_n$$

gives $m_{1n} = 0$. Since $R_n H, Q \in \mathcal{G}(n)$, we obtain that $R_n Q^* R_n \in \mathcal{G}(n)$ and then also $M = R_n Q^* H Q \in \mathcal{G}(n)$. But then, Proposition 4.4 implies that $Q^* H Q$ is anti-diagonal. Observe that the anti-diagonal elements of $\widetilde{H} := (\widetilde{h}_{ij}) := Q^* H Q$ have the forms

$$\widetilde{h}_{n+1-k,k} = m_{kk} = \overline{q_{n+1-k,n+1-k}} h_{n+1-k,k} q_{kk} = \overline{a_1^{n-k} q_{11}} \alpha_1^{k-1} h_{n1} a_1^{k-1} q_{11} = \frac{a_1^{n-1} h_{n1}}{|\overline{a_1^{n-1}} h_{n1}|} = \varepsilon,$$

where $\varepsilon = 1$ if $\overline{a_1^{n-1}} h_{n1} > 0$ and $\varepsilon = -1$ else. (We have $h_{n1} \neq 0$, because of the nonsingularity of H.) Thus, $Q^*HQ = \varepsilon R_n$. By construction, we have that

$$Q^{-1}AQ = T(0, a_1, \dots, a_{n-1}) = e^{i\theta}T(0, 1, ir_2, \dots, ir_{n-1}),$$

where $r_2, \ldots, r_{n-1} \in \mathbb{R}$. It remains to show uniqueness of these forms. First, we show that the parameters $r_2, \ldots, r_{n-1} \in \mathbb{R}$ and $\theta \in [0, \pi)$ are uniquely determined by the coefficients of the polynomial p. Indeed, since $p(t) = \alpha_1 t + \alpha_2 t^2 + \cdots + \alpha_{n-1} t^{n-1}$, we obtain from the special structure of $\widetilde{A} := Q^{-1}AQ$ that

$$p(A) = \alpha_1 e^{i\theta} T(0, 1, ir_2, \dots, ir_{n-1}) + T(0, 0, s_2, s_3, \dots, s_{n-1}),$$

where s_j may depend on $\alpha_2, \ldots, \alpha_j, r_2, \ldots, r_{j-1}$, but it does not depend on r_j . A straight forward computation shows $\widetilde{H}^{-1}\widetilde{A}^*\widetilde{H} = e^{-i\theta}T(0, 1, -ir_2, \ldots, -ir_{n-1})$, because $\widetilde{H} = \varepsilon R_n$. Then we obtain from the identity $p(\widetilde{A}) = \widetilde{H}^{-1}\widetilde{A}^*\widetilde{H}$ that

$$\alpha_1 e^{i\theta} T(0, 1, ir_2 + s_2, \dots, ir_{n_1} + s_{n_1}) = e^{-i\theta} T(0, 1, -ir_2, \dots, -ir_{n-1}).$$
(5.10)

Thus, $\theta \in [0, \pi)$ is uniquely determined by the identity $\alpha_1 e^{i\theta} = e^{-i\theta}$ and the parameters r_j can be successively obtained as the unique solutions of $2ir_j = -s_j$, because s_j only depends on r_i for i < j. Thus, the parameters r_2, \ldots, r_{n-1} are uniquely determined by the coefficients of p. Concerning the parameter ε , assume that $Z^{-1}\tilde{A}Z = \tilde{A}$. Since \tilde{A} is an upper triangular Toeplitz matrix with nonzero superdiagonal element a_1 , it follows easily that $Z = (z_{ij})$ must be an upper triangular Toeplitz matrix as well. Then considering $\hat{H} := Z^*\tilde{H}Z = R_n(R_nZ^*R_n)R_n\tilde{H}Z$, it follows by Remark 5.1 that the (1, n)-entry \hat{h}_{1n} of \hat{H} has the form

$$\hat{h}_{1n} = \overline{z_{11}} h_{1n} z_{nn} = \varepsilon |z_{11}|^2.$$

Thus, we can never change the sign of ε with a transformation that leaves A invariant. This proves uniqueness of the parameter ε and concludes the proof of Case (1).

Case (2): *H* is symmetric or skew-symmetric. Then Proposition 4.4 implies $\alpha_1 = \pm 1$. Consider the matrix $M := (m_{ij}) := R_n Q^T H Q$. Then a calculation analogous to the calculation that lead us to (5.8) yields

$$m_{1k} = a_1^{n-1} q_{11} h_{n1} q_{1k} + \left((n-k) a_1^{n-k-1} a_k q_{11} + a_1^{n-k} q_{1k} \right) \alpha_1^{k-1} h_{n1} a_1^{k-1} q_{11} + \mathcal{S}_k, \tag{5.11}$$

where $S_k = S_k(a_1, \ldots, a_{k-1}, q_{11}, \ldots, q_{1,k-1})$ does neither depend on a_k nor on q_{1k} . We will distinguish two subcases.

Subcase (2a): $\alpha_1 = 1$.

In this case H is necessarily symmetric by Proposition 4.4 and (5.11) becomes

$$m_{1k} = 2a_1^{n-1}q_{11}h_{n1}q_{1k} + (n-k)a_1^{n-2}a_kq_{11}^2h_{n1} + \mathcal{S}_k,$$
(5.12)

Set $a_2 = \cdots = a_{n-1} = 0$ and $q_{11} = 1/\sqrt{h_{11}}$ if $\mathbb{F} = \mathbb{C}$, or $q_{11} = 1/\sqrt{|h_{11}|}$ if $\mathbb{F} = \mathbb{R}$, respectively. Then successively define

$$q_{1k} = \frac{-\mathcal{S}_k}{2a_1^{n-1}q_{11}h_{n1}}$$

for k = 2, ..., n. Then $m_{1k} = 0$ and as in Case (1), we conclude that $Q^T H Q$ is antidiagonal. In particular, $Q^T H Q$ and $Q^{-1} A Q$ have the forms (5.3), where $\varepsilon = 1$ if $\mathbb{F} = \mathbb{C}$ or $\varepsilon = h_{11}/|h_{11}| = \pm 1$ if $\mathbb{F} = \mathbb{R}$, respectively. Uniqueness of ε is shown as in Case (1). Subcase (2b): $\alpha_1 = -1$.

By Proposition 4.4, H is symmetric if n is odd and skew-symmetric if n is even. Moreover, (5.11) becomes

$$m_{1k} = a_1^{n-1} q_{11} h_{n1} q_{1k} \left(1 + (-1)^{k-1} \right) + (n-k) a_1^{n-2} a_k q_{11}^2 h_{n1} (-1)^{k-1} + \mathcal{S}_k,$$
(5.13)

Then we set $q_{11} = 1/\sqrt{h_{11}}$ if $\mathbb{F} = \mathbb{C}$, or $q_{11} = 1/\sqrt{|h_{11}|}$ if $\mathbb{F} = \mathbb{R}$, respectively, and then successively

$$q_{1k} := 0, \quad a_k := \frac{S_k}{(n-k)a_1^{n-2}h_{n1}q_{11}^2} \qquad \text{if } k \text{ is even},$$
$$a_k := 0, \quad q_{1k} := \frac{-S_k}{2a_1^{n-1}q_{11}h_{n1}} \qquad \text{if } k \text{ is odd},$$

for k = 2, ..., n - 1, and $q_{1n} := 0$ if n is even or $q_{1n} := -S_n/2a_1^{n-1}q_{11}h_{n1}$ if n is odd. Then we obtain $m_{1k} = 0$ for k = 2, ..., n. (Note that if n is even then $m_{1n} = 0$ follows from the fact that H is skew-symmetric.) Then we conclude as in Case (1) that $\tilde{H} := Q^T H Q$ is antidiagonal. In particular, $Q^T H Q$ and $\tilde{A} := Q^{-1}AQ$ have the forms (5.4) and (5.5), where $\varepsilon = 1$ if $\mathbb{F} = \mathbb{C}$ or $\varepsilon = h_{11}/|h_{11}| = \pm 1$ if $\mathbb{F} = \mathbb{R}$, respectively. Uniqueness of the parameters ε and a_j for even j is shown analogous to Case (1). Indeed, the identity $\tilde{H}^{-1}\tilde{A}^T\tilde{H} = p(\tilde{A})$ now becomes

$$T(0, -1, a_2, 0, a_4, 0, \dots) = T(0, -1, -a_2 + s_2, s_3, -a_4 + s_4, s_5, \dots),$$
(5.14)

where s_j may depend on $\alpha_2, \ldots, \alpha_j$ and a_i for i < j, but it does not depend on a_j . Thus, the parameters a_2, a_4, \ldots can be successively obtained as the unique solutions of the identities $2a_{2j} = s_{2j}$ and, consequently, they are uniquely determined by the coefficients of p. \Box

Remark 5.3 The uniqueness property of Proposition 5.2 is the reason why we transformed the matrix A in Subcase (2b) to the special upper triangular Toeplitz form where every other superdiagonal is zero. Because if $\tilde{A} = T(0, 1, a_2, a_3, \dots, a_{n-1})$, then (5.14) becomes

$$T\left(0,-1,(-1)^{2}a_{2},\ldots,(-1)^{n-1}a_{n-1}\right)=T\left(0,-1,-a_{2}+s_{2},\ldots,-a_{n-1}+s_{n-1}\right).$$

Thus, only the parameters a_j with even index j are determined by s_2, \ldots, s_{n-2} and the parameters a_j with odd index j have to be specified in another way. We did this by setting all of them to zero.

6 The case of Hermitian H

In this section, we present a canonical form for polynomially H-normal matrices for the case that H is Hermitian. Then, we recover from the general result the well-known forms for Hselfadjoint and H-unitary matrices. We do not consider H-skewadjoint matrices, because a matrix $S \in \mathbb{C}^{n \times n}$ is H-skewadjoint if and only if iS is H-selfadjoint and thus, the canonical form for H-skewadjoint matrices is an immediate consequence of the canonical form for H-selfadjoint matrices.

6.1 Canonical forms for polynomially *H*-normal matrices

Theorem 6.1 Let $H \in \mathbb{C}^{n \times n}$ be Hermitian and nonsingular and let $X \in \mathbb{C}^{n \times n}$ be polynomially *H*-normal with *H*-normality polynomial *p*. Then there exists a nonsingular matrix Q such that

$$Q^{-1}XQ = X_1 \oplus \dots \oplus X_p, \quad Q^*HQ = H_1 \oplus \dots \oplus H_p, \tag{6.1}$$

where X_j is H_j -indecomposable and where X_j and H_j have one of the following forms:

i) blocks associated with eigenvalues $\lambda_j \in \mathbb{C}$ satisfying $p(\lambda_j) = \overline{\lambda_j}$:

$$Q^{-1}X_{j}Q = \lambda_{j}I_{n_{j}} + e^{i\theta_{j}}T(0, 1, ir_{j,2}, \dots, ir_{j,n_{j}-1}) \quad and \quad Q^{*}H_{j}Q = \varepsilon_{j}R_{n_{j}}, \tag{6.2}$$

where $n_j \in \mathbb{N}$, $\varepsilon_j = \pm 1$, $\theta_j \in [0, \pi)$, and $r_{j,2}, \ldots, r_{j,n_j-1} \in \mathbb{R}$;

ii) blocks associated with a pair $(\lambda_j, \mu_j) \in \mathbb{C} \times \mathbb{C}$ of eigenvalues, where $\mu_j = \overline{p(\lambda_j)} \neq \lambda_j$, $\overline{p(\mu_j)} = \lambda_j$, and $\operatorname{Re}(\lambda_j) > \operatorname{Re}(\mu_j)$ or $\operatorname{Im}(\lambda_j) > \operatorname{Im}(\mu_j)$ if $\operatorname{Re}(\lambda_j) = \operatorname{Re}(\mu_j)$:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & p\left(\mathcal{J}_{m_j}(\lambda_j)\right)^* \end{bmatrix} \quad and \quad Q^*H_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix}, \quad (6.3)$$

where $m_j \in \mathbb{N}$.

Moreover, the form (6.1) is unique up to the permutation of blocks, and the parameters θ_j , and $r_{j,2}, \ldots, r_{j,n_j-1}$ in (6.2) are uniquely determined by λ_j and the coefficients of p and can be computed from the identity

$$\overline{\lambda_j}I_{n_j} + e^{-i\theta_j}T(0, 1, -ir_{j,2}, \dots, -ir_{j,n_j-1}) = p\Big(\lambda_j I_{n_j} + e^{i\theta_j}T(0, 1, ir_{j,2}, \dots, ir_{j,n_j-1})\Big).$$

Proof. Clearly, X can be decomposed as in (6.1) into blocks X_j that are H_j -indecomposable. Thus, it is sufficient to investigate the case that X is H-indecomposable. Let $\operatorname{Eig}(X)$ be the space of eigenvectors of X. Then Proposition 3.4 implies dim $\operatorname{Eig}(X) \leq 2$. Case (1): dim $\operatorname{Eig}(X) = 1$. Let λ be the eigenvalue of X. In particular, X is similar to the Jordan block $\mathcal{J}_n(\lambda)$ and thus, Theorem 5.2 implies the desired result.

Case (2): dim Eig(\underline{X}) = 2. Then, the result follows directly from Corollary 3.5. In particular, $\lambda \neq \mu = \overline{p(\lambda)}$.

It remains to show uniqueness of the form (6.1). Thus, consider two canonical forms $(Q_1^{-1}XQ_1, Q_1^*HQ_1)$ and $(Q_2^{-1}XQ_2, Q_2^*HQ_2)$ for the pair (X, H). Then the fact that the parameters $r_{j,2}, \ldots, r_{j,n_j-1}$ and θ_j are uniquely determined by λ_j and the coefficients of the polynomial p and the uniqueness of the Jordan canonical form of X imply that, apart from permutations of blocks, these two forms can only differ in the parameters ε_j in blocks of the form (6.2). After eventually having permuted blocks in a suitable way, assume that

$$Q_1^{-1}XQ_1 = X_{11} \oplus \dots \oplus X_{1\ell} \qquad Q_1^*HQ_1 = H_{11} \oplus \dots \oplus H_{1\ell}$$
(6.4)

$$Q_2^{-1}XQ_2 = X_{21} \oplus \dots \oplus X_{2\ell} \qquad Q_2^*HQ_2 = H_{21} \oplus \dots \oplus H_{2\ell}$$
(6.5)

are partitioned conformably such that $X_{1j} = X_{2j}$, for j = 1, ..., l, that each X_{1j} has only one eigenvalue λ_j with $p(\lambda_j) = \overline{\lambda_j}$ for j = 1, ..., l - 1, $X_{1\ell}$ only has eigenvalues λ_k with $p(\lambda_k) \neq \overline{\lambda_k}$, and that the spectra of X_{1i} and X_{1j} are disjoint for $i \neq j, i, j = 1, ..., l$. (Thus, $X_{1\ell} = X_{2\ell}$ contains all blocks of the forms as in (6.3).) Let $P \in \mathbb{C}^{n \times n}$ be such that

$$P^{-1}Q_1^{-1}XQ_1P = Q_2^{-1}XQ_2$$
 and $P^*Q_1^*HQ_1P = Q_2^*HQ_2$.

Then $X_{1j} = X_{2j}$ and the disjointness of spectra of X_{1i} and X_{1j} for $i \neq j$ imply that P is block diagonal with a diagonal block form $P = P_1 \oplus \cdots \oplus P_\ell$ conformable with (6.4). (This follows from the well-known fact that the Sylvester equation AY - YB = 0 has the unique solution Y = 0 if the spectra of A and B are disjoint.) In particular,

$$P_j^{-1}X_{1j}P_j = X_{2j} = X_{1j}$$
 and $P_j^*H_{1j}P_j = H_{2j}$

Hence, it suffices to consider the case that X has only one eigenvalue λ satisfying $p(\lambda) = \lambda$. To this end, assume that

$$\widetilde{X} := Q_1^{-1} X Q_1 = X_{11} \oplus \dots \oplus X_{1k} \qquad \widetilde{H}_1 := Q_1^* H Q_1 = \varepsilon_1 R_{n_1} \oplus \dots \oplus \varepsilon_k R_{n_k} \tag{6.6}$$

$$Q_2^{-1}XQ_2 = X_{21} \oplus \cdots \oplus X_{2k} \qquad H_2 := Q_2^*HQ_2 = \delta_1 R_{n_1} \oplus \cdots \oplus \delta_k R_{n_k}$$
(6.7)

where $X_{1j} = X_{2j} = T(\lambda, e^{i\theta}, a_2, \dots, a_{n_j-1}), \varepsilon_j, \delta_j \in \{-1, +1\}$ for $j = 1, \dots, k$ and, furthermore, $n_1 \geq \dots \geq n_k$. Then all we have to show is that for a fixed size, say n_m , where

$$n_1 \geq \cdots \geq n_{m-1} > n_m = \cdots = n_{m+\ell} > n_{m+\ell+1} \geq \cdots \geq n_k;$$

the tuple of signs $(\varepsilon_m, \ldots, \varepsilon_{m+\ell})$ is a permutation of the tuple of signs $(\delta_m, \ldots, \delta_{m+\ell})$. Let $Q := Q_1^{-1}Q_2$. Then $Q^{-1}\widetilde{X}Q = \widetilde{X}$ and $Q^*\widetilde{H}_1Q = \widetilde{H}_2$. Partition Q conformably with (6.6).

$$Q = \begin{bmatrix} Q_{11} & \dots & Q_{1k} \\ \vdots & \ddots & \vdots \\ Q_{k1} & \dots & Q_{kk} \end{bmatrix}$$

Then the blocks $Q_{i,m+j} \in \mathbb{C}^{n_1 \times n_{m+j}}, j = 0, \ldots, \ell$, have the forms

$$Q_{i,m+j} = \binom{n_m}{n_i - n_m} \begin{bmatrix} \hat{Q}_{i,m+j} \\ 0 \end{bmatrix} \text{ for } n_i \ge n_m,$$

or
$$Q_{i,m+j} = n_i \begin{bmatrix} 0 & \hat{Q}_{i,m+j} \end{bmatrix} \text{ for } n_i < n_m$$

where $\hat{Q}_{i,m+j}$ is upper triangular. Indeed, we have that $X_{1,m+j}Q_{i,m+j} = Q_{i,m+j}X_{2i}$. Since $X_{1,m+j}$ is an upper triangular Toeplitz matrix with nonzero superdiagonal, there exists $P_{m+j} \in \mathcal{G}(n_m)$ such that $P_{m+j}(X_{1,m+j} - \lambda I_{n_m})P_{m+j}^{-1} = \mathcal{J}_{n_m}(0)$. then

$$\mathcal{J}_{n_m}(0)P_{m+j}Q_{i,m+j} = P_{m+j}Q_{i,m+j}X_{2i}$$

and by Proposition 4.2, the matrix $P_{m+j}Q_{i,m+j}$ has the form (4.1). Since P_{m+j} is upper triangular, it follows that $Q_{i,m+j}$ has the desired form (for $n_i \ge n_m$; for $n_i < n_m$ use a corresponding variant of Proposition 4.2). Note that for $i, j = 0, \ldots, \ell$, we have in particular that $X_{1,m+i} = X_{2,m+j}$. Thus, we can choose $P_{m+j} = P_{m+i}$ and we find that $P_{m+j}Q_{m+i,m+j}P_{m+i}^{-1}$ commutes with $\mathcal{J}_{n_m}(0)$. But then, $P_{m+j}Q_{m+i,m+j}P_{m+i}^{-1}$ and also $Q_{m+i,m+j}$ are upper triangular Toeplitz matrices and the diagonal of $Q_{m+i,m+j}$ is constant. Denote the diagonal element of $Q_{m+i,m+j}$ by $q_{m+i,m+j}$. Now, consider the equation $Q^* \tilde{H}_1 Q = \tilde{H}_2$. Then for the block $\delta_{m+j}R_{n_m}$ in \tilde{H}_2 , we obtain the identity

$$\delta_{m+j}R_{n_m} = \sum_{\nu=1}^k \varepsilon_{\nu} Q_{\nu,m+j}^* R_{n_{\nu}} Q_{\nu,m+j}.$$
 (6.8)

Observe that, due to the special structure of the blocks $Q_{\nu,m+j}$, only the summands for $\nu = m, \ldots, m + \ell$ have an influence on the antidiagonal of $\delta_{m+j}R_{n_m}$. Thus, considering the $(n_m, 1)$ -element of the matrix in both sides of (6.8), we obtain that

$$\delta_{m+j} = \sum_{\nu=m}^{m+\ell} \varepsilon_{\nu} \overline{q_{\nu,m+\ell}} \, q_{\nu,m+\ell}$$

for $j = 0, \ldots, \ell$. Then setting

$$\check{Q} := \begin{bmatrix} q_{mm} & \cdots & q_{m+\ell,m} \\ \vdots & \ddots & \vdots \\ q_{m,m+\ell} & \cdots & q_{m+\ell,m+\ell} \end{bmatrix},$$

we obtain that $\operatorname{diag}(\delta_m, \ldots, \delta_{m+\ell}) = \check{Q}^* \operatorname{diag}(\varepsilon_m, \ldots, \varepsilon_{m+\ell})\check{Q}$. But then Sylvester's Law of Inertia implies that $(\varepsilon_m, \ldots, \varepsilon_{m+\ell})$ is a permutation of $(\delta_m, \ldots, \delta_{m+\ell})$. This concludes the proof. \Box

Remark 6.2 Theorem 6.1 can also be derived from the results in [9]. On the other hand, the proof of uniqueness of the parameter ε_j uses the same techniques as does the proof of uniqueness for the case of *H*-selfadjoint *X*. For this case, uniqueness has been shown in various sources, see, e.g., [6, 14]. Here, the proof of uniqueness has been included for the sake of independentness and self-containedness of the paper.

6.2 Canonical forms for *H*-selfadjoint matrices

Theorem 6.3 Let $H \in \mathbb{C}^{n \times n}$ be Hermitian and nonsingular and let $A \in \mathbb{C}^{n \times n}$ be H-selfadjoint. Then there exists a nonsingular matrix Q such that

$$Q^{-1}AQ = A_1 \oplus \dots \oplus A_p, \quad Q^*HQ = H_1 \oplus \dots \oplus H_p, \tag{6.9}$$

where A_j is H_j -indecomposable and where A_j and H_j have one of the following forms:

i) blocks associated with real eigenvalues $\lambda_j \in \mathbb{R}$:

$$Q^{-1}A_jQ = \mathcal{J}_{n_j}(\lambda_j) \quad and \quad Q^*H_jQ = \varepsilon_j R_{n_j}, \tag{6.10}$$

where $n_j \in \mathbb{N}, \ \varepsilon_j = \pm 1;$

ii) blocks associated with a pair $(\lambda_j, \overline{\lambda}_j)$ of conjugate complex eigenvalues:

$$Q^{-1}A_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & \mathcal{J}_{m_j}(\lambda_j)^* \end{bmatrix} \quad and \quad Q^*H_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix},$$
(6.11)

where $m_i \in \mathbb{N}$ and $\operatorname{Im}(\lambda_i) > 0$.

Moreover, the form (6.9) is unique up to the permutation of blocks.

Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-normality polynomial p(t) = t. Thus $p(\lambda) = \overline{\lambda}$ if and only if $\lambda \in \mathbb{R}$. Moreover, p'(t) = 1 for all $t \in \mathbb{C}$. Then, the result follows directly from Theorem 6.1. Indeed, the blocks of the form (6.2) in Theorem 6.1 satisfy

$$\overline{\lambda_j}I_{n_j} + e^{-i\theta_j}T(0, 1, -ir_{j,2}, \dots, -ir_{j,n_j-1}) = \lambda_j I_{n_j} + e^{i\theta_j}T(0, 1, ir_{j,2}, \dots, ir_{j,n_j-1})$$

which implies $\theta_j = 0$, and $r_{j,2} = \cdots = r_{j,n_j-1} = 0$. \Box

Remark 6.4 Theorem 6.3 coincides with the canonical form for *H*-selfadjoint matrices derived in [6]. This form is related to the canonical form for pairs of Hermitian under congruence, see [22, 14]. Indeed, if $(\mathcal{G}, \mathcal{H})$ is the canonical form for the pair (HA, H) under congruence, then $(\mathcal{H}^{-1}\mathcal{G}, \mathcal{H})$ is the canonical form for the pair (A, H) under the transformation (1.1).

6.3 Canonical forms for *H*-unitary matrices

Theorem 6.5 Let $H \in \mathbb{C}^{n \times n}$ be Hermitian and nonsingular and let $U \in \mathbb{C}^{n \times n}$ be Hunitary. Then there exists a nonsingular matrix Q such that

$$Q^{-1}UQ = U_1 \oplus \dots \oplus U_p, \quad Q^*HQ = H_1 \oplus \dots \oplus H_p, \tag{6.12}$$

where U_j is H_j -indecomposable and where U_j and H_j have one of the following forms:

i) blocks associated with unimodular eigenvalues $\lambda_j \in \mathbb{C}$, $|\lambda_j| = 1$:

$$Q^{-1}U_{j}Q = \lambda I_{n_{j}} + e^{i\theta_{j}}T(0, 1, ir_{2}, \dots, ir_{n-1}) \quad and \quad Q^{*}H_{j}Q = \varepsilon_{j}R_{n_{j}},$$
(6.13)

where $n_j \in \mathbb{N}, \ \varepsilon_j = \pm 1, \ and$

$$\theta_j = \begin{cases} \arg(\lambda_j) + \frac{\pi}{2} & \text{for } \arg(\lambda_j) \in [0, \frac{\pi}{2}) \\ \arg(\lambda_j) - \frac{\pi}{2} & \text{for } \arg(\lambda_j) \in [\frac{\pi}{2}, \frac{3\pi}{2}) \\ \arg(\lambda_j) - \frac{3\pi}{2} & \text{for } \arg(\lambda_j) \in [\frac{3\pi}{2}, 2\pi) \end{cases}$$
(6.14)

Moreover, $r_k = 0$ for odd k and the parameters r_k for even k are real and uniquely determined by the recursive formula

$$r_{2} = \begin{cases} \frac{1}{2} & \text{if } \arg(\lambda_{j}) \in [0, \frac{\pi}{2}) \cup [\frac{3\pi}{2}, 2\pi) \\ -\frac{1}{2} & \text{if } \arg(\lambda_{j}) \in [\frac{\pi}{2}, \frac{3\pi}{2}) \end{cases}, \quad r_{k} = \frac{1}{2} \left(\sum_{\nu=1}^{\frac{k}{2}-1} r_{2 \cdot \nu} r_{2 \cdot (\frac{k}{2}-\nu)} \right) \quad (6.15)$$

for $4 \leq k \leq n_j$;

ii) blocks associated with a pair $(\lambda_j, \overline{\lambda}_j^{-1})$ of nonunimodular eigenvalues:

$$Q^{-1}U_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & \mathcal{J}_{m_j}(\lambda_j)^{-*} \end{bmatrix} \quad and \quad Q^*H_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix},$$
(6.16)

where $m_j \in \mathbb{N}$ and $|\lambda_j| > 1$.

Moreover, the form (6.12) is unique up to the permutation of blocks.

Proof. Since U is H-unitary, we have $U^{-1} = p(U)$. (In particular, this implies $p(\lambda) = \lambda^{-1}$ for all eigenvalues $\lambda \in \mathbb{C}$ of U.) Thus, the result is a special case of Theorem 6.1 and the parameters θ_j and r_2, \ldots, r_{n-1} are uniquely determined by λ_j and the coefficients of p. The formula for θ_j and the recursive formula for the parameters r_j in blocks of the form (6.13) follow from equating to zero the entries in the matrix $UU^{[*]} - I$, i.e.,

$$\left(\lambda_{j}I_{n_{j}}+e^{i\theta_{j}}T(0,1,ir_{2},\ldots,ir_{n-1})\right)\left(\overline{\lambda}_{j}I_{n_{j}}+e^{-i\theta_{j}}T(0,1,-ir_{2},\ldots,-ir_{n-1})\right)=I_{n_{j}}.$$
 (6.17)

Comparing the (1,2)-elements in both sides of (6.17), we obtain $\overline{\lambda}_j e^{i\theta_j} + \lambda_j e^{-i\theta_j} = 0$. If $\arg(\lambda_j) = \phi$, i.e., $\lambda_j = e^{i\phi}$, we obtain $e^{i(\theta_j - \phi)} + e^{i(\phi - \theta_j)} = 0$ or, equivalently, $e^{2i(\phi - \theta_j)} = -1$ which reduces to

$$2(\phi - \theta_j) = \pi + 2k\pi \text{ for some } k \in \mathbb{N} \cup \{0\}.$$

Thus, noting that $\theta_j \in [0, \pi)$, we obtain that it has the form as given in (6.14). In particular, $\overline{\lambda}_j e^{i\theta_j} = i$ if $\arg(\lambda_j) \in [0, \frac{\pi}{2}) \cup [\frac{3\pi}{2}, 2\pi)$ and $\overline{\lambda}_j e^{i\theta_j} = -i$ else. Comparing the (1, 3)-elements in both sides of (6.17), we obtain

$$ir_2\overline{\lambda}_j e^{i\theta_j} + 1 - ir_2\lambda_j e^{-i\theta_j}$$

which implies $r_2 = \frac{1}{2}$ if $\arg(\lambda_j) \in [0, \frac{\pi}{2}) \cup [\frac{3\pi}{2}, 2\pi)$ and $r_2 = -\frac{1}{2}$ else. Finally, comparing the (1, k+1)-elements in both sides of (6.17), we obtain that

$$ir_k\overline{\lambda}_j e^{i\theta_j} + ir_{k-1} + \left(\sum_{\nu=2}^{k-2} r_\nu r_{k-\nu}\right) - ir_{k-1} - ir_k\lambda e^{-i\theta_j}$$

for k = 3, ..., n - 1 which implies $r_k = 0$ for odd k and (6.15) for even k. Concerning the blocks of the form (6.16) note that $p\left(\mathcal{J}_{m_j}(\lambda_j)\right)^* = \mathcal{J}_{m_j}(\lambda_j)^{-*}$. \Box

Remark 6.6 A slightly different version of Theorem 6.5 has been proved in [9]. The difference of the forms lies in the representation of the blocks of the form (6.16). In [9], the corresponding block is represented as $Q^{-1}U_jQ = T_1 \oplus T_2$ and $Q^*H_jQ = R_{2n_j}$, where $T_1, T_2 \in \mathbb{C}^{n_j \times n_j}$ are upper triangular Toeplitz matrices. Moreover, the first ten parameters r_2, \ldots, r_{20} are listed in [9]. For the case $\arg(\lambda_j) \in [0, \frac{\pi}{2}) \cup [\frac{3\pi}{2}, 2\pi)$ these parameters are

$$\begin{array}{ll} r_2 \ = \frac{1}{2}, & r_4 \ = \frac{1}{8}, & r_6 \ = \frac{1}{16}, & r_8 \ = \frac{5}{128}, & r_{10} = \frac{7}{256}, \\ r_{12} = \frac{21}{1024}, & r_{14} = \frac{33}{2048}, & r_{16} = \frac{429}{32768}, & r_{18} = \frac{715}{65536}, & r_{20} = \frac{2431}{262144}. \end{array}$$

Remark 6.7 It is interesting to observe that the blocks of the form (6.13) share the property with the blocks of the form (5.4) that every other superdiagonal is zero.

7 The case of complex symmetric H

In this section, we derive canonical forms for the case that H is symmetric. Here, we have to distinguish H-selfadjoint and H-skewadjoint matrices, because both sets of matrices are invariant under multiplication with complex numbers, and thus, if A is H-selfadjoint then so is iA.

7.1 Canonical forms for polynomially *H*-normal matrices

Theorem 7.1 Let $H \in \mathbb{C}^{n \times n}$ be symmetric and nonsingular and let $X \in \mathbb{C}^{n \times n}$ be polynomially *H*-normal with *H*-normality polynomial *p*. Then there exists a nonsingular matrix *Q* such that

$$Q^{-1}XQ = X_1 \oplus \dots \oplus X_p, \quad Q^T HQ = H_1 \oplus \dots \oplus H_p, \tag{7.1}$$

where X_i is H_i -indecomposable and where X_i and H_i have one of the following forms:

i) blocks associated with $\lambda_j \in \mathbb{C}$ satisfying $p(\lambda_j) = \lambda_j$ and $p'(\lambda_j) = 1$ if $n_j > 1$:

$$Q^{-1}X_jQ = \mathcal{J}_{n_j}(\lambda) \quad and \quad Q^T H_jQ = R_{n_j}, \tag{7.2}$$

where $n_i \in \mathbb{N}$;

ii) odd-sized blocks associated with $\lambda_j \in \mathbb{C}$ satisfying $p(\lambda_j) = \lambda_j$ and $p'(\lambda_j) = -1$:

$$Q^{-1}X_jQ = T(\lambda_j, 1, a_2, \dots, a_{n_j-1})$$
 and $Q^TH_jQ = \Sigma_{n_j},$ (7.3)

where $n_j \in \mathbb{N}$ is odd, $n_j \geq 3$, and $a_k = 0$ for odd k;

iii) paired even-sized blocks associated with $\lambda_j \in \mathbb{C}$ satisfying $p(\lambda_j) = \lambda_j$ and $p'(\lambda_j) = -1$:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & p\left(\mathcal{J}_{m_j}(\lambda_j)\right)^T \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix}, \quad (7.4)$$

where $m_i \in \mathbb{N}$ is even.

iv) blocks associated with a pair $(\lambda_j, \mu_j) \in \mathbb{C} \times \mathbb{C}$, satisfying $\mu_j = p(\lambda_j) \neq \lambda_j$ and $\operatorname{Re}(\lambda_j) > \operatorname{Re}(\mu_j)$ or $\operatorname{Im}(\lambda_j) > \operatorname{Im}(\mu_j)$ if $\operatorname{Re}(\lambda_j) = \operatorname{Re}(\mu_j)$:

$$Q^{-1}X_{j}Q = \begin{bmatrix} \mathcal{J}_{m_{j}}(\lambda_{j}) & 0\\ 0 & p\left(\mathcal{J}_{m_{j}}(\lambda_{j})\right)^{T} \end{bmatrix} \quad and \quad Q^{T}H_{j}Q = \begin{bmatrix} 0 & I_{m_{j}}\\ I_{m_{j}} & 0 \end{bmatrix}, \quad (7.5)$$

where $m_j \in \mathbb{N}$.

Moreover, the form (7.1) is unique up to the permutation of blocks and the nonzero parameters a_k in (7.3) are uniquely determined by λ_j and the coefficients of p and can be computed from the identity $T(\lambda_j, -1, a_2, 0, a_4, 0, ...) = p(T(\lambda_j, 1, a_2, 0, a_4, 0, ...))$.

Proof. Again, X can be decomposed as in (7.1) into blocks X_j that are H_j -indecomposable and it is sufficient to investigate the case that X is H-indecomposable. Let Eig(X) be the space of eigenvectors of X. Then Proposition 3.4 implies dim $\text{Eig}(X) \leq 2$.

Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar to the Jordan block $\mathcal{J}_n(\lambda)$ and thus, Theorem 5.2 yields the existence of blocks of the forms (7.2) and (7.3). Indeed, note that in the case $p'(\lambda) = -1$, Theorem 5.2 implies that n is necessarily odd.

Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. If λ denotes one of the eigenvalues of X, then we have, in particular, either $\lambda \neq \mu = p(\lambda)$ or $\lambda = p(\lambda)$ and $p'(\lambda)^{m-1} = -1$ which is only possible for the case that $p'(\lambda) = -1$ and m is even. (In the latter case, the block is indeed H_j -indecomposable, because blocks of type (7.3) must be odd-dimensional.)

Uniqueness of the form (7.1) follows immediately from the uniqueness of the Jordan canonical form of X and the uniqueness statement in Theorem 5.2. \Box

7.2 Canonical forms for *H*-selfadjoint matrices

Theorem 7.2 Let $H \in \mathbb{C}^{n \times n}$ be symmetric and nonsingular and let $A \in \mathbb{C}^{n \times n}$ be H-selfadjoint. Then there exists a nonsingular matrix Q such that

$$Q^{-1}AQ = \mathcal{J}_{n_1}(\lambda_1) \oplus \cdots \oplus \mathcal{J}_{n_p}(\lambda_p), \quad Q^T HQ = R_{n_1} \oplus \cdots \oplus R_{n_p}.$$
(7.6)

Moreover, the form (7.6) is unique up to the permutation of blocks.

Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-normality polynomial p(t) = t. Then p'(t) = 1 for all $t \in \mathbb{C}$ and $p(\lambda) = \lambda$ for all eigenvalues $\lambda \in \mathbb{C}$ of A. Thus, the result follows immediately from Theorem 7.1. \Box

7.3 Canonical forms for *H*-skewadjoint matrices

Theorem 7.3 Let $H \in \mathbb{C}^{n \times n}$ be symmetric and nonsingular and let $S \in \mathbb{C}^{n \times n}$ be H-skewadjoint. Then there exists a nonsingular matrix Q such that

$$Q^{-1}SQ = S_1 \oplus \dots \oplus S_p, \quad Q^T HQ = H_1 \oplus \dots \oplus H_p, \tag{7.7}$$

where S_j is H_j -indecomposable and where S_j and H_j have one of the following forms:

i) blocks associated with $\lambda_j = 0$, where $n_j \in \mathbb{N}$ is odd:

$$Q^{-1}S_jQ = \mathcal{J}_{n_j}(0) \quad and \quad Q^T H_jQ = \Sigma_{n_j}; \tag{7.8}$$

ii) paired blocks associated with $\lambda_j = 0$, where $m_j \in \mathbb{N}$ is even:

$$Q^{-1}S_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(0) & 0\\ 0 & -\left(\mathcal{J}_{m_j}(0)\right)^T \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix}; \quad (7.9)$$

iii) blocks associated with a pair $(\lambda_j, -\lambda_j) \in \mathbb{C} \times \mathbb{C}$, satisfying $\operatorname{Re}(\lambda_j) > 0$ and $m_j \in \mathbb{N}$:

$$Q^{-1}S_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & -\left(\mathcal{J}_{m_j}(\lambda_j)\right)^T \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix}.$$
(7.10)

Moreover, the form (7.1) is unique up to the permutation of blocks.

Proof. S is H-selfadjoint if and only if S is polynomially H-normal with H-normality polynomial p(t) = -t. Then p'(t) = -1 for all $t \in \mathbb{C}$. Thus, the result follows immediately from Theorem 7.1. Note that the parameters a_k in the blocks of the form (7.3) turn out to be zero from the identity $T(0, -1, a_2, 0, a_4, ...) = -T(0, 1, a_2, 0, a_4, ...)$.

Remark 7.4 The canonical forms for H-selfadjoint and H-skewadjoint matrices are related to the canonical forms for pairs of symmetric matrices or a pair consisting of a symmetric and a skew-symmetric matrix given in [23, 15]. (See also Remark 6.4).

7.4 Canonical forms for *H*-unitary matrices

Theorem 7.5 Let $H \in \mathbb{C}^{n \times n}$ be symmetric and nonsingular and $U \in \mathbb{C}^{n \times n}$ H-unitary. Then there exists a nonsingular matrix Q such that

$$Q^{-1}UQ = U_1 \oplus \dots \oplus U_p, \quad Q^T HQ = H_1 \oplus \dots \oplus H_p, \tag{7.11}$$

where U_j is H_j -indecomposable and where U_j and H_j have one of the following forms:

i) blocks associated with $\lambda_j = \delta = \pm 1$, where $n_j \in \mathbb{N}$ is odd:

$$Q^{-1}X_jQ = T(\delta, 1, r_2, \dots, r_{n_j-1})$$
 and $Q^TH_jQ = \Sigma_{n_j}.$ (7.12)

Moreover, $r_k = 0$ for odd k and the parameters r_k for even k are real and uniquely determined by the recursive formula

$$r_{2} = \frac{1}{2}\delta, \quad r_{k} = -\frac{1}{2}\delta\left(\sum_{\nu=1}^{\frac{k}{2}-1} r_{2 \cdot \nu} r_{2 \cdot (\frac{k}{2}-\nu)}\right), \quad 4 \le k \le n_{j};$$
(7.13)

ii) paired blocks associated with $\lambda_j = \pm 1$, where $m_j \in \mathbb{N}$ is even:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & \left(\mathcal{J}_{m_j}(\lambda_j)\right)^{-T} \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix}, \quad (7.14)$$

iii) blocks associated with a pair $(\lambda_j, \lambda_j^{-1}) \in \mathbb{C} \times \mathbb{C}$, where $\operatorname{Re}(\lambda_j) > \operatorname{Re}(\lambda_j^{-1})$ or $\operatorname{Im}(\lambda_j) > \operatorname{Im}(\lambda_j^{-1})$ if $\operatorname{Re}(\lambda_j) = \operatorname{Re}(\lambda_j^{-1})$, and $m_j \in \mathbb{N}$:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & \left(\mathcal{J}_{m_j}(\lambda_j)\right)^{-T} \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ I_{m_j} & 0 \end{bmatrix}.$$
(7.15)

Moreover, the form (7.11) is unique up to the permutation of blocks.

Proof. The result is a special case of Theorem 7.1. Since U is H-orthogonal, U is polynomially H-normal and the H-normality polynomial satisfies $U^{-1} = p(U)$. In particular, this implies $p(\lambda) = \lambda^{-1}$ for all eigenvalues $\lambda \in \mathbb{C}$ of U. Thus $p(\lambda) = \lambda$ if and only if $\lambda = \pm 1$. Let \widetilde{Q} be such that $\widetilde{U} := \widetilde{Q}^{-1}U\widetilde{Q}$ is in Jordan canonical form. Then

$$\widetilde{U}p(\widetilde{U}) = \widetilde{Q}^{-1}U\widetilde{Q}\widetilde{Q}^{-1}p(U)\widetilde{Q} = I.$$

In particular, if $\mathcal{J}_{\nu}(\lambda)$ is a Jordan block of \widetilde{U} , we obtain that $\mathcal{J}_{\nu}(\lambda)p(\mathcal{J}_{\nu}(\lambda)) = I_{\nu}$. Observing that $p(\mathcal{J}_{\nu}(\lambda))$ has the form as in (2.5), we obtain that $\lambda p'(\lambda) + p(\lambda) = 0$ whenever there exists a Jordan block of size larger than one associated with λ . Thus, if $p(\lambda) = \lambda$ (or, equivalently, $\lambda = \pm 1$) and if there exists a Jordan block of size larger than one associated with λ , then $p'(\lambda) = -1$. Thus, the result follows from Theorem 7.1. The recursive formula for the parameters r_j in blocks of the form (6.13) follow from equating to zero the entries in the matrix $UU^{[T]} - I$ as in the proof of Theorem 6.5. Here, the equations become

$$2\delta r_2 - 1 = 0$$
 and $2\delta r_k + \sum_{\nu=2}^{k-2} r_\nu r_{k-\nu} = 0$ for $k = 3, \dots, n_j - 1$.

8 The case of complex skew-symmetric H

In this section, we present a canonical form for polynomially H-normal matrices for the case that H is skew-symmetric. Again, we have to distinguish H-selfadjoint and H-skewadjoint matrices.

8.1 Canonical forms for polynomially *H*-normal matrices

Theorem 8.1 Let $H \in \mathbb{C}^{n \times n}$ be skew-symmetric and nonsingular and let $X \in \mathbb{C}^{n \times n}$ be polynomially *H*-normal with *H*-normality polynomial *p*. Then there exists a nonsingular matrix *Q* such that

$$Q^{-1}XQ = X_1 \oplus \dots \oplus X_p, \quad Q^T HQ = H_1 \oplus \dots \oplus H_p, \tag{8.1}$$

where X_j is H_j -indecomposable and where X_j and H_j have one of the following forms:

i) even-sized blocks associated with $\lambda_j \in \mathbb{C}$ satisfying $p(\lambda_j) = \lambda_j$ and $p'(\lambda_j) = -1$:

$$Q^{-1}X_jQ = T(\lambda_j, 1, a_2, \dots, a_{n_j-1}) \quad and \quad Q^TH_jQ = \Sigma_{n_j}, \tag{8.2}$$

where $n_j \in \mathbb{N}$ is even, $a_k = 0$ for odd k, and $p'(\lambda_j) = -1$;

ii) paired odd-sized blocks associated with $\lambda_j \in \mathbb{C}$ satisfying $p(\lambda_j) = \lambda_j$ and $p'(\lambda_j) = -1$ if $m_j > 1$:

$$Q^{-1}X_{j}Q = \begin{bmatrix} \mathcal{J}_{m_{j}}(\lambda_{j}) & 0\\ 0 & p\left(\mathcal{J}_{m_{j}}(\lambda_{j})\right)^{T} \end{bmatrix} \quad and \quad Q^{T}H_{j}Q = \begin{bmatrix} 0 & I_{m_{j}}\\ -I_{m_{j}} & 0 \end{bmatrix},$$
(8.3)

where $m_j \in \mathbb{N}$ is odd;

iii) paired blocks associated with $\lambda_j \in \mathbb{C}$ satisfying $p(\lambda_j) = \lambda_j$ and $p'(\lambda_j) = 1$:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & p\left(\mathcal{J}_{m_j}(\lambda_j)\right)^T \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ -I_{m_j} & 0 \end{bmatrix},$$
(8.4)

where $m_j \in \mathbb{N}, m_j > 1$;

iv) blocks associated with a pair $(\lambda_j, \mu_j) \in \mathbb{C} \times \mathbb{C}$, satisfying $\mu_j = p(\lambda_j) \neq \lambda_j$ and $\operatorname{Re}(\lambda_j) > \operatorname{Re}(\mu_j)$ or $\operatorname{Im}(\lambda_j) > \operatorname{Im}(\mu_j)$ if $\operatorname{Re}(\lambda_j) = \operatorname{Re}(\mu_j)$:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & p\left(\mathcal{J}_{m_j}(\lambda_j)\right)^T \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ -I_{m_j} & 0 \end{bmatrix},$$
(8.5)

where $m_j \in \mathbb{N}$.

Moreover, the form (8.1) is unique up to the permutation of blocks and the nonzero parameters $a_{2\cdot k}$ in (8.2) are uniquely determined by λ_j and the coefficients of p and can be computed from the identity $T(\lambda_j, -1, a_2, 0, a_4, 0, ...) = p(T(\lambda_j, 1, a_2, 0, a_4, 0, ...))$.

Proof. Clearly, X can be decomposed as in (8.1) into blocks X_j that are H_j -indecomposable and it is sufficient to investigate the case that X is H-indecomposable. Let Eig(X) be the space of eigenvectors of X. Then Proposition 3.4 implies dim $\text{Eig}(X) \leq 2$.

Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar to the Jordan block $\mathcal{J}_n(\lambda)$ and thus, by Theorem 5.2, we have that $p'(\lambda) = -1$, that n is even, and that X and H can be transformed into the forms (8.2).

Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. If λ denotes one of the eigenvalues of X then, in particular, we either have $\lambda \neq \mu = p(\lambda)$ or $\lambda = p(\lambda)$ and $p'(\lambda)^{m-1} = 1$ (if m > 2)) which is possible for m = 1, for $p'(\lambda) = -1$ and odd m > 1, or for $p'(\lambda) = 1$ and m > 1.

Uniqueness of the form (8.1) follows immediately from the uniqueness of the Jordan canonical form of X and the uniqueness statement in Theorem 5.2. \Box

8.2 Canonical forms for *H*-selfadjoint matrices

Theorem 8.2 Let $H \in \mathbb{C}^{n \times n}$ be skew-symmetric and nonsingular and let $A \in \mathbb{C}^{n \times n}$ be *H*-selfadjoint. Then there exists a nonsingular matrix Q such that

$$Q^{-1}AQ = \begin{bmatrix} \mathcal{J}_{m_1}(\lambda_1) & 0\\ 0 & \mathcal{J}_{m_1}(\lambda_1)^T \end{bmatrix} \oplus \dots \oplus \begin{bmatrix} \mathcal{J}_{m_p}(\lambda_p) & 0\\ 0 & \mathcal{J}_{m_p}(\lambda_p)^T \end{bmatrix}, \quad (8.6)$$

$$Q^{T}HQ = \begin{bmatrix} 0 & I_{m_{1}} \\ -I_{m_{1}} & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & I_{m_{p}} \\ -I_{m_{p}} & 0 \end{bmatrix}.$$
(8.7)

Moreover, the form (8.6)–(8.7) is unique up to the permutation of blocks.

Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-normality polynomial p(t) = t. Then p'(t) = 1 for all $t \in \mathbb{C}$ and $p(\lambda) = \lambda$ for all eigenvalues $\lambda \in \mathbb{C}$ of A. Thus, the result follows immediately from Theorem 8.1. \Box

8.3 Canonical forms for *H*-skewadjoint matrices

Theorem 8.3 Let $H \in \mathbb{C}^{n \times n}$ be skew-symmetric and nonsingular and let $S \in \mathbb{C}^{n \times n}$ be *H*-skewadjoint. Then there exists a nonsingular matrix Q such that

$$Q^{-1}SQ = S_1 \oplus \dots \oplus S_p, \quad Q^T HQ = H_1 \oplus \dots \oplus H_p, \tag{8.8}$$

where S_i is H_i -indecomposable and where S_i and H_i have one of the following forms:

i) blocks associated with $\lambda_i = 0$, where $n_i \in \mathbb{N}$ is even:

$$Q^{-1}S_jQ = \mathcal{J}_{n_j}(0) \quad and \quad Q^T H_jQ = \Sigma_{n_j}; \tag{8.9}$$

ii) paired blocks associated with $\lambda_j = 0$, where $m_j \in \mathbb{N}$ is odd:

$$Q^{-1}S_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(0) & 0\\ 0 & -\left(\mathcal{J}_{m_j}(0)\right)^T \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ -I_{m_j} & 0 \end{bmatrix}; \quad (8.10)$$

iii) blocks associated with a pair $(\lambda_j, -\lambda_j) \in \mathbb{C} \times \mathbb{C}$, where $\operatorname{Re}(\lambda_j) > 0$ and $m_j \in \mathbb{N}$:

$$Q^{-1}S_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & -\left(\mathcal{J}_{m_j}(\lambda_j)\right)^T \end{bmatrix} \quad and \quad Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ -I_{m_j} & 0 \end{bmatrix}.$$
(8.11)

Moreover, the form (8.1) is unique up to the permutation of blocks.

Proof. S is H-skewadjoint if and only if S is polynomially H-normal with H-normality polynomial p(t) = -t. Then p'(t) = -1 for all $t \in \mathbb{C}$. Thus, the result follows immediately from Theorem 7.1. Note that the parameters $a_{2\cdot\ell}$ in the blocks of the form (7.3) turn out to be zero from the identity $T(0, -1, a_2, 0, a_4, ...) = -T(0, 1, a_2, 0, a_4, ...)$.

Remark 8.4 The canonical forms for H-selfadjoint and H-skewadjoint matrices are related to the canonical forms for pairs of skew-symmetric matrices or a pair consisting of a symmetric and a skew-symmetric matrix given in [23, 15]. (See also Remark 6.4).

8.4 Canonical forms for *H*-unitary matrices

Theorem 8.5 Let $H \in \mathbb{C}^{n \times n}$ be symmetric and nonsingular and $U \in \mathbb{C}^{n \times n}$ H-unitary. Then there exists a nonsingular matrix Q such that

$$Q^{-1}UQ = U_1 \oplus \dots \oplus U_p, \quad Q^T HQ = H_1 \oplus \dots \oplus H_p, \tag{8.12}$$

where U_j is H_j -indecomposable and where U_j and H_j have one of the following forms:

i) even-sized blocks associated with $\lambda_i = \delta = \pm 1$, where $n_i \in \mathbb{N}$ is even:

$$Q^{-1}X_jQ = T(\delta, 1, r_2, \dots, r_{n_j-1})$$
 and $Q^TH_jQ = S_{n_j},$ (8.13)

Moreover, $r_k = 0$ for odd k and the parameters r_k for even k are real and uniquely determined by the recursive formula

$$r_{2} = \frac{1}{2}\delta, \quad r_{k} = -\frac{1}{2}\delta\left(\sum_{\nu=1}^{\frac{k}{2}-1} r_{2 \cdot \nu} r_{2 \cdot (\frac{k}{2}-\nu)}\right), \quad 4 \le k \le n_{j}; \quad (8.14)$$

ii) paired blocks associated with $\lambda_j = \pm 1$, where $m_j \in \mathbb{N}$ is odd:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & \left(\mathcal{J}_{m_j}(\lambda_j)\right)^{-T} \end{bmatrix}, \text{ and } Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ -I_{m_j} & 0 \end{bmatrix}; \quad (8.15)$$

iii) blocks associated with a pair $(\lambda_j, \lambda_j^{-1}) \in \mathbb{C} \times \mathbb{C}$, satisfying $\operatorname{Re}(\lambda_j) > \operatorname{Re}(\lambda_j^{-1})$ or $\operatorname{Im}(\lambda_j) > \operatorname{Im}(\lambda_j^{-1})$ if $\operatorname{Re}(\lambda_j) = \operatorname{Re}(\lambda_j^{-1})$, where $m_j \in \mathbb{N}$:

$$Q^{-1}X_jQ = \begin{bmatrix} \mathcal{J}_{m_j}(\lambda_j) & 0\\ 0 & \left(\mathcal{J}_{m_j}(\lambda_j)\right)^{-T} \end{bmatrix}, \text{ and } Q^TH_jQ = \begin{bmatrix} 0 & I_{m_j}\\ -I_{m_j} & 0 \end{bmatrix}.$$
(8.16)

Moreover, the form (8.12) is unique up to the permutation of blocks.

Proof. The proof is analogous to the proof of Theorem 7.5 and the result turns out to be a special case of Theorem 8.1. \Box

9 Conclusions

The set of polynomially H-normals turns out to be an adequate set of H-normal matrices that simultaneously describes the behaviour of the sets of H-selfadjoint, H-skewadjoint, and H-unitary matrices in the context of classification. The typical scheme of the canonical form for polynomially H-normal matrices can also be observed in the canonical forms for H-selfadjoint, H-skewadjoint, and H-unitary matrices, not only in the case that H is Hermitian and induces a sesquilinear form, but also in the case that H is symmetric or skew-symmetric and induces a bilinear form. There are basically two types of eigenvalues of polynomially H-normal matrices:

- 1) eigenvalues that occur in pairs $(\lambda, \overline{p(\lambda)})$ or $(\lambda, p(\lambda))$, respectively, where $\lambda \neq \overline{p(\lambda)}$ or $\lambda \neq p(\lambda)$, respectively;
- 2) eigenvalues λ for which the pairing degenerates, because of $\lambda = \overline{p(\lambda)}$ or $\lambda = p(\lambda)$, respectively.

In the case of Hermitian H, the set $\{\lambda \in \mathbb{C} \mid \lambda = \overline{p(\lambda)}\}\$ may be infinite. In the case of H-selfadjoint matrices it is the real line and in the case of H-unitary matrices it is the unit circle. In the case of symmetric or skew-symmetric H, the set $\{\lambda \in \mathbb{C} \mid \lambda = p(\lambda)\}\$ is either \mathbb{C} (as in the case of H-selfadjoint matrices when H is symmetric) or finite (possibly empty). Moreover, Jordan blocks for a fixed size m that are associated with an eigenvalue of type 2) may be forced to occur in pairs. Information on whether this happens or not can be obtained from the value $p'(\lambda)$. In particular, this implies that polynomially H-normal matrices need not be block-Toeplitz H-normal in the case that H is symmetric or skew-symmetric.

References

- G. Ammar, C. Mehl, and V. Mehrmann. Schur-like forms for matrix Lie groups, Lie algebras and Jordan algebras. *Linear Algebra Appl.*, 287:11–39, 1999.
- [2] Y. Au-Yeung, C. Li, and L. Rodman. H-unitary and lorentz matrices: a review. SIAM J. Matrix Anal. Appl., 25:1140–1162, 2004.
- [3] D. Djoković, J. Patera, P. Winternitz, and H. Zassenhaus. Normal forms of elements of classical real and complex Lie and Jordan algebras. J. Math. Phys, 24:1363–1373, 1983.
- [4] H. Faßbender, D. Mackey, N. Mackey, and H. Xu. Hamiltonian square roots of skew-Hamiltonian matrices. *Linear Algebra Appl.*, 287:125–159, 1999.
- [5] F. Gantmacher. *Theory of Matrices*, volume 1. Chelsea, New York, 1959.
- [6] I. Gohberg, P. Lancaster, and L. Rodman. Matrices and Indefinite Scalar Products. Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983.
- [7] I. Gohberg and B. Reichstein. On classification of normal matrices in an indefinite scalar product. *Integral Equations Operator Theory*, 13:364–394, 1990.
- [8] I. Gohberg and B. Reichstein. On H-unitary and block-Toeplitz H-normal operators. Linear and Multilinear Algebra, 30:17–48, 1991.
- [9] I. Gohberg and B. Reichstein. Classification of block-toeplitz H-normal operators. Linear and Multilinear Algebra, 34:213–245, 1993.

- [10] O. Holtz and V. Strauss. Classification of normal operators in spaces with indefinite scalar product of rank 2. *Linear Algebra Appl.*, 241–243:455–517, 1996.
- [11] O. Holtz and V. Strauss. On classification of normal operators in real spaces with indefinite scalar product. *Linear Algebra Appl.*, 255:113–155, 1997.
- [12] R. Horn and C. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge, 1991.
- [13] P. Lancaster and L. Rodman. Algebraic Riccati Equations. Clarendon Press, Oxford, 1995.
- [14] P. Lancaster and L. Rodman. Canonical forms for Hermitian matrix pairs under strict equivalence and congruence. submitted for publication, 2004.
- [15] P. Lancaster and L. Rodman. Canonical forms for symmetric/skew symmetric real pairs under strict equivalence and congruence. submitted for publication, 2004.
- [16] W.-W. Lin, V. Mehrmann, and H. Xu. Canonical forms for Hamiltonian and symplectic matrices and pencils. *Linear Algebra Appl.*, 302/303:469–533, 1999.
- [17] C. Mehl, V. Mehrmann, and H. Xu. Canonical forms for doubly structured matrices and pencils. *Electron. J. Linear Algebra*, 7:112–151, 2000.
- [18] C. Mehl and L. Rodman. Classes of normal matrices in indefinite inner products. *Linear Algebra Appl.*, 336:71–98, 2001.
- [19] V. Mehrmann. Existence, uniqueness, and stability of solutions to singular linear quadratic optimal control problems. *Linear Algebra Appl.*, 121:291–331, 1989.
- [20] V. Mehrmann and H. Xu. Structured jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products. *Electron. J. Linear Algebra*, 5:67–103, 1999.
- [21] V. Sergeichuk. Classification problems for systems of forms and linear mappings. Math. USSR-Izv., 31:481–501, 1988.
- [22] R. Thompson. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil. *Linear Algebra Appl.*, 14:135–177, 1976.
- [23] R. Thompson. Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl., 147:323–371, 1991.