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Abstract

Canonical forms are developed for several sets of complex matrices that are nor-

mal with respect to an indefinite inner product induced by a nonsingular Hermitian,

symmetric, or skew-symmetric matrix. The most general result covers the case of

polynomially normal matrices, i.e., matrices whose adjoint with respect to the indefi-

nite inner product is a polynomial of the original matrix. From this result, canonical

forms for matrices that are selfadjoint, skewadjoint, or unitary with respect to the

given indefinite inner product are derived.

1 Introduction

Let F denote one of the fields R or C, and let H ∈ F
n×n be invertible. If H is (skew-)

symmetric, then H induces a nondegenerate (skew-)symmetric bilinear form on F
n via

[x, y] := yTHx for x, y ∈ F
n. Analogously, if F = C and H is Hermitian, then H induces a

nondegenerate Hermitian sesquilinear form on C
n via [x, y] := y∗Hx for x, y ∈ C

n.
For a matrix M ∈ F

n×n, the H-adjoint of M is defined to be the unique matrix M [?]

satisfying
[x,My] = [M [?]x, y] for all x, y ∈ C

n.

Thus, M [?] = H−1M?H. (Here and throughout the remainder of the paper, M? denotes
MT in the case that [·, ·] is a bilinear form, and M ∗ (the conjugate transpose of M) in
the case that [·, ·] is a sesquilinear form.) A matrix M ∈ F

n×n is called H-selfadjoint,
H-skew-adjoint, or H-unitary, respectively, if M [?] = M , M [?] = −M , or M [?] = M−1,
respectively. These three types of matrices have been widely discussed in the literature,
both in terms of theory and numerical analysis, in particular for the case of a sesquilinear
form or under the additional assumptions F = R. Extensive lists of references can be found
in [1, 13, 17, 19].

H-selfadjoint, H-skewadjoint, and H-unitary matrices are special cases of H-normal
matrices. A matrix M ∈ C

n×n is called H-normal if M commutes with its H-adjoint,
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i.e., if MM [?] = M [?]M . Observe that the structure of pairs (M,H) is invariant under
transformations of the form

(M,H) 7→ (P−1MP,P?HP ), P ∈ F
n×n nonsingular. (1.1)

(This corresponds to a change of bases x 7→ Px in the space F
n.) Thus, M is H-selfadjoint,

H-skewadjoint, H-unitary, or H-normal, respectively, if and only if P −1MP is P?HP -
selfadjoint, P?HP -skewadjoint, P?HP -unitary, or P?HP -normal, respectively.

Canonical forms for H-selfadjoint and H-skewadjoint matrices under transformations
of the form (1.1) are well known for the case of Hermitian H (see, e.g., [3, 6, 13]) and
for F = R in the case of symmetric or skew-symmetric H (see, e.g., [3, 4, 13]). They
are implicitly known for F = C and the case of symmetric or skew-symmetric H by the
canonical forms for pairs of complex symmetric or skew-symmetric matrices given in [23].
(Observe that, for example, for symmetric H, a matrix M ∈ C

n×n is H-selfadjoint if and
only if HM is symmetric. Thus, a canonical form for the pair (M,H) under transformations
of the form (1.1) can be easily obtained from the canonical form for the pair (HM,H) of
symmetric matrices under simultaneous congruence.)

Canonical forms for H-unitary matrices seem to be less familiar. For the case of Her-
mitian H, they have been developed in [8], and for F = R and the case of skew-symmetric
H, they can be obtained from [21, Theorem 5]. For the case F = R and symmetric H, a
canonical form is given in [2] for the special case that M is diagonalizable (over the complex
field). In addition, canonical forms for H-unitary matrices for some particular choices of
H have been developed in [16, 20] under similarity transformations that leave H invariant.

On the other hand, the problem of finding a canonical form for H-normal matrices has
been proven to be as difficult as classifying pairs of commuting matrices under simultaneous
similarity, see [7]. So far, a classification of H-normal matrices has only been obtained for
some special cases, see [7, 10, 11].

From this point of view, the set of all H-normal matrices is “too large” and it makes
sense to look for proper subsets for which a complete classification can be obtained. A first
approach in this direction has been made in [8], where block-Toeplitz H-normal matrices
have been defined (see Section 2 for the definition). A complete classification for block-
Toeplitz H-normal matrices has then be given in [9] for the case that H is Hermitian and
defines a Hermitian sesquilinear forms. However, in the case that H defines a complex
or real bilinear form that is symmetric or skew-symmetric, there exist H-selfadjoint, H-
skewadjoint, or H-unitary matrices that fail to be block-Toeplitz H-normal (see Section 2
for details). Thus, the approach via block-Toeplitz H-normal matrices only makes sense
for the case of a Hermitian sesquilinear form.

In [18], several subsets of the set of H-normal matrices have been considered with the
emphasis of finding a subset that is ‘large enough’ in order to contain all H-selfadjoint, H-
skewadjoint, and H-unitary matrices, but that is still ‘small enough’ such that a complete
classification its elements can be obtained. A suitable set with there properties is the set
of polynomially H-normal matrices. A matrix X ∈ C

n×n is called polynomially H-normal
if there exists a polynomial p ∈ C[t] such that X? = p(X).
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In this paper, we develop canonical forms for polynomially H-normal matrices. It will
turn out that canonical forms for H-selfadjoint, H-skewadjoint, and H-unitary matrices
are special cases of the general form. We only consider the complex case here, i.e., H
is Hermitian and defines a Hermitian sesquilinear form on C

n or H is (skew-)symmetric
and defines a (skew-)symmetric bilinear form on C

n. The real case will be discussed in a
subsequent paper.

The paper is organized as follows. In Section 2, we compare block-Toeplitz H-normal
matrices and polynomially H-normal matrices and we introduce the notion of H-decom-
posability. In Section 3, we discuss how to decompose a matrix into a block diagonal
matrix with indecomposables diagonal blocks. Section 4 is devoted to similarity transfor-
mations that leave the set of upper triangular Toeplitz matrices invariant. These similarity
transformations will be used in Section 5 to obtain canonical forms for polynomially H-
normal matrices that are similar to a Jordan block. Finally, we present canonical forms
for polynomially H-normal matrices and deduce from the general result canonical forms
for H-selfadjoint, H-skewadjoint, and H-unitary matrices. Section 6 contains the case of
Hermitian H, Section 7 the case of symmetric H, and Section 8 the case of skew-symmetric
H.

Throughout the paper, we use the following notation. If it is not explicitly stated
otherwise, H always denotes an n×n invertible matrix that is either Hermitian and induces
a sesquilinear form [ ·, ·], or it is symmetric or skew-symmetric and induces a bilinear form
[ ·, ·]. A matrix A = A1 ⊕ · · · ⊕Ak denotes a block diagonal matrix A with diagonal blocks
A1, . . . , Ak (in that order). ei is the i-th unit vector in F

n. A = (aα(i),β(j)) ∈ F
m×n, where

α(i), β(j) are functions of the row and column indices i or j, respectively, denotes a matrix
A whose (i, j)-entry is given by aα(i),β(j) for i = 1, . . . ,m; j = 1, . . . , n. The symbols Rn,
Σn, and Jn(λ) denote the n×n reverse identity, the n×n reverse identity with alternating
signs, and the Jordan block of size n associated with the eigenvalue λ, respectively, i.e.,

Rn =




0 1
...

1 0


 , Σn =




0 (−1)0

...

(−1)n−1 0


 , Jn(λ) =




λ 1 0
. . . . . .

. . . 1
0 λ


 .

A matrix A ∈ F
n×n is called anti-diagonal if RnA is diagonal. Also, recall that M ∗ is the

conjugate transpose of the matrix M and that M? (or M [?], respectively) stands for MT (or
H−1MT H, respectively) whenever we consider the case of symmetric or skew-symmetric
H, and it stands for M ∗ (or H−1M∗H, respectively) whenever we consider the case of
Hermitian H. Finally, M−? := (M?)−1 = (M−1)?.
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2 Block-Toeplitz H-normal matrices and polynomi-

ally H-normal matrices

An important notion in the context of classification of matrices that are structured with
respect to indefinite inner products is the notion of H-decomposability. A matrix X ∈ F

n×n

is called H-decomposable if there exists a nonsingular matrix P ∈ F
n×n such that

P−1XP = X1 ⊕ X2, P?HP = H1 ⊕ H2,

where X1, H1 ∈ F
m×m and X2, H2 ∈ F

(n−m)×(n−m) for some 0 < m < n. Otherwise, X is
called H-indecomposable. Clearly, any matrix X can always be decomposed as

P−1XP = X1 ⊕ · · · ⊕ Xk, P?HP = H1 ⊕ · · · ⊕ Hk, (2.1)

where Xj is Hj-indecomposable, j = 1, . . . , k. Thus, it remains to classify indecomposable
matrices.

As pointed out in the introduction, block-Toeplitz H-normal matrices have been in-
vestigated in [8, 9] in order to obtain a complete classification for matrices from a subset
of the set of H-normal matrices. An H-normal matrix X is called block-Toeplitz if there
exists a decomposition as in (2.1) such that each indecomposable block Xj is similar to
either one Jordan block or to a matrix with two Jordan blocks associated with two dis-
tinct eigenvalues. The reason for the notion “block-Toeplitz H-normal” is obvious by the
following theorem (proved in [8]).

Theorem 2.1 Let X ∈ C
n×n. Then X is block-Toeplitz H-normal if and only if there

exists a nonsingular matrix P ∈ C
n×n such that

P−1XP = X1 ⊕ · · · ⊕ Xk and P ∗HP = H1 ⊕ · · · ⊕ Hk (2.2)

where, for each j, the matrices Xj and Hj have the same size, Xj is indecomposable, and
the pair (Xj, Hj) has one and only one of the following forms.

1) Hj = εRpj
, where ε ∈ {1,−1} and Xj is an upper triangular Toeplitz matrix with

nonzero superdiagonal element;

2) Xj = Xj1 ⊕ Xj2 and Hj = R2pj
, where Xj1, Xj2 ∈ C

pj×pj are upper triangular
Toeplitz matrices with nonzero superdiagonal elements and the spectra of Xj1 and
Xj2 are disjoint.

In [18], it has been shown that polynomially H-normal matrices are block-Toeplitz H-
normal for the case of Hermitian H. (The converse, however, is false, i.e., there are block-
Toeplitz H-normal matrices that are not polynomially H-normal, see [18].) However, this
is no longer true for the case of real or complex H that is symmetric or skew-symmetric, be-
cause the following examples show that already H-selfadjoint and H-skewadjoint matrices
need not be block Toeplitz H-normal.
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Example 2.2 Let S = J2(0). Then there exists no invertible symmetric H ∈ F
2×2 such

that S is H-skewadjoint. Indeed, setting H = (hij), h21 = h12, we obtain from the identity
ST H = −HS that

[
0 0

h11 h12

]
=

[
0 0
1 0

] [
h11 h12

h12 h22

]
= −

[
h11 h12

h12 h22

] [
0 1
0 0

]
=

[
0 −h11

0 −h12

]
.

This implies h11 = h12 = 0 in contrast to the invertibility of H. Next consider

S̃ =

[
J2(0) 0

0 −J2(0)

]
, H̃ = R4.

It is easily seen that S̃ is H̃-skewadjoint. By the above, S̃ must be H̃-indecomposable, but
S̃ has two Jordan blocks associated with 0. Thus, S̃ is not block-Toeplitz H-normal.

Example 2.3 Let A = 0 ∈ F
2×2 and H = Σ2. Then H is skew-symmetric and A is H-

selfadjoint. Clearly, A is H-indecomposable, because there do not exist invertible diagonal
skew-symmetric matrices. But A has two Jordan blocks associated with 0. Thus, A is not
block-Toeplitz H-normal.

These examples show that the set of block-Topelitz H-normal matrices does not contain
all H-selfadjoint and H-skewadjoint matrices in the case of symmetric or skew-symmetric
H. (One can also find examples of H-unitary matrices that are not block-Topelitz H-
normal.) Therefore, we suggest to investigate polynomially H-normal matrices instead.
Indeed, any H-selfadjoint matrix A, H-skewadjoint matrix S, and H-unitary matrix U
is always polynomially H-normal. This follows immediately from the identities A? = A,
S? = −S, and U? = U−1, using in the latter case that the inverse of an invertible U is a
polynomial in U . We conclude this section by providing some properties of polynomially
H-normal matrices that will frequently be used in the following.

Proposition 2.4 Let H ∈ F
n×n be nonsingular and X ∈ F

n×n be polynomially H-normal.

1) There is a unique polynomial p ∈ F[t] of minimal degree such that X [?] = p(X).

2) If (v1, . . . , vl) is a (possibly complex) Jordan chain for X associated with λ ∈ C, then

p(X)vj =

j−1∑

ν=0

1

ν!
p(ν)(λ)vj−ν , j = 1, . . . l. (2.3)

3) We have p
(
Jk(λ)

)
= p(λ)Ik + p0

(
Jk(0)

)
, where

p0(t) = p′(λ)t +
1

2!
p′′(λ)t2 + · · · + 1

(k − 1)!
p(k−1)(λ)tk−1. (2.4)

4) p′(λ) 6= 0 for all eigenvalues λ ∈ C of X having partial multiplicities larger than one.
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5) If H is Hermitian, then p
(
p(X)

)
= X. If H is (skew-)symmetric, then p

(
p(X)

)
= X.

Proof. 1) follows easily from [12, Theorem 6.1.9] noting that the Lagrange-Hermite inter-
polation problem always has a unique solution, while 2) and 3) follow from [12] formula 6.1.8
which is

p
(
Jn(λ)

)
=




p(λ) p′(λ) 1
2!
p′′(λ) . . . 1

(n−1)!
p(n−1)(λ)

0 p(λ) p′(λ)
. . .

...
... 0 p(λ)

. . .
...

...
...

. . . . . . p′(λ)
0 . . . . . . 0 p(λ)




. (2.5)

The same formula implies 4), because p(X) = H−1XT H in the case of a bilinear form
and p(X) = H−1XT H in the case of a sesquilinear form. Thus, the dimensions of the
eigenspaces Eig(X) and Eig

(
p(X)

)
of X and p(X), respectively, must be equal. Finally,

the additional assumption on H implies X = (X [?])[?] and then 5) follows from

X = (X [T ])[T ] =
(
p(X)

)[T ]
= H−1p(X)T H = p(H−1XT H) = p(X [T ]) = p

(
p(X)

)

in the case that H is symmetric or skew-symmetric, and in the case that H is Hermitian,
5) follows from

X =
(
p(X)

)[∗]
= H−1p(X)∗H = H−1p(X∗)H = p(H−1X∗H) = p(X [∗]) = p

(
p(X)

)
. ¤

Definition 2.5 Let H ∈ F
n×n be nonsingular and let X ∈ F

n×n be polynomially H-normal.
Then the unique polynomial p ∈ F[t] of minimal degree such that X [?] = p(X) is called the
H-normality polynomial of X.

3 Decomposition of polynomially H-normal matrices

In this section, we investigate decomposability of polynomially H-normal matrices and
discuss spectral properties of indecomposable polynomially H-normal matrices.

Proposition 3.1 Let X ∈ C
n×n be polynomially H-normal with H-normality polynomial

p and let λ, µ ∈ C be eigenvalues of X. Furthermore, let (v1, . . . , vl) be a Jordan chain
for X with respect to λ and let (w1, . . . , wm) be a Jordan chain for X with respect to µ,
where m ≥ l. Then for all i = 1, . . . , l, j = 1, . . . ,m, and η = 0, . . . , min(i − 1,m − j) the
following conditions are satisfied:

1) if H is Hermitian:

a) [wj, vi] =
(
p′(λ)

)η

[wj+η, vi−η] if µ = p(λ) and if [wσ, vν ] = 0 for σ + ν < i + j;
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b) [wj, vi] = 0 if i + j ≤ m;

c) [wj, vi] = 0 if i + j > m and µ 6= p(λ).

2) if H is symmetric or skew-symmetric:

a) [wj, vi] =
(
p′(λ)

)η

[wj+η, vi−η] if µ = p(λ) and if [wσ, vν ] = 0 for σ + ν < i + j;

b) [wj, vi] = 0 if i + j ≤ m;

c) [wj, vi] = 0 if i + j > m and µ 6= p(λ);

Proof. We only prove the result for the case that H is Hermitian. The proof in the
symmetric or skew-symmetric case proceeds completely analogously. Let v0 := 0 and
w0 := 0. Then

p(X)vi =
i∑

ν=0

1

ν!
p(ν)(λ)vi−ν and Xwj = µwj + wj−1

for i = 1, . . . , l; j = 1, . . . ,m, because of (2.3) and because (w1, . . . , wm) is a Jordan chain.
If µ = p(λ) and if j < m and i > 1 are such that [wσ, vν ] = 0 for σ + ν < i + j then

[wj, vi] = [Xwj+1, vi] − µ[wj+1, vi] = [wj+1, p(X)vi] − p(λ)[wj+1, vi]

=

[
wj+1 ,

i∑

ν=0

1

ν!
p(ν)(λ)vi−ν

]
− [wj+1, p(λ)vi]

=

[
wj+1 ,

i∑

ν=1

1

ν!
p(ν)(λ)vi−ν

]
= p′(λ)[wj+1, vi−1].

Repeating this argument implies a). The remainder of the proof proceeds by induction on
k = i + j (including the cases i = 0 and j = 0). The case k = 1 is trivial. Thus, assume
k > 1. If i = 0 or j = 0 then there is nothing to prove. Thus, let i, j > 0. First let us
assume p(λ) = µ and k ≤ m. Using j + i − 1 < m, the induction hypothesis [wσ, vν ] = 0
for σ + ν < k, and a), we obtain that

[wj, vi] =
(
p′(λ)

)i−1

[wj+i−1, v1] =
(
p′(λ)

)i−1(
[Xwj+i, v1] − µ[wj+i, v1]

)

=
(
p′(λ)

)i−1(
[wj+i, p(X)v1] − p(λ)[wj+i, v1]

)
= 0.

Next consider the case p(λ) 6= µ. Then the induction hypothesis yields [wj−1, vi] = 0 and
[wj, vν ] = 0 for ν < i. Thus, we obtain that

µ[wj, vi] = [µwj, vi] = [Xwj, vi] − [wj−1, vi] = [Xwj, vi] = [wj, p(X)vi]

=

[
wj ,

i∑

ν=0

1

ν!
p(ν)(λ)vi−ν

]
= p(λ)[wj, vi]

which implies [wj, vi] = 0. This concludes the proof of b) and c).
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Proposition 3.2 Let X ∈ C
n×n be polynomially H-normal, and let V be a nontrivial

X-invariant subspace that is H-nondegenerate. Then X is H-decomposable.

Proof. Without loss of generality, we may assume that (e1, . . . , em) is a basis of V . (Oth-
erwise apply a suitable transformation on X and H.) Then X and H have the block
forms

X =

[
X11 X12

0 X22

]
and H =

[
H11 H12

±H?
12 H22

]
,

where X11, H11 ∈ C
m×m. Then 1 ≤ m ≤ n − 1, because V is nontrivial. Since V is

H-nondegenerate, we obtain that H11 is nonsingular. Setting

P =

[
Im H−1

11 H12

0 In−m

]
,

we obtain that

X̃ = P−1XP =

[
X11 X̃12

0 X22

]
and H̃ = P?HP =

[
H11 0

0 H̃22

]
,

with suitable matrices X̃12, H̃22. Note that with X̃ also p(X̃) is block upper triangular.
Then the identity X̃?H̃ = H̃p(X̃) implies X̃12 = 0. Hence, X is H-decomposable.

Proposition 3.3 Let X ∈ C
n×n be polynomially H-normal with H-normality polynomial

p. Furthermore, let (v1, . . . , vl) be a Jordan chain for X and let V := Span(v1, . . . , vl).

i) V is nondegenerate if and only if [v1, vl] 6= 0.

ii) Let B := (v1, . . . , vn) be an extension of (v1, . . . , vl) to a basis of C
n that consists of

Jordan chains for X. If any Jordan chain in B different from (v1, . . . , vl) has length
smaller than l, then V is nondegenerate.

Proof. If [v1, vl] = 0, then by condition b) in Proposition 3.1 we have [v1, vj] = 0 for
j = 1, . . . , l and hence V is degenerate. To prove the converse, assume V is degenerate and
let v ∈ V \ {0} be such that [vj, v] = 0 for j = 1, . . . , l. Then v = c1v1 + · · ·+ clvl for some
c1, . . . , cl ∈ C. Let ν be the largest index such that cν 6= 0. Then

0 = [v, vl−ν+1] = cν [vν , vl−ν+1] = ζ l−νcν [vl, v1],

by conditions a) and b) in Proposition 3.1. Here ζ = p′(λ) in the case of a bilinear form or
ζ = p′(λ) in the case of a sesquilinear form, where λ is the eigenvalue associated with the
Jordan chain (v1, . . . , vl). In particular, ζ l−ν 6= 0. (For l > 1 this follows from condition 4)
in Proposition 2.4 and for l = 1 the exponent l − ν is zero.) But then, we necessarily have
[vl, v1] = 0. This conludes the proof of i).

For the prove of ii), assume that V is degenerate. Then by i) we have [vl, v1] = 0.
Moreover, the fact that all Jordan chains in (vl+1, . . . , vn) have size smaller than l and
condition b) in Proposition 3.1 imply that [vj, v1] = 0 for j = 1, . . . , n. This contradicts
H being nonsingular and the inner product being nondegenerate. Consequently, V is
nondegenerate.
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Proposition 3.4 Let X ∈ C
n×n be an H-indecomposable polynomially H-normal matrix

with H-normality polynomial p and let Eig(X) be the space of all eigenvectors of X.

a) dim Eig(X) ≤ 2.

b) If dim Eig(X) = 1 and if λ is the eigenvalue of X, then p(λ) = λ in the case of
Hermitian H and p(λ) = λ in the case of symmetric or skew-symmetric H.

c) If dim Eig(X) = 2, then there exist two Jordan chains (v1, . . . , vm) and (w1, . . . , wm)
for X associated with the eigenvalues λ and µ, respectively, such that C

n = V+̇W,
where V := Span(v1, . . . , vm) and W := Span(w1, . . . , wm) are H-neutral. In partic-
ular, n = 2m is even.

Moreover, if H is Hermitian, then p(λ) = µ 6= λ = p(µ). If HT = εH, where ε = ±1,
then p(λ) = µ and p(µ) = λ and we have µ = λ only if εp′(λ)m−1 = −1.

Proof. Let (v1, . . . , vm) be a Jordan chain for X of maximal length m and let λ ∈ C

denote the eigenvalue associated with that chain.
If [vm, v1] 6= 0 then V = Span(v1, . . . , vm) is nondegenerate by condition i) in Proposi-

tion 3.3. But if V is nondegenerate, then Proposition 3.2 implies n = m and hence X has
only one eigenvector up to scalar multiplication which implies dim Eig(X) = 1. Moreover,
condition c) in Proposition 3.1 implies p(λ) = λ in the case of Hermitian H and p(λ) = λ
in the case of symmetric or skew-symmetric H.

If [vm, v1] = 0, then the fact that the inner product is nondegenerate implies that
there exists a Jordan chain (w1, . . . , wl) for X associated with an eigenvalue µ ∈ C such
that [wl, v1] 6= 0. Then condition c) of Proposition 3.1 implies µ = p(λ) in the case of
symmetric or skew-symmetric H and µ = p(λ) in the case of Hermitian H. Now, condition
b) in Proposition 3.1 implies l ≥ m, in fact l = m due to the maximality assumption.
Furthermore, [wm, w1] = 0, because otherwise Span(w1, . . . , wm) would be nondegenerate in
constrast to the H-indecomposability of X. We claim that U = Span(v1, . . . , vm, w1, . . . , wl)
is nondegenerate. Indeed, let

v = α1v1 + · · · + αmvm + β1w1 + · · · + βmwm, α1, . . . , αm, β1, . . . , βm ∈ C

be such that [v, z] = 0 for all z ∈ V . Assume v 6= 0 and let k be the largest index such that
αk 6= 0 or βk 6= 0. Then conditions a) and b) in Proposition 3.1 and [vm, v1] = 0 = [wm, w1]
(or, equivalently, [vk, vm−k+1] = 0 = [wk, wm−k+1] imply

0 = [v, wm−k+1] = αk[vk, wm−k+1] = ζαk[vm, w1],

0 = [v, vm−k+1] = βk[wk, vm−k+1] = ξβk[w1, vm],

where ζ and ξ are nonzero constants. Thus, we obtain αk = βk = 0, a contradiction. Hence
v = 0, i.e., U is nondegenerate. Then Proposition 3.2 implies n = 2m and, therefore,
dim Eig(X) ≤ 2. Next, we show that the Jordan chains (v1, . . . , vm) and (w1, . . . , wm) can
be chosen in such a way that they span H-neutral subspaces. We consider two cases.

9



Case (i): µ 6= λ. By condition c) in Proposition 3.1, we obtain from [wm, v1] 6= 0 that
λ = p(µ) in the case of symmetric or skew-symmetric H and λ = p(µ) in the case of
Hermitian H. This implies λ 6= p(λ), or λ 6= p(λ), respectively. Hence, by condition c) in
Proposition 3.1, both V and W are necessarily H-neutral.

Case (ii): µ = λ. First, we consider the case of Hermitian H. Then

[w1, vm] = p′(λ)
m−1

[wm, v1] = p′(λ)
m−1

[v1, wm].

Now let α ∈ C and consider (v1 + αw1, . . . , vm + αwm) which is a Jordan chain associated
with λ. Clearly, α can be chosen such that

[v1 + αw1, vm + αwm] = α[w1, vm] + α[v1, wm] = αp′(λ)
m−1

[v1, wm] + α[v1, wm] 6= 0

(For example, choose α = 1 if [v1, wm] 6= −p′(λ)
m−1

[v1, wm] and α = i else.) But then
Span(v1 + αw1, . . . , vm + αwm) is nondegenerate by Proposition 3.3 in contrast to the
indecomposability of X. Thus, case (ii) does not occur in the case of Hermitian H.

Next, consider the case that HT = εH, where ε = ±1. Repeating the argument just
made with α = 1, we obtain that (v1 + w1, . . . , vm + wm) is a Jordan chain associated with
λ satisfying

[v1 + w1, vm + wm] = (1 + εp′(λ)m−1)[v1, wm]

which is nonzero unless εp′(λ)m−1 = −1. Thus, case (ii) only occurs in the case that
εp′(λ)m−1 = −1, because otherwise X would be H-decomposable.

Assume that the Jordan chains (v1, . . . , vm) and (w1, . . . , wm) associated with λ and
µ = p(λ), respectively, are chosen in such a way that

[vm, vj] = 0 = [wm, wj]

for j = 1, . . . , k, where k is maximal. Then k ≥ 1 because [vm, v1] = 0 = [wm, w1]. Let
V = Span(v1, . . . , vm) and W = Span(w1, . . . , wm). Clearly, V and W are H-neutral if and
only if k = m. Assume k < m. Then [vm, vk+1] 6= 0 or [wm, wk+1] 6= 0. Without loss of
generality, we may assume that [vm, vk+1] 6= 0. Then by condition a) in Proposition 3.1,
we have that

[vm, vk+1] = ε[vk+1, vm] = εp′(λ)m−k−1[vm, vk+1],

which implies εp′(λ)m−k−1 = 1. Set

c := − [vm, vk+1]

2[vm, w1]
and ṽj :=

{
vj for j ≤ k
vj + cwj−k for j > k

Then (ṽ1, . . . , ṽm) is a Jordan chain for X associated with λ and

[ṽm, ṽj] = [vm, vj] + c[wm−k, vj] = 0

for j = 1, . . . , k because of m − k + j ≤ m and condition b) in Proposition 3.1. On the
other hand, we obtain from

[wm−k, vk+1] = ε[vk+1, wm−k] = εp′(λ)m−k−1[vm, w1] = [vm, w1]
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and [wm−k, w1] = 0 that

[ṽm, ṽk+1] = [vm, vk+1] + c[vm, w1] + c[wm−k, vk+1] + c2[wm−k, w1] = 0.

If necessary, an analogous modification of the Jordan chain (w1, . . . , wm) yields a Jordan
chain (w̃1, . . . , w̃m), where [w̃m, w̃j] = 0 for j = 1, . . . , k + 1. (Note that the vectors
ṽ1, . . . , ṽm, w̃1, . . . , w̃m are linearly independent, because the vectors ṽ1 = v1 and w̃1 = w1

are.) This contradicts the maximality assumption on k. Hence k = m, and V and W are
H-neutral.

Corollary 3.5 Let X ∈ C
n×n be an H-indecomposable polynomially H-normal matrix

with H-normality polynomial p. If there exist two linearly independent eigenvectors of X,
then n = 2m is even and there exists a nonsingular matrix P ∈ F

n×n such that

P−1XP =

[ Jm(λ) 0

0 p
(
Jm(λ)

)?
]

, P T HP =

[
0 Im

εIm 0

]
(3.1)

where ε = 1 and λ 6= p(λ) in the case of Hermitian H, and λ 6= p(λ) or λ = p(λ) and
εp′(λ)m−1 = −1 in the case that HT = εH, where ε = ±1.

Proof. By Proposition 3.4, we may assume that, after an appropriate change of bases, X
and H have the forms

X =

[
Jm(λ) 0

0 Jm(µ)

]
, H =

[
0 H12

H21 0

]
.

It is clear that H12 is nonsingular and H21 = εH?
12, where ε and λ satisfy the conditions in

the statement of the corollary. Hence, setting P = Im ⊕H−1
12 , we obtain using X? = p(X)

that P−1XP and P ∗HP have the forms (3.1).

4 Transforming upper triangular Toeplitz matrices

In this section, we will collect some technical results that will be used in the following
section for the reduction of polynomially H-normal matrices towards canonical form. We
include the real case her, i.e., F may be either C or R. Let us start with a nilpotent
Jordan block Jn(0). If H is such that Jn(0) is polynomially H-normal with H-normality

polynomial p, then Jn(0)∗H = Jn(0)T H = Hp
(
Jn(0)

)
or, equivalently,

(RnH)−1Jn(0)RnH = p
(
Jn(0)

)

which implies that the similarity transformation with RnH transforms Jn(0) to an upper
triangular Toeplitz matrix. (Here, we used that RnJn(0)Rn = Jn(0)T or, more generally,
RnTRn = T T for any Topelitz matrix T ∈ F

n×n.) In this section, we will focus on
transformation matrices like RnH and analyze their structure.
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It is well known that a matrix T commutes with Jn(0) if and only if T is an upper
triangular Toeplitz matrix, see [5]. These matrices will play an important role in the
following and we use the following notation for them: for a0, . . . , an−1 ∈ C we denote

T (a0, . . . , an−1) =




a0 a1 . . . an−1

0 a0
. . .

...

0 0
. . . a1

0 0 0 a0


 .

As a general convention, we interprete a matrix denoted by T (a0, a1, a2, . . . , an−1) as the
scalar a0 if n = 1, as T (a0, a1) if n = 2 and as T (a0, a1, a2) if n = 3. Moreover, we denote

T (n) : set of all n × n upper triangular Toeplitz matrices

Tk(n) : set of all n × n upper triangular Toeplitz matrices T (a0, a1, . . . , an−1),

where a0 = · · · = ak−1 = 0, ak 6= 0.

In particular, T1(n) consists of all upper triangular Toeplitz matrices that are similar to the
Jordan block Jn(0). This means that for a1, . . . , an−1 ∈ F, a1 6= 0, there exists a nonsingular
matrix Q such that Q−1Jn(0)Q = T (0, a1, . . . , an−1). The set of all transformations of this
form will be denoted by G(n), i.e.,

G(n) = {Q ∈ F
n×n |Q−1Jn(0)Q ∈ T1(n)}.

Proposition 4.1 The set G(n) is a group. Moreover, if Q ∈ G(n), then RnQ
∗Rn ∈ G(n)

and RnQ
T Rn ∈ G(n).

Proof. Clearly, G(n) is closed under matrix multiplication, because elements of T1(n) are
just sums of powers of Jn(0). Let Q ∈ G(n), that is, T := Q−1Jn(0)Q ∈ T1(n). We show
by induction on k that QJn(0)kQ−1 ∈ Tk(n) for k = n − 1, . . . , 1. Then the statement for
k = 1 implies Q−1 ∈ G(n). First, let k = n − 1. Then

Q−1Jn(0)n−1Q = T n−1 = αJn(0)n−1

for some α ∈ F \ {0}, because T n−1 ∈ Tn−1(n). This implies QJn(0)n−1Q−1 = 1
α
Jn(0)n−1.

Next, let k < n − 1. Then

Q−1Jn(0)kQ = T k =
n−1∑

j=k

βjJn(0)j

for some βk, . . . , βn−1 ∈ F, where βk 6= 0. The induction hypothesis for k + 1, . . . , n − 1
implies

QJn(0)kQ−1 =
1

βk

(
Jn(0)k −

n−1∑

j=k+1

βjJn(0)j

︸ ︷︷ ︸
∈Tk+1

)
∈ Tk(n),
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which concludes the induction proof. Hence, G(n) is a group. For the remainder of the
proof, let Q ∈ G(n) be such that

Q−1Jn(0)Q = T (0, a1, . . . , an−1).

Then noting that RnT
∗Rn = T for any T ∈ T (n), we obtain that

(RnQ
−∗Rn)−1Jn(0)(RnQ

−∗Rn) = (RnQ
∗Rn)(RnJn(0)T Rn)(RnQ

−∗Rn)

= RnQ∗Jn(0)T Q−∗Rn = Rn(Q−1Jn(0)Q)∗Rn

= RnT (0, a1, . . . , an−1)
∗Rn = T (0, a1, . . . , an−1).

Thus, RnQ
−∗Rn ∈ G(n) and since G(n) is a group, we also have RnQ

∗Rn ∈ G(n). The
proof for RnQT Rn ∈ G(n) is analogous.

What do the elements of G(n) look like? The answer is given in a more general sense
in the next result.

Proposition 4.2 Let a1, . . . , an−1 ∈ F, a1 6= 0, let T = T (0, a1, . . . , an−1) ∈ T1(n), and let
p ≥ n. Then for any q ∈ F

n, the matrix Q̃ = (qij) ∈ F
p×n given by

Q̃ =

[ n

n Q
p − n 0

]
, Q =




qT

qT T
...

qT T n−1


 (4.1)

satisfies
Jp(0)Q̃ = Q̃T. (4.2)

On the other hand, any matrix Q̃ satisfying (4.2) is uniquely determined by its first row,
say qT , and has the form (4.1). In particular, Q is upper triangular, and for k = 1, . . . , n,
l = 0, . . . , n − k, we obtain that

qkk = ak−1
1 q11; (4.3)

qk,k+l =
l+1∑

i=1

aiqk−1,k+l−i; (4.4)

qk,k+l = (k − 1)ak−2
1 al+1q11 + ak−1

1 q1,l+1 + fkl(a1, . . . , al, q11, . . . , q1l), (4.5)

where fkl ∈ F depends on a1, . . . , al, q11, . . . , q1l, but not on al+1 or q1,l+1, and where an := 0.

Proof. It is well known (see, e.g., [5] chapter VIII, §1) that the solutions X of the equation
Jp(0)X = XT form a vector space of dimension n. A straight forward computation
shows that any Q of the form (4.1) is indeed a solution to Jp(0)X = XT . Thus, Q
is uniquely determined by the n entries of the first row qT and we immediately obtain
the identities (4.3) and (4.4) by comparing the two sides in (4.1). We will now prove
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identity (4.5) by induction on k. If k = 1, then (4.5) is trivially satisfied with f1l = 0 for
l = 0, . . . , n − k. If k > 1 and l ∈ {0, . . . , n − k − 1}, then (4.4) implies

qk+1,k+1+l =
l+1∑

j=1

ajqk,k+l−j+1 = al+1qkk + a1qk,k+l +
l∑

j=2

ajqk,k+l−j+1. (4.6)

By the induction hypothesis, we obtain that qk,k+l−j+1 does neither depend on al+1 nor on
q1,l+1 for j = 2, . . . , l. Moreover, using (4.3) and the induction hypothesis for qk,k+l, we
obtain that

qk+1,k+1+l = al+1qkk + a1qk,k+l + f̃kl

= ak−1
1 al+1q11 + a1

(
(k − 1)ak−2

1 al+1q11 + ak−1
1 q1,l+1 + fkl

)
+ f̃kl

= kak−1
1 al+1q11 + ak

1q1,l+1 + fk+1,l,

where f̃kl ∈ F and fk+1,l = f̃kl + a1fkl may depend on a1, . . . , al, q11, . . . , q1l, but do neither
depend on al+1 nor on q1,l+1. This concludes the proof.

Example 4.3 If n = p = 4, then any Q ∈ F
4×4 satisfying Jn(0)Q = QT (0, a1, a2, a3) has

the form

Q =




q11 q12 q13 q14

0 a1q11 a2q11 + a1q12 a3q11 + a2q12 + a1q13

0 0 a2
1q11 2a1a2q11 + a2

1q12

0 0 0 a3
1q11




for some q11, q12, q13, q14 ∈ F.

Proposition 4.4 Let n ≥ 2 and let H be such that RnH ∈ G(n), i.e., there exists a matrix
T := T (0, a1, . . . , an) ∈ T1(n) such that Jn(0)T H = HT .

1. If H is symmetric, then a1 = 1 if n is even, or a1 = ±1 if n is odd.

2. If H is skew-symmetric, then n is even and a1 = −1.

3. If H is Hermitian, then a1 =
h2

ν+1,ν

|hν+1,ν |2
if n = 2ν is even or a1 = ± h2

ν+2,ν

|hν+2,ν |2
if n = 2ν+1

is odd.

If one of the conditions 1)–3) is satisfied and if, in addition, the last row of H is a multiple
of the first unit vector eT

1 , then a2 = · · · = an−1 = 0 and H is anti-diagonal.

Proof. Let M = RnH = (mij) = (hn+1−i,j). Then

Jn(0)M = Rn(RnJn(0)Rn)H = RnJn(0)T H = MT
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and M is upper triangular by Proposition 4.2. Since M is nonsingular, we have furthermore
that m11 6= 0. First, let n = 2ν be even. Then Proposition 4.2 implies that

mνν =





mν+1,ν+1 = a1mνν , if H is symmetric;
−mν+1,ν+1 =−a1mνν , if H is skew-symmetric;

mν+1,ν+1 = a1 mνν , if H is Hermitian.

Thus, a1 = 1 if H is symmetric, a1 = −1 if H is skew-symmetric, and a1 = m2
νν

|mνν |2
if H is

Hermitian. On the other hand, if n = 2ν + 1 is odd, then Proposition 4.2 implies that

mνν =

{
mν+2,ν+2 = a2

1mνν , if H is symmetric;
mν+2,ν+2 = a1

2 mνν , if H is Hermitian.

Thus, a1 = ±1 if H is symmetric and a1 = ± m2
ν,ν

|mν,ν |2
if H is Hermitian. (The case that H

is skew-symmetric does not appear, because H is assumed to be invertible.)
Finally, assume that the last row of H is a multiple of the first unit vector, that is,

m12 = · · · = m1n = 0. Then Proposition 4.2 implies that M has the form

M = m11




eT
1

eT
1 T
...

eT
1 T n−1


 ,

i.e., the rows of M are just the first rows of I, T , . . . , T n−1 multiplied by m11. Since each
T k is an upper triangular Toeplitz matrix, it is completely determined by its first row and
we immediately obtain that

T k =
mk+1,k+1

m11

Jn(0)k + · · · + mk+1,n

m11

Jn(0)n−1, k = 1, . . . , n − 1. (4.7)

Assume that not all aj, j = 2, . . . , n − 1 are zero. Let l ∈ {2, . . . , n − 1} be the smallest
index such that al 6= 0, i.e.,

T = a1Jn(0) + alJn(0)l + · · · + an−1Jn(0)n−1. (4.8)

By (4.7),
mn−l+1,n

m11
is the coefficient of Jn(0)n−1 in T n−l. On the other hand, using (4.8) to

compute T n−l, we obtain that

T n−l = an−l
1 Jn(0)n−l + (n − l)an−l−1

1 alJn(0)n−1.

This implies mn−l+1,n = m11(n − l)an−l−1
1 al. However, we have that mn−l−1,n = ±m1l if

H is (skew-)symmetric or mn−l−1,n = ±m1l if H is Hermitian, and we have that m1l = 0.
This implies al = 0 in contradiction to the assumption. Thus, a2 = · · · = an−1 = 0. In
particular, T is just a scalar multiple of a Jordan block and it follows from (4.7) that
mk+1,j = 0 for j = k + 2, . . . , n, k = 1, . . . , n − 1. Thus, M is diagonal, i.e., H is anti-
diagonal.
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5 H-normal matrices similar to a Jordan block

As an application of the results in Section 4, we obtain a canonical form for H-normal
matrices that are similar to a Jordan block. Since the reduction process in the real case
is similar to the one in the complex case, we include the real case here, i.e., F may be
either C or R. For the case of Hermitian H, the reduction technique is based on ideas
that are similar to the ideas used in [9]. In particular, the canonical form (5.1) and (5.2)
in Theorem 5.2 could be derived starting with Theorem 1 and 2 in [9]. However, an
independent proof is given here in order to make the paper self-contained and to be able
to emphasize the differences in the cases of Hermitian H, (real or complex) symmetric H,
and (real or complex) skew-symmetric H. We start with a remark that can be verified
straight forward.

Remark 5.1 Let A = (aij), B = (bij), C = (cij) be n×n matrices and D = (dij) = ABC.

1) RnA = (an+1−i,j) and ARn = (ai,n+1−j).

2) If A, B, and C are upper triangular, then for l, k = 1, . . . , n we have

dlk =
k∑

i=l

i∑

j=l

aljbjicik.

Theorem 5.2 Let H ∈ F
n×n be nonsingular and Hermitian or (skew-)symmetric, and let

A ∈ F
n×n be polynomially H-normal with H-normality polynomial p ∈ F[t]. Furthermore,

let A be similar to the Jordan block Jn(λ). Then p(λ) = λ and |p′(λ)| = 1 if H is Hermitian,
or p(λ) = λ and p′(λ) = ±1 if H is symmetric or skew-symmetric. Moreover, one of the
following cases applies:

1) if H is Hermitian, then there exists a nonsingular matrix Q ∈ C
n×n such that

Q−1AQ = λIn + eiθ T (0, 1, ir2, . . . , irn−1) (5.1)

Q∗HQ = εRn, (5.2)

where the parameter ε = ±1 is uniquely determined, and the parameters θ ∈ [0, π)
and r2, . . . , rn ∈ R are uniquely determined by λ and the coefficients of the polynomial
p and can be computed from the identity

λIn + e−iθT (0, 1,−ir2, . . . ,−irn−1) = p
(
λIn + eiθ T (λ, 1, ir2, . . . , irn−1)

)
;

2) if HT = ±H and p′(λ) = 1, then H is symmetric and there exists a nonsingular
matrix Q such that

Q−1AQ = Jn(λ), QT HQ = εRn, (5.3)

where ε is uniquely determined and ε = 1 if F = C and ε = ±1 if F = R;
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3) if HT = ±H and if p′(λ) = −1, then H is symmetric if n is odd and H is skew-
symmetric if n is even; moreover there exists a nonsingular matrix Q such that

Q−1AQ = T (λ, 1, a2, a3, . . . , an−1) = T (λ, 1, a2, 0, a4, 0, . . . ) (5.4)

QT HQ = εΣn, (5.5)

where ε = is uniquely determined and ε = 1 if F = C or ε = ±1 if F = R, and
where aj = 0 for odd j and the parameters aj for even j are uniquely determined
by λ and the coefficients of the polynomial p and can be computed from the identity

T (λ,−1, a2, 0, a4, 0, . . . ) = p
(
T (λ, 1, a2, 0, a4, 0, . . . )

)
.

Proof. Without loss of generality, we may assume that A = Jn(λ). From the identity
A? = p(A), we immediately obtain that p(λ) = λ in the case of Hermitian H and p(λ) = λ
in the case of (skew-)symmetric H. Without loss of generailty, we may assume λ = 0.
Indeed, it follows from Proposition 2.4.3 that Y = A − λIn = Jn(0) is polynomially H-
normal with H-normality polynomial p0, where p0 is given in (2.4), because of

H−1Y ∗H = H−1(X∗ − λIn)H = p
(
Jn(λ)

)
− λIn = p0

(
Jn(0)

)
= p0(Y )

in the case of Hermitian H or

H−1Y T H = H−1(XT − λIn)H = p
(
Jn(λ)

)
− λIn = p0

(
Jn(0)

)
= p0(Y )

in the case of (skew-)symmetric H. (Recall that by (2.4), the coefficients of p0 depend on
λ and on the coefficients of p.)

Thus, let λ = 0 and p(t) = α0+α1t+· · ·+αn−1t
n−1. Then the fact that A is polynomially

H-normal implies

Jn(0)T H = Hp
(
Jn(0)

)
= HT (α0, . . . , αn). (5.6)

Clearly, we have α0 = 0. Moreover, (5.6) implies Jn(0)RnH = RnHT (α0, . . . , αn), that is,
RnH ∈ G(n) and hence, RnH is upper triangular. The main idea is now to simplify H by
applying a congruence transformation on H with a matrix Q = (qij) ∈ G(n). By Propo-
sition 4.2, the matrix Q satisfying Q−1Jn(0)Q = T (0, a1, . . . , an−1) is uniquely determined
by the parameters q11, . . . , q1n, a1, . . . , an−1. It is our aim to choose these parameters in a
way such that the transformed matrices A and H become as simple as possible. We will
consider two different cases.

Case (1): H is Hermitian. Then Proposition 4.4 implies that |α1| = 1. Consider the
matrix M := (mij) := RnQ∗HQ = (RnQ∗Rn)(RnH)Q. Then by Remark 5.1, the elements
of the first row of M satisfy

m1k =
k∑

i=1

i∑

j=1

qn−j+1,n hn−j+1,iqik, k = 1, . . . , n. (5.7)
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By (4.5), the only summands in (5.7) that possibly depend on ak or q1k (where an := 0)
are qnn hn1q1k and qn−k+1,n hn−k+1,kqkk. Proposition (4.3) implies that hn−k+1,k = αk−1

1 hn1

and qkk = ak−1
1 q11. Using this and (4.5), we obtain that m1k has the form

m1k = an−1
1 q11 hn1q1k +

(
(n − k)an−k−1

1 ak q11 + an−k
1 q1k

)
αk−1

1 hn1a
k−1
1 q11 + Sk, (5.8)

where Sk = Sk(a1, . . . , ak−1, q11, . . . , q1,k−1) does neither depend on ak nor on q1k. Now
choose a1 = eiθ to be the square root of α1 with argument θ ∈ [0, Π). (Recall that
|α1| = 1.) Then α1 = a1

2 and (5.8) becomes

m1k = an−1
1 q11 hn1q1k +

(
(n − k)an−2

1 ak q11 + an−1
1 q1k

)
q11hn1 + Sk,

= an−1
1 hn1

(
q11 q1k + q1k q11 + (n − k)a1ak |q11|2 +

an−1
1

hn1

Sk

)
. (5.9)

Note that an−1
1 hn1 is real. Indeed,

an−1
1 hn1 = an−1

1 hn1 = an−1
1 h1n = an−1

1 αn−1
1 hn1 = an−1

1 hn1.

Then we set q11 = 1/

√
|an−1

1 hn1| and we succesively choose

ak =
1

(n − k)q2
11

Im

(
an−1

1

hn1

Sk

)
ieiθ, q1k =

1

2q11

Re

(
an−1

1

hn1

Sk

)
, k = 2, . . . , n − 1

which implies m1k = 0 for k = 2, . . . , n − 1. Observe that (5.9) for k = n takes the form

m1n = an−1
1 hn1q11

(
q1n + q1n

)
+ Sn.

Since an−1
1 hn1, q11, and m1n = hnn are real, so must be Sn. Then choosing

q1n = − 1

2q11

an−1
1

hn1

Sn

gives m1n = 0. Since RnH,Q ∈ G(n), we obtain that RnQ
∗Rn ∈ G(n) and then also

M = RnQ
∗HQ ∈ G(n). But then, Proposition 4.4 implies that Q∗HQ is anti-diagonal.

Observe that the anti-diagonal elements of H̃ := (h̃ij) := Q∗HQ have the forms

h̃n+1−k,k = mkk = qn+1−k,n+1−khn+1−k,kqkk = an−k
1 q11α

k−1
1 hn1a

k−1
1 q11 =

an−1
1 hn1

|an−1
1 hn1|

= ε,

where ε = 1 if an−1
1 hn1 > 0 and ε = −1 else. (We have hn1 6= 0, because of the nonsingu-

larity of H.) Thus, Q∗HQ = εRn. By construction, we have that

Q−1AQ = T (0, a1, . . . , an−1) = eiθT (0, 1, ir2, . . . , irn−1),
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where r2, . . . , rn−1 ∈ R. It remains to show uniqueness of these forms. First, we show that
the parameters r2, . . . , rn−1 ∈ R and θ ∈ [0, π) are uniquely determined by the coefficients
of the polynomial p. Indeed, since p(t) = α1t + α2t

2 + · · · + αn−1t
n−1, we obtain from the

special structure of Ã := Q−1AQ that

p(Ã) = α1e
iθT (0, 1, ir2, . . . , irn−1) + T (0, 0, s2, s3, . . . , sn−1),

where sj may depend on α2, . . . , αj, r2, . . . , rj−1, but it does not depend on rj. A straight

forward computation shows H̃−1Ã∗H̃ = e−iθT (0, 1,−ir2, . . . ,−irn−1), because H̃ = εRn.

Then we obtain from the identity p(Ã) = H̃−1Ã∗H̃ that

α1e
iθT (0, 1, ir2 + s2, . . . , irn1

+ sn1
) = e−iθT (0, 1,−ir2, . . . ,−irn−1). (5.10)

Thus, θ ∈ [0, π) is uniquely determined by the identity α1e
iθ = e−iθ and the parameters

rj can be succesively obtained as the unique solutions of 2irj = −sj, because sj only
depends on ri for i < j. Thus, the parameters r2, . . . , rn−1 are uniquely determined by the
coefficients of p. Concerning the parameter ε, assume that Z−1ÃZ = Ã. Since Ã is an
upper triangular Toeplitz matrix with nonzero superdiagonal element a1, it follows easily
that Z = (zij) must be an upper triangular Toeplitz matrix as well. Then considering

Ĥ := Z∗H̃Z = Rn(RnZ
∗Rn)RnH̃Z, it follows by Remark 5.1 that the (1, n)-entry ĥ1n of

Ĥ has the form
ĥ1n = z11h1nznn = ε|z11|2.

Thus, we can never change the sign of ε with a transformation that leaves Ã invariant.
This proves uniqueness of the parameter ε and concludes the proof of Case (1).

Case (2): H is symmetric or skew-symmetric. Then Proposition 4.4 implies α1 = ±1.
Consider the matrix M := (mij) := RnQT HQ. Then a calculation analogous to the
calculation that lead us to (5.8) yields

m1k = an−1
1 q11hn1q1k +

(
(n − k)an−k−1

1 akq11 + an−k
1 q1k

)
αk−1

1 hn1a
k−1
1 q11 + Sk, (5.11)

where Sk = Sk(a1, . . . , ak−1, q11, . . . , q1,k−1) does neither depend on ak nor on q1k. We will
distinguish two subcases.

Subcase (2a): α1 = 1.
In this case H is necessarily symmetric by Proposition 4.4 and (5.11) becomes

m1k = 2an−1
1 q11hn1q1k + (n − k)an−2

1 akq
2
11hn1 + Sk, (5.12)

Set a2 = · · · = an−1 = 0 and q11 = 1/
√

h11 if F = C, or q11 = 1/
√

|h11| if F = R,
respectively. Then succesively define

q1k =
−Sk

2an−1
1 q11hn1

for k = 2, . . . , n. Then m1k = 0 and as in Case (1), we conclude that QT HQ is anti-
diagonal. In particular, QT HQ and Q−1AQ have the forms (5.3), where ε = 1 if F = C or
ε = h11/|h11| = ±1 if F = R, respectively. Uniqueness of ε is shown as in Case (1).
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Subcase (2b): α1 = −1.
By Proposition 4.4, H is symmetric if n is odd and skew-symmetric if n is even. Moreover,
(5.11) becomes

m1k = an−1
1 q11hn1q1k

(
1 + (−1)k−1

)
+ (n − k)an−2

1 akq
2
11hn1(−1)k−1 + Sk, (5.13)

Then we set q11 = 1/
√

h11 if F = C, or q11 = 1/
√

|h11| if F = R, respectively, and then
successively

q1k := 0, ak :=
Sk

(n − k)an−2
1 hn1q2

11

if k is even,

ak := 0, q1k :=
−Sk

2an−1
1 q11hn1

if k is odd,

for k = 2, . . . , n− 1, and q1n := 0 if n is even or q1n := −Sn/2an−1
1 q11hn1 if n is odd. Then

we obtain m1k = 0 for k = 2, . . . , n. (Note that if n is even then m1n = 0 follows from the
fact that H is skew-symmetric.) Then we conclude as in Case (1) that H̃ := QT HQ is anti-
diagonal. In particular, QT HQ and Ã := Q−1AQ have the forms (5.4) and (5.5), where
ε = 1 if F = C or ε = h11/|h11| = ±1 if F = R, respectively. Uniqueness of the parameters
ε and aj for even j is shown analogous to Case (1). Indeed, the identity H̃−1ÃT H̃ = p(Ã)
now becomes

T (0,−1, a2, 0, a4, 0, . . . ) = T (0,−1,−a2 + s2, s3,−a4 + s4, s5, . . . ), (5.14)

where sj may depend on α2, . . . , αj and ai for i < j, but it does not depend on aj. Thus, the
parameters a2, a4, . . . can be succesively obtained as the unique solutions of the identities
2a2j = s2j and, consequently, they are uniquely determined by the coefficients of p.

Remark 5.3 The uniqueness property of Proposition 5.2 is the reason why we transformed
the matrix A in Subcase (2b) to the special upper triangular Toeplitz form where every
other superdiagonal is zero. Because if Ã = T (0, 1, a2, a3, . . . , an−1), then (5.14) becomes

T
(
0,−1, (−1)2a2, . . . , (−1)n−1an−1

)
= T

(
0,−1,−a2 + s2, . . . ,−an−1 + sn−1

)
.

Thus, only the parameters aj with even index j are determined by s2, . . . , sn−2 and the
parameters aj with odd index j have to be specified in another way. We did this by setting
all of them to zero.

6 The case of Hermitian H

In this section, we present a canonical form for polynomially H-normal matrices for the case
that H is Hermitian. Then, we recover from the general result the well-known forms for H-
selfadjoint and H-unitary matrices. We do not consider H-skewadjoint matrices, because a
matrix S ∈ C

n×n is H-skewadjoint if and only if iS is H-selfadjoint and thus, the canonical
form for H-skewadjoint matrices is an immediate consequence of the canonical form for
H-selfadjoint matrices.
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6.1 Canonical forms for polynomially H-normal matrices

Theorem 6.1 Let H ∈ C
n×n be Hermitian and nonsingular and let X ∈ C

n×n be polyno-
mially H-normal with H-normality polynomial p. Then there exists a nonsingular matrix
Q such that

Q−1XQ = X1 ⊕ · · · ⊕ Xp, Q∗HQ = H1 ⊕ · · · ⊕ Hp, (6.1)

where Xj is Hj-indecomposable and where Xj and Hj have one of the following forms:

i) blocks associated with eigenvalues λj ∈ C satisfying p(λj) = λj:

Q−1XjQ = λjInj
+ eiθjT (0, 1, irj,2, . . . , irj,nj−1) and Q∗HjQ = εjRnj

, (6.2)

where nj ∈ N, εj = ±1, θj ∈ [0, π), and rj,2, . . . , rj,nj−1 ∈ R;

ii) blocks associated with a pair (λj, µj) ∈ C×C of eigenvalues, where µj = p(λj) 6= λj,

p(µj) = λj, and Re(λj) > Re(µj) or Im(λj) > Im(µj) if Re(λj) = Re(µj):

Q−1XjQ =

[
Jmj

(λj) 0

0 p
(
Jmj

(λj)
)∗
]

and Q∗HjQ =

[
0 Imj

Imj
0

]
, (6.3)

where mj ∈ N.

Moreover, the form (6.1) is unique up to the permutation of blocks, and the parameters θj,
and rj,2, . . . , rj,nj−1 in (6.2) are uniquely determined by λj and the coefficients of p and can
be computed from the identity

λjInj
+ e−iθjT (0, 1,−irj,2, . . . ,−irj,nj−1) = p

(
λjInj

+ eiθj T (0, 1, irj,2, . . . , irj,nj−1)
)
.

Proof. Clearly, X can be decomposed as in (6.1) into blocks Xj that are Hj-indecom-
posable. Thus, it is sufficient to investigate the case that X is H-indecomposable. Let
Eig(X) be the space of eigenvectors of X. Then Proposition 3.4 implies dim Eig(X) ≤ 2.
Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar to the
Jordan block Jn(λ) and thus, Theorem 5.2 implies the desired result.
Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. In
particular, λ 6= µ = p(λ).
It remains to show uniqueness of the form (6.1). Thus, consider two canonical forms
(Q−1

1 XQ1, Q
∗
1HQ1) and (Q−1

2 XQ2, Q
∗
2HQ2) for the pair (X,H). Then the fact that the

parameters rj,2, . . . , rj,nj−1 and θj are uniquely determined by λj and the coefficients of the
polynomial p and the uniqueness of the Jordan canonical form of X imply that, apart from
permutations of blocks, these two forms can only differ in the parameters εj in blocks of
the form (6.2). After eventually having permuted blocks in a suitable way, assume that

Q−1
1 XQ1 = X11 ⊕ · · · ⊕ X1` Q∗

1HQ1 = H11 ⊕ · · · ⊕ H1` (6.4)

Q−1
2 XQ2 = X21 ⊕ · · · ⊕ X2` Q∗

2HQ2 = H21 ⊕ · · · ⊕ H2` (6.5)
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are partitioned conformably such that X1j = X2j, for j = 1, . . . , l, that each X1j has only
one eigenvalue λj with p(λj) = λj for j = 1, . . . , ` − 1, X1` only has eigenvalues λk with
p(λk) 6= λk, and that the spectra of X1i and X1j are disjoint for i 6= j, i, j = 1, . . . , `.
(Thus, X1` = X2` contains all blocks of the forms as in (6.3).) Let P ∈ C

n×n be such that

P−1Q−1
1 XQ1P = Q−1

2 XQ2 and P ∗Q∗
1HQ1P = Q∗

2HQ2.

Then X1j = X2j and the disjointness of spectra of X1i and X1j for i 6= j imply that P is
block diagonal with a diagonal block form P = P1⊕· · ·⊕P` conformable with (6.4). (This
follows from the well-known fact that the Sylvester equation AY −Y B = 0 has the unique
solution Y = 0 if the spectra of A and B are disjoint.) In particular,

P−1
j X1jPj = X2j = X1j and P ∗

j H1jPj = H2j.

Hence, it suffices to consider the case that X has only one eigenvalue λ satisfying p(λ) = λ.
To this end, assume that

X̃ := Q−1
1 XQ1 = X11 ⊕ · · · ⊕ X1k H̃1 := Q∗

1HQ1 = ε1Rn1
⊕ · · · ⊕ εkRnk

(6.6)

Q−1
2 XQ2 = X21 ⊕ · · · ⊕ X2k H̃2 := Q∗

2HQ2 = δ1Rn1
⊕ · · · ⊕ δkRnk

(6.7)

where X1j = X2j = T (λ, eiθ, a2, . . . , anj−1), εj, δj ∈ {−1, +1} for j = 1, . . . , k and, fur-
thermore, n1 ≥ · · · ≥ nk. Then all we have to show is that for a fixed size, say nm,
where

n1 ≥ · · · ≥ nm−1 > nm = · · · = nm+` > nm+`+1 ≥ · · · ≥ nk,

the tuple of signs (εm, . . . , εm+`) is a permutation of the tuple of signs (δm, . . . , δm+`). Let

Q := Q−1
1 Q2. Then Q−1X̃Q = X̃ and Q∗H̃1Q = H̃2. Partition Q conformably with (6.6).

Q =




Q11 . . . Q1k

...
. . .

...
Qk1 . . . Qkk


 .

Then the blocks Qi,m+j ∈ C
n1×nm+j , j = 0, . . . , `, have the forms

Qi,m+j =

[ nm

nm Q̂i,m+j

ni − nm 0

]
for ni ≥ nm,

or Qi,m+j =
[ nm − ni ni

ni 0 Q̂i,m+j

]
for ni < nm,

where Q̂i,m+j is upper triangular. Indeed, we have that X1,m+jQi,m+j = Qi,m+jX2i. Since
X1,m+j is an upper triangular Toeplitz matrix with nonzero superdiagonal, there exists
Pm+j ∈ G(nm) such that Pm+j(X1,m+j − λInm

)P−1
m+j = Jnm

(0). then

Jnm
(0)Pm+jQi,m+j = Pm+jQi,m+jX2i
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and by Proposition 4.2, the matrix Pm+jQi,m+j has the form (4.1). Since Pm+j is upper
triangular, it follows that Qi,m+j has the desired form (for ni ≥ nm; for ni < nm use a corre-
sponding variant of Proposition 4.2). Note that for i, j = 0, . . . , `, we have in particular that
X1,m+i = X2,m+j . Thus, we can choose Pm+j = Pm+i and we find that Pm+jQm+i,m+jP

−1
m+i

commutes with Jnm
(0). But then, Pm+jQm+i,m+jP

−1
m+i and also Qm+i,m+j are upper tri-

angular Toeplitz matrices and the diagonal of Qm+i,m+j is constant. Denote the diagonal

element of Qm+i,m+j by qm+i,m+j . Now, consider the equation Q∗H̃1Q = H̃2. Then for the

block δm+jRnm
in H̃2, we obtain the identity

δm+jRnm
=

k∑

ν=1

ενQ
∗
ν,m+jRnν

Qν,m+j . (6.8)

Observe that, due to the special structure of the blocks Qν,m+j, only the summands for
ν = m, . . . ,m+ ` have an influence on the antidiagonal of δm+jRnm

. Thus, considering the
(nm, 1)-element of the matrix in both sides of (6.8), we obtain that

δm+j =
m+∑̀

ν=m

ενqν,m+` qν,m+`

for j = 0, . . . , `. Then setting

Q̌ :=




qmm . . . qm+`,m

...
. . .

...
qm,m+` . . . qm+`,m+`


 ,

we obtain that diag(δm, . . . , δm+`) = Q̌∗diag(εm, . . . , εm+`)Q̌. But then Sylvester’s Law of
Inertia implies that (εm, . . . , εm+`) is a permutation of (δm, . . . , δm+`). This concludes the
proof.

Remark 6.2 Theorem 6.1 can also be derived from the results in [9]. On the other hand,
the proof of uniqueness of the parameter εj uses the same techniques as does the proof of
uniqueness for the case of H-selfadjoint X. For this case, uniqueness has been shown in
various sources, see, e.g., [6, 14]. Here, the proof of uniqueness has been included for the
sake of independentness and self-containedness of the paper.

6.2 Canonical forms for H-selfadjoint matrices

Theorem 6.3 Let H ∈ C
n×n be Hermitian and nonsingular and let A ∈ C

n×n be H-
selfadjoint. Then there exists a nonsingular matrix Q such that

Q−1AQ = A1 ⊕ · · · ⊕ Ap, Q∗HQ = H1 ⊕ · · · ⊕ Hp, (6.9)

where Aj is Hj-indecomposable and where Aj and Hj have one of the following forms:
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i) blocks associated with real eigenvalues λj ∈ R:

Q−1AjQ = Jnj
(λj) and Q∗HjQ = εjRnj

, (6.10)

where nj ∈ N, εj = ±1;

ii) blocks associated with a pair (λj, λj) of conjugate complex eigenvalues:

Q−1AjQ =

[
Jmj

(λj) 0
0 Jmj

(λj)
∗

]
and Q∗HjQ =

[
0 Imj

Imj
0

]
, (6.11)

where mj ∈ N and Im(λj) > 0.

Moreover, the form (6.9) is unique up to the permutation of blocks.

Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-normality
polynomial p(t) = t. Thus p(λ) = λ if and only if λ ∈ R. Moreover, p′(t) = 1 for all t ∈ C.
Then, the result follows directly from Theorem 6.1. Indeed, the blocks of the form (6.2) in
Theorem 6.1 satisfy

λjInj
+ e−iθjT (0, 1,−irj,2, . . . ,−irj,nj−1) = λjInj

+ eiθj T (0, 1, irj,2, . . . , irj,nj−1)

which implies θj = 0, and rj,2 = · · · = rj,nj−1 = 0.

Remark 6.4 Theorem 6.3 coincides with the canonical form for H-selfadjoint matrices
derived in [6]. This form is related to the canonical form for pairs of Hermitian under
congruence, see [22, 14]. Indeed, if (G,H) is the canonical form for the pair (HA,H)
under congruence, then (H−1G,H) is the canonical form for the pair (A,H) under the
transformation (1.1).

6.3 Canonical forms for H-unitary matrices

Theorem 6.5 Let H ∈ C
n×n be Hermitian and nonsingular and let U ∈ C

n×n be H-
unitary. Then there exists a nonsingular matrix Q such that

Q−1UQ = U1 ⊕ · · · ⊕ Up, Q∗HQ = H1 ⊕ · · · ⊕ Hp, (6.12)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:

i) blocks associated with unimodular eigenvalues λj ∈ C, |λj| = 1:

Q−1UjQ = λInj
+ eiθjT (0, 1, ir2, . . . , irn−1) and Q∗HjQ = εjRnj

, (6.13)

where nj ∈ N, εj = ±1, and

θj =





arg(λj) + π
2

for arg(λj) ∈ [0, π
2
)

arg(λj) − π
2

for arg(λj) ∈ [π
2
, 3π

2
)

arg(λj) − 3π
2

for arg(λj) ∈ [3π
2

, 2π)

(6.14)
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Moreover, rk = 0 for odd k and the parameters rk for even k are real and uniquely
determined by the recursive formula

r2 =

{
1
2

if arg(λj) ∈ [0, π
2
) ∪ [3π

2
, 2π)

−1
2

if arg(λj) ∈ [π
2
, 3π

2
)

, rk =
1

2




k
2
−1∑

ν=1

r2·νr2·( k
2
−ν)


 (6.15)

for 4 ≤ k ≤ nj;

ii) blocks associated with a pair (λj, λ
−1

j ) of nonunimodular eigenvalues:

Q−1UjQ =

[
Jmj

(λj) 0
0 Jmj

(λj)
−∗

]
and Q∗HjQ =

[
0 Imj

Imj
0

]
, (6.16)

where mj ∈ N and |λj| > 1.

Moreover, the form (6.12) is unique up to the permutation of blocks.

Proof. Since U is H-unitary, we have U−1 = p(U). (In particular, this implies p(λ) = λ−1

for all eigenvalues λ ∈ C of U .) Thus, the result is a special case of Theorem 6.1 and the
parameters θj and r2, . . . , rn−1 are uniquely determined by λj and the coefficients of p. The
formula for θj and the recursive formula for the parameters rj in blocks of the form (6.13)
follow from equating to zero the entries in the matrix UU [∗] − I, i.e.,

(
λjInj

+eiθjT (0, 1, ir2, . . . , irn−1)
)(

λjInj
+e−iθjT (0, 1,−ir2, . . . ,−irn−1)

)
= Inj

. (6.17)

Comparing the (1, 2)-elements in both sides of (6.17), we obtain λje
iθj + λje

−iθj = 0. If
arg(λj) = φ, i.e., λj = eiφ, we obtain ei(θj−φ) + ei(φ−θj) = 0 or, equivalently, e2i(φ−θj) = −1
which reduces to

2(φ − θj) = π + 2kπ for some k ∈ N ∪ {0}.
Thus, noting that θj ∈ [0, π), we obtain that it has the form as given in (6.14). In particular,
λje

iθj = i if arg(λj) ∈ [0, π
2
) ∪ [3π

2
, 2π) and λje

iθj = −i else. Comparing the (1, 3)-elements
in both sides of (6.17), we obtain

ir2λje
iθj + 1 − ir2λje

−iθj

which implies r2 = 1
2

if arg(λj) ∈ [0, π
2
)∪ [3π

2
, 2π) and r2 = −1

2
else. Finally, comparing the

(1, k + 1)-elements in both sides of (6.17), we obtain that

irkλje
iθj + irk−1 +

(
k−2∑

ν=2

rνrk−ν

)
− irk−1 − irkλe−iθj

for k = 3, . . . , n − 1 which implies rk = 0 for odd k and (6.15) for even k. Concerning the

blocks of the form (6.16) note that p
(
Jmj

(λj)
)∗

= Jmj
(λj)

−∗.
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Remark 6.6 A slightly different version of Theorem 6.5 has been proved in [9]. The
difference of the forms lies in the representation of the blocks of the form (6.16). In [9],
the corresponding block is represented as Q−1UjQ = T1 ⊕ T2 and Q∗HjQ = R2nj

, where
T1, T2 ∈ C

nj×nj are upper triangular Toeplitz matrices. Moreover, the first ten parameters
r2, . . . , r20 are listed in [9]. For the case arg(λj) ∈ [0, π

2
) ∪ [3π

2
, 2π) these parameters are

r2 = 1
2
, r4 = 1

8
, r6 = 1

16
, r8 = 5

128
, r10 = 7

256
,

r12 = 21
1024

, r14 = 33
2048

, r16 = 429
32768

, r18 = 715
65536

, r20 = 2431
262144

.

Remark 6.7 It is interesting to observe that the blocks of the form (6.13) share the
property with the blocks of the form (5.4) that every other superdiagonal is zero.

7 The case of complex symmetric H

In this section, we derive canonical forms for the case that H is symmetric. Here, we have
to distinguish H-selfadjoint and H-skewadjoint matrices, because both sets of matrices are
invariant under multiplication with complex numbers, and thus, if A is H-selfadjoint then
so is iA.

7.1 Canonical forms for polynomially H-normal matrices

Theorem 7.1 Let H ∈ C
n×n be symmetric and nonsingular and let X ∈ C

n×n be polyno-
mially H-normal with H-normality polynomial p. Then there exists a nonsingular matrix
Q such that

Q−1XQ = X1 ⊕ · · · ⊕ Xp, QT HQ = H1 ⊕ · · · ⊕ Hp, (7.1)

where Xj is Hj-indecomposable and where Xj and Hj have one of the following forms:

i) blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = 1 if nj > 1:

Q−1XjQ = Jnj
(λ) and QT HjQ = Rnj

, (7.2)

where nj ∈ N;

ii) odd-sized blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = −1:

Q−1XjQ = T (λj, 1, a2, . . . , anj−1) and QT HjQ = Σnj
, (7.3)

where nj ∈ N is odd, nj ≥ 3, and ak = 0 for odd k;

iii) paired even-sized blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = −1:

Q−1XjQ =

[ Jmj
(λj) 0

0 p
(
Jmj

(λj)
)T

]
and QT HjQ =

[
0 Imj

Imj
0

]
, (7.4)

where mj ∈ N is even.
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iv) blocks associated with a pair (λj, µj) ∈ C × C, satisfying µj = p(λj) 6= λj and
Re(λj) > Re(µj) or Im(λj) > Im(µj) if Re(λj) = Re(µj):

Q−1XjQ =

[ Jmj
(λj) 0

0 p
(
Jmj

(λj)
)T

]
and QT HjQ =

[
0 Imj

Imj
0

]
, (7.5)

where mj ∈ N.

Moreover, the form (7.1) is unique up to the permutation of blocks and the nonzero pa-
rameters ak in (7.3) are uniquely determined by λj and the coefficients of p and can be
computed from the identity T (λj,−1, a2, 0, a4, 0, . . . ) = p

(
T (λj, 1, a2, 0, a4, 0, . . . )

)
.

Proof. Again, X can be decomposed as in (7.1) into blocks Xj that are Hj-indecomposable
and it is sufficient to investigate the case that X is H-indecomposable. Let Eig(X) be the
space of eigenvectors of X. Then Proposition 3.4 implies dim Eig(X) ≤ 2.
Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar
to the Jordan block Jn(λ) and thus, Theorem 5.2 yields the existence of blocks of the
forms (7.2) and (7.3). Indeed, note that in the case p′(λ) = −1, Theorem 5.2 implies that
n is necessarily odd.
Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. If λ
denotes one of the eigenvalues of X, then we have, in particular, either λ 6= µ = p(λ)
or λ = p(λ) and p′(λ)m−1 = −1 which is only possible for the case that p′(λ) = −1 and
m is even. (In the latter case, the block is indeed Hj-indecomposable, because blocks of
type (7.3) must be odd-dimensional.)
Uniqueness of the form (7.1) follows immediately from the uniqueness of the Jordan canon-
ical form of X and the uniqueness statement in Theorem 5.2.

7.2 Canonical forms for H-selfadjoint matrices

Theorem 7.2 Let H ∈ C
n×n be symmetric and nonsingular and let A ∈ C

n×n be H-
selfadjoint. Then there exists a nonsingular matrix Q such that

Q−1AQ = Jn1
(λ1) ⊕ · · · ⊕ Jnp

(λp), QT HQ = Rn1
⊕ · · · ⊕ Rnp

. (7.6)

Moreover, the form (7.6) is unique up to the permutation of blocks.

Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-normality
polynomial p(t) = t. Then p′(t) = 1 for all t ∈ C and p(λ) = λ for all eigenvalues λ ∈ C of
A. Thus, the result follows immediately from Theorem 7.1.

7.3 Canonical forms for H-skewadjoint matrices

Theorem 7.3 Let H ∈ C
n×n be symmetric and nonsingular and let S ∈ C

n×n be H-
skewadjoint. Then there exists a nonsingular matrix Q such that

Q−1SQ = S1 ⊕ · · · ⊕ Sp, QT HQ = H1 ⊕ · · · ⊕ Hp, (7.7)

where Sj is Hj-indecomposable and where Sj and Hj have one of the following forms:
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i) blocks associated with λj = 0, where nj ∈ N is odd:

Q−1SjQ = Jnj
(0) and QT HjQ = Σnj

; (7.8)

ii) paired blocks associated with λj = 0, where mj ∈ N is even:

Q−1SjQ =

[ Jmj
(0) 0

0 −
(
Jmj

(0)
)T

]
and QT HjQ =

[
0 Imj

Imj
0

]
; (7.9)

iii) blocks associated with a pair (λj,−λj) ∈ C × C, satifying Re(λj) > 0 and mj ∈ N:

Q−1SjQ =

[ Jmj
(λj) 0

0 −
(
Jmj

(λj)
)T

]
and QT HjQ =

[
0 Imj

Imj
0

]
. (7.10)

Moreover, the form (7.1) is unique up to the permutation of blocks.

Proof. S is H-selfadjoint if and only if S is polynomially H-normal with H-normality
polynomial p(t) = −t. Then p′(t) = −1 for all t ∈ C. Thus, the result follows immediately
from Theorem 7.1. Note that the parameters ak in the blocks of the form (7.3) turn out
to be zero from the identity T (0,−1, a2, 0, a4, . . . ) = −T (0, 1, a2, 0, a4, . . . ).

Remark 7.4 The canonical forms for H-selfadjoint and H-skewadjoint matrices are re-
lated to the canonical forms for pairs of symmetric matrices or a pair consisting of a
symmetric and a skew-symmetric matrix given in [23, 15]. (See also Remark 6.4).

7.4 Canonical forms for H-unitary matrices

Theorem 7.5 Let H ∈ C
n×n be symmetric and nonsingular and U ∈ C

n×n H-unitary.
Then there exists a nonsingular matrix Q such that

Q−1UQ = U1 ⊕ · · · ⊕ Up, QT HQ = H1 ⊕ · · · ⊕ Hp, (7.11)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:

i) blocks associated with λj = δ = ±1, where nj ∈ N is odd:

Q−1XjQ = T (δ, 1, r2, . . . , rnj−1) and QT HjQ = Σnj
. (7.12)

Moreover, rk = 0 for odd k and the parameters rk for even k are real and uniquely
determined by the recursive formula

r2 =
1

2
δ, rk = −1

2
δ




k
2
−1∑

ν=1

r2·νr2·( k
2
−ν)


 , 4 ≤ k ≤ nj; (7.13)
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ii) paired blocks associated with λj = ±1, where mj ∈ N is even:

Q−1XjQ =

[ Jmj
(λj) 0

0
(
Jmj

(λj)
)−T

]
and QT HjQ =

[
0 Imj

Imj
0

]
, (7.14)

iii) blocks associated with a pair (λj, λ
−1
j ) ∈ C×C, where Re(λj) > Re(λ−1

j ) or Im(λj) >

Im(λ−1
j ) if Re(λj) = Re(λ−1

j ), and mj ∈ N:

Q−1XjQ =

[ Jmj
(λj) 0

0
(
Jmj

(λj)
)−T

]
and QT HjQ =

[
0 Imj

Imj
0

]
. (7.15)

Moreover, the form (7.11) is unique up to the permutation of blocks.

Proof. The result is a special case of Theorem 7.1. Since U is H-orthogonal, U is polyno-
mially H-normal and the H-normality polynomial satisfies U−1 = p(U). In particular, this
implies p(λ) = λ−1 for all eigenvalues λ ∈ C of U . Thus p(λ) = λ if and only if λ = ±1.

Let Q̃ be such that Ũ := Q̃−1UQ̃ is in Jordan canonical form. Then

Ũp(Ũ) = Q̃−1UQ̃Q̃−1p(U)Q̃ = I.

In particular, if Jν(λ) is a Jordan block of Ũ , we obtain that Jν(λ)p(Jν(λ)) = Iν . Observing
that p(Jν(λ)) has the form as in (2.5), we obtain that λp′(λ) + p(λ) = 0 whenever there
exists a Jordan block of size larger than one associated with λ. Thus, if p(λ) = λ (or,
equivalently, λ = ±1) and if there exists a Jordan block of size larger than one associated
with λ, then p′(λ) = −1. Thus, the result follows from Theorem 7.1. The recursive formula
for the parameters rj in blocks of the form (6.13) follow from equating to zero the entries
in the matrix UU [T ] − I as in the proof of Theorem 6.5. Here, the equations become

2δr2 − 1 = 0 and 2δrk +
k−2∑

ν=2

rνrk−ν = 0 for k = 3, . . . , nj − 1. ¤

8 The case of complex skew-symmetric H

In this section, we present a canonical form for polynomially H-normal matrices for the case
that H is skew-symmetric. Again, we have to distinguish H-selfadjoint and H-skewadjoint
matrices.

8.1 Canonical forms for polynomially H-normal matrices

Theorem 8.1 Let H ∈ C
n×n be skew-symmetric and nonsingular and let X ∈ C

n×n be
polynomially H-normal with H-normality polynomial p. Then there exists a nonsingular
matrix Q such that

Q−1XQ = X1 ⊕ · · · ⊕ Xp, QT HQ = H1 ⊕ · · · ⊕ Hp, (8.1)

where Xj is Hj-indecomposable and where Xj and Hj have one of the following forms:
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i) even-sized blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = −1:

Q−1XjQ = T (λj, 1, a2, . . . , anj−1) and QT HjQ = Σnj
, (8.2)

where nj ∈ N is even, ak = 0 for odd k, and p′(λj) = −1;

ii) paired odd-sized blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = −1
if mj > 1:

Q−1XjQ =

[ Jmj
(λj) 0

0 p
(
Jmj

(λj)
)T

]
and QT HjQ =

[
0 Imj

−Imj
0

]
,

(8.3)
where mj ∈ N is odd;

iii) paired blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = 1:

Q−1XjQ =

[ Jmj
(λj) 0

0 p
(
Jmj

(λj)
)T

]
and QT HjQ =

[
0 Imj

−Imj
0

]
,

(8.4)
where mj ∈ N, mj > 1;

iv) blocks associated with a pair (λj, µj) ∈ C × C, satisfying µj = p(λj) 6= λj and
Re(λj) > Re(µj) or Im(λj) > Im(µj) if Re(λj) = Re(µj):

Q−1XjQ =

[ Jmj
(λj) 0

0 p
(
Jmj

(λj)
)T

]
and QT HjQ =

[
0 Imj

−Imj
0

]
,

(8.5)
where mj ∈ N.

Moreover, the form (8.1) is unique up to the permutation of blocks and the nonzero pa-
rameters a2·k in (8.2) are uniquely determined by λj and the coefficients of p and can be
computed from the identity T (λj,−1, a2, 0, a4, 0, . . . ) = p

(
T (λj, 1, a2, 0, a4, 0, . . . )

)
.

Proof. Clearly, X can be decomposed as in (8.1) into blocks Xj that are Hj-indecom-
posable and it is sufficient to investigate the case that X is H-indecomposable. Let Eig(X)
be the space of eigenvectors of X. Then Proposition 3.4 implies dim Eig(X) ≤ 2.
Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar to the
Jordan block Jn(λ) and thus, by Theorem 5.2, we have that p′(λ) = −1, that n is even,
and that X and H can be transformed into the forms (8.2).
Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. If λ
denotes one of the eigenvalues of X then, in particular, we either have λ 6= µ = p(λ) or
λ = p(λ) and p′(λ)m−1 = 1 (if m > 2)) which is possible for m = 1, for p′(λ) = −1 and
odd m > 1, or for p′(λ) = 1 and m > 1.
Uniqueness of the form (8.1) follows immediately from the uniqueness of the Jordan canon-
ical form of X and the uniqueness statement in Theorem 5.2.
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8.2 Canonical forms for H-selfadjoint matrices

Theorem 8.2 Let H ∈ C
n×n be skew-symmetric and nonsingular and let A ∈ C

n×n be
H-selfadjoint. Then there exists a nonsingular matrix Q such that

Q−1AQ =

[
Jm1

(λ1) 0
0 Jm1

(λ1)
T

]
⊕ · · · ⊕

[
Jmp

(λp) 0
0 Jmp

(λp)
T

]
, (8.6)

QT HQ =

[
0 Im1

−Im1
0

]
⊕ · · · ⊕

[
0 Imp

−Imp
0

]
. (8.7)

Moreover, the form (8.6)–(8.7) is unique up to the permutation of blocks.

Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-normality
polynomial p(t) = t. Then p′(t) = 1 for all t ∈ C and p(λ) = λ for all eigenvalues λ ∈ C of
A. Thus, the result follows immediately from Theorem 8.1.

8.3 Canonical forms for H-skewadjoint matrices

Theorem 8.3 Let H ∈ C
n×n be skew-symmetric and nonsingular and let S ∈ C

n×n be
H-skewadjoint. Then there exists a nonsingular matrix Q such that

Q−1SQ = S1 ⊕ · · · ⊕ Sp, QT HQ = H1 ⊕ · · · ⊕ Hp, (8.8)

where Sj is Hj-indecomposable and where Sj and Hj have one of the following forms:

i) blocks associated with λj = 0, where nj ∈ N is even:

Q−1SjQ = Jnj
(0) and QT HjQ = Σnj

; (8.9)

ii) paired blocks associated with λj = 0, where mj ∈ N is odd:

Q−1SjQ =

[ Jmj
(0) 0

0 −
(
Jmj

(0)
)T

]
and QT HjQ =

[
0 Imj

−Imj
0

]
; (8.10)

iii) blocks associated with a pair (λj,−λj) ∈ C × C, where Re(λj) > 0 and mj ∈ N:

Q−1SjQ =

[ Jmj
(λj) 0

0 −
(
Jmj

(λj)
)T

]
and QT HjQ =

[
0 Imj

−Imj
0

]
.

(8.11)

Moreover, the form (8.1) is unique up to the permutation of blocks.

Proof. S is H-skewadjoint if and only if S is polynomially H-normal with H-normality
polynomial p(t) = −t. Then p′(t) = −1 for all t ∈ C. Thus, the result follows immediately
from Theorem 7.1. Note that the parameters a2·` in the blocks of the form (7.3) turn out
to be zero from the identity T (0,−1, a2, 0, a4, . . . ) = −T (0, 1, a2, 0, a4, . . . ).

Remark 8.4 The canonical forms for H-selfadjoint and H-skewadjoint matrices are re-
lated to the canonical forms for pairs of skew-symmetric matrices or a pair consisting of a
symmetric and a skew-symmetric matrix given in [23, 15]. (See also Remark 6.4).
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8.4 Canonical forms for H-unitary matrices

Theorem 8.5 Let H ∈ C
n×n be symmetric and nonsingular and U ∈ C

n×n H-unitary.
Then there exists a nonsingular matrix Q such that

Q−1UQ = U1 ⊕ · · · ⊕ Up, QT HQ = H1 ⊕ · · · ⊕ Hp, (8.12)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:

i) even-sized blocks associated with λj = δ = ±1, where nj ∈ N is even:

Q−1XjQ = T (δ, 1, r2, . . . , rnj−1) and QT HjQ = Snj
, (8.13)

Moreover, rk = 0 for odd k and the parameters rk for even k are real and uniquely
determined by the recursive formula

r2 =
1

2
δ, rk = −1

2
δ




k
2
−1∑

ν=1

r2·νr2·( k
2
−ν)


 , 4 ≤ k ≤ nj; (8.14)

ii) paired blocks associated with λj = ±1, where mj ∈ N is odd:

Q−1XjQ =

[ Jmj
(λj) 0

0
(
Jmj

(λj)
)−T

]
, and QT HjQ =

[
0 Imj

−Imj
0

]
; (8.15)

iii) blocks associated with a pair (λj, λ
−1
j ) ∈ C × C, satisfying Re(λj) > Re(λ−1

j ) or

Im(λj) > Im(λ−1
j ) if Re(λj) = Re(λ−1

j ), where mj ∈ N:

Q−1XjQ =

[ Jmj
(λj) 0

0
(
Jmj

(λj)
)−T

]
, and QT HjQ =

[
0 Imj

−Imj
0

]
. (8.16)

Moreover, the form (8.12) is unique up to the permutation of blocks.

Proof. The proof is analogous to the proof of Theorem 7.5 and the result turns out to be
a special case of Theorem 8.1.

9 Conclusions

The set of polynomially H-normals turns out to be an adequate set of H-normal matrices
that simultaneously describes the behaviour of the sets of H-selfadjoint, H-skewadjoint,
and H-unitary matrices in the context of classification. The typical scheme of the canonical
form for polynomially H-normal matrices can also be observed in the canonical forms for
H-selfadjoint, H-skewadjoint, and H-unitary matrices, not only in the case that H is
Hermitian and induces a sesquilinear form, but also in the case that H is symmetric or
skew-symmetric and induces a bilinear form. There are basically two types of eigenvalues
of polynomially H-normal matrices:
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1) eigenvalues that occur in pairs
(
λ, p(λ)

)
or
(
λ, p(λ)

)
, respectively, where λ 6= p(λ) or

λ 6= p(λ), respectively;

2) eigenvalues λ for which the pairing degenerates, because of λ = p(λ) or λ = p(λ),
respectively.

In the case of Hermitian H, the set {λ ∈ C |λ = p(λ)} may be infinite. In the case of
H-selfadjoint matrices it is the real line and in the case of H-unitary matrices it is the
unit circle. In the case of symmetric or skew-symmetric H, the set {λ ∈ C |λ = p(λ)} is
either C (as in the case of H-selfadjoint matrices when H is symmetric) or finite (possibly
empty). Moreover, Jordan blocks for a fixed size m that are associated with an eigenvalue
of type 2) may be forced to occur in pairs. Information on whether this happens or not
can be obtained from the value p′(λ). In particular, this implies that polynomially H-
normal matrices need not be block-Toeplitz H-normal in the case that H is symmetric or
skew-symmetric.
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