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Abstract

In this paper we propose a new finite element realization of the Perfectly Matched
Layer method (PML-method). Our approach allows to deal with a wide class of
polygonal domains and with certain types of inhomogeneous exterior domains.
Among the covered inhomogeneities are open waveguide structures playing an es-
sential role in integrated optics. We give a detailed insight into implementation
aspects. Numerical examples show exponential convergence behavior to the exact
solution with the thickness of the PML sponge layer.

Key words: transparent boundary conditions, perfectly matched layer, pole
condition

1 Introduction

Scattering problems arising from integrated optics are modeled by Maxwell’s
equations on unbounded domains. Typically waveguide structures connect var-
ious sub-components over a distance of a large number of wavelengths. A
central task in the numerical solution of such problems is the implementa-
tion of transparent boundary conditions, which is often realized by Bérenger’s
Perfectly Matched Layer method (PML-method) [1–4]. Monk and Collino [5]
introduce the PML-method in a homogeneous medium for separable coordi-
nate systems as a complex continuation in one distance variable by exploiting
the analyticity of the solution. For this case Lassas et al. prove the exponen-
tial convergence of the PML-method [6]. By introducing a normal tangential
coordinate system they extend these results to general convex domains [7].
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This coordinate system is defined by a parameterization of the boundary (τ
variable) and the Euclidian distance ν from the boundary, cf. Fig. 1. Their
proof for the convergence of the PML-method in a homogeneous medium is
based on a complex continuation in ν-direction. A numerical realization of
the PML method based on a normal tangential is proposed in [8]. However in
typical applications from integrated optics, see Fig. 1, the solution may only
be analytic in a direction different from ν. In Fig. 1 the sketched waveguide
cuts the τ -isolines. Hence the solution is not analytic in ν-direction.

In this paper we propose a new realization of the PML-method by introducing
coordinate systems which we call prismatoidal. This yields a clear concept
on a semi-discrete level. Our approach allows a flexible adaption to many
geometries, even with inhomogeneous exterior domains, cf. Fig. 2. In contrast
to [9] the definition of a complex Riemann metric on a continuous level is
avoided. We restrict ourselves to the two dimensional case for the sake of a
clear presentation of the underlying concept. The ideas carry over to the three
dimensional case and to the vectorial Maxwell equations [10] as we will present
in a future paper.

ν = const 

τ = const 

τ direction

ν direction

Fig. 1. Normal-tangential coordinate
system used by Lassas et. al. The
waveguide structure yields solutions
not analytic in ν-direction.

η direction

ξ direction 

Fig. 2. Prismatoidal coordinate sys-
tem. The waveguide structure yields
solutions analytic in ξ-direction.

Maxwell’s time harmonic equations for a source and current free medium lead
to the photonic wave equations. We consider the two dimensional case. For
TE-polarization the H-field takes the form (0, 0, Hz), and the first photonic
wave equation reads

∇ ·
(

1

ε(x, y)
∇Hz(x, y)

)

+
ω2

c2
Hz(x, y) = 0. (1)

For TM-polarization the E-field takes the form (0, 0, Ez), and the second pho-
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tonic wave equation reads

∆Ez(x, y) +
ω2

c2
ε(x, y)Ez(x, y) = 0. (2)

In the sequel we deal with the case of TM-polarization. The unbounded domain
is divided into an inner domain Ω and an exterior domain Ωext. On the common
boundary of the interior and the exterior domain, the field u separates into a
given incoming field uinc and a scattered field us. The scattering problem is
determined by

∆u(x) + k2(x)u(x) = 0 in Ω, (3)

∆us(x) + k2(x)us(x) = 0 in Ωext, (4)

u(x) = uinc(x) + us(x) on ∂Ω, (5)

∂ξu(x) = ∂ξuinc(x) + ∂ξus(x) on ∂Ω. (6)

Here ξ denotes the non-tangential coordinate of the prismatoidal coordinate
system described in Section 2. The scattered field has to satisfy a radiation
condition at infinity. For homogeneous exterior domains this is the Sommerfeld
radiation condition [11],

lim
r→∞

r
d−1

2

(

∂u

∂r
− iku

)

= 0. (7)

For d > 1 this implies that the field decays uniformly for all directions
x̂ = x/‖x‖. Further the field is an outgoing monochromatic wave. For in-
homogeneous exterior domains the Sommerfeld radiation condition does not
hold true. For example regard an exterior domain such as depicted in Fig. 1.
A straight waveguide with local wavenumbers k1 ranges from the interior do-
main to infinity. Such a structure guides eigenmodes without damping in the
direction of the waveguide. These types of solutions do not exist for homoge-
neous equations, since the Sommerfeld radiation condition implies the decay
of the fields. Furthermore a waveguide may support a couple of eigenmodes
with different propagation constants.

F. Schmidt proposes a general concept called pole condition to define radiation
conditions for scattering problems [12]. In [13] it is shown that the pole con-
dition is equivalent to the Sommerfeld radiation condition for homogeneous
exterior domains. The pole condition leads to new algorithms to construct
transparent boundary conditions [12]. Further it gives a new insight to PML.
In [14] Hohage et al. prove the convergence of the PML-method for separable
but inhomogeneous exterior domains. The aim of this paper is to propose a new
finite element realization of the PML-method which is based on the theoretical
concepts given in [12]. We do not aim to prove existence and uniqueness of the
sought solutions. However various numerical examples indicate experimental
convergence of the method.
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2 Local prismatoidal coordinate systems in two dimensions

This section summarizes geometrical aspects of the pole condition approach
[12], which are the basis for the proposed realization of the PML method.
The central idea is to decompose the exterior domain into a finite number
of segments and to associate with each segment a local coordinate system,
such that a global distance variable ξ can be introduced. We realize the PML-
method as a complex continuation along the ξ- direction. This is analogous to
the approach by Collino and Monk [5] for global separable coordinate systems.
Our approach resembles the definition of a global normal-tangential coordinate
system in [7]. We stress the flexibility and the easy way of implementation of
the method in the finite element context. The decomposition of the exterior
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Fig. 3. Prismatoidal coordinate system. Each segment Qj is the image of a reference
element under a bilinear mapping B loc

j . These local mappings are combined to a
global mapping B which is continuous in η.

domain into a finite number of segments is based on straight non-intersecting
rays gj, which connect each vertex pj (j = 1, ..., N) of the polygonal boundary
∂Ω with infinity. The set of rays together with the boundary ∂Ω generate a
decomposition L = {Q1, ..., QN} of Ωext. The constructed segments Qj must
be convex semi-infinite quadrilaterals.

We define a relation between the ξη-coordinate system of a reference rectangle
and the xy-coordinate system of each rectangle Qj (cf. Fig. 3). For each Qj

we construct a bilinear transformation

Bloc
j : Q

(ξ,η)
j → Q

(x,y)
j (8)

from Q
(ξ,η)
j := [0,∞] × [ηj, ηj+1] onto Qj, such that the images of two lines

ξ1 × [ηj, ηj+1] ⊂ Q
(ξ,η)
j and ξ2 × [ηj, ηj+1] ⊂ Q

(ξ,η)
j remain parallel under Bloc

j .

This is possible due to the convexity of Q
(x,y)
j . In the following we define a

prismatoidal coordinate system, whereas the name is chosen in accordance
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with a future definition in three dimensions.

Definition 1 (Prismatoidal coordinate system) Let Ω be a domain with
polygonal boundary. Each vertex pj of ∂Ω is connected with a straight ray gj,
such that the set of rays is non-intersecting and a decomposition of Ωext into
a finite number of convex semi-infinite segments Qj is generated. The local
bilinear mappings Bloc

j (8) associated with the segments Qj are combined to a
global transformation

B : Ω
(ξ,η)
ext → Ω

(x,y)
ext , (9)

such that B is continuous and periodic in η with respect to [ηmin, ηmax]. The
Jacobian of B is denoted by J .

Note that B is linear in ξ for fixed η. We give two different ways to construct
prismatoidal coordinate systems [12].

Example 2 (Radial Rays) Let a nonempty convex polygonal domain be given.
Connect a fixed arbitrary interior point by line segments with each of the ver-
tices of the boundary. Extend these line segments to linear rays. These rays
define a prismatoidal coordinate system, cf. Fig. 4.
For a star-shaped non-convex polygonal domain there exists by definition at
least one interior point such that any line segment which connects this point
with a vertex of the boundary hits the boundary only at this vertex. The line
segments defined this way lead to a prismatoidal coordinate system, cf. Fig. 5.

Fig. 4. Radial ray construction for convex domains.

Example 3 (Generalized normal rays) Given a nonempty convex polyg-
onal domain. Suppose that the vertices pj of the polygonal boundary are num-
bered counter-clockwise from 1 to NV . Choose rays gj, j = 1, . . . , NV − 1,
corresponding to all but the last vertex pNV

such that they have a represen-
tation gj(τ) = pj + τ(ciei + ckek) with τ ∈ R+ and both ci and ck strictly
negative. The unit vectors ei and ek are given by ei = (pi − pj)/|pi − pj| and

5



Fig. 5. Radial ray construction for star-shaped concave domain.

ek = (pk − pj)/|pk − pj|, where pi and pk are the neighboring vertices to pj.
The last ray gNV

is constructed according to the following rule:

(1) Fix an arbitrary point q1 on ray g1.
(2) Construct the two lines s1 and sNV

through this point, which are parallel
to the neighboring boundary segments. ( s1||p1p2, sNV

||p1pNV
)

(3) For j = 2, . . . , NV − 1 the point qj is the intersection of sj−1 with ray gj

and sj is the parallel to the boundary segment pjpj+1 through qj.
(4) gNV

then is the ray from pNV
through the intersection of sNV −1 and sNV

.
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Fig. 6. Generalized normal ray construction for convex domains.
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3 Semi-discretization based on local prismatoidal coordinate sys-
tems

In this section we introduce the semi discretization of the Helmholtz equation
in the angular like variable η based on the local prismatoidal coordinate sys-
tems from Section 2. This is our general framework for different realizations
of transparent boundary conditions such as the pole condition or the PML
method.

The discrete form of the weak interior problem reads: Seek uh ∈ Vh ⊂ H1(Ω)
such that for all vh ∈ Vh

∫

Ω
∇uh(x) · ∇vh(x)dx−

∫

Ω
k2(x)uh(x)vh(x)dx =

∫

∂Ω
∂nu

h(x)vh(x)ds. (10)

The exterior problem can be formulated in the ξη-coordinate system. The
transformed Helmholtz equation is given by

∇ξ,η · (J−1J−T |J |∇ξ,η)us + |J |k2us = 0. (11)

Here we use the transformation rule for the gradient ∇xy in x, y coordinates
to the gradient ∇ξη in the local prismatoidal coordinates ξ, η. We assume a
segment-wise constant wave number k. This ensures analyticity of the scat-
tered field us in ξ-direction which is a necessary condition for an application
of the PML-method [6]. Nevertheless enough flexibility is left for the con-
figuration of the exterior domain by a proper choice of the segments. With
F := J−1J−T |J |, Γη the part of ∂Ω, where we impose the transparent bound-
ary condition, and

a2(v, ∂ξξus) =
∫

Γη

vF11∂ξξusdη,

a1(v, ∂ξus) =
∫

Γη

v∂ξF11∂ξusdη −
∫

Γη

(∂η(vF12) + (∂ηv)F21)∂ξusdη,

a0(v, us) =
∫

Γη

v∂ξF12∂ηusdη −
∫

Γη

∂ηvF22∂ηusdη +
∫

Γη

v|J |k2usdη,

the variational form of the exterior problem reads: Find us ∈ W 2(Ω
(ξ,η)
ext ) such

that for all v ∈ H1
π(ηmin, ηmax) and all ξ ∈ R+

a0(v, us) + a1(v, ∂ξus) + a2(v, ∂
2
ξus) = 0, (12)

us(0, η) = uD(η), (13)

∂ξus(0, η) = uN(η). (14)

Here H1
π(ηmin, ηmax) is the subspace of periodic functions in H1([ηmin, ηmax]).
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The function space W 2(Ω
(ξ,η)
ext ) is defined as

W 2(Ω
(ξ,η)
ext ) =







w(ξ0, η) ∈ H1
π(ηmin, ηmax) : ∀ξ0 ∈ R,

w(ξ, η0) ∈ C2(R+) : ∀η0 ∈ [ηmin, ηmax]







.

The coupling between interior and exterior problem is determined by (13) and
(14). We now perform a semi discretization in η.

The fields us and uinc are approximated by

uh
s (ξ, η) =

NB∑

j=1

uh
s,j(ξ)ψj(η) and uh

inc(ξ, η) =
NB∑

j=1

uh
inc,j(ξ)ψj(η), (15)

where {ψ1, ..., ψNB
} is a basis of Sh ⊂ H1

π(ηmin, ηmax). The space Sh is the trace
space of the finite element space Vh of the interior problem. The coefficient-
vector of uh

s(ξ, η) is denoted by u
h
s (ξ). Inserting (15) in (12) for us yields the

system

A0(ξ)u
h
s (ξ) + A1(ξ)∂ξu

h
s(ξ) + A2(ξ)∂

2
ξ u

h
s (ξ) = 0. (16)

4 Computation of local matrices in the semi-discrete exterior sys-
tem

We compute local contributions to the matrices A0, A1, A2 in (16) for the
simple case of linear C0-elements. The generalization to higher order elements
is straightforward.

The system matrices A0, A1 and A2 from (16) are given by

A2,ij∂ξξu
h
s,j := a2(ψi, ψj)∂ξξu

h
s,j =

(
∫

Γη

ψiF11ψjdη

)

∂ξξu
h
s,j,

A1,ij∂ξu
h
s,j :=a1(ψi, ψj∂ξu

h
s,j)

=

(
∫

Γη

ψi(∂ξF11ψj + F12∂ηψj)dη −
∫

Γη

∂ηψiF21ψjdη

)

∂ξu
h
s,j,

A0,iju
h
s,j :=a0(ψi, ψju

h
s,j)

=

(
∫

Γη

ψi∂ηψj∂ξF12 − ∂ηψi∂ηψjF22 + |J |k2ψiψjdη

)

uh
s,j.

On a segment Q(ξ,η)
q the two linear basis functions are given by

v1(η) =
ηq+1 − η

ηq+1 − ηq

, v2(η) =
η − ηq

ηq+1 − ηq

. (17)
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Local contributions from Segment Qq are

(A
(q)
2 )ij =

∫ ηq+1

ηq

vivjF11dη,

(A
(q)
1 )ij =

∫ ηq+1

ηq

(vivj∂ξF11 + vi∂ηvjF12 − ∂ηvivjF21)dη,

(A
(q)
0 )ij =

∫ ηq+1

ηq

(vi∂ηvj∂ξF12 − ∂ηvi∂ηvjF22 + vivj|J |k2
q)dη,

(18)

for i, j ∈ {1, 2}. Here kq is the wavenumber, which is assumed to be con-
stant in segment Qq. To compute these matrices it is necessary to derive the
transformations Bloc

q : Q(ξ,η)
q → Q(x,y)

q .

The following derivation is done for the first segment q = 1, therefore we drop
the subscript 1 in what follows. The segment (cf. Fig. 7) is bounded by two

α 2

α 1

2

τ

p

p

q

q

2

1

1

θ τ

Fig. 7. Segment Q
(x,y)
1 .

rays p1q1 respectively p2q2, with parameter representations

g1(τ) = p1 + τe1, g2(τ) = p2 + θτe2, (19)

where e1, e2 are the unit vectors

e1 = (q1 − p1)/(|q1 − p1|), e2 = (q2 − p2)/(|q2 − p2|), (20)

and θ is a scaling factor, obtained from the requirement that p1p2 ‖ q1q2.
Hence from θτ cosα2 = τ cosα1 we get θ = cosα1/ cosα2. We define ξ as
the distance between the lines p1p2 and q1q2, ξ := τ cosα1. This yields a
symmetric parameter representation for the rays,

g1(ξ) = p1 +
ξ

ζ cosα1

e1, g2(ξ) = p2 +
ξ

ζ cosα2

e2. (21)

with ξ ≥ 0 and a scaling factor ζ that may vary from segment to segment.
If ζ and α1 correspond to an arbitrary segment and ζp and α2,p to the pre-
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vious segment, setting ζ = ζp cosα2,p/ cosα1 ensures that these two segments
fit continuously. The transformation between the ξη- and the xy-coordinate
system is






x

y




 = g1(ξ) +

η − η1

η2 − η1

(g2(ξ) − g1(ξ)). (22)

With e1 = (cosα1,− sinα1) and e2 = (cosα2, sinα2) the mapping Bloc is given
by






x

y




 =: Bloc(ξ, η) =

(

1 − η − η1

η2 − η1

)










x1

y1




+

ξ

ζ cosα1






cosα1

− sinα1











+
η − η1

η2 − η1











x2

y2




+

ξ

ζ cosα2






cosα2

sinα2









 .

(23)

Taking into account that the Helmholtz equation is invariant under rotations
we may assume without loss of generality that x1 = x2 = 0, y1 = 0, y2 = h,
η1 = 0 and η2 = 1. The above mapping simplifies to

Bloc(ξ, η) = (1 − η)
ξ

ζ






1

− tanα1




+ η











0

h




+

ξ

ζ






1

tanα2









 (24)

Using the abbreviations a1 = tanα1, a2 = tanα2 and a = tanα1 + tanα2 the
Jacobian of Bloc is

J(ξ, η) =






1
ζ

0

−1
ζ
a1 + η

ζ
a h+ ξ

ζ
a




 . (25)

With |J | = (hζ + ξa)/ζ2 we have

J−1(ξ, η) =






ζ 0

− ζ(−a1+ηa)
hζ+aξ

ζ
hζ+aξ




 , F =






hζ + ξa a1 − ηa

a1 − ηa (a1−ηa)2+1
hζ+ξa




 .

Returning to Equation (18) all local quantities now get as an additional sub-
script the segment number q. Inserting the above result in (18) yields

A
(q)
2 = (hqζq + ξaq)






1
3

1
6

1
6

1
3




 , (26)

A
(q)
1 =

1

3






aq −a2,q + 2a1,q

2a2,q − a1,q aq




 , (27)
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A
(q)
0 =

1

3

1

hqζq + ξaq






−a2
1,q + a1,qa2,q − a2

2,q − 3 a2
1,q − a1,qa2,q + a2

2,q + 3

a2
1,q − a1,qa2,q + a2

2,q + 3 −a2
1,q + a1,qa2,q − a2

2,q − 3






+ (hqζq + ξaq)
k2

q

ζ2
q






1
3

1
6

1
6

1
3




 .

(28)

If u
h
s,q(ξ) is the coefficient vector with degrees of freedom corresponding to

segment Qq, a local contribution to the left-hand side of (16) is

2∑

j=0





1∑

i=−1

(hqζq + ξaq)
iM (q){i, j}



 ∂j
ξu

h
s,q(ξ) =

2∑

j=0

A
(q)
j ∂j

ξu
h
s,q (29)

with

M (q){−1, 0} =
1

3






−a2
1 + a1a2 − a2

2 − 3 a2
1 − a1a2 + a2

2 + 3

a2
1 − a1a2 + a2

2 + 3 −a2
1 + a1a2 − a2

2 − 3






(q)

,

M (q){1, 0} =
k2

q

ζ2
q






1
3

1
6

1
6

1
3




 ,

M (q){0, 1} =
1

3






a −a2 + 2a1

2a2 − a1 a






(q)

,

M (q){1, 2} =
1

3






1 1
2

1
2

1




 ,

(30)

and all other matrices M (q){i, j} = 0.

5 Semi-discrete PML system

The PML method is based on a complex continuation in the radial like variable
ξ to right complex half plane. As can be seen in (30) the entries of the globally
assembled matrices A0(ξ), A1(ξ), A2(ξ) are composed of rational expressions in
ξ. Due to ζqhq > 0 and aq > 0, there is no pole for a complex ξ with <(ξ) > 0.
This guarantees analyticity of the matrices in right complex plane. Therefore
a solution of (16) has a complex continuation u

h
s (z), cf. [15]. Motivated by the

case of a homogeneous exterior domain we expect an exponential damping of
the solution for =(z) → +∞.

The PML method is realized by replacing the variable ξ in (16) with γξ, <γ >
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0,=γ > 0, and by replacing the unbounded domain Ωext with the bounded
domain ΩPML := {(ξ, η) ∈ Ωext : ξ ∈ [0, ρ]; η ∈ [ηmin, ηmax]}. Because of the
expected absorbing character of the PML-layer we impose a zero Dirichlet
boundary condition on the outer boundary ξ = ρ. With

γ = 1 + iσ , σ > 0 and uPML(ξ) := u
h
s(γξ), (31)

the PML system is determined by

A0(γξ)uPML(ξ) + A1(γξ)
1

γ
∂ξuPML(ξ) + A2(γξ)

1

γ2
∂2

ξ uPML(ξ) = 0. (32)

Remark 4 Instead of choosing the complex coordinate stretching ξ 7→ γξ it
is possible to choose a more general coordinate transform ξ 7→ γ(ξ) such that
γ ∈ C2([0,∞)), γ(0) = 0, see for example [16]. The condition =γ(ξ) → ∞ for
ξ → ∞ ensures the decay of the complex continuation of an outgoing solution
along the path γ(ξ). As shown in the next section a path γ with γ ′(0) 6= 0 leads
to a jump in the Neumann derivative on the transparent boundary which is
easily incorporated in a finite element discretization. In our numerical exper-
iments we could not improve the performance significantly using more elabo-
rated paths. Moreover, from our point of view this only increases the number
of parameters to adjust.

Remark 5 The pole condition approach is a general concept to define trans-
parent boundary condition even on inhomogeneous exterior domains. A solu-
tion us(ξ, η) to the Helmholtz equation satisfies the pole condition if its Laplace
transform along rays joining the exterior boundary with infinity is holomor-
phic in the lower complex half plane. This characterizes outgoing waves. We
detail the numerical implementation of the pole condition for the semi discrete
system (16) in a succeeding paper. In [14] we have shown for radial symmetric
exterior domains that a solution satisfying the pole condition admits a complex
continuation which decays exponentially fast on the straight line (1+iσ)ξ. This
leads to a convergence proof of the PML-method. We hope that an analogous
result holds true in our semi-discrete setting.

6 Complete discretization by the finite element method

With the complex extension of the PML-method, the left-hand side of (29)
reads

2∑

j=0

(
1∑

i=−1

(hqζk + (γξ)aq)
iM (q){i, j})(1/γ)j ∂j

ξuPML,q(ξ). (33)

We discretize the semi-discrete problem (32) by finite elements in ξ. Since
uPML,q(ξ) is analytic in ξ, different numerical techniques to discretize in ξ
such as spectral methods are promising.
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The m
′

th component of uPML,q(ξ), m
′

= 1, 2, is approximated by

uh
PML,q,m

′ (ξ) =
Nξ∑

n
′=1

cPML,q,m
′
n
′Φn

′ (ξ), (34)

where {Φ1, ...ΦNξ
} is a basis of the finite element space Xh ⊂ H1([0, ρ]), i.e. Nξ

is the number of one-dimensional finite elements in direction ξ in the PML. We
may interpret the resulting complete discretization of the exterior problem as
a two dimensional finite element discretization on quadrilaterals. Their quality
depends on the initial choice of the rays in Section 2. Hence it is favorable to
choose ci ≈ ck in the construction of the generalized normal rays on page 5.
As the solution in the PML is analytic in direction ξ, it is advantageous to
choose a higher order finite element space for Xh.

Additional degrees of freedom nPML,q,m
′ are introduced on the boundary ∂Ω

by

nPML,q,m
′ = ∂ξu

h
PML,q,m

′ (0). (35)

Multiplying (33) by the test functions Φnem for m = 1, 2 and integrating over
the layer in ξ-direction yields after an integration by parts

2∑

m
′
=1

Nξ∑

n
′
=1

(Sq

mn,m
′
n
′ +Dq

mn,m
′
n
′ +M q

mn,m
′
n
′ )cPML,q,m

′
n
′ +

2∑

m
′
=1

Rq

mn,m
′nPML,q,m

′

(36)
with

Sq

mn,m
′
n
′ = −M

(q)

mm
′{1, 2}

∫ ρ

0

1

γ2
(hqζq + (γξ)aq)∂ξΦ

∗

n∂ξΦn
′dξ, (37)

Dq

mn,m
′
n
′ =M

(q)

mm
′{0, 1}

∫ ρ

0

1

γ
Φ∗

n∂ξΦn
′dξ

−M
(q)

mm
′{1, 2}

∫ ρ

0

1

γ
aqΦ

∗

n∂ξΦn
′dξ

(38)

M q

mn,m
′
n
′ =M

(q)

mm
′{−1, 0}

∫ ρ

0
(hqζq + (γξ)aq)

−1Φ∗

nΦn
′dξ

+M
(q)

mm
′{1, 0}

∫ ρ

0
(hqζq + (γξ)aq)Φ

∗

nΦn
′dξ,

(39)

Rq

mn,m
′ =

[

1

γ2
(hqζq + γξ)M

(q)

mm
′{1, 2}Φ∗

n

]ρ

0

. (40)

Assembling (36) to a global system yields

(S +D +M)cPML +RnPML = 0. (41)

The discrete interior problem reads: Seek uh in Vh = span{ϕ1, ..., ϕNI
} ⊂

13



H1(Ω) such that

∫

Ω
∇uh(x) · ∇ϕi(x)dx −

∫

Ω
k2(x)uh(x)ϕi(x)dx −

∫

∂Ω
∂nu

h
s(x)ϕi(x)ds

=
∫

∂Ω
∂nu

h
inc(x)ϕi(x)ds for i = 1, ..., NI.

(42)

The coefficient vector of uh relative to Vh is denoted by U = {U1, ..., UNI
},

hence uh(x) =
∑NI

i=1 Uiϕi(x) The exterior and the interior problem couple via
the boundary integral on the left-hand side of (42). Let π : {1, ..., NB} →
{1, ..., NI} be a mapping from the degrees of freedom corresponding to ∂Ω to
the global numbering of degrees of freedom in the discrete interior problem.
A local contribution of the boundary term for segment Qq is

∫ pq+1

pq

∂nu
h
s (x)ϕπ(i)(x)ds =

∫ pq+1

pq

ϕπ(i)(x)n(x)∇xyu
h
s(x)ds

=
q+1
∑

j=q

∫ ηq+1

ηq

ψi(η)(1, 0)J−T∇ξη(u
h
s,j(0)ψj(η))dη

=
q+1
∑

j=q

(
∫ ηq+1

ηq

ψi(η)(J
−T )11ψj(η)dη ∂ξu

h
s,j(0)

+
∫ ηq+1

ηq

ψi(η)(J
−T )12∂ηψj(η)dη u

h
s,j(0)

)

.

(43)

Assembling the local contributions in (43) to global matrices B1 and B0, the
boundary integrals can be expressed in vector notation as










∫

∂Ω ∂nu
h
s(x)ϕπ(1)(x)ds

...
∫

∂Ω ∂nu
h
s(x)ϕπ(NB)(x)ds










= B0










Uπ(1) − uinc,1(0)
...

Uπ(NB) − uinc,NB
(0)










+
1

γ
B1










nPML,1

...

nPML,NB










.

(44)
We set Uinc the coefficient vector of the incoming field relative to Sh, i.e
uinc(x)|∂Ω ≈ ∑NB

j=1 uinc,j(0)ψj(η), cf. (15). Let P be the matrix correspond-
ing to the mapping π. Using the above defined vectors, matrices and a vector
representation of the right-hand side in (42) according to (44) with uh

s replaced
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by uinc, the discrete interior problem reads

NI∑

j=1

(
∫

Ω
∇ϕi(x) · ∇ϕj(x)dx −

∫

Ω
k2(x)ϕi(x)ϕj(x)dx

︸ ︷︷ ︸

Kij

)

Uj

−
NI∑

j=1

NB∑

k=1

Pik

NB∑

l=1

B0,kl(P
T )ljUj −

NB∑

k=1

Pik

1

γ

NB∑

l=1

B1,klnPML,l

=
NB∑

k=1

Pik

NB∑

l=1

B1,kl∂ξu
h
inc,l(0)

︸ ︷︷ ︸

gi

.

(45)

The decomposition u(x)|∂Ω = uinc(x)|∂Ω + us(x)|∂Ω requires

P TU = QcPML + Uinc, (46)

where c̃PML = QcPML are the degrees of freedom in cPML corresponding to ∂Ω
and Uinc are the degrees of freedom of the incoming field on the boundary.
Gathering together (41), (45) and (46) yields the global system










K − PB0P
T 0 − 1

γ
PB1

0 S +D +M R

P T −Q 0



















U

cPML

nPML










=










g

0

Uinc










. (47)

This system can be further simplified. In (47) the coupling conditions be-
tween the exterior and the interior problem appear explicitly. This resembles
a domain decomposition approach. In the following we will show that the
additional degrees of freedom on the boundary can be avoided. The resulting
system (54) also arises from a finite element system based on mixed triangular
and quadrilateral elements. In this case we scale the PML-equation by γ to
incorporate the matching of the exterior-interior Neumann data as a natural
boundary condition. Let the degrees of freedom of the PML-layer be arranged
as

cPML =






c̃PML

c
′

PML




 . (48)

Accordingly we split A := S +D +M as

A =






A11 A12

A21 A22




 . (49)
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We scale the PML equation with −γ












K − PB0P
T 0 − 1

γ
PB1

0

0
−γ






A11 A12

A21 A22






−γR
0

P T −Q 0

























U

c̃PML

c
′

PML

nPML













=













g

0

0

Uinc













(50)

and use
c̃PML = P TU − Uinc (51)

to obtain the equivalent system










K − PB0P
T 0 − 1

γ
PB1

−γ






A11P
T

A21P
T




 −γ






A12

A22






−γR
0



















U

c
′

PML

nPML










=










g

−γA11Uinc

−γA21Uinc










. (52)

Performing elementary row operations yields










K − PB0P
T − γPA11P

T −γPA12 − 1
γ
PB1 − PγR

−γA21P
T −γA22 0

−γPA11P
T −γPA12 −γP R̃



















U

c
′

PML

nPML










=










g − γPA11Uinc

−γA21Uinc

−γPA11Uinc










.

(53)

Since − 1
γ
PB1 − PγR = 0, according to (40) and (44), U and c

′

PML can be
determined by solving the reduced system






K − PB0P
T − γPA11P

T −γPA12

−γA21P
T −γA22











U

c
′

PML




 =






g − γPA11Uinc

−γA21Uinc




 .

(54)

7 Numerical examples

The scattering problem (3)-(6) is solved for two different examples with known
exact solution in order to investigate the convergence of the computed solution
in dependence of the thickness ρ of the PML layer. In general it is a difficult
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task to verify the expected exponential convergence behavior in a numerical
experiment. Since the finite element method converges only polynomially, the
discretization error asymptotically dominates the error caused by the finite
thickness of the PML-layer. We therefore carry out a special discrete conver-
gence check for the quality of the transparent boundary condition. We solve
a sequence of discrete problems with fixed interior triangulation and a dis-
cretization in the PML-layer given by ξ = [0 : hPML : jhPML]. Here hPML is the
mesh width in ξ-direction and jhPML is the thickness of the PML-layer. Then
we expect that the computed solution uh,j of the interior domain converges
exponentially to uh,∞ for j → ∞. We repeat this experiment for a halved mesh
width in the interior domain together with the refinement hPML := hPML/2.
In all the experiments we set the damping parameter in the PML σ = 1.

7.1 Infinite waveguide

In the first experiment we demonstrate, that the proposed PML can han-
dle waveguide-like exterior inhomogeneities and polygonal computational do-
mains. We solve a waveguide scattering problem for the case of TM-polarization,
cf. Equation (2). Waveguides are structures with a permittivity ε constant in
one spatial direction. Hence we can choose a (x, y)− coordinate system such
that ε is only a function of x. For a solution ψ ∈ H1(R) to the one-dimensional
eigenvalue problem

∂xxψ(x) + k(x)2ψ(x) = β2ψ(x)

with k(x)2 = ε(x)ω2/c2, u(x, y) = ψ(x) exp(iβy) solves the TM-Helmholtz
equation. If β ∈ R+ the field travels undamped along the y−axis and is called a
guided mode. Note that such a solution does not obey the Sommerfeld radiation
condition. As an example, consider a step index waveguide with

k(x)2 =







k2
2 for |x| < d

k2
1 for |x| ≥ d

(55)

Here 2d is the width of the waveguide and we assume k2
2 > k2

1. The funda-
mental mode u – which may not exist – corresponding to an eigenfunction
ψ(x) ∈ H1(R) with maximal β2 is given by

u(x, y) =







(

ei
√

k2
2
−β2x + e−i

√
k2
2
−β2x

)

eiβy for |x| < d

Ce
√

−k2
1
+β2xeiβy for x ≤ −d

Ce−
√

−k2
1
+β2xeiβy for x ≥ d

(56)
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Fig. 8. Discretization of the interior domain and rays in the exterior domain (left
picture). Geometry with representation of the refractive index distribution (right
picture). Infinite waveguide: k2 = 1.32, background: k1 = 0.29.

where C = (exp(i
√

k2
2 − β2d) + exp(−i

√

k2
2 − β2d))/ exp(−

√

k2
1 + β2d). The

fundamental mode decays exponentially fast for |x| → ∞. In the numerical
experiment we choose d = 1/

√
2, k1 = 0.29 and k2 = 1.32. This yields a

fundamental mode with β = 0.8767339289 . . . .

As depicted in Fig. 8 the computational domain is the square [−10, 10] ×
[−10, 10] with the waveguide connecting two opposite corners. The incoming
field in the global system (54) is only specified along the left and upper side
of the computational domain by setting Uinc = u and g = ∂ξu.

In a first setting we use a very fine discretization of the interior domain and
the PML layer. We want to study the convergence to the analytic solution
when increasing the thickness of the PML layer. Fig. 9 shows a semilog plot
of the relative error e1 := ||u − uh||2/||u||2 in dependence of the thickness ρ
of the PML-layer. For a small thickness of the PML-layer and a huge number
of degrees of freedom in the finite element discretization the error caused by
the finite thickness of the PML-layer dominates. Here the error e1 decays
exponentially with respect to ρ. With growing thickness of the PML-layer the
discretization error becomes more and more relevant. From ρ = 2 for linear
elements and ρ = 4 for quadratic elements a further increase of ρ has no
influence on the error.

In the second setting we study convergence to the discrete solution uh,∞ as
described at the beginning of this section. Here uh,j is calculated using lin-
ear finite elements. The discrete system is characterized by the number of
discretization points per wavelength (PpWint) in the interior domain and
hPML in the PML-layer. Fig. 10 shows a semilog plot of the sequence e2(j) =
||uh,J − uh,j||2/||uh,J||2 versus the thickness of the PML-layer ρ = jhPML for
different choices of PpWint and hPML. For sure the converged discrete so-
lution uh,∞ is not available an we have therefore replaced it by uh,J with
J = 20/hPML. The sequence converges exponentially with respect to ρ. For
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Fig. 9. Relative error ||u − uh||2/||u||2 versus thickness of the PML-layer for linear
and quadratic finite elements in the first experiment.

small ρ we observe the same convergence behavior as in Fig. 9.
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Fig. 10. Relative error e2(j) = ||uh,J − uh,j||2/||uh,J ||2 for different numbers of
degrees of freedom in the linear finite element discretization (increasing from top
to down) in the first experiment. The discretization is such that there are at least
PpWint points per wave-length in the computational domain.

7.2 Scattering by a cylinder

In the second experiment we solve a cylinder scattering problem for the case
of TM-polarization, with zero boundary condition for the electric field on the
surface of the cylinder. The geometry is depicted in Fig. 11. The electric field
is computed in a square region with a circular hole of radius 1 ([−1.5, 1.5] ×
[−1.5, 1.5] \B1(0, 0)) with linear and quadratic finite elements.
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Fig. 11. Discretization of the interior domain and rays in the exterior domain.

Again, in the first setting we use a fine discretization in the computational
domain and the PML layer. Fig. 12 shows a semilog plot of the relative error
e1 := ||u − uh||2/||u||2 in dependence of the thickness ρ of the PML-layer.
Again there is an exponential decay of the error e1 with ρ in the range where
the error caused by the finite thickness of the PML-layer dominates. This time
quadratic finite elements lead to a better rate in the semilog plot.

Fig. 13 shows a semilog plot of the sequence e2(j) = ||uh,J − uh,j||2 in depen-
dence of the thickness of the PML-layer ρ = jhPML. Again we replace uh,∞

by uh,J with J := 20/hPML. The sequence shows the same exponential decay
as in the first experiment.
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Fig. 12. Relative error ||u− uh||2/||u||2 versus thickness of the PML-layer for linear
and quadratic finite elements in the second experiment.
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Fig. 13. Relative error e2(j) = ||uh,J − uh,j||2/||uh(∞)||2 for different numbers of
degrees of freedom in the linear finite element discretization (increasing from top to
down, determined by the points per wavelength (PpW))) in the second experiment.

8 Conclusions

The PML-method has been formulated in the context of F. Schmidt’s dis-
cretization scheme of the exterior domain [12]. This provides a tool for solving
scattering problems with inhomogeneous exterior domains in the case, where
the refraction index distribution allows to choose a decomposition in segments
with constant refractive index. Numerical experiments have indicated expo-
nential decay of the error ||u− u(ρ)||2 with respect to the thickness ρ of the
PML-layer.
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