
FAST AND OBLIVIOUS CONVOLUTION QUADRATURE

ACHIM SCHÄDLE∗, MARÍA LÓPEZ-FERNÁNDEZ¶, AND CHRISTIAN LUBICH∗∗

Abstract. We give an algorithm to compute N steps of a convolution quadrature approximation
to a continuous temporal convolution using only O(N log N) multiplications and O(log N) active
memory. The method does not require evaluations of the convolution kernel, but instead O(log N)
evaluations of its Laplace transform, which is assumed sectorial. The algorithm can be used for the
stable numerical solution with quasi-optimal complexity of linear and nonlinear integral and integro-
differential equations of convolution type. In a numerical example we apply it to solve a subdiffusion
equation with transparent boundary conditions.

Key words. convolution, numerical integration, Runge-Kutta methods, Volterra integral equa-
tion, anomalous diffusion

AMS subject classifications. 65R20

1. Introduction. In this paper we give a fast and memory-saving algorithm for
computing the approximation of a continuous convolution (possibly matrix × vector)

∫ t

0

f(t − τ) g(τ) dτ , 0 ≤ t ≤ T, (1.1)

by a convolution quadrature with a step size h > 0,

n
∑

j=0

ωn−j g(jh) , n = 1, . . . , N, (1.2)

where the convolution quadrature weights ωn are determined from their generating
power series as (see [10, 11, 12])

∞
∑

n=0

ωnζn = F
(δ(ζ)

h

)

. (1.3)

Here F (s) is the Laplace transform of the (possibly matrix-valued) convolution ker-
nel f(t), and δ(ζ) = 1 − ζ or δ(ζ) = (1 − ζ) + 1

2 (1 − ζ)2 for the methods based
on the first or second-order backward difference formula, respectively. We will also
consider a similar approximation based on implicit Runge-Kutta formulas such as
the Radau IIA methods [13]. Attractive features of such convolution quadratures are
that they work well for singular kernels f(t), for kernels with multiple time scales, and
in situations where only the Laplace transform F (s) but not the convolution kernel
f(t) is known analytically. Perhaps most importantly, they enjoy excellent stability
properties when used for the discretization of integral equations or integro-differential
equations of convolution type, in a way often strikingly opposed to discretizations
with more straightforward quadrature formulas (see references in [12]).

∗ZIB Berlin, Takustr. 7, D-14195 Berlin, Germany. E-mail: schaedle@zib.de. Supported by
the DFG Research Center Matheon ”Mathematics for key technologies” in Berlin.

¶Departamento de Matemática Aplicada, Universidad de Valladolid, Valladolid, Spain. E-mail:
marial@mac.cie.uva.es. Supported by DGI-MCYT under project MTM 2004-07194 cofinanced by
FEDER funds.

∗∗Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen,
Germany. E-mail: lubich@na.uni-tuebingen.de. Supported by DFG, SFB 382.

1

The direct way to compute (1.2) is to first compute and store the (possibly matrix-
valued) weights ω0, . . . , ωN , which can be done accurately with O(N) evaluations of
the Laplace transform F (s) [11], and then to compute the discrete convolution. Done
naively, this requires O(N2) multiplications (possibly matrix × vector) and O(N)
active memory for the values g(jh) and for the weights. Using FFT, the number
of multiplications can be reduced to O(N log N), and to O(N (log N)2) in the case
of integral equations where the values of g(t) are not known beforehand, but where
g(nh) is computed only in the nth time step [3]. However, that approach does not
reduce the number of F -evaluations and the memory requirements.

Here we give an algorithm, also applicable in the case of linear and nonlinear
integral equations, which computes (1.2) in a way that requires

• O(N log N) multiplications,
• O(log N) evaluations of the Laplace transform F (s), and
• O(log N) active memory.

The history g(jh) for j = 0, . . . , N is forgotten in this algorithm, and only logarithmi-
cally few linear combinations of the g-values are kept in memory. These are obtained
by solving numerically, with step size h, initial value problems of the form y′ = λy +g
with complex λ. The weights ωn (n ≤ N) are not computed explicitly, except the
first few, e.g., the first 10 weights.

The algorithm presented here uses ideas of the fast convolution algorithm of [14],
which instead of (1.2) makes a different approximation to the continuous convolution.
The stability properties of the second-order method of [14] in integro-differential equa-
tions such as those of Section 5 are, however, extremely difficult to analyze (cf. also
[17]) and remain entirely unclear for higher-order extensions. Here we show how
the convolution quadratures (1.2) with all their known favorable properties can be
implemented in an equally fast and memory-saving way.

Following the error analysis of [7, 8] we give exponentially convergent error bounds
for the contour integral approximations that are employed in this algorithm. They
ensure that the constants hidden in the O-symbols of the above work estimates depend
only logarithmically on the error tolerance for these contour integral approximations.

We assume a sectorial Laplace transform F (s):

F (s) is analytic in a sector | arg(s − c)| < π − ϕ with ϕ < 1
2π, and there

|F (s)| ≤ M |s|−ν for some real M and ν > 0.
(1.4)

The inverse Laplace transform is then given by

f(t) =
1

2πi

∫

Γ

etλ F (λ) dλ, t > 0, (1.5)

with Γ a contour in the sector of analyticity, going to infinity with an acute angle to
the negative real half-axis and oriented with increasing imaginary part. The function
f(t) is analytic in t > 0 and satisfies

|f(t)| ≤ C tν−1 ect, t > 0, (1.6)

and is therefore locally integrable. (The absolute values on the left-hand sides of
the bounds (1.4) and (1.6) are to be interpreted as matrix norms for matrix-valued
convolution kernels.)

In Section 2 we review convolution quadrature based on multistep and Runge-
Kutta methods. We give a contour integral representation of the convolution quadra-
ture weights whose discretization along hyperbolas or Talbot contours is discussed in

2

Section 3. The fast and oblivious convolution algorithm is formulated in Section 4.
Finally, in Section 5 we give the results of numerical experiments with integral and
integro-differential equations originating from regular and anomalous diffusion prob-
lems.

2. Convolution quadrature. In this section we review briefly convolution
quadrature and give a contour integral representation of the convolution quadrature
weights on which the fast algorithm of this paper is based.

2.1. Convolution quadrature based on multistep methods. We consider
the convolution quadrature (1.2) with weights (1.3). By (1.4) and Cauchy’s integral
formula we have, with a contour Γ as in (1.5),

∞
∑

n=0

ωnζn = F
(δ(ζ)

h

)

=
1

2πi

∫

Γ

(δ(ζ)

h
− λ
)−1

F (λ) dλ.

Hence, with en(z) defined by

(δ(ζ) − z)−1 =

∞
∑

n=0

en(z) ζn, (2.1)

we have the integral formula

ωn =
h

2πi

∫

Γ

en(hλ) F (λ) dλ, (2.2)

which can be viewed as the discrete analog of (1.5). For the backward Euler dis-
cretization δ(ζ) = 1 − ζ we note the explicit formula

en(z) = (1 − z)−n−1, (2.3)

which is of the form en(z) = q(z)r(z)n with r(z) = 1
1−z and q(z) = 1

1−z .

For the second-order BDF method, where δ(ζ) =
∑p

k=1
1
k (1− ζ)k with p = 2, we

obtain from a partial fraction decomposition of (δ(ζ) − z)−1 that

en(z) =
1√

1 + 2z

(

(2 −
√

1 + 2z)−n−1 − (2 +
√

1 + 2z)−n−1
)

, (2.4)

which is of the form en(z) = q1(z)r1(z)n + q2(z)r2(z)n. Connoisseurs of Cardano’s
formulas find analogous formulas to (2.4) also for the BDF methods of orders 3 and 4.

2.2. Convolution quadrature based on Runge-Kutta methods. We con-
sider an implicit Runge-Kutta method with coefficients aij , bj , ci for i, j = 1, . . . , m.
We denote the Runge-Kutta matrix by Oι = (aij), the row vector of the weights by
bT = (bj), and the stability function by

r(z) = 1 + zbT (I − zOι)−11l,

where 1l = (1, . . . , 1)T . We assume that all eigenvalues of the Runge-Kutta matrix Oι
have positive real part and, for simplicity, that the method is A-stable and the row
vector of the weights equals the last line of the Runge-Kutta matrix,

bj = amj for j = 1, . . . , m,

3

and correspondingly cm = 1. These conditions are in particular satisfied by the
Radau IIA family of Runge-Kutta methods [4]. From such a Runge-Kutta method, a
convolution quadrature is constructed as follows [13]: Let

∆(ζ) =
(

Oι +
ζ

1 − ζ
1lbT

)−1

(2.5)

and define weight matrices Wn by

∞
∑

n=0

Wnζn = F
(∆(ζ)

h

)

. (2.6)

Let ωn = (ω1
n, . . . , ωm

n) denote the last row of Wn. Then an approximation to the
convolution integral (1.1) at time tn+1 = (n + 1)h is given by

un+1 =

n
∑

j=0

m
∑

i=1

ωi
n−j g(tj + cih) =

n
∑

j=0

ωn−j gj (2.7)

with the column vector gj =
(

g(tj + cih)
)m

i=1
. For a Runge-Kutta method of classical

order p and stage order q, this approximation is known to be convergent of the order
min(p, q + 1 + ν) with ν of (1.4).

With the row vector en(z) = (e1
n(z), . . . , em

n (z)) defined as the last row of the
m × m matrix En(z) given by

(∆(ζ) − zIm)−1 =

∞
∑

n=0

En(z) ζn, (2.8)

we obtain an integral formula like in (2.2),

ωn =
h

2πi

∫

Γ

en(hλ) ⊗ F (λ) dλ. (2.9)

For n ≥ 0, en(z) is given as

en(z) = r(z)nq(z) (2.10)

with the row vector q(z) = bT (I − zOι)−1; cf. Lemma 2.4 in [13]. We note that

y
(λ)
n+1 = h

n
∑

j=0

en−j(hλ) gj (2.11)

is the Runge-Kutta approximation at time tn+1 of the linear initial value problem

y′ = λy + g(t), y(0) = 0 . (2.12)

The convolution quadrature (2.7) is thus interpreted as

un+1 =
1

2πi

∫

Γ

F (λ) y
(λ)
n+1 dλ ;

see Proposition 2.1 in [13].

4

3. Approximation of the contour integrals. The fast convolution algorithm
will be based on discretizing the integrals in (2.2) and (2.9) along suitable complex
contours. This approximation is discussed in the present section.

3.1. Quadrature on Talbot contours and hyperbolas. The fast algorithm
approximates the quadrature weights ωn by linear combinations of the exponential
approximations en(hλ), locally on a sequence of fast-growing time intervals nh ∈ I`:

I` = [B`−1h, 2B`h), (3.1)

where the base B > 1 is an integer. For example, B = 10 was found a good choice in
our numerical experiments. The approximation on I` results from applying the trape-
zoidal rule to a parametrization of the contour integral for the convolution quadrature
weights,

ωn =
h

2πi

∫

Γ`

en(hλ) ⊗ F (λ) dλ ≈ h
K
∑

k=−K

w
(`)
k en(hλ

(`)
k) ⊗ F (λ

(`)
k) , nh ∈ I`, (3.2)

with an appropriately chosen complex contour Γ`. The number of quadrature points
on Γ`, 2K + 1, is chosen independent of `. It is much smaller than what would be
required for a uniform approximation of the contour integral on the whole interval
[0, T]. Only a few of the first convolution quadrature weights, ωn for n ≤ N0 (e.g.,
N0 = 10), are approximated differently, using the trapezoidal rule discretization of
the integral over a circle as discussed in [11, 13]:

ωn = last row of
1

2πi

∫

|ζ|=ρ

ζ−n−1 F
(∆(ζ)

h

)

dζ, n ≤ N0. (3.3)

The numerical integration in (2.2) or (2.9) is done by applying the trapezoidal rule
with equidistant steps to a parameterization of a hyperbola [8] or a Talbot contour [18,
16]. The Talbot contour is given by

−25 −20 −15 −10 −5 0

−6

−4

−2

0

2

4

6

PSfrag replacements

µ

σ
µνπ
2

µνπ −20 −15 −10 −5 0

−15

−10

−5

0

5

10

15

PSfrag replacements

µ

σ
µνπ
2

µνπ

Fig. 3.1. Talbot contour (left) and hyperbola (right).

(−π, π) → Γ : θ 7→ γ(θ) = σ + µ (θ cot(θ) + iνθ) (3.4)

where the parameters µ, ν and σ are such that the singularities of F (s) lie to the left
of the contour and that the singularities of en(hs) lie to the right of the contour. See
left part of Figure 3.1 for σ = 0. The parameter µ will depend on ` via the right

5

end-point of I`, which yields a Talbot contour Γ` depending on the approximation
interval I`. The weights and quadrature points in (3.2) are given by (omitting ` in
the notation)

wk = − i

2(K + 1)
γ′(θk) , λk = γ(θk) with θk =

kπ

K + 1
.

Alternatively, the hyperbola is given by

R → Γ : θ 7→ γ(θ) = µ(1 − sin(α + iθ)) (3.5)

where the parameters µ and α are such that the singularities of F (s) lie to the left
of the contour. See the right part of Figure 3.1 for α = π/2 − 1/2. The weights and
quadrature points in (3.2) are given by (omitting ` in the notation)

wk =
iτ

2π
γ′(θk) , λk = γ(θk) with θk = kτ ,

where τ is a step length parameter.

3.2. Numerical experiments. In view of the examples of Section 5 we present
here numerical experiments with

f(t) =
1√
πt

, for which F (s) = s−1/2.

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15

re
la

tiv
e

er
ro

r

n
10

0
10

1
10

2
10

3
10

4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15

re
la

tiv
e

er
ro

r

n

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15

re
la

tiv
e

er
ro

r

n
10

0
10

1
10

2
10

3
10

4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15

re
la

tiv
e

er
ro

r

n

Fig. 3.2. Talbot quadrature errors versus time for K = 15, B = 5 and K = 10, B = 10 for
different Integrators. (Implicit Euler, BDF(2), RadauIIA(3) and RadauIIA(5) in clockwise order
starting from the upper left corner)

The error is calculated with respect to a reference solution, obtained for a dis-
cretization of the contour integral with a large number of integration points. For the

6

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15

re
la

tiv
e

er
ro

r

n
10

0
10

1
10

2
10

3
10

4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15

re
la

tiv
e

er
ro

r

n

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15

re
la

tiv
e

er
ro

r

n
10

0
10

1
10

2
10

3
10

4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10 K = 10 K = 10 K = 10

K = 15 K = 15 K = 15 K = 15 K = 15
re

la
tiv

e
er

ro
r

n

Fig. 3.3. Hyperbola quadrature errors versus time for K = 15, B = 5 and K = 10, B = 10 for
different Integrators. (Implicit Euler, BDF(2), RadauIIA(3) and RadauIIA(5) in clockwise order
starting from the upper left corner)

Radau IIA methods of order 3 and 5, where the ωn are row vectors of dimension 2
and 3, respectively, we plot the error of the last entry.

Using the Tabot contours, the following choices of parameters were found to give
good results. A relative accuracy of about 10−3 on the interval I` for ` ≥ 2 with right
end-point T` is obtained with B = 10, K = 10, µ = 8/T`, ν = 0.6. For a relative
approximation error of 10−6, take B = 5, K = 15, and the other parameters as before,
cf. Fig. 3.2. For n > 20 there is no substantial difference between the different Runge-
Kutta methods. Since the approximations to the first few convolution quadrature
weights are poor, they will not be used in the algorithm.

Using the hyperbola contours, a relative accuracy of about 10−4 on the interval I`

for ` ≥ 2 with right end-point T` is obtained with B = 10, K = 10, α = 1, µ = 3.6/T`

and τ = 0.64. For a relative approximation error of 3 · 10−8, we take B = 5, K = 15,
α = 1, cf. Fig. 3.3. For n > 20 there is again no essential difference between the
different Runge-Kutta methods.

Fig. 3.4 shows the relative errors on the interval [10, 20000] (similar for any in-
terval [a, 2000a] with a > 10) for the RadauIIA(3) method with K = 10, 20, 40, 80,
160, 320, 640. For the implicit Euler, the BDF(2) and the RadauIIA(5) method these
error plots look similar. This behavior of the errors clearly demonstrates the ad-
vantage of using local approximations. With B = 10, we need three approximation
intervals to cover the interval [10, 20000], so that for a work of 3 · K with K = 10 we
obtain better accuracy than with K = 640 over the whole interval.

In this example the maximum quadrature errors using the hyperbolas are smaller
than those for the Talbot contours. Moreover, the hyperbolas allow to choose larger
intervals. On the other hand, the Talbot contours turned out to be less sensitive to

7

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

K = 10

K = 20K = 40

80

160
320K = 640

re
la

tiv
e

er
ro

r

n
10

1
10

2
10

3
10

4

10
−10

10
−5

10
0

K = 10

K = 20K = 40

80

160
320

K = 640

re
la

tiv
e

er
ro

r

n

Fig. 3.4. Talbot (left) and hyperbola (right) quadrature error versus n for the RadauIIA(3)
method with K = 10, 20, 40, 80, 160, 320, 640. The bold parts of the error curve correspond to the
lower left parts of Figs. 3.2 and 3.3. Note the different scaling of the y axis.

the choice of parameters and the Laplace transform functions than the hyperbolas.

3.3. Theoretical error bounds of the contour integral approximations.

For the case of the hyperbola, we obtain in the same way as in Theorem 3 of [7] the
following error bound which shows exponential convergence.

Theorem 3.1. There are positive constants C, d, c0, . . . , c4, and c such that at
t = nh ≤ T the quadrature error in (3.2) for a hyperbola (3.5) is bounded by

‖E(τ, K, h, n)‖ ≤ C h tν−1 (µt)1−ν

(

ec0µt

e2πd/τ − 1
+ e(c1−c2 cosh(Kτ))µt

+ ec3µt
(

1 +
c4 cosh(Kτ)µt

n/2

)−n/2
)

,

if n ≥ cµt and µt ≥ 1. Here ν is the exponent of (1.4).
Given an error tolerance ε, the first term in the error bound becomes O(ε h tν−1)

if τ is chosen so small that c0µt − 2πd/τ ≤ log ε, which requires an asymptotic
proportionality 1

τ ∼ log 1
ε + µt. For µ chosen such that a1

B log 1
ε ≤ µt ≤ a1 log 1

ε with
an arbitrary positive constant a1 and with B > 1, we obtain that the second term is
O(ε h tν−1) if c1 − c2 cosh(Kτ) ≤ −B/a1, i.e., with cosh(Kτ) = a2 for a sufficiently
large constant a2. With the above choice of τ , this yields K ∼ log 1

ε . The third term
then becomes smaller than ε h tν−1 for n ≥ c log 1

ε with a sufficiently large constant c.
In summary, this gives the following bound for the required number of quadrature
points on the hyperbola.

Theorem 3.2. In (3.2), a quadrature error bounded in norm by ε h tν−1 for
nh ∈ I` is obtained with K = O(log 1

ε). This holds for n ≥ c log 1
ε (with some

constant c > 0), with K independent of ` and of n and h with nh ≤ T .
The approximation is, however, poor for the first few n, as we have seen in the

numerical experiments.
We refer to [9] for an optimized strategy to choose the parameters µ, τ, K, which

takes also perturbations in the evaluations of the Laplace transform into account.
We expect that a similar result to Theorem 3.2 holds also for the Talbot contours,

if the Laplace transform has an analytic continuation beyond the negative real axis
from above and below, as is the case for the fractional powers considered above.

8

4. The fast and oblivious algorithm. We now describe the convolution algo-
rithm, concentrating on Runge-Kutta based convolution quadrature. The algorithm
differs slightly depending on whether we want to compute a convolution or to solve
an integral or integro-differential equation of convolution type.

4.1. The algorithm for computing convolutions. The algorithm presented
here uses the organisation scheme of the fast convolution algorithm described in a
step by step manner in [14]. A pseudo-code for the algorithm developed in [14] can
be found in [5].

For fixed integer n ≤ N and a given base B we split the discrete convolution (1.2)
or (2.7) into L sums, where L is the smallest integer such that n < 2BL:

un+1 =

n
∑

j=0

ωn−j gj = u
(0)
n+1 + · · · + u

(L)
n+1

with u
(0)
n+1 = ω0 gn and u

(`)
n+1 =

b`−1−1
∑

j=b`

ωn−j gj

for suitable n = b0 > b1 > · · · > bL−1 > bL = 0. In view of the approximation
intervals (3.1), the splitting is done in such a way that for fixed ` in each sum from
b` to b`−1 − 1, we have n − j ∈ [B`−1, 2B` − 2]. The b` = b(`), ` = 1, . . . , L − 1 are
determined recursively by the following pseudo-code.

L = 1; q = 0;

for n = 1 to N do

if 2*B^L == n+1 then L = L+1; endif

k = 1;

while mod(n+1,B^k) == 0 & k < L

q(k) = q(k)+1; k = k+1;

endwhile

for k = 1 to L-1 do b(k) = q(k)*B^k; endfor

endfor

Note that for growing n, b` is augmented by B` every B` steps. On inserting the
integral representation (2.9) of the Runge-Kutta quadrature weights and the rela-
tion (2.10), i.e., en−j(hλ) = r(hλ)n−jq(hλ), we obtain

u
(`)
n+1 =

b`−1−1
∑

j=b`

ωn−j gj =

b`−1−1
∑

j=b`

h

2πi

∫

Γ`

en−j(hλ) ⊗ F (λ) dλ gj (4.1)

=
1

2πi

∫

Γ`

r(hλ)n−(b`−1−1) F (λ) y(`)(hλ) dλ

with

y(`)(hλ) = h

b`−1−1
∑

j=b`

e(b`−1−1)−j(hλ) gj .

Comparing this formula with (2.11), we see that y(`)(hλ) is the Runge-Kutta approx-
imation to the solution at t = b`−1h of the linear initial-value problem

y′ = λy + g(t), y(b`h) = 0, (4.2)

9

and hence y(`)(hλ) is computed as such, by Runge-Kutta time-stepping. The integrals
are discretized with the quadrature formula discussed in Section 3:

u(`)
n

.
=

K
∑

k=−K

w
(`)
k r(hλ

(`)
k)n−b`−1+1 F (λ

(`)
k) y(`)(hλ

(`)
k). (4.3)

In the nth time step, we thus compute u
(`)
n+1 and for subsequent use we update the

Runge-Kutta solutions to the (2K+1)L initial value problems (4.2) for the integration

points λ
(`)
k on the contours Γ` for ` = 1, . . . , L, doing one time step from tn to tn+1

in each of these differential equations.
This algorithm does not keep the history gj (j = 0, . . . , n) in memory. For each

` = 1, . . . , L and k = −K, . . . , K, it stores the Runge-Kutta approximation to (4.2)

at the current time step, the values w
(`)
k , λ

(`)
k , r(hλ

(`)
k), F (λ

(`)
k), y(`)(hλ

(`)
k), and two

auxiliary values of the dimension of y needed for book-keeping purposes (cf. [14, 5]).
There are only (2K + 1)L evaluations of the Laplace transform F (s). In the case of
real functions f(t) and g(t) only the real parts of the above sums are needed, and
hence the factor 2K + 1 can be replaced by K + 1, since the quadrature points lie
symmetric with respect to the real axis. We recall L ≤ logB N and K = O(log 1

ε),
where ε is the accuracy requirement in the discretization of the contour integrals.

In view of the poor approximation of the first convolution quadrature weights by

the discretization of the contour integral, we evaluate u
(`)
n+1 directly for a few of the

first `, e.g., for ` = 0, 1 with B = 10. For this we need to keep the n − b1 + 1 ≤ 2B
values gb1 , . . . , gn in memory, but none of the earlier history gj for j ≤ n−2B. We also
need the few convolution quadrature weights ω0, . . . , ω2B−1, which may be computed
from (3.3) with 2B evaluations of the Laplace transform F (s).

For the convolution quadrature based on the second-order BDF method a similar
fast algorithm is obtained by inserting the formula (2.4) for en−j(hλ) in (4.1).

4.2. The algorithm for solving integral equations. The adaptation of the
above algorithm to integral equations such as

u(t) = a(t) +

∫ t

0

f(t − τ) g(τ, u(τ)) dτ , t ≥ 0, (4.4)

is straightforward for the case of the convolution quadrature based on the implicit
Euler method and the second-order BDF method, which use solution approximations
only on the grid t = nh. The extension of the Runge-Kutta based algorithm is,
however, less immediate, because the integral approximation uses the internal stages
of the Runge-Kutta method. Consider a Runge-Kutta based convolution quadrature
under the assumptions of Section 2.2. With the column vector of internal stages
vn = (vni)

m
i=1, the discretization of (4.4) reads

vn = an +
n
∑

j=0

Wn−j gj , n ≥ 0, (4.5)

with an =
(

a(tn + cih)
)m

i=1
, with weight matrices Wn defined by (2.6), and with

gj =
(

g(tj + cih, vji)
)m

i=1
depending on the stages vji. The scheme is implicit in vn.

The solution at tn+1 is approximated by the last component of the stage vector vn,

un+1 = vnm .

10

With the proof of [13, Theorem 4.1] we obtain that the error of this approximation
over bounded time intervals is bounded by O(hκ) with κ = min(p, q +1), where p and
q are the classical order and stage order, respectively, of the underlying Runge-Kutta
method. This estimate holds under the assumption that the solution is sufficiently
smooth. It gives orders 3 and 4 for the 2- and 3-stage Radau IIA methods, respectively.
The precise approximation order for the 3-stage method (of classical order 5) may
become larger under appropriate conditions on the nonlinearity and the convolution
kernel, cf. [13, Theorem 4.2].

The weight matrix Wn has the integral representation, cf. (2.9),

Wn =
h

2πi

∫

Γ

En(hλ) ⊗ F (λ) dλ ,

where the m × m matrix En(z) is defined by (2.8). By Lemma 2.4 of [13], for n ≥ 1,
En(z) is the rank-1 matrix given by

En(z) = r(z)n−1(I − zOι)−11lbT (I − zOι)−1

= r(z)−1 (I − zOι)−11l en(z).

These relations permit us to proceed for the history term of (4.5) as we did for (2.7).
We split the stage vector vn as

vn = an + v(0)
n + · · · + v(L)

n with v(`)
n =

b`−1−1
∑

j=b`

Wn−j gj

and obtain, like in (4.1),

v(`)
n =

1

2πi

∫

Γ`

r(hλ)n−b`−1 (I − hλOι)−11l ⊗ F (λ) y(`)(hλ) dλ ,

where y(`)(hλ) is again the Runge-Kutta approximation at t = b`−1h to the initial-
value problem (4.2), now for the inhomogeneity values gj =

(

g(tj + cih, vji)
)m

i=1
in

place of gj =
(

g(tj + cih)
)m

i=1
. For ` ≥ 2 or 3, we thus approximate v

(`)
n as

v(`)
n

.
=

K
∑

k=−K

w
(`)
k r(hλ

(`)
k)n−b`−1 (I − hλ

(`)
k Oι)−11l ⊗ F (λ

(`)
k) y(`)(hλ

(`)
k) .

The algorithm stores the same values as before. The memory requirements for the
algorithm are thus independent of the number of stages m and remain essentially the
same as in the pure convolution case.

5. Numerical experiments. We give two examples to illustrate the application
and behavior of the fast convolution algorithm.

5.1. A nonlinear Volterra equation. We consider a nonlinear Volterra inte-
gral equation with weakly singular kernel from [6],

u(t) = −
∫ t

0

(

u(τ) − sin(τ)
)3

√

π(t − τ)
dτ . (5.1)

11

The convolution quadrature based on the backward Euler method gives the implicit
discretization

un =

n
∑

j=0

ωn−j

(

uj − sin(jh)
)3

,

where ωn is given by (1.3) with F (s) = s−1/2 and δ(ζ) = 1− ζ. To solve the nonlinear
equation in each time step we use Newton iterations. The history term is computed
by the fast algorithm of the previous section.

We consider also the discretizations based on the backward differentiation method
of order 2, cf. Section 2.1, and on the 2- and 3-stage RadauIIA implicit Runge-Kutta
methods of orders 3 and 5, respectively; see Sections 2.2 and 4.2.

In the numerical experiment we use the base B = 5 and the Talbot contours
with K = 15 and K = 30 and the further parameters as in Section 3.2. We choose
a tolerance of 10−12 in the Newton method. The error is calculated with respect to
a reference solution, obtained with h = 0.001. Figure 5.1 shows the evolution of the
absolute error and the oscillating solution u.

Figure 5.2 shows the errors un − u(tn) versus the step size h at time tn = 60, for
K = 15 and K = 30.

Figure 5.3 plots the cpu time versus the number of integration steps, up to 106

time steps. The near-linear growth of the computational work is clearly visible.

0 10 20 30 40 50 60
−0.5

0

0.5

t

so
lu

tio
n

0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

t

ab
so

lu
te

 e
rr

or

Impl. Euler
BDF(2)
RadauIIA(3)
RadauIIA(5)

Fig. 5.1. Evolution of the solution over the interval [0, 60] (left) and absolute error for different
time integration methods (right) for h = 0.05 and K = 30.

5.2. Fractional diffusion with transparent boundary conditions. Here
we consider a fractional diffusion equation on the real line; see, e.g., [15] for applica-
tions of such equations in physics and for numerous references. The equation can be
formulated as

u(x, t) − u0(x) =

∫ t

0

(t − τ)α−1

Γ(α)
∂xxu(x, τ) dτ + g(x, t) for x ∈ R , t > 0 (5.2)

with the asymptotic condition u(x, t) → 0 for x → ±∞, for an inhomogeneity g with
g(x, 0) = 0. To reduce the computation to a finite domain x ∈ [−a, a] for initial data
u0 and inhomogeneity g with support in [−a, a], we impose transparent boundary
conditions at x = ±a, which read

u(±a, t) = −
∫ t

0

(t − τ)α/2−1

Γ(α/2)
∂νu(±a, τ) dτ, (5.3)

12

10
−3

10
−2

10
−1

10
0

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ab
so

lu
te

 e
rr

or

step size

1

1

1

2

1

3

1

5

RIIA(1)
RIIA(3)
RIIA(5)
BDF(2)

10
−3

10
−2

10
−1

10
0

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ab
so

lu
te

 e
rr

or

step size

1

1

1

2

1

3

1

5

RIIA(1)
RIIA(3)
RIIA(5)
BDF(2)

Fig. 5.2. Absolute error vs. step size h, for different integration methods, with K = 15 (left)
and K = 30 (right).

10
2

10
4

10
6

10
0

10
1

10
2

10
3

10
4

cp
u
tim

e
 (

s)

Number of steps

1

1

RIIA(1)
RIIA(3)
RIIA(5)

Fig. 5.3. Cpu time in seconds versus the number of integration steps.

with the outward derivative ∂ν = ±∂x at x = ±a. These boundary conditions are
derived with Laplace transform techniques in the same way as for the wave or the
Schrödinger equation; see, e.g., [2]. Space discretisation of (5.2) is done using sec-
ond order finite differences and a central finite difference to approximate the normal
derivative. With the notation

δxxun
l =

1

∆x2

(

un
l−1 − 2un

l + un
l+1

)

, δνun
±(M−1) =

1

2∆x

(

un
±M − un

±(M−2)

)

for a = M∆x, the discrete equation approximating (5.2) is

un
l − u0

l =

n
∑

j=0

ω
(α)
n−j δxxuj

l + gn
l for l = −(M − 1), . . . , M − 1 ; n > 0,

un
±(M−1) = −

n
∑

j=0

ω
(α/2)
n−j δνuj

±(M−1) ,

(5.4)

13

where the weights ω
(β)
n are the convolution quadrature weights for the kernel f(t) =

tβ−1/Γ(β) with Laplace transform F (s) = s−β .
In the numerical example we set a = 5 and M = 450. We consider the problem

with α = 2/3 and no inhomogeneity, i.e., g ≡ 0. The initial value is u(x, 0) =
exp(−x2). Figure 5.4 shows the errors at t = 2 in dependence on the step size for
the Radau IIA methods of orders 1, 3, 5, obtained with B = 5 and K = 15 in the
fast convolution algorithm. The reference solution is obtained with the Radau IIA
method of order 5, with h = 0.0002 and K = 40. We observe an order reduction
for the higher-order methods, which is due to the temporal non-smoothness of the
solution at t = 0; cf. [1, Sect. 8]. Nevertheless, the higher-order methods give much
better accuracy.

The work diagram looks almost identical to Figure 5.3, showing practically linear
dependence of the computational work on the number of time steps. The required
memory is less than 200 entries per spatial grid point for up to N ≤ 104 steps, and
less than 300 entries per grid point for N ≤ 106 steps. These numbers are halved if
we run the algorithm with B = 10, K = 10 instead of B = 5, K = 15, as is sufficient
for less stringent accuracy requirements (∼ 10−3).

10
−3

10
−2

10
−1

10
0

10
1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ab
so

lu
te

 e
rr

or

step size

RIIA(1)
RIIA(3)
RIIA(5)

Fig. 5.4. Absolute error vs. time step, for different integration methods, with K = 15.

REFERENCES

[1] E. Cuesta, C. Lubich, C. Palencia, Convolution quadrature time discretization of fractional
diffusion-wave equations. Math. Comp., to appear (2005).

[2] T. Hagstrom, Radiation boundary conditions for numerical simulation of waves. Acta Numerica
8, 47-106 (1999).

[3] E. Hairer, C. Lubich, M. Schlichte, Fast numerical solution of nonlinear Volterra convolution
equations. SIAM J. Sci. Stat. Comp. 6, 532-541 (1985).

[4] E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-
Algebraic Problems. Second edition. Springer, Berlin, 1996.

[5] R. Hiptmair, A. Schädle, Non-reflecting boundary conditions for Maxwell’s equations. Com-
puting 71, 265-292 (2003).

[6] N. Levinson, A nonlinear Volterra equation arising in the theory of superfluidity. J. Math. Anal.
Appl. 1, 1-11 (1960).

14

[7] M. López-Fernández, C. Lubich, C. Palencia, A. Schädle, Fast Runge-Kutta approximation of
inhomogeneous parabolic equations. Preprint, 2005.

[8] M. López-Fernández, C. Palencia, On the numerical inversion of the Laplace transform of
certain holomorphic mappings. Appl. Numer. Math. 51, 289-303 (2004).

[9] M. López-Fernández, C. Palencia, A. Schädle, On the numerical inversion of the Laplace trans-
form of certain holomorphic mappings, Addendum (in preparation).

[10] C. Lubich, Convolution quadrature and discretized operational calculus. I. Numer. Math. 52,
129-145 (1988).

[11] C. Lubich, Convolution quadrature and discretized operational calculus. II. Numer. Math. 52,
413-425 (1988).

[12] C. Lubich, Convolution quadrature revisited. BIT 44, 503-514 (2004).
[13] C. Lubich, A. Ostermann, Runge-Kutta methods for parabolic equations and convolution

quadrature. Math. Comput. 60, 105-131 (1993).
[14] C. Lubich, A. Schädle, Fast convolution for nonreflecting boundary conditions. SIAM J. Sci.

Comp. 24, 161-182 (2002).
[15] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics

approach. Physics Reports 339, 1-77 (2000).
[16] M. Rizzardi, A modification of Talbot’s method for the simultaneous approximation of several

values of the inverse Laplace transform. ACM Trans. Math. Software 21, 347-371 (1995).
[17] A. Schädle, Ein schneller Faltungsalgorithmus für nichtreflektierende Randbedingungen. Doc-

toral Thesis, Univ. Tübingen, 2002.
[18] A. Talbot, The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23,

97-120 (1979).

15

