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1 Introduction

Nowadays the semiconductor devices in an electrical circuit are modelled by equivalent circuits
containing basic network elements described by algebraic and ordinary differential equations.
But the correct adjustment of these circuits has become a very difficult task for the network
design. In [1] a new model for electrical circuits containing semiconductor devices is proposed.
There the differential algebraic equations (DAEs) for the basic circuit’s elements are coupled to
partial differential equations (PDEs), more specifically to one-dimensional Drift-Diffusion (DD)
equations, modelling the semiconductor devices in it. Systems of this type are called Abstract
Differential Algebraic Systems (ADAS). In [7] the tractability index [4] of this model is analysed
and in [6] it is proved that the DAE obtained after discretization in space of the DD equations
in it has the same index as the abstract system. In this work we study the index of an abstract
system where higher dimensional PDEs describe the behavior of the semiconductor devices in the
circuit. In the next section the model is briefly described. The section 3 is devoted to the study
of the index of the system, as ADAS. Finally, in section 4 it is shown that the index of the DAE
that is obtained after discretization in space of the PDEs is equal to the index of the abstract
system. In what follows we consider electrical circuits with only one semiconductor device, the
results can easily be generalized to circuits containing more semiconductor devices.

2 Abstract Differential Algebraic System for the simula-

tion of electrical circuits

Suppose Ω is a bounded domain in R
d, d ∈ {1, 2, 3}, x ∈ Ω represents the space variable and

t is the time variable, t ∈ [t0, tF ]. The system proposed in [7] for the simulation of electrical
circuits containing semiconductor devices couples the Modified Nodal Analysis (MNA) equations
for electrical circuits to the DD equations for semiconductor devices.
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The MNA equations for an electrical circuit have the form

AC
d qC(ATCe, t)

dt
+ARg(A

T
Re, t) +ALjL +AV jV +ASjS +AI iS = 0, (1a)

dφ(jL, t)

dt
−ATLe = 0, (1b)

ATV e− vS = 0, (1c)

where AC , AR, AL, AV , AS and AI are the element related reduced incidence matrices, vS(t),
iS(t), qC(u, t), g(u, t) and φ(j, t) are given functions and the unknowns are the node potentials,
excepting the mass node e(t) : R → R

nN and the currents through inductors, voltage sources and
semiconductor devices jL(t) : R → R

nL , jV (t) : R → R
nV and jS : R → R

nS respectively. The
DD equations are given by the following set of PDEs for the electrostatic potential ψ(x, t) and
the electrons and holes densities, n(x, t) and p(x, t) respectively

∇ · (−ε∇ψ) − q(C − n+ p) = 0, (1d)

−
∂n

∂t
+

1

q
divJn −R = 0, Jn − qµn(UT∇n− n∇ψ) = 0, (1e)

∂p

∂t
+

1

q
divJp +R = 0, Jp + qµp(UT∇p+ p∇ψ) = 0. (1f)

We consider R = R(n, p), µn = µn(x), µp = µp(x) and ε, q and UT as constants. In (1d)-(1f), as
suggested in [3], we replace the Poisson equation (1d) by the energy conservation equation

∇ · (Jn + Jp − ε∂t∇ψ) = 0, (1g)

obtained after differentiation of (1d) with respect to time and elimination of
∂n

∂t
and

∂p

∂t
from

the continuity equations (1e) and (1f).
We consider the boundary of the semiconductor device to be divided in two disjoint parts

Γ = ΓO ∪ ΓA. The first one are the metal semiconductor contacts (Ohmic contacts) where
the external potentials are applied and the second one is an artificial boundary. The boundary
conditions are

n = nD(x), p = pD(x), ψ = ψbi(x) + ψD(x, e) on ΓO (1h)

and
∂ψ

∂ν
=
∂n

∂ν
=
∂p

∂ν
= 0 on ΓA, (1i)

where ψD denotes the externally applied bias, it depends on the node potentials of the circuit.
Suppose ΓO = ∪nS+1

j=1 Γj . The current flowing through the contact Γi ⊂ ΓO of the semicon-

ductor is ji =
∫

Γi
Jtot · νdσ where Jtot = Jn + Jp − ε

∂

∂t
∇ψ. If f(x) = (f1(x) f2(x) . . . fnS

(x)) is

such that

∆fi = 0 in Ω, fi|Γj
=

{

1 if i = j

0 else
, j = 1, 2, . . . , nS + 1, (∇fi · ν)|ΓA

= 0, (1j)
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the current through Γi, i = 1, 2, . . . , nS can be calculated as [3]

ji =

∫

Γi

Jtot · ν ds =

∫

Γ

Jtot · νfi ds =

∫

Ω

Jtot · ∇fidx

ji = −ε
d

dt

∫

Ω

∇ψ · ∇fidx+

∫

Ω

(Jn + Jp) · ∇fidx.

The current at ΓnS+1 is the negative sum of the currents through the other contacts1. Suppose
the contact Γi of the semiconductor device is joined to the ki-th node of the circuit for i =
1, 2, . . . , nS +1. We set ψD(x, e) = eki

− eknS+1
∀x ∈ Γi, i = 1, 2, . . . , nS , and ψD(x, e) = 0, ∀x ∈

ΓnS+1. Then according to the definition of AS in [7], ψD(x, e) = f(x) · ATSe. Following the
convention in [2] the vector jS must be such that

jSi
= −ji = −

∫

Ω

(Jn + Jp) · ∇fidx+
d

dt

∫

Ω

ε∇ψ · ∇fi dx, i = 1, 2, . . . , nS

jSi
= −

∫

Ω

(Jn + Jp) · ∇fidx−
d

dt
jdSi
, jdSi

= −

∫

Ω

ε∇ψ · ∇fi dx. (1k)

Let the following assumptions on the circuit equations be satisfied in the forthcoming sections:

1. the input functions vS(t) and iS(t), associated to the independent voltage and current
sources respectively, are continuous,

2. the functions qC(u, t), φ(j, t) and g(u, t) are continuously differentiable and have positive
definite partial Jacobians

C(u, t) =
∂qC(u, t)

∂u
, L(j, t) =

∂φ(j, t)

∂j
, G(u, t) =

∂g(u, t)

∂u
,

3. the circuit contains neither loops of voltage sources only nor cut sets of current sources
only. These two conditions hold if and only if the matrices AV and (AC AR AL AV AS)T

have full column rank, respectively,

4. the function R(n, p) is continuously differentiable,

5. the functions µn(x) and µp(x) are bounded.

3 Tractability index of the Abstract Differential Algebraic

System

If u =
(

e, jL, jV , jS , j
d
S , ψ(·, t), n(·, t), p(·, t)

)

the above described model, after homogeniza-
tion of the electrostatic potential and the densities of electrons and holes 2, can be written as

1The sum of the currents at the contacts of the semiconductor is zero,
PnS+1

i=1
ji =

PnS+1

i=1

R

Γi
Jtot · νds =

R

Γ
Jtot · νds =

R

Ω
∇ · Jtotdx = 0.

2ψ = ψ − f(x) · AT

S
e− g1(x) where g1(x) is such that (∇g1 · ν)|ΓA

= 0, g1|ΓO
= ψbi(x), n = n− g2 where g2

is such that (∇g2 · ν)|ΓA
= 0, g2|ΓO

= nD and p = p− g3 where g3 is such that (∇g3 · ν)|ΓA
= 0, g3|ΓO

= pD.
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A d
dt
D(u, t) + B(u, t) = 0 with

A =









AC 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I









,B(u, t) =







































ARg(A
T
Re,t)+ALjL+AV jV +ASjS+AI is(t)

−AT
Le

AT
V e−vS(t)

jd
S+ε

0

B

B

B

@

R

Ω
∇(ψ+f ·AT

S e)·∇f1dx
...

R

Ω
∇(ψ+f ·AT

S e)·∇fnS
dx

1

C

C

C

A

jS+

0

B

B

@

R

Ω
(Jn+Jp)·∇f1dx

...
R

Ω
(Jn+Jp)·∇fnS

dx

1

C

C

A

∇·(Jn+Jp)
1
q
∇·Jn−R

1
q
∇·Jp+R







































(2a)

and
D(u, t) =

(

A+
CACqC(ATCe, t), φ(jL, t), j

d
S , ∇ · (−ε∇ψ) , −n, p

)T
. (2b)

In (2) Jn = qµn
(

UT∇(n+ g2) − (n+ g2)∇
(

ψ + f ·ATSe+ g1
))

, Jp has a similar structure and

A+
C is the Moore-Penrose pseudo-inverse of AC . A,D and B are operators acting on Hilbert

spaces A : Z → Y, D : X → Z and B : X → Y with

X = R
nN × R

nL × R
nV × R

nS × R
nS × V × L2(Ω) × L2(Ω),

Y = R
nN × R

nL × R
nV × R

nS × R
nS × L2(Ω) × L2(Ω) × L2(Ω),

Z = R
nC × R

nL × R
nS × L2(Ω) × L2(Ω) × L2(Ω),

where V =
{

v ∈ H2(Ω) | v|ΓO
= 0, (∇v · ν)|ΓA

= 0
}

. Note that the definition domain DB of
B(u, t),

DB = R
nN × R

nL × R
nV × R

nS × R
nS × V × V × V,

is dense in X . The Fréchet derivative of D(u, t) is

D0(u, t) =







A
+

C
ACC(AT

Ce,t)A
T
C 0 0 0 0 0 0 0

0 L(jL,t) 0 0 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 −ε∆ 0 0
0 0 0 0 0 0 −I 0
0 0 0 0 0 0 0 I







and because the equation −ε∆u = f , completed with homogeneous Dirichlet and Neumann
conditions, has a unique solution for all f ∈ L2(Ω),

imD0(u, t) = imATC × R
nL × R

nS × L2(Ω) × L2(Ω) × L2(Ω),

kerD0(u, t) =
{

w ∈ X | we ∈ kerATC , wL = 0, wdS = 0, wψ = 0, wn = 0, wp = 0
}

.

On the other hand, the operator A satisfies

kerA = kerAC × {0} × {0} × {0} × {0} × {0},

imA = imAC × R
nL × {0} × {0} × R

nS × L2(Ω) × L2(Ω) × L2(Ω).
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The coupled system has a properly stated leading term because

kerA⊕ imD0(u, t) = Z, ∀u ∈ X , ∀t ∈ [t0, tF ]

and there is a projector R ∈ L(Z)3 such that imR = imD0(u, t), kerR = kerA4.
Remark The functions f1, f2, . . . fnS

defined above are a basis of the linear space

F =
{

v ∈ H2(Ω) | ∆v = 0 in Ω, (∇v · ν)|ΓA
= 0, v|Γj

= aj , v|ΓnS+1
= 0

}

,

where j = 1, 2, . . . , nS and aj ∈ R ∀j. Because (u, v)F =
∫

Ω
∇u · ∇v dx is a scalar product in F ,

the matrix

J =





R

Ω
∇f1·∇f1 dx ...

R

Ω
∇f1·∇fnS

dx
...

...
...

R

Ω
∇fnS

·∇f1 dx ...
R

Ω
∇fnS

·∇fnS
dx



 , (3)

is positive definite.

Theorem 3.1 If the conditions on the circuit mentioned in section 2 are satisfied and the circuit
contains neither cut sets of inductors and current sources (LI-cut sets) nor loops of capacitors,
voltage sources and semiconductor devices with at least one voltage source or one semiconductor
device (CVS-loops), the abstract system has tractability index one.

Proof: Let G0(u, t) = AD0(u, t) and B0(u, t) denote the Fréchet-derivative of B. Under the
conditions in section 2 B0(u, t) exists. The system has tractability index one if there is a projection
operator Q0 ∈ L(X ) onto kerG0(u, t) such that G1(u, t) = G0(u, t) + B0(u, t)Q0 is injective and
imG1(u, t) = Y for all u ∈ X and t ∈ [t0, tF ].

Because the system has a properly stated leading term, kerG0(u, t) = kerD0(u, t) and Q0 =








QC 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0









is a projection operator onto kerG0(u, t) if QC is a projector onto kerATC . The

operator G1 can easily be calculated. Let w =
(

we, wL, wV , wS , w
d
S , wψ, wn, wp

)

∈ kerG1(u, t).
The fourth equation of G1(u, t)w = 0 is εJATSQCwe = 0 where J is the matrix in (3), then
εJATSQCwe = 0 iff ATSQCwe = 0. The sixth equation of G1(u, t)w = 0 is −ε∆wψ = 0, it implies
that wψ = 0. The rest of the proof is very similar to the ones in [7] or in [6]. We arrive to

kerG1(u, t) =
{

w | wψ = 0, wn = 0, wp = 0, QCwe ∈ ker (AC AR AV AS)
T
,

PCwe = −HC(·)−1 (AV AS) (wV
wS

) , wL = L(·)−1ATLQCwe,

(wV
wS

) ∈ ker
(

QTCAV QTCAS
)

, wdS = − (0 I) (wV
wS

)
}

,

where HC(ATCe, t) = ACC(ATCe, t)A
T
C +QTCQC is positive definite. If the circuit contains neither

LI-cut sets ((AC AR AV AS)
T

has full column rank) nor CVS-loops with at least one voltage

3L(Y) denotes the space of linear operators A : Y → Y.

4R =

0

B

@

A
+
C

AC 0 0 0 0 0

0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

1

C

A
.
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source or one semiconductor device (
(

QTCAV QTCAS
)

has full column rank), then kerG1(u, t) =

{0}, i.e. G1(u, t) is injective. The dense solvability of G1(u, t) (imG1(u, t) = Y) can be shown
using similar arguments as those in [7] and taking into account that J is nonsingular ¤.

Suppose the circuit contains LI-cut sets or CVS-loops with at least one voltage source or
one semiconductor device. Let QCRV S be a projector onto ker (AC AR AV AS)

T
and QC−V S , a

projector onto ker
(

QTCAV QTCAS
)

. Because imQCRV S ⊂ imQC , QCRV S can be constructed so
that kerQC ⊂ kerQCRV S . A projector Q1(u, t) onto kerG1(u, t) is then

Q1(u, t) =









QCRV S 0 −HC(·)−1(AV AS)QC−V S 0 0 0 0

L(·)−1AT
LQCRV S 0 0 0 0 0 0
0 0 QC−V S 0 0 0 0
0 0 −(0 I)QC−V S 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0









.

Theorem 3.2 Under the conditions mentioned in section 2 and if the circuit contains LI-cut
sets or CVS-loops, the coupled system has tractability index two.

Proof: The ADAS has index two if the operator G2(u, t) = G1(u, t) + B0(u, t)(I −Q0)Q1(u, t) is
injective and densely solvable for all u ∈ X and t ∈ [t0, tF ] .

The operator G2(u, t) can easily be calculated. Let w be an element in kerG2(u, t). The third
and fourth equations of G2(u, t)w = 0, pre-multiplied by QTC−V S , can be written as

−QTC−V S

{(

AT
V

AT
S

)

HC(·)−1 (AV AS) +
(

0 0
0 1

ε
J−1

)}

QC−V S (wV
wS

) = 0. (4)

Because
(

0 0
0 1

ε
J−1

)

is positive semidefinite and H−1
C (·) is positive definite, equation (4) is satisfied

iff QC−V S (wV
wS

) = 0. The rest of the proof is very similar to the ones in [7] or in [6]. We arrive
to kerG2(u, t) = {0}. The dense solvability of G2(u, t) can be proved following the lines in [7] ¤.

4 Index of the Discrete System

Suppose that the coupled system, after discretization in space of the Drift-Diffusion equations
has the following form

AC
d qC(ATCe, t)

dt
+ARg(A

T
Re, t) +ALjL +AV jV +ASjS +AI iS = 0, (5a)

dφ(jL, t)

dt
−ATLe = 0, (5b)

ATV e− vS = 0, (5c)

jdS + JhA
T
Se+ g(y) = 0, (5d)

jS + jcS(ATSe, y, t) +
d jdS
dt

= 0, (5e)

A
d y

dt
+ b(ATSe, y, t) = 0, (5f)

where A is a nonsingular matrix and Jh is positive definite. The vector y is y = (Ψ, N, P )
T

and
Ψ, N and P define the approximations to ψ(x, t), n(x, t) and p(x, t) by the discretization method.
Then, in a similar way as in the previous section it can be shown that its index is always less or
equal to two and it is two only if the circuit contains LI-cut sets or CVS-loops.
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4.1 The Scharfetter-Gummel discretization of the Drift-Diffusion equa-

tions

If the so-called Scharfetter-Gummel Discretization is applied to the DD equations in (2) the
resulting DAE has the same structure as (5). The Scharfetter-Gummel scheme can be described
as a Finite Element Method for the discretization of the Drift-Diffusion equations that is based
on the assumption that the current densities Jn and Jp are constant on each element (triangles,
tetrahedrons, etc) of the spatial mesh. For a detailed description of this method we refer to [5].

Suppose T = {T1, T2, . . . , TK} is a conforming triangulation of Ω and P = {P1, . . . , PM , . . . , PN}
denotes the set of vertices of elements in T , where Pi ∈ Ω ∪ ΓA for i = 1, 2, . . . ,M . Let
{ϕ1, ϕ2, . . . , ϕN} be continuous functions that are linear on each Ti ∈ T and satisfy

ϕi(Pj) =

{

1, if i = j

0, else
.

The coefficients that define the approximation ψh(x, t) =
∑N
j=1 Ψj(t)ϕj(x) are given by

ε
d

dt

∑

T3Pi

N
∑

j=1

Ψj

∫

T

∇ϕj · ∇ϕi dx−

∫

Ω

(Jn + Jp) · ∇ϕi dx = 0, (6)

where i = 1, 2, . . . ,M . The last N −M values of Ψj are Ψj = ψbi(Pj) + fh(Pj) · A
T
Se where

fh = (f1,h, f2,h, . . . , fnS ,h) are approximations to the functions fi defined in (1j). Suppose the

functions fi,h are calculated as
∑N

j=1 fi,h(Pj)ϕj(x). If we substitute Ψj , j = M+1, M+2, . . . , N

in (6) by their values and introduce the change of variables Ψ̃j = Ψj − fh(Pj) · ATSe, j =
1, 2, . . . ,M5 the following equations are obtained

ε
d

dt

∑

T3Pi

M
∑

j=1

Ψ̃j

∫

T

∇ϕj · ∇ϕi dx−

∫

Ω

(Jn + Jp) · ∇ϕi dx = 0. (7a)

The discretized continuity equations are

−
d

dt

∑

T3Pi

∫

T

nϕi dx−
1

q

∫

Ω

Jn · ∇ϕi dx−

∫

Ω

Rϕi dx = 0, (7b)

d

dt

∑

T3Pi

∫

T

pϕi dx−
1

q

∫

Ω

Jp · ∇ϕi dx+

∫

Ω

Rϕi dx = 0, (7c)

where i = 1, 2, . . . ,M . If the integrals involving derivatives with respect to the time of n and p

are approximated by a quadrature formula the system (7) has the form Ady
dt

+ b(ATSe, y, t) = 0

where A is a nonsingular matrix and y =
(

Ψ̃, N, P
)T

. The equations for jdS can be written as

jdSi
+ εJhA

T
Se + g(Ψ̃) = 0 with a positive definite matrix Jh that has the same form as (3) but

with the functions fi,h(x) instead of fi(x).

5The (tractability) index of a DAE is invariant under regular variable transformations.
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