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where A is an (m; s)-matrix with rank smaller than m and b is an m-vector. Inparticular, one may choose A = 0 to see that the Dirac measure, placing mass oneat the point b, has a singular normal distribution. More generally, singular normaldistributions are those normal distributions whose covariance matrix has a rankstrictly smaller than the dimension of the random vector.Such seemingly arti�cial distributions arise in a natural way in problems ofstochastic optimization, where a relatively small (nondegenerate-) normally dis-tributed random vector induces a large number of linear inequality constraints. Asan example, consider the problem of optimal capacity expansion in a network withstochastic demands (see [9], p. 453). Let the random vector � represent the demandsin the nodes of the network and let x be a vector of capacities for the arcs in thenetwork. The costs of installing these capacities are to be minimized as a functionof x under the constraint that there exists a 
ow through the network which isfeasible at high probability, i.e., which satis�es both the capacity restrictions alongthe arcs and the random demands in the nodes (at high probability). Using theGale-Ho�man theorem, feasibility can be modeled as a linear relationA� � Bx:Taking into account the random character of �, it makes sense to require feasibilityin a probabilistic sense: P (A� � Bx) � p;where P denotes probability and p 2 [0; 1] is some chosen level of reliability. Ingeneral, the sizes of A and B can be drastically reduced by eliminating redundancyetc. Nevertheless, even the reduced systems may contain a number of inequalitieswhich is considerably larger than the dimension of � (number of nodes). Passing tothe transformed random vector � = A�, the probabilistic constraint obtained abovecan be rewritten as �(Bx) � p;where � is the distribution function of �. However, since A may have more rowsthan columns, we have to expect that � has a singular normal distribution eventhough � had a regular normal distribution.The example shows that, in order to cope with certain types of probabilisticconstraints, it is important to be able to calculate values and gradients of singularnormal distribution functions. As the latter need not exist in general, it is of interestto characterize di�erentiability of such functions. If di�erentiability fails to hold, onecould rely on more general tools from nonsmooth optimization (both for algorithmicpurposes and optimality conditions). In such constellation, local or global Lipschitzcontinuity is a favorable property. Whether a singular normal distribution function isdiscontinuous or not does not depend on the rank of the covariance matrix. Figure 1shows (from the left to the right) the distribution functions of 2-dimensional normaldistributions with zero mean and covariance matrices� 1 00 0 � ;� 1 11 1 � ;� 1 �1�1 1 � ;2



Figure 1: Distribution functions of 2-dimensional singular normal distributions withcovariance matrix having rank one (see text).all of which have rank one. Note that, in the �rst case, the distribution functionis discontinuous whereas it is Lipschitz continuous (piecewise selection of smoothfunctions of min- and max-type, respectively) in the remaining cases.The paper provides a condition for di�erentiability as well as an equivalent crite-rion for Lipschitz continuity of singular normal distribution functions. The criterionfor Lipschitz continuity can be obtained for the general class of quasi-concave dis-tributions which singular normal distributions belong to.2 Lipschitz continuity of quasi-concave distribu-tionsWe start this section by introducing the class of quasi-concave probability measures(see [9]). By P(Rs) we denote the set of probability measures on Rs.De�nition 2.1 A probability measure � 2 P(Rs) is called quasi-concave whenever�(�A+ (1 � �)B) � minf�(A); �(B)gholds true for all convex and Borel measurable subsets A;B � Rs and all � 2 [0; 1]such that �A+ (1� �)B is Borel measurable.It is well known that a large class of prominent multivariate distributions shares theproperty of being quasi-concave. Among those are the multivariate normal distri-bution (nondegenerate or singular), the Dirichlet-, Pareto-, Gamma-, Log-normaldistributions (possibly with a restricted range of parameters) as well as uniform dis-tributions over compact, convex subsets of Rs (see [9], [3]). Consequently, all futurestatements in this section apply in particular to singular normal distributions.For the proof of our Lipschitz criterion, we shall make use of the following threepropositions:Proposition 2.1 A quasiconcave measure � 2 P(R) has either a density or coin-cides with some Dirac measure, i.e. � = Æx for some x 2 R.Proof. Follows immediately from Theorem 3.2 in [3]3



Proposition 2.2 If for all marginal distributions �i of � 2 P(Rs) there existbounded densities on R, then the distribution function F� of � is Lipschitz con-tinuous.Proof. See Prop. 3.8 in [10]Proposition 2.3 If � 2 P(R) is a quasiconcave measure with density f�, then f�is bounded.Proof. According to Theorem 3.2 in [3], the possibly extended-valued function1=f� is convex and the support of � is a convex subset of R. Assuming that f�is unbounded, there exists a sequence fxng � R such that f�(xn) � n. If fxng isunbounded, then, without loss of generality, it is increasing, hence [x1;1) � supp�and f1=f�(xn)g is decreasing. Since 1=f� is convex, it follows that 1=f� is decreasingon [x1;1). Therefore, f� is increasing on [x1;1) which contradicts the fact that f�is a density. Now, assume that fxng is bounded, hence xn ! �x upon passing to somesubsequence. Then, 1=f�(�x) = 0. Indeed, this follows in case of �x 2 int supp� fromthe continuity of the convex function 1=f� on the interior of its domain. In case that �xbelongs to the boundary of supp �, we may rede�ne f�(�x) :=1 without changing themeasure � and without a�ecting the convexity of 1=f� (due to 1=f�(xn)! 0). Now,from 1=f� � 0 being convex and satisfying 1=f�(�x) = 0, it follows that 1=f�(�x+ h)is nondecreasing for h > 0 and that the di�erence quotientsh 7! h�1(1=f�(�x+ h)� 1=f�(�x))are nondecreasing in h. Consequently, one has for h2 � h1 > 0f�(�x+ h1) � f�(�x+ h2) (1)f�(�x+ h1)h1 � f�(�x+ h2)h2 (2)We assume that either �x 2 int supp � or that �x belongs to the left boundary ofsupp � (the proof running analogously in case that �x belongs to the right boundaryof supp �). In both cases there exists some Æ > 0 such that f�(�x+ Æ) > 0. It followsfor arbitrary n 2 N that1 = 1Z�1 f�(x)dx � �x+ÆZ�x+2�nÆ f�(x)dx = n�1Xj=0 �x+2�jÆZ�x+2�(j+1)Æ f�(x)dx� n�1Xj=0 f�(�x+ 2�jÆ)2�j Æ2 (by (1))� n�1Xj=0 f�(�x+ Æ)Æ2 (by (2))= nÆ2f�(�x+ Æ): 4



This, however, is a contradiction tonÆ2f�(�x+ Æ)!n 1:For the narrower class of log-concave measures, Proposition 2.3 is a (1-dimensional)special case of a Theorem by Barndor�-Nielsen ([2]).De�nition 2.2 We call a subset H � Rs a canonical hyperplane if there exist t 2 Rand i 2 f1; : : : ; sg such thatH = 1R� � � � � i�1R� iftg�i+1R � � � � � sR.Now, we are in a position to formulate the desired criterion for Lipschitz continuityof distribution functions in the considered calss of distributions:Theorem 2.1 A quasiconcave probability measure � 2 P(Rs) has a Lipschitz con-tinuous distribution function F� if and only if the support of � is not contained ina canonical hyperplane of Rs.Proof. We denote by �i 2 P(R) the i-th marginal distribution of �. Clearly,the �i are quasiconcave on R. With T being the support of � and Æt referring to theone-dimensional Dirac measure placed at t 2 R, the following chain of equivalencesresults: T is contained in a canonical hyperplane of Rs ()9t 2 R 9 i 2 f1; : : : ; sg : �( 1R� � � � � i�1R� iftg�i+1R � � � � � sR) = 1 ()9t 2 R 9 i 2 f1; : : : ; sg : �i(ftg) = 1 ()9t 2 R 9 i 2 f1; : : : ; sg : �i = Æt ()9 i 2 f1; : : : ; sg : �i does not have a density.Here, the last equivalence is implied by Prop. 2.1. Contraposition gives the followingchain of implications with the second and third one following from Propositions 2.3and 2.2, respectively.T is not contained in any canonical hyperplane of Rs =)�i has a density f�i for all i 2 f1; : : : ; sg =)f�i is bounded for all i 2 f1; : : : ; sg =)F� is globally Lipschitzian.Now, this chain of implications proves the 'if'-part of the theorem. For the reversedirection, assume that T is contained in a canonical hyperplane of Rs. Then, theabove chain of equivalences shows that�( 1R� � � � � i�1R � iftg � i+1R � � � � � sR) = 1 for some t 2 R and i 2 f1; : : : ; sg:5



Consequently, one may choose some � 2 R large enough such thatF�(�; : : : ; �; t; �; : : : ; � ) > 0:On the other hand, F�(�; : : : ; �; t0; �; : : : ; � ) = 0 for any t0 < t, hence F� is notcontinuous (much less it is Lipschitz continuous).The last argument in the proof of Theorem 2.1 shows that the failure of Lipschitzcontinuity entails the failure of continuity, so we get the following useful observation:Corollary 2.1 The distribution function of some quasiconcave probability measureis Lipschitz continuous if and only if it is continuous. In particular, the distri-bution function of some quasiconcave probability measure with density is Lipschitzcontinuous.Concerning the second statement of the last corollary, we emphasize that in generaleven the existence of a bounded and continuous density does not imply the Lipschitzcontinuity of the distribution function (for a counterexample see [7], Ex. 9). Aslightly more illustrative reformulation of Theorem 2.1 is:Theorem 2.2 Let � be an s-dimensional random vector with quasi-concave distri-bution � 2 P(Rs). Then, the distribution function of � is Lipschitz continuous ifand only if none of the components �i has zero variance.As an application of Theorem 2.2 we come back to the singular normal distribu-tions with the three covariance matrices mentioned in the introduction. The �rstcovariance matrix contains a zero diagonal element whereas the second and thirdones do not. This explains why the �rst distribution function depicted in Figure 1is discontinuous whereas the second and third ones are Lipschitz continuous.At the end of this section, we consider an application to probability functions'(x) = P (A� � h(x)); (3)where, � is an s-dimensional random vector, A is an (m; s)-matrix, x 2 Rn andh : Rn ! Rm. Recall that such type of probability functions arises in the context ofprobabilistic constraints '(x) � p as presented in the introduction.Corollary 2.2 In (3), assume that h is locally Lipschitzian and that � has a quasi-concave distribution with some covariance matrix �. Then, ' is locally Lipschitzianunder the condition ai =2 Ker� 8i 2 f1; : : : ;mg; (4)where the ai denote the rows of A.Proof. The transformed random vector � := A� inherits a quasi-concave distrai-bution from that of �. With F� being the distribution function of �, one may write' = F� Æh. The ith component of � has variance aTi �ai. Since this variance is largerthan zero according to (4), Theorem 2.2 provides that F� is Lipschitz continuous.Hence, ' is locally Lipschitzian as a composition of two such mappings.6



3 Di�erentiability of singular normal distributionfunctionsAlthough the 3 examples of singular normal distribution functions presented in theintroduction and depicted in Figure 1 fail to be di�erentiable in a global sense,they are di�erentiable almost everywhere. In order to establish a condition fordi�erentiability, we shall introduce some concepts related with systems of linearinequalities. More precisely, let A is an (m; s)-matrix and b 2 Rm. We shall brie
yspeak of the system (A; b) to refer to the familyhai; zi � bi (i = 1; : : : ;m)of linear inequalities in Rs induces by the rows ai of A and the components bi of b.With the system (A; b) we associate a family of index sets de�ned byI (A; b) := fI � f1; : : : ;mgj9z 2 Rs : hai; zi = bi (i 2 I);hai; zi < bi (i 2 f1; : : : ;mgnI)g:Observe that ; 2 I (A; b) if and only if the system (A; b) admits a Slater point, i.e.,a point �x with hai; �xi < bi (i = 1; : : : ;m):The system (A; b) is said to be nondegenerate, ifrankfaiji 2 Ig = #I 8I 2 I (A; b) :In the language of optimization theory, the system (A; b) is nondegenerate if andonly if it satis�es the Linear Independence Constraint Quali�cation (LICQ).Proposition 3.1 If the system (A; b) is nondegenerate, thenI 0 2 I (A; b) 8I 0 � I 8I 2 I (A; b) .In particular, ; 2 I (A; b), hence the system (A; b) admits a Slater point.Proof. Let I 2 I (A; b) and I 0 � I be arbitrary. By de�nition, there is somex 2 Rs with hai; xi = bi (i 2 I); hai; xi < bi (i 2 f1; : : : ;mgnI):Regularity of the system (A; b) ensures that the ai with i 2 I are linearly independentand, hence, the system of equationshai; hi = 0; (i 2 I 0); hai; hi = �1 (i 2 InI 0)has a solution h. For small enough t > 0, one has thathai; x+ thi = bi; (i 2 I 0)hai; x+ thi = bi � t < bi; (i 2 InI 0)hai; x+ thi = hai; xi+ t hai; hi < bi (i 2 f1; : : : ;mgnI):7



In other words, I 0 2 I (A; b).Our di�erentiability result will basically rely on the following formula for the prob-ability of polyhedra proved in [8] by means of the so-called abstract-tube theory (arecent proof based on more elementary arguments like duality of linear programmingcan be found in [4]):Theorem 3.1 Let � be an s-dimensional random vector. If the system (A; b) isnondegenerate, then the probability of the polyhedron induced by (A; b) equalsP (hai; �i � bi (i = 1; : : : ;m)) = XI2I(A;b) (�1)#I P (hai; �i > bi (i 2 I)) :By Proposition 3.1, the assumed nondegeneracy implies that ; 2 I (A; b). In thiscase, by formal argumentation, the corresponding term in the sum above becomes(�1)#; P (hai; �i > bi (i 2 ;)) = P (Rs) = 1:Next we need the following technical result:Proposition 3.2 Suppose that the system (A; b) is nondegenerate. Then, thereexists a neighborhood U of b such that for all b0 2 U the systems (A; b0) are nonde-generate too and I (A; b0) = I(A; b).Proof. According to the de�nition of nondegeneracy, the �rst assertion is animmediate consequence of the second one. We show �rst that there is a neighborhoodU of b such that I(A; b) � I (A; b0) 8b0 2 U: (5)Let I 2 I(A; b) be arbitrary. By de�nition, there is some z 2 Rs withhai; zi = bi (i 2 I); hai; zi < bi (i 2 f1; : : : ;mgnI):Let U; V be neighborhoods of b and z, respectively, such thathai; z0i < b0i (i 2 f1; : : : ;mgnI) 8z0 2 V 8b0 2 U:Due to the nondegeneracy of the system (A; b), we have thatrankfaiji 2 Ig = #I:This implies that, choosing U small enough, for all b0 2 U the linear equationshai; z0i = b0i (i 2 I)8



possess solutions z0 2 V (this can be seen by working with the right inverse of thesubmatrix of A de�ned by the rows ai for i 2 I). Consequently, for all b0 2 U , thereexists some z0 satisfying the relationshai; z0i = b0i (i 2 I); hai; z0i < b0i (i 2 f1; : : : ;mgnI):This amounts to I 2 I (A; b0), whence the inclusion (5).Now, we show that there is a neighborhood U of b such thatI(A; b0) � I (A; b) 8b0 2 U: (6)Choosing the intersection of this neighborhood U with the one found for (5) willprove the assertion of the proposition. It is well-known (see, e.g., [1], Theorem 3.4.1)that the multifunctionM which assigns to each b0 the solution of the system (A; b0),can be decomposed as M(b0) = K(b0) + U;where K is a Hausdor�-continuous multifunction such that the K(b0) are convex,compact polyhedra for all b0, and whereU = fuj hai; ui � 0 (i = 1; : : : ;m)g:Now, negating (6) would imply the existence of sequences xk and b(k) ! b as wellas of an index set I � f1; : : : ;mgnI (A; b) such thathai; xki = b(k)i (i 2 I); hai; xki < b(k)i (i 2 f1; : : : ;mgnI):(Note that there are only �nitely many subsets of f1; : : : ;mg, so instead of con-sidering a seuqence of index sets Ik which would result by formal negation of (6),one may restrict the considerations to a �xed index set I upon passing to subse-quences). Clearly, xk 2M(b(k)), hence there are sequences yk 2 K(b(k)) and uk 2 Uwith yk = xk�uk. By the Hausdor� continuity of K and the compactness of K(b) itfollows that yk is bounded, hence without loss of generality, we assume that yk ! �yfor some �y 2 K(b) (again by Hausdor� continuity of K). For any i 2 I, one hasthat hai; �yi = limfhai; xki � hai; ukig � limb(k)i = bi:On the other hand, since 0 2 U , we know that �y 2 M(b), whence hai; �yi � bi.Summarizing, hai; �yi = bi for all i 2 I. Since �y solves the system (A; b), there issome index set I 0 � I such thathai; �yi = bi (i 2 I 0); hai; �yi < bi (i 2 f1; : : : ;mgnI 0):In other words, I 0 2 I (A; b). 9



Recall from the introduction that a singular normal distribution can always beobtained as a linear transformation of some nondegenerate normal distribution. Ifthis linear transformation is not explicitly given but just the covariance matrix � andthe mean vector 
 of the singular normal distribution are known, this transformationcan be found as follows: First decompose the (possibly degenerate) covariance matrix� as � = AAT such that A has full rank. Let � be a random vector whose dimensioncoincides with the number of columns of A and which has independent normallydistributed components with zero mean. Then, the transformation A�+
 generatesa random vector with covariance matrix AAT = � and mean 
, i.e., A and 
 de�nethe desired linear transformation.Now, we state the main result of this section.Theorem 3.2 Let � be an s-dimensional random vector having a nondegeneratenormal distribution. Denote by �� the distribution function of the linearly trans-formed random vector � = A� + b, where A is an (m; s)-matrix and b 2 Rm. Then,�� is smooth (in�nitely many times di�erentiable) at any point �x 2 Rm for whichthe system (A; �x� b) is nondegenerate.Proof. By Proposition 3.2, there exists a neibhborhood U of �x such that thesystem (A;x� b) is nondegenerate and I (A;x� b) = I (A; �x� b) for all x 2 U . Byde�nition, one has that�� (x) = P (� � x) = P (hai; �i � xi � bi (i = 1; : : : ;m)):Application of Theorem 3.1 to the systems (A;x� b) yields that, for all x 2 U :�� (x) = XI2I(A;x�b) (�1)#I P (hai; �i > xi � bi (i 2 I)) :We note that in the last relation, one may pass to a non-strict inequality due to �having a nondegenerate normal distribution. Indeed, since all ai are di�erent fromzero as a consequence of nondegeneracy, the di�erence between the strict and non-strict inequality signs above is given by events which are contained in a hyperplaneand thus in a set of Lebesgue measure zero. Since � has a density, passing to non-strict inequalities will not change the probability:�� (x) = XI2I(A;x�b) (�1)#I P (hai; �i � xi � bi (i 2 I)) :Denote by AI the submatrix of A whose rows are given by the selection ai for i 2 I.Similarly, denote by vI a subvector of some v 2 Rm such that the components of vIrealize the selection i 2 I of the components of v. De�ne �I := �AI�. Then, withthe inequality sign understood componentwise, one has for all x 2 U that�� (x) = XI2I(A;x�b) (�1)#I P ��I � bI � xI� = XI2I(A;x�b) (�1)#I F I �bI � xI� : (7)10



Here, F I refers to the distribution function of �I . Obviously, �I has a normaldistribution with covariance matrix AI �AI�T . Due to nondegeneracy of the systems(A;x� b), we know that AI has full rank for all I 2 I (A;x� b) and all x 2 U .Consequently, the covariance matrix itself has full rank, which means that �I hasa nondegenerate normal distribution. As a consequence, all distribution functionsF I are (globally) smooth. We are tempted now, to di�erentiate the sum in (7)all terms of which are di�erentiable. This would imply the desired smoothness of�� at �x. However, care has to be taken since the number of terms given by thecardinality of I (A;x� b) does formally depend on x, hence certain terms couldsuddenly disappear or appear in addition, when moving away from �x. Fortunately,we know (see beginning of the proof) that I (A;x� b) = I (A; �x� b) for all x 2 U .This allows to write �� locally around �x as a sum of a �xed number of smoothfunctions which implies smoothness of �� at �x:�� (x) = XI2I(A;�x�b) (�1)#I F I �bI � xI� 8x 2 U: (8)Note that Theorem 3.2 does not just make a theoretical statement on smoothnessof singular normal distribution functions, but even provides a formula how to calcu-late their derivatives. Indeed, one may use (8) in order to calculate the gradient (orhigher order derivatives) of �� on the basis of the same objects for nondegenerate (!)normal distribution functions (the F I). As �rst and higher order derivatives of non-degenerate normal distribution functions can be analytically reduced to functionalvalues themselves (see, e.g., [9]), everything boils down to the mere calculation ofnondegenerate normal distribution functions. This can be carried out by severalexisting algorithms (see, e.g., [5], [6], [11]).Finally, we want to illustrate Theorem 3.2 by applying it to the singular normaldistribution with zero mean vector and covariance matrix� 1 11 1 � = AAT with A = � 11 �(see second picture in Fig. 1). Such distribution is realized by a random vector� = A�, where � has a one-dimensional standard normal distribution (compareremark in front of Theorem 3.2). We have to check, for which vectors x 2 R2the system (A;x) is nondegenerate. Concerning the calculation of the index familyI(A;x), one has to distinguish three cases:x1 < x2 =) I(A;x) = f;; f1ggx1 > x2 =) I(A;x) = f;; f2ggx1 = x2 =) I(A;x) = f;; f1; 2gg:Obviously, nondegeneracy holds true in the �rst two cases since both 'rows' of A(which reduce to real numbers here) are di�erent from zero. Consequently, Theorem11



3.2 guarantees di�erentiability of the distribution function of � whenever x1 6= x2(this can be veri�ed from Fig. 1). On the other hand, the two 'rows' of A cannotbe linearly independent, hence nondegeneracy is lost in case of x1 = x2. Thisharmonizes with the fact that the distribution function of � is not di�erentiable onthe bisectrix x1 = x2 (see Fig. 1).References[1] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer: Non-LinearParametric Optimization, Akademie-Verlag, Berlin, 1982.[2] O.E. Barndor�-Nielsen, Information and Exponential Families in StatisticalTheory, Wiley, Chichester, 1978.[3] C. Borell, Convex Sets in d-Space, Periodica Mathematica Hungarica 6 (1975),111-136.[4] J. Buksz�ar, R. Henrion, M. Hujter and T. Sz�antai, Polyhedral Inclusion-Exclusion, Weierstrass Institute Berlin, Preprint No. 913, 2004.[5] H.I. Gassmann, I. De�ak, T. Sz�antai, Computing multivariate normal probabil-ities: A new look, J. Comput. Graph. Statist. 11 (2002) 920-949.[6] A. Genz, Numerical computation of multivariate normal probabilities, J. Com-put. Graph. Statist. 1 (1992) 141-149.[7] R. Henrion and W. R�omisch, Metric regularity and quantitative stability instochastic programs with probabilistic constraints, Mathematical Programming84 (1999), 55-88.[8] D.Q. Naiman and H.P. Wynn, Abstract tubes, improved inclusion-exclusionidentities and inequalities and importance sampling, Annals of Statistics 25(1997), 1954{1983.[9] A. Pr�ekopa, Stochastic Programming, Kluwer, Dordrecht, 1995.[10] W. R�omisch and R. Schultz, Stability of solutions for stochastic programs withcomplete recourse, Mathematics of Operations Research 18 (1993), 590-609.[11] T. Sz�antai, Improved bounds and simulation procedures on the value of the mul-tivariate normal probability distribution function, Ann. Oper. Res. 100 (2000)85-101. 12


