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Abstract

The paper provides a condition for differentiability as well as an equivalent
criterion for Lipschitz continuity of singular normal distributions. Such dis-
tributions are of interest, for instance, in stochastic optimization problems
with probabilistic constraints, where a comparatively small (nondegenerate-)
normally distributed random vector induces a large number of linear inequal-
ity constraints (e.g. networks with stochastic demands). The criterion for
Lipschitz continuity is established for the class of quasi-concave distributions
which the singular normal distribution belongs to.
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1 Introduction

An m-dimensional random vector 7 is said to have a singular normal distribution
if there exists some s-dimensional random vector ¢ having a nondegenerate normal
distribution such that

n=A{+b,
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where A is an (m, s)-matrix with rank smaller than m and b is an m-vector. In
particular, one may choose A = 0 to see that the Dirac measure, placing mass one
at the point b, has a singular normal distribution. More generally, singular normal
distributions are those normal distributions whose covariance matrix has a rank
strictly smaller than the dimension of the random vector.

Such seemingly artificial distributions arise in a natural way in problems of
stochastic optimization, where a relatively small (nondegenerate-) normally dis-
tributed random vector induces a large number of linear inequality constraints. As
an example, consider the problem of optimal capacity expansion in a network with
stochastic demands (see [9], p. 453). Let the random vector £ represent the demands
in the nodes of the network and let = be a vector of capacities for the arcs in the
network. The costs of installing these capacities are to be minimized as a function
of z under the constraint that there exists a flow through the network which is
feasible at high probability, i.e., which satisfies both the capacity restrictions along
the arcs and the random demands in the nodes (at high probability). Using the
Gale-Hoffman theorem, feasibility can be modeled as a linear relation

A¢ < Bz.

Taking into account the random character of £, it makes sense to require feasibility
in a probabilistic sense:

P (A¢ < Bz) > p,

where P denotes probability and p € [0,1] is some chosen level of reliability. In
general, the sizes of A and B can be drastically reduced by eliminating redundancy
etc. Nevertheless, even the reduced systems may contain a number of inequalities
which is considerably larger than the dimension of ¢ (number of nodes). Passing to
the transformed random vector n = A€, the probabilistic constraint obtained above
can be rewritten as

®(Bz) > p,

where ® is the distribution function of 7. However, since A may have more rows
than columns, we have to expect that 7 has a singular normal distribution even
though ¢ had a regular normal distribution.

The example shows that, in order to cope with certain types of probabilistic
constraints, it is important to be able to calculate values and gradients of singular
normal distribution functions. As the latter need not exist in general, it is of interest
to characterize differentiability of such functions. If differentiability fails to hold, one
could rely on more general tools from nonsmooth optimization (both for algorithmic
purposes and optimality conditions). In such constellation, local or global Lipschitz
continuity is a favorable property. Whether a singular normal distribution function is
discontinuous or not does not depend on the rank of the covariance matrix. Figure 1
shows (from the left to the right) the distribution functions of 2-dimensional normal
distributions with zero mean and covariance matrices

(00)(a1)(2 )



Figure 1: Distribution functions of 2-dimensional singular normal distributions with
covariance matrix having rank one (see text).

all of which have rank one. Note that, in the first case, the distribution function
is discontinuous whereas it is Lipschitz continuous (piecewise selection of smooth
functions of min- and max-type, respectively) in the remaining cases.

The paper provides a condition for differentiability as well as an equivalent crite-
rion for Lipschitz continuity of singular normal distribution functions. The criterion
for Lipschitz continuity can be obtained for the general class of quasi-concave dis-
tributions which singular normal distributions belong to.

2 Lipschitz continuity of quasi-concave distribu-
tions

We start this section by introducing the class of quasi-concave probability measures
(see [9]). By P(R®) we denote the set of probability measures on R°.

Definition 2.1 A probability measure p € P(R?) is called quasi-concave whenever
WA+ (1= X)B) = min{u(A), u(B)}

holds true for all convex and Borel measurable subsets A, B C R* and all X € [0,1]
such that AA + (1 — X\)B is Borel measurable.

It is well known that a large class of prominent multivariate distributions shares the
property of being quasi-concave. Among those are the multivariate normal distri-
bution (nondegenerate or singular), the Dirichlet-, Pareto-, Gamma-, Log-normal
distributions (possibly with a restricted range of parameters) as well as uniform dis-
tributions over compact, convex subsets of R® (see [9], [3]). Consequently, all future
statements in this section apply in particular to singular normal distributions.

For the proof of our Lipschitz criterion, we shall make use of the following three
propositions:

Proposition 2.1 A quasiconcave measure i € P(R) has either a density or coin-
cides with some Dirac measure, 1.e. 4 = 6, for some z € R.

Proof. Follows immediately from Theorem 3.2 in [3] |



Proposition 2.2 If for all marginal distributions u; of p € P(R®) there exzist
bounded densities on R, then the distribution function F,, of u s Lipschitz con-
tinuous.

Proof. See Prop. 3.8 in [10] |

Proposition 2.3 If u € P(R) is a quasiconcave measure with density f,, then f,
15 bounded.

Proof. According to Theorem 3.2 in [3], the possibly extended-valued function
1/f, is convex and the support of x is a convex subset of R. Assuming that f,
is unbounded, there exists a sequence {z,} C R such that f,(z,) > n. If {z,} is
unbounded, then, without loss of generality, it is increasing, hence [z1, 00) C supp u
and {1/f.(zn)} is decreasing. Since 1/f, is convex, it follows that 1/ f, is decreasing
on [z1,00). Therefore, f, is increasing on [z, 00) which contradicts the fact that f,
is a density. Now, assume that {z,} is bounded, hence z,, — Z upon passing to some
subsequence. Then, 1/f,(Z) = 0. Indeed, this follows in case of € int supp u from
the continuity of the convex function 1/ f, on the interior of its domain. In case that &
belongs to the boundary of supp u, we may redefine f,(Z) := oo without changing the
measure y and without affecting the convexity of 1/f,, (due to 1/f,(z,) — 0). Now,
from 1/f, > 0 being convex and satisfying 1/f,(z) = 0, it follows that 1/f,(Z + h)
is nondecreasing for A > 0 and that the difference quotients

hs h™H (1) fu(& +R) — 1/ fu(7))

are nondecreasing in h. Consequently, one has for Ay > h; > 0

fu(Z@ + h2) (1)
fu(fﬁ ‘|‘ hz)hz (2)

f”(a_: + hl)

>
fu(@+ )R >

We assume that either z € int supp u or that z belongs to the left boundary of
supp ¢ (the proof running analogously in case that Z belongs to the right boundary
of supp ). In both cases there exists some ¢ > 0 such that f,(z+4) > 0. It follows
for arbitrary n € N that
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This, however, is a contradiction to

ngf”(:fz +8) —p 00.
||

For the narrower class of log-concave measures, Proposition 2.3 is a (1-dimensional)
special case of a Theorem by Barndorff-Nielsen ([2]).

Definition 2.2 We call a subset H C R® a canonical hyperplane if there exist t € R
and i € {1,...,s} such that
1 1—1 2 141 ]
H=Rx: - x Rx{t}xR x---xR.
Now, we are in a position to formulate the desired criterion for Lipschitz continuity
of distribution functions in the considered calss of distributions:

Theorem 2.1 A quasiconcave probability measure p € P(R*) has a Lipschitz con-
tinuous distribution function F, if and only if the support of u is not contained in
a canonical hyperplane of R®.

Proof. We denote by u;, € P(R) the i-th marginal distribution of u. Clearly,
the p; are quasiconcave on R. With T being the support of p and é; referring to the
one-dimensional Dirac measure placed at ¢ € R, the following chain of equivalences
results:

T is contained in a canonical hyperplane of R®
2 2+1 s

FteRIie{l,...,s}: u(ﬂlﬁx---xﬁlx{t}xRx---xR):l
deRIied{l,...,s}: w{{t}) =1

deRIie{l,...,s}: pmw=46

die{l,...,s}: u; does not have a density.

11117

Here, the last equivalence is implied by Prop. 2.1. Contraposition gives the following
chain of implications with the second and third one following from Propositions 2.3
and 2.2, respectively.

T is not contained in any canonical hyperplane of R®* —
w; has a density f,, forallz € {1,...,s} =
fu; is bounded for allz € {1,... ,s} =
F, is globally Lipschitzian.
Now, this chain of implications proves the ’'if’-part of the theorem. For the reverse

direction, assume that 7' is contained in a canonical hyperplane of R®. Then, the
above chain of equivalences shows that

1 1—1 2 141 ]
PR X+ xR x{t} xR x---xR)=1 forsometecRandze€{l,...,s}.



Consequently, one may choose some 7 € R large enough such that
F,(r,...,7¢t,71,...,7)>0.

On the other hand, F,(r,...,7,t',7,...,7) = 0 for any t' < ¢, hence F, is not
continuous (much less it is Lipschitz continuous). [ ]

The last argument in the proof of Theorem 2.1 shows that the failure of Lipschitz
continuity entails the failure of continuity, so we get the following useful observation:

Corollary 2.1 The distribution function of some quasiconcave probability measure
18 Lipschitz continuous if and only if it is continuous. In particular, the distri-
bution function of some quasiconcave probability measure with density is Lipschitz
continuous.

Concerning the second statement of the last corollary, we emphasize that in general
even the existence of a bounded and continuous density does not imply the Lipschitz
continuity of the distribution function (for a counterexample see [7], Ex. 9). A
slightly more illustrative reformulation of Theorem 2.1 is:

Theorem 2.2 Let £ be an s-dimensional random vector with quasi-concave distri-
bution u € P(R?). Then, the distribution function of & is Lipschitz continuous if
and only if none of the components & has zero variance.

As an application of Theorem 2.2 we come back to the singular normal distribu-
tions with the three covariance matrices mentioned in the introduction. The first
covariance matrix contains a zero diagonal element whereas the second and third
ones do not. This explains why the first distribution function depicted in Figure 1
is discontinuous whereas the second and third ones are Lipschitz continuous.

At the end of this section, we consider an application to probability functions

p(z) = P(AL < h(z)), (3)

where, ¢ is an s-dimensional random vector, A is an (m, s)-matrix, z € R™ and
h : R™ — R™. Recall that such type of probability functions arises in the context of
probabilistic constraints ¢(z) > p as presented in the introduction.

Corollary 2.2 In (8), assume that h is locally Lipschitzian and that £ has a quasi-
concave distribution with some covariance matriz Y. Then, ¢ is locally Lipschitzian
under the condition

a; ¢ KerY Vee {1,...,m}, (4)
where the a; denote the rows of A.

Proof. The transformed random vector n := A{ inherits a quasi-concave distrai-
bution from that of £. With F,, being the distribution function of n, one may write
¢ = F,oh. The ith component of 1 has variance af Ya;. Since this variance is larger
than zero according to (4), Theorem 2.2 provides that F, is Lipschitz continuous.
Hence, ¢ is locally Lipschitzian as a composition of two such mappings. [ ]



3 Differentiability of singular normal distribution
functions

Although the 3 examples of singular normal distribution functions presented in the
introduction and depicted in Figure 1 fail to be differentiable in a global sense,
they are differentiable almost everywhere. In order to establish a condition for
differentiability, we shall introduce some concepts related with systems of linear
inequalities. More precisely, let A is an (m, s)-matrix and b € R™. We shall briefly
speak of the system (A, b) to refer to the family

(ai,z)ﬁbi (izla"'am)

of linear inequalities in R® induces by the rows a; of A and the components b; of b.
With the system (A, b) we associate a family of index sets defined by

I(AL):={IC{l,..., m}Fz€eR*: (a;,2)=0b (€l
(a;,2) <b; (ze{l,..., m}NI)}

Observe that ) € I (A,b) if and only if the system (A,b) admits a Slater point, i.e.,
a point £ with

(ai,§:><b1- (z:l,,m)
The system (A, b) is said to be nondegenerate, if
rank{a;|t € I} = #I VIe€I(AD).

In the language of optimization theory, the system (A,b) is nondegenerate if and
only if it satisfies the Linear Independence Constraint Qualification (LICQ).

Proposition 3.1 If the system (A,b) is nondegenerate, then
I'e I(Ab) VI'CIVIeI(AD).
In particular, § € I(A,b), hence the system (A,b) admits a Slater point.

Proof. Let I € I(A,b) and I’ C I be arbitrary. By definition, there is some
z € R® with

(a;,z)y=b; (1e€l), (a,z)<b (ze{l,...,m}I\I).

Regularity of the system (A, b) ensures that the a; with ¢ € I are linearly independent
and, hence, the system of equations

(a;,h) =0, (iel), (a;,h)=-1 (Gel\l)
has a solution h. For small enough ¢ > 0, one has that

<a,1', T + th) = bi, (’L S I’)
<a,1',:11—|-th> = bi—t<bi, (’LE I\I’)
(ai,z +thy = (a;,z)+t{a;,h)<b (ze€{l,...,m}I\I).

7



In other words, I' € I (A,b).
|

Our differentiability result will basically rely on the following formula for the prob-
ability of polyhedra proved in [8] by means of the so-called abstract-tube theory (a
recent proof based on more elementary arguments like duality of linear programming
can be found in [4]):

Theorem 3.1 Let ¢ be an s-dimensional random vector. If the system (A,b) is
nondegenerate, then the probability of the polyhedron induced by (A,b) equals

P((a;,&) <b; (i=1,...,m))= > ()" P((a,&) >b; (i€l)).

IEI(AD)

By Proposition 3.1, the assumed nondegeneracy implies that § € I (A,b). In this
case, by formal argumentation, the corresponding term in the sum above becomes

(" P ((a€) > b (i€0) = P(R)=1.
Next we need the following technical result:

Proposition 3.2 Suppose that the system (A,b) is nondegenerate. Then, there
ezists a neighborhood U of b such that for all b’ € U the systems (A,b') are nonde-
generate too and I (A,b') = I(A,b).

Proof. According to the definition of nondegeneracy, the first assertion is an
immediate consequence of the second one. We show first that there is a neighborhood

U of b such that
I(A,b) CI(AB) V¥ eU. (5)

Let I € I(A,b) be arbitrary. By definition, there is some z € R® with

(a;,2) =b;, (ie€l), (ai,z)<b (1€{l,...,m}NI).
Let U,V be neighborhoods of b and z, respectively, such that

(a;, 2y <b, (ze{l,..., m}I\I) VeV VWeUl.
Due to the nondegeneracy of the system (A, b), we have that
rank{a;|s € I} = #I.

This implies that, choosing U small enough, for all ¥’ € U the linear equations

(a;, 2"y =b. (1€l



possess solutions 2z’ € V' (this can be seen by working with the right inverse of the
submatrix of A defined by the rows a; for ¢ € I). Consequently, for all ¥’ € U, there
exists some 2z’ satisfying the relations

(a;, 2"y =b, (iel), (a;,2')<b, (e€{l,...,m}II).

This amounts to I € I (A,b'), whence the inclusion (5).
Now, we show that there is a neighborhood U of b such that

I(A,¥)CI(Ab) YV eT. (6)

Choosing the intersection of this neighborhood U with the one found for (5) will
prove the assertion of the proposition. It is well-known (see, e.g., [1], Theorem 3.4.1)
that the multifunction M which assigns to each b’ the solution of the system (A, d’),
can be decomposed as

M) = K@)+ U,

where K is a Hausdorfl-continuous multifunction such that the K(b') are convex,
compact polyhedra for all &', and where

U={ul{a;,u) <0 (z=1,...,m)}

Now, negating (6) would imply the existence of sequences z and b*) — b as well
as of an index set I C {1,... ,m}\I(A,b) such that

(ai,ze) = b G el), (a,z)<b® Ge{l,...,mHI).

(Note that there are only finitely many subsets of {1,...,m}, so instead of con-
sidering a seugence of index sets I which would result by formal negation of (6),
one may restrict the considerations to a fixed index set I upon passing to subse-
quences). Clearly, z; € M (b{¥)), hence there are sequences y; € K (b'¥)) and u, € U
with yx = 2 —ug. By the Hausdorff continuity of K and the compactness of K(b) it
follows that yi is bounded, hence without loss of generality, we assume that y, — ¢
for some § € K(b) (again by Hausdorff continuity of K). For any ¢ € I, one has
that

(a;,7) = lim{(a;, zx) — (a5, we)} > Limb{® = b;.

On the other hand, since 0 € U, we know that § € M(b), whence (a;,7) < b;.
Summarizing, (a;,y) = b; for all ¢ € I. Since g solves the system (A,b), there is
some index set I' O I such that

<a,1',37> = b (’L S I’), (ai,ﬂ) < b (’L S {1, ce ,m}\[')

In other words, I' € I (A,b). m



Recall from the introduction that a singular normal distribution can always be
obtained as a linear transformation of some nondegenerate normal distribution. If
this linear transformation is not explicitly given but just the covariance matrix = and
the mean vector vy of the singular normal distribution are known, this transformation
can be found as follows: First decompose the (possibly degenerate) covariance matrix
= as = = AAT such that A has full rank. Let ¢ be a random vector whose dimension
coincides with the number of columns of A and which has independent normally
distributed components with zero mean. Then, the transformation A+ generates
a random vector with covariance matrix AAT = = and mean v, i.e., A and v define
the desired linear transformation.
Now, we state the main result of this section.

Theorem 3.2 Let ¢ be an s-dimensional random vector having a nondegenerate
normal distribution. Denote by &, the distribution function of the linearly trans-
formed random vector n = A€ + b, where A is an (m, s)-matriz and b € R™. Then,
®,, is smooth (infinitely many times differentiable) at any point T € R™ for which
the system (A,Z — b) is nondegenerate.

Proof. By Proposition 3.2, there exists a neibhborhood U of z such that the
system (A, z — b) is nondegenerate and [ (A,z —b) = I1(A,z —b) forallz € U. By

definition, one has that
3, (2) = Pn <) = P(a6) <z — b (i=1,...,m)

Application of Theorem 3.1 to the systems (A, z — b) yields that, for all z € U:

3,(2)= Y (D P((a) >a—b (€T,

IcI(A,z—b)

We note that in the last relation, one may pass to a non-strict inequality due to ¢
having a nondegenerate normal distribution. Indeed, since all a; are different from
zero as a consequence of nondegeneracy, the difference between the strict and non-
strict inequality signs above is given by events which are contained in a hyperplane
and thus in a set of Lebesgue measure zero. Since ¢ has a density, passing to non-
strict inequalities will not change the probability:

Op(x)= Y. (-1 P((a,&) >mi—b (i€1)).

IcI(A,z—b)

Denote by A’ the submatrix of A whose rows are given by the selection a; for 7 € I.
Similarly, denote by v a subvector of some v € R™ such that the components of v’
realize the selection 7 € I of the components of v. Define nf := —AZ¢. Then, with
the inequality sign understood componentwise, one has for all z € U that

E,(z)= > (DHPE' < -2)= Y (-DMF (-2 (7

I€I(A,z—b) IEI(Az—b)

10



Here, F! refers to the distribution function of n’. Obviously, n’ has a normal
distribution with covariance matrix Af (AI)T. Due to nondegeneracy of the systems
(A,z —b), we know that A has full rank for all 7 € I(A,z —b) and all z € U.
Consequently, the covariance matrix itself has full rank, which means that 7’ has
a nondegenerate normal distribution. As a consequence, all distribution functions
F! are (globally) smooth. We are tempted now, to differentiate the sum in (7)
all terms of which are differentiable. This would imply the desired smoothness of
®, at z. However, care has to be taken since the number of terms given by the
cardinality of I(A,z — b) does formally depend on z, hence certain terms could
suddenly disappear or appear in addition, when moving away from z. Fortunately,
we know (see beginning of the proof) that I (4,2 —b) = [ (A,z —b) forall z € U.
This allows to write &, locally around Z as a sum of a fixed number of smooth
functions which implies smoothness of &, at z:

Oy(z)= > (-D)HF (-2 VzeU (8)

I€I(Az—b)

Note that Theorem 3.2 does not just make a theoretical statement on smoothness
of singular normal distribution functions, but even provides a formula how to calcu-
late their derivatives. Indeed, one may use (8) in order to calculate the gradient (or
higher order derivatives) of ®,, on the basis of the same objects for nondegenerate (!)
normal distribution functions (the F!). As first and higher order derivatives of non-
degenerate normal distribution functions can be analytically reduced to functional
values themselves (see, e.g., [9]), everything boils down to the mere calculation of
nondegenerate normal distribution functions. This can be carried out by several
existing algorithms (see, e.g., [5], [6], [11]).

Finally, we want to illustrate Theorem 3.2 by applying it to the singular normal
distribution with zero mean vector and covariance matrix

1 1Yy T ) (1
(1 1>—AA WlthA—(1>

(see second picture in Fig. 1). Such distribution is realized by a random vector
n = A, where ¢ has a one-dimensional standard normal distribution (compare
remark in front of Theorem 3.2). We have to check, for which vectors z € R?
the system (A, z) is nondegenerate. Concerning the calculation of the index family
I(A,z), one has to distinguish three cases:

2 < zp = I(A,z)={0,{1}}
2 >z = I(A,z)={0,{2}}
r1 = =z, = I(4,z) ={0,{1,2}}.

Obviously, nondegeneracy holds true in the first two cases since both ’rows’ of A
(which reduce to real numbers here) are different from zero. Consequently, Theorem

11



3.2 guarantees differentiability of the distribution function of n whenever z; # z,
(this can be verified from Fig. 1). On the other hand, the two 'rows’ of A cannot
be linearly independent, hence nondegeneracy is lost in case of z; = z,. This
harmonizes with the fact that the distribution function of 7 is not differentiable on
the bisectrix z; = z, (see Fig. 1).

References

[1] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer: Non-Linear
Parametric Optimization, Akademie-Verlag, Berlin, 1982.

[2] O.E. Barndorfl-Nielsen, Information and Ezponential Families in Statistical
Theory, Wiley, Chichester, 1978.

[3] C. Borell, Convex Sets in d-Space, Periodica Mathematica Hungarica 6 (1975),
111-136.

[4] J. Bukszar, R. Henrion, M. Hujter and T. Széntai, Polyhedral Inclusion-
Exclusion, Weierstrass Institute Berlin, Preprint No. 913, 2004.

[5] H.I. Gassmann, I. Dedk, T. Széntai, Computing multivariate normal probabil-

ities: A new look, J. Comput. Graph. Statist. 11 (2002) 920-949.

[6] A. Genz, Numerical computation of multivariate normal probabilities, J. Com-

put. Graph. Statist. 1 (1992) 141-149.

[7] R. Henrion and W. Roémisch, Metric regularity and quantitative stability in
stochastic programs with probabilistic constraints, Mathematical Programming

84 (1999), 55-88.

[8] D.Q. Naiman and H.P. Wynn, Abstract tubes, improved inclusion-exclusion
identities and inequalities and importance sampling, Annals of Statistics 25

(1997), 1954-1983.
[9] A. Prékopa, Stochastic Programming, Kluwer, Dordrecht, 1995.

[10] W. Romisch and R. Schultz, Stability of solutions for stochastic programs with
complete recourse, Mathematics of Operations Research 18 (1993), 590-609.

[11] T. Széntai, Improved bounds and simulation procedures on the value of the mul-
tivariate normal probability distribution function, Ann. Oper. Res. 100 (2000)
85-101.

12



