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1. Introduction Stochastic optimization problems take into account random influence. In this
paper it is assumed that this can be described by means of a probability distribution P on Rk with
some k ∈ N. We consider two-stage linear mixed-integer stochastic programs where the sum of the
first stage cost and the expectation with respect to P of the second stage cost has to be minimized.
However, in most applications P is not known exactly. Moreover, even if P is given, it might happen
that the stochastic program cannot be solved due to technical limitations and one has to use a simpler
approximating distribution that makes the problem solvable. Hence, one often has to deal with statistical
models and approximations Q of P . Of course, since solutions and optimal values of the original problem
containing the distribution P are of interest, it is necessary to have statements at hand about stability
of stochastic programs with respect to perturbations of P .

There are a number of such stability results in literature, see [28] for a recent survey. Most of these
results consist of (Lipschitz) continuity properties of solution and optimal values with respect to certain
probability metrics d(P,Q). Especially in the case that P is unknown, this may in the end not be
completely satisfactory, because in this case the distance d(P,Q) is, of course, also unknown. Hence, the
question arises, whether it is possible to prove statistical statements about the accuracy of solution and
optimal values. In particular, confidence sets may be of interest. Of course, such statistical statements
require the availability of some statistical estimates associated with P , e.g., independent identically
distributed (iid) samples of P . The latter are often called empirical estimates and they can be understood
as the so-called empirical measure Q = Pn with n ∈ N denoting the samplesize.

Asymptotic properties of statistical estimators in stochastic programming have been studied inten-
sively. We refer to Chapters 6,7 and 8 in [31] for various aspects and views. For two-stage stochastic
programs without integrality requirements much is known. For the empirical estimator the papers [5],
[14] and [3] contain results on (epi-) consistency, laws of large numbers and on asymptotic normality. In
[34], [30, Chapter 6], [13], [22] and [36] limit theorems for optimal values and solutions are derived by
imposing uniqueness of solutions and certain differentiability properties of objectives and/or integrands.
Convergence rates and large deviation type results are derived, e.g., in [7], [21], [12], [23] and [37]. The
situation is essentially different for mixed-integer two-stage stochastic programs. In [32] conditions are
given implying consistency, convergence rates and a law of the iterated logarithm for optimal values.
Glivenko-Cantelli results for the objective are established in [24] and large deviation type results are
derived in [16] and [1] for pure integer models and in [26, 28] for the mixed-integer case. Much of this
work is based on recent developments of empirical process theory, e.g., on Talagrand’s work [38, 39] (see
also the monographs [41, 40]).
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In this paper, we extend the earlier work by deriving a uniform limit theorem for the objective of
mixed-integer two-stage stochastic programs. Its proof is again based on recent results of empirical process
theory. While Banach spaces of continuous functions play an important role for such limit theorems in case
of two-stage stochastic programs without integrality constraints (cf. [36]), the Banach space of bounded
functions has to be used in the mixed-integer situation. More precisely, it is shown that the family of
integrands forms a so-called Donsker class in the Banach space of bounded functions. As a consequence,
a limit theorem for optimal values is derived by relying on the infinite-dimensional delta method (see [29]
for an introductory overview) and on a recent Hadamard directional differentiability result for infimal
value mappings on the space of bounded functions [17]. Furthermore, since the Hadamard directional
derivative is not linear in general, special bootstrap techniques are developed that allow to compute
approximate confidence intervals for optimal values.

So far there is some special work about confidence sets for solutions and optimal values of stochastic
programs. In [8], a stochastic program with finite decision space is considered. Confidence sets for
the solution set are derived by estimating the objective for each possible decision and selecting the
presumably best decisions according to some statistical selection procedure. In [20], a certain simple
two-stage stochastic program is analyzed for the case that P = Pθ is contained in the parametric family
of normal distributions and that a confidence set of the unknown parameter vector θ is given. It is
suggested to calculate the worst case solution with θ varying in the given confidence region. In [2], a
stochastic integer program without first stage decision is considered. For such problems, optimization
can be carried out scenariowise. To approximate the distribution of the optimal value a method based
on order statistics is suggested where only a finite number of deterministic programs has to be solved.

In this paper, we analyze statistical behavior of the objective of general linear two-stage stochastic
programs (possibly with integer requirements). We assume that the underlying probability distribution P
is unknown and that we are able to sample from it independently. In Section 2, we present the framework
of our analysis and in Section 3 our main result, a limit theorem for the objective of the stochastic
program, is proven by means of empirical process theory. Thereby, we are geared to the monographs
[40] and [41]. In Section 4, this limit theorem is carried forward to the optimal value of the stochastic
program by means of the functional delta method. These results are used in Section 5 to derive a general
method for calculating confidence intervals for the optimal value by means of resampling techniques
(bootstrap-like methods). Finally, some numerical examples are presented in Section 6.

2. Framework Let (Ω,F ,P) be a arbitrary probability space and let ξ : (Ω,F) → (Rk,Bk) a
measurable random vector with support Ξ ⊂ Rk which is assumed to be polyhedral and bounded and let
P = Pξ be the probability distribution of ξ. We consider the stochastic mixed-integer program

min

{
c′x+

∫

Ξ

φ (h(ξ)− T (ξ)x) dP (ξ) : x ∈ X
}

(1)

with X ⊂ Rm compact, c ∈ Rm, T : Ξ→ Rr×m and h : Ξ→ Rr affinely linear. The function φ : Rr → R
contains the second stage problem given by

φ(t) := min
{
q′y + q̄′ȳ : Wy + W̄ ȳ = t, y ∈ Zm̂+ , ȳ ∈ Rm̄+

}
(2)

with q ∈ Rm̂, q̄ ∈ Rm̄, W ∈ Qr×m̂ and W̄ ∈ Qr×m̄. It is assumed that (1) satisfies

(i) relatively complete recourse:
∀ (x, ξ) ∈ X × Ξ ∃ y ∈ Zm̂+ , ȳ ∈ Rm̄+ : h(ξ)− T (ξ)x = Wy + W̄ ȳ.

(ii) dual feasibility:
∃u ∈ Rr : W ′u ≤ q, W̄ ′u ≤ q̄.

Under these assumptions it turns out that φ is lower semicontinuous and piecewise polyhedral on domφ
(e.g., [18, Proposition 2], [28, Lemma 33]).

We define the infimal value mapping

v : P(Ξ) → R

Q 7→ v(Q) := min

{
c′x+

∫

Ξ

φ (h(ξ)− T (ξ)x) dQ(ξ) : x ∈ X
}

that maps a probability distribution on Ξ to the optimal value of the stochastic program (1). We are
interested in the asymptotic behavior of v(P ) − v(Pn) where Pn is the empirical distribution according
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to independent samples ξ1, ξ2, ... of the original distribution P , i.e.,

Pn =
1

n

n∑

j=1

δξj .

Remark 2.1 The lower semicontinuity and the piecewise polyhedrality of φ is also valid if X is not
bounded but closed. However, the results that are derived below need compactness of X, so we impose
it throughout in this paper. If X is not bounded, the standard technique in perturbation analysis of
optimization problems consists in localizing the problem, i.e., to replace the unbounded X by XU = X∩clU
with some open and bounded set U ⊂ Rm that contains the solution set of (1) which is assumed to be
nonempty (cf. [27, 15]). Then, however, the localized infimal value at a perturbed probability distribution
Q (e.g., Pn) does not coincide with v(Q) in general, but represents the (local) infimal value attained at
some locally optimal solution.

3. Central Limit Theorem for the Objective In this section we are going to prove a central limit
theorem for the objective function by means of empirical process theory and asymptotic statistics. In
order to make the notation of the previous section fit to the notation that is used in asymptotic statistics
we have to reformulate the stochastic program (1). For x ∈ X we define the function fx : Ξ → R as the
integrand of (1):

fx(ξ) := c′x+ φ (h(ξ)− T (ξ)x)

Further, we define the class F as the set of all possible integrands of the stochastic program:

F := {fx : x ∈ X}
Thus we can understand the distributions P, Q ∈ P(Ξ) and Pn ∈ P(Ξ)Ω (with Ω denoting the randomness
of the sampling procedure) as mappings from F to R:

Qf :=

∫

Ξ

f(ξ)dQ(ξ) , Pnf :=
1

n

n∑

j=1

f(ξj)

for f ∈ F . With these notations (1) reads

v(Q) = min {Qfx : x ∈ X} (3)

or
v(Q) = min {Qf : f ∈ F} (4)

Due to our assumptions about X and Ξ it turns out that the class F is uniformly bounded.

Lemma 3.1 There exists a constant K such that ∀ f ∈ F ∀ ξ ∈ Ξ : |f(ξ)| ≤ K.

Proof. Setting T :=
{
Wy + W̄ ȳ : y ∈ Zm̂+ , ȳ ∈ Rm̄+

}
we get by [4, Theorem 2.1] that there exist

real numbers a, b ∈ R such that for all t, t̃ ∈ T the following estimate holds
∣∣φ(t) − φ(t̃)

∣∣ ≤ a
∣∣t− t̃

∣∣+ b. (5)

Since X and Ξ are bounded and h(.) and T (.) are affinely linear, also the set T ′ :=
{h(ξ)− T (ξ)x : ξ ∈ Ξ, x ∈ X} is bounded. Furthermore, it holds that T ′ ⊂ T because relatively complete
recourse was assumed. Thus, (5) implies that φ is bounded on T ′. Thus

|fx(ξ)| ≤ ‖c‖ ‖x‖+ ‖φ(h(ξ) − T (ξ)x)‖
≤ ‖c‖maxx̄∈X ‖x̄‖+ supt∈T ′ ‖φ(t)‖ =: K

for every f ∈ F , ξ ∈ Ξ. �
For an arbitrary set Y we introduce the linear normed space `∞(Y ) of all real-valued bounded functions

on Y and the supremum-norm, respectively:

`∞(Y ) :=
{
ψ ∈ RY : supy∈Y |ψ(y)| <∞

}
, ‖ψ‖Y := supy∈Y |ψ(y)|

Hence, since for Q ∈ P(Ξ) the set {Qf : f ∈ F} is bounded in R, we can write: Q ∈ `∞(F). Analogously,
we have Pn ∈ `∞(F)Ω with Ω denoting the randomness of the sampling procedure. Our main result now
is a statement about weak convergence of

√
n(Pn−P ) in this space `∞(F). Since, however, the mapping

Pn(·) from Ω to `∞(F) is not measurable in general, we have to rely on the generalized weak convergence
concept abbreviated by  for sequences of arbitrary maps (e.g., [41, Chapter 1], [40, Chapter 18]).
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Theorem 3.1 The class F is P -Donsker, i.e., in `∞(F) we have the weak convergence
√
n(Pn − P ) GP ,

where GP ∈ `∞(F)Ω is a P -Brownian Bridge, i.e., GP is measurable, tight and Gaussian:

GP ∼ N
(

0, (Pfg − PfPg)f,g∈F

)
.

Proof. We will utilize properties of mixed-integer two-stage stochastic programs that can be found
in [28] as well as empirical process theory from [41]. The proof consists of 5 parts.

a) First we show that the function φ from (2) and, as a consequence, also the functions f ∈ F have a
piecewise Lipschitzian structure:
Setting T :=

{
Wy + W̄ ȳ : y ∈ Zm̂+ , ȳ ∈ Rm̄+

}
⊂ Rr we conclude from [28, Lemma 33] that there exist

L > 0, τ ∈ N, and Bj ⊂ B̂phτ (T ) (j ∈ N) such that T = ∪j∈NBj and Bi ∩ Bj = ∅ for i 6= j and φ|Bj
Lipschitz continuous with uniform Lipschitz constant L. Thereby, we use the notation

B̂phτ (T ) :=

{
T ∩⋂τj=1Hj

∣∣∣∣
Hj =

{
ξ : c′jξ ≤ dj

}
or

Hj =
{
ξ : c′jξ < dj

}
with cj ∈ Rr, dj ∈ R

}

for intersections of T and at most τ open or closed half-spaces, i.e., polyhedra with at most τ faces where
each face may be included or excluded. Moreover, since T ′ := {h(ξ)− T (ξ)x : ξ ∈ Ξ, x ∈ X} is bounded
and T ′ ⊂ T due to relatively complete recourse, we know from, e.g., [28, Lemma 33], that finitely many
Bj are sufficient to cover T ′, i.e., it exists ν ∈ N and B1, ..., Bν ∈ B̂phτ (T ′) such that T ′ = ∪νj=1Bj and
Bi ∩ Bj = ∅ for i 6= j and φ|Bj Lipschitz continuous with Lipschitz constant L. Let φj be a Lipschitz
extension of φ|Bj from Bj to R preserving the Lipschitz constant L (i = 1, ..., ν). Then φ can be written
as

φ(t) =

ν∑

j=1

φj(t)χBj (t)

with χBj (t) denoting the indicator function taking value 1 if t ∈ Bj and 0 otherwise. Thus, every fx ∈ F
can be written as

fx(ξ) = c′x+

ν∑

j=1

φj(h(ξ)− T (ξ)x)χBj (h(ξ)− T (ξ)x)

Now, we set Ξx,j := {ξ ∈ Ξ : h(ξ)− T (ξ)x ∈ Bj} (x ∈ X, j = 1, ..., ν). Note that there is a number µ ∈ N
such that Ξx,j ∈ B̂phµ(Ξ) for all x ∈ X , j = 1, ..., ν. Furthermore, we set fx,j(ξ) := c′x+φj(h(ξ)−T (ξ)x)
for x ∈ X , j = 1, ..., ν. Finally, for j = 1, ..., ν we define

Fj := {fx,j : x ∈ X} = {c′x+ φj(h(ξ) − T (ξ)x) : x ∈ X}
Gj :=

{
χΞx,j : x ∈ X

}
=
{
χ{ξ∈Ξ:h(ξ)−T (ξ)x∈Bj} : x ∈ X

}

b) Next, it will be shown that each of these 2ν classes is uniformly bounded and the criterion that will
be used below to prove the Donsker property for these classes will be formatted:
Clearly, the classes Gj (j = 1, ..., ν) are uniformly bounded by 1 since they contain indicator functions
only.
Since T ′ is bounded and φj is Lipschitz continuous with modulus L we have that φj is bounded on T ′.
Hence, Fj (j = 1, ..., ν) are uniformly bounded by some constants Kj ≥ 0.
For the Donsker property [41, Theorem 2.5.2] will be used, i.e., the following three conditions have to be
verified for H = Fj and H = Gj (j = 1, ..., ν), respectively:

(i) Existence of an envelope function:

∃FH ∈ RΞ : P ∗(F 2
H) <∞, FH(ξ) ≥ |h(ξ)| ∀h ∈ H, ξ ∈ Ξ.

(ii) H is “suitable measurable”1:
There exists a countable collection H′ ⊂ H such that every h ∈ H is the pointwise limes of a
sequence hn in H′.

1The measurability condition here is stronger than necessary but easy to verify. In the original version it is required that

the classes

H2
∞ :=

n
(h− g)2 : h, g ∈ H

o
, Hδ :=

n
h− g : h, g ∈ H, ‖h− g‖P,2 ≤ δ

o
(δ > 0)

are P -measurable, i.e., for every n ∈ N and every e ∈ {−1, 1}n the mapping (ξ1, ..., ξn) 7→ suph∈Hδ
˛̨Pn

i=1 eih(ξi)
˛̨

is

measurable. See Definition 2.3.3 and Example 2.3.4 in [41] and remark to Theorem 19.14 in [40].
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(iii) Uniform entropy condition:
The uniform entropy given by

∫ ∞

0

sup

{√
logN

(
ε ‖FH‖Q,2 ,H, L2(Q)

)
: Q ∈ Pd(Ξ), 0 < QF 2

H <∞
}
dε

is finite where Pd(Ξ) denotes the set of all finitely discrete probability measures on Ξ and
N (δ,H, Lp(Q)) is the covering number 2 of H in the space Lp(Q).

If H is uniformly bounded by a constant K ≥ 0 then, obviously, N (δ,H, L2(Q)) = 1 for δ > K, i.e.,
logN (δ,H, L2(Q)) = 0. Hence, if one chooses FH ≡ K as envelope function, it suffices to verify

∫ 1

0

sup
{√

logN (εK,H, L2(Q)) : Q ∈ Pd(Ξ)
}
dε <∞

(note that in this case ‖FH‖Q,2 = K and QF 2
H = K2 for all Q ∈ Pd(Ξ)). Hence, for H = Fj and H = Gj

(j = 1, ..., ν) it is sufficient to verify finiteness of the latter integral.

c) We start with verifying these three conditions for the classes H = Fj for arbitrary j ∈ {1, ..., ν}:
1. Envelope function:
As stated above, Fj is uniformly bounded by a constant Kj ≥ 0, i.e., FFj ≡ Kj is an envelope function
for Fj with P ∗(FFj ) = Kj <∞
2. Measurability:
Of course, since X ⊂ Rm, there exists a countable dense subset X ′ ⊂ X . Thus, for arbitrary x0 ∈ X
there is a sequence xn in X ′ such that xn → x0. Hence, since φj is continuous,

c′xn + φj(h(ξ) − T (ξ)xn)→ c′x0 + φj(h(ξ) − T (ξ)x0)

for every ξ ∈ Ξ, i.e., fxn,j → fx0,j pointwise. Thus, H′ := {fx,j : x ∈ X ′} is a suitable countable subset
of H.
3. Uniform entropy condition:
In Chapter 2.1.1 in [41] it is demonstrated that

N (εKj ,Fj , L2(Q)) ≤ N[] (2εKj ,Fj , L2(Q))

where N[] (δ,H, Lp(Q)) denotes the bracketing number 3 of the class of functions H in the space Lp(Q).
Further, for x, x̄ ∈ X it holds that

|fx,j(ξ) − fx̄,j(ξ)| = |c′(x− x̄) + φj(h(ξ)− T (ξ)x)− φj(h(ξ)− T (ξ)x̄)|
≤ (‖c‖+ L ‖T (ξ)‖) ‖x− x̄‖ ,

i.e., the functions fx,j are Lipschitz in the parameter x. Thus, we get by means of [41, Theorem 2.7.11]
that

N[] (2εKj ,Fj , L2(Q)) ≤ N(ε,X, |.|),
where the right-hand side is the covering number of the set X in Rm which does not depend on the
measure Q. Because X is compact there exists a constant c ≥ 0 such that N(ε,X, |.|) ≤ cε−m. Hence,

∫ 1

0

sup

{√
logN (εKj ,Fj , L2(Q)) : Q ∈ Pd(Ξ)

}
dε ≤

∫ 1

0

√
log cε−mdε <∞

thus the third condition holds and Fj is shown to be P -Donsker.

d) Now we will prove the Donsker property for Gj . Therefore, we verify the three conditions for the

set Hµ =
{
χB : B ∈ B̂phµ(Ξ)

}
and note that Gj ⊂ Hµ for j = 1, ..., ν.

1. Envelope function:
F ≡ 1 does the job.

2The covering number of H in the space Lp(Q) is defied as the minimum number of open balls in Lp(Q) with radius δ

that are needed to cover H (Definition 2.1.5 in [41]).
3A δ-bracket is a pair of functions l, u ∈ Lp(Q) such that l(ξ) ≤ u(ξ) ∀ξ ∈ Ξ and ‖u− l‖Q,p < δ. The bracketing number

N[] (δ,H, Lp(Q)) of a class H in the space Lp(Q) is defined as the minimum number of δ-brackets [l, u] in Lp(Q) that is

needed such that every h ∈ H lies between one of these brackets, i.e., l ≤ h ≤ u ([41, Definition 2.1.6]).
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2. Measurability

We set H′µ =
{
χB : B ∈ B̂phµ,Q(Ξ)

}
with

B̂phµ,Q(Ξ) :=

{
Ξ ∩⋂µj=1Hj

∣∣∣∣
Hj =

{
ξ : c′jξ ≤ dj

}
or

Hj =
{
ξ : c′jξ < dj

}
with cj ∈ Qk, dj ∈ Q

}

the set of intersection of Ξ and polyhedra being described by rational coefficients and having at most µ
faces where each face may be included or excluded. It is easy to see that for each B ∈ B̂phµ(Ξ) there

is a sequence Bn in B̂phµ,Q(Ξ) such that χBn → χB pointwise for n → ∞ (note that Ξ is a bounded
polyhedron).
3. Uniform entropy condition:
We show that Hµ is a so-called VC class4: For the set of (subgraphs of) indicator functions of open or
closed half-spaces (µ = 1) it holds obviously that

V (H1) = V
({

subχB : B ∈ B̂ph1(Ξ)
})
≤ k + 2 <∞

because given k + 2 different points in Rk it is never possible to separate linearly each subset of these
points from the rest. Thus, H1 is VC. And because

subHµ =
{

subχB : B ∈ B̂phµ(Ξ)
}

=
{
{(ξ, t) ∈ Ξ× R : t < χB(ξ)} : B ∈ B̂phµ(Ξ)

}

=
{⋂µ

i=1 subχBi : Bi ∈ B̂ph1(Ξ)
}

= subH1 u ... u subH1

it holds that Hµ is also VC due to [41, Lemma 2.6.17 (ii)].
Theorem 2.6.7 in [41] claims that in this case the following estimate is valid for all Q ∈ Pd(Ξ) with
‖F‖Q,2 > 0 and for ε ∈ (0, 1):

N
(
ε ‖F‖Q,2 ,Hµ, L2(Q)

)
≤ c1ε−c2

with some constants c1, c2 ≥ 0 depending on V (Hµ) only. Note that the right-hand side does not depend
on Q. Thus

sup

{√
logN

(
ε ‖F‖Q,2 ,Hµ, L2(Q)

)
: Q ∈ Pd(Ξ), 0 < QF 2 <∞

}

≤
√

log c1ε−c2 =
√

log c1 + c2 log ε−1 ≤ √log c1 +
√
c2 log ε−1 ≤ √log c1 +

√
c2ε−1

Since the last term is integrable for ε ∈ (0, 1) the uniform entropy condition is verified and Hµ is shown
to be P -Donsker. Because Gj ⊂ Hµ for j = 1, ..., ν each Gj is P -Donsker since subsets of P -Donsker
classes are again P -Donsker ([41, Theorem 2.10.1]).

e) The Donsker property for Fj and Gj implies that F is P -Donsker:
From Theorems 2.10.6 and Examples 2.10.7 and 2.10.8 in [41] it follows that the class

ν∑

j=1

FjGj =
{∑ν

j=1 fjgj : fj ∈ Fj , gj ∈ Gj (j = 1, ..., ν)
}

is P -Donsker since both, Fj and Gj , are uniformly bounded. Furthermore, because F ⊂∑ν
j=1 FjGj , the

proof is complete since every subset of a P -Donsker-class is P -Donsker as well ([41, Theorem 2.10.1]).
�

4. Delta Method In order to get a convergence statement for the optimal value of (1) in R, i.e.,
weak convergence of

√
n(v(Pn)− v(P )), we want to apply the delta method described, e.g., in Theorem

1 and Proposition 1 of [29]. For clarity, we cite these results here adapted to our framework.

4A set of functions F is called a VC class (Vapnik-Cervonenkis-class) if the corresponding set of subgraphs subF :=

{subf : f ∈ F} is a VC class of subsets of Ξ×R with subf = {(x, t) ∈ Ξ× R : t < f(x)}. A set C of subsets of some set M

is called VC class if its VC-index V (C) is finite, i.e., V (C) <∞ with

V (C) = inf {n ∈ N | ∀D ⊂M with #D = n ∃AD ⊂ D ∀C ∈ C : AD 6= D ∩ C }

See [41] Chapter 2.6 for further details.
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Definition 4.1 Let D and F be linear metric spaces. Then Φ : D → F is called Hadamard directionally
differentiable at ϑ0 ∈ D if there exists a mapping Φ′ϑ0

: D → F with

lim
n→∞

Φ(ϑ0 + tnhn)− Φ(ϑ0)

tn
= Φ′ϑ0

(h)

for all h ∈ D and all suitable sequences (hn) ∈ DN and (tn) ∈ RN such that tn ↓ 0 and hn → h.

The Hadamard directional derivative Φ′ϑ0
is continuous and positively homogenous. But, note that

linearity of Φ′ϑ0
is not required here. By admitting a directional version of the concept of Hadamard

differentiability we follow [35] and [30, Chapter 6] and deviate from mainstream literature (see, e.g.,
[40, 41]). We do so because for Φ we have the infimal value mapping in mind. It will be shown below that
it is Hadamard directionally differentiable in our sense with nonlinear derivative. Moreover, linearity is
not required for the delta method, too.

Theorem 4.1 Let D and F be linear metric spaces, Φ : D → F Hadamard directionally differentiable at
ϑ0 ∈ D. Let further Z, ϑn ∈ DΩ and

√
n(ϑn − ϑ0) Z. Then we have

√
n(Φ(ϑn)− Φ(ϑ0)) Φ′ϑ0

(Z).

Proof. We refer to Theorem 1 in [29], (set rn =
√
n and Θ = DΦ = D, thus TΘ(ϑ0) = D). �

The second result provides the Hadamard directional differentiability of the infimal value mapping.
Its first part is due to Lachout [17].

Proposition 4.1 Set D := `∞(X) and F := R and define the infimal value mapping

Ψ : `∞(X) → R
ϑ 7→ inf {ϑ(x) : x ∈ X}

and the ε-solution set S(ϑ, ε) := {x ∈ X | ϑ(x) ≤ Ψ(ϑ) + ε} for ε ≥ 0.
Then Ψ is Hadamard directionally differentiable in every ϑ0 ∈ D with

Ψ′ϑ0
: D → R

h 7→ limε↓0 inf {h(x) : x ∈ S(ϑ0, ε)} (6)

Moreover, if ϑ0 ∈ `∞(X) is lower semicontinuous and h ∈ `∞(X) is continuous, then it holds that

Ψ′ϑ0
(h) = min {h(x) : x ∈ S(ϑ0, 0)} (7)

Proof. Proposition 1 in [29] (again, set Θ = DΨ = D = TΘ(ϑ0)) records the proof of Hadamard
directional differentiability and formula (6) from [17] even if X is an arbitrary set. (Remember that in
this paper here X was assumed to be a compact subset of Rm.) Thus, it remains to show (7):
Let ϑ0 ∈ `∞(X) be lower semicontinuous and h ∈ `∞(X) continuous. Of course, representation (6) holds.
For n ∈ N choose xn ∈ S(ϑ0,

1
n ) such that h(xn) ≤ inf

{
h(x) : x ∈ S(ϑ0,

1
n )
}

+ 1
n . Then

inf
{
h(x) : x ∈ S(ϑ0,

1
n )
}
≤ h(xn) ≤ inf

{
h(x) : x ∈ S(ϑ0,

1
n )
}

+ 1
n ,

thus Ψ′ϑ0
(h) = limn→∞ h(xn) since inf

{
h(x) : x ∈ S(ϑ0,

1
n )
}
→ Ψ′ϑ0

(h). Because S(ϑ0,
1

n+1 ) ⊂
S(ϑ0,

1
n ) ⊂ X and X is compact there exists a subsequence xn′ converging to some x0 ∈ X in Rm.

And because ϑ0(xn′) ≤ Ψ(ϑ0) + 1
n′ and ϑ0 is lower semicontinuous it holds that

ϑ0(x0) ≤ lim inf
n′→∞

ϑ0(xn′) ≤ Ψ(ϑ0),

hence x0 ∈ S(ϑ0, 0), thus on the one hand

Ψ′ϑ0
(h) = lim

n′→∞
h(xn′) = h(x0) ≥ min {h(x) : x ∈ S(ϑ0, 0)}

and
Ψ′ϑ0

(h) = limn′→∞ h(xn′ ) ≤ limn′→∞
(
inf
{
h(x) : x ∈ S(ϑ0,

1
n′ )
}

+ 1
n′
)

≤ limn′→∞
(
inf {h(x) : x ∈ S(ϑ0, 0)}+ 1

n′
)

= min {h(x) : x ∈ S(ϑ0, 0)}
on the other hand. �
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At first glance this framework seems not to fit for our purpose, since we have mappings Q on `∞(F)
rather than on `∞(X). But if we define for Q ∈ P(Ξ)

ϑQ(x) := Qfx = c′x+

∫

Ξ

φ (h(ξ)− T (ξ)x) dQ(ξ)

we have ϑQ ∈ `∞(X) and v(Q) = Ψ(ϑQ) for all Q ∈ P(Ξ). The convergence
√
n(Pn−P ) GP in `∞(F)

means √
n(ϑPn − ϑP ) ϑGP ∼ N

(
0, (Pfxfy − PfxPfy)x,y∈X

)

in `∞(X) with ϑGP = GP f. ∈ `∞(X)Ω. This leads to

Corollary 4.1 For the optimal value of the stochastic program (1) it holds that

√
n(v(Pn)− v(P )) =

√
n(Ψ(ϑPn)−Ψ(ϑP )) Ψ′ϑP (ϑGP ).

If we knew quantiles of the distribution of Ψ′ϑP (ϑGP ) we could give asymptotic confidence intervals for
the optimal value v(P ) = Ψ(ϑP ) since v(Pn) can be calculated by solving a finite mixed-integer linear
program. In general, it seems too difficult to calculate the distribution analytically since Ψ′ϑP from (6)
has a rather complicated shape. Thus empirical methods are needed.

Remark 4.1 Only in special cases the simpler formula (7) can be applied. The condition that for Q ∈
P(Ξ) the elements ϑQ are lower semicontinuous on X is always satisfied due to the lower semicontinuity
of φ (see [28] Lemma 33) together with Fatou’s Lemma:

lim inf Qfxn = c′x0 + lim inf
∫

Ξ φ (h(ξ)− T (ξ)xn) dQ(ξ)
≥ c′x0 +

∫
Ξ lim inf φ (h(ξ)− T (ξ)xn) dQ(ξ)

≥ c′x0 +
∫

Ξ
φ (h(ξ)− T (ξ)x0) dQ(ξ) = Qfx0

for xn → x0 in X. However, to apply (7) it would have to be shown in addition, that the P -Brownian
Bridge GP (and accordingly ϑGP ) has continuous sample paths. Indeed, there is a continuity property for
ϑGP because GP is tight (see Example 1.5.10 in [41]): For almost all ω ∈ Ω it holds that ϑGP (ω) ∈ `∞(X)
is continuous with respect to the semi-metric given by

ρ(x0, x1) :=
(
P (fx0 − fx1)2 − (P (fx0 − fx1))2

)1/2

But, in general, xn → x0 in X ⊂ Rm does not imply continuity with respect to ρ, hence ϑGP (ω) is not
necessarily continuous.

The special case that the second stage problem contains no integrality (i.e., m̂ = 0) would be an example
where xn → x0 in X implies ρ(xn, x0)→ 0 since in this case φ is continuous (see [42]). Another example
would be the case where X consists of isolated points only. For such examples it holds indeed

Ψ′ϑP (ϑGP ) = inf {GP f | f ∈ F , P f = v(P )} .

If it is known in addition that the solution set S(P ) := {x ∈ X : Pfx = v(P )} of the stochastic program
(1) is a singleton, i.e., #S(P ) = 1, S(P ) = {x∗}, then we get Ψ′ϑP (ϑ) = ϑ(x∗), i.e., Ψ′ϑP is a linear
mapping in this case. Moreover, due to the definition of the P -Brownian Bridge GP , it holds that

Ψ′ϑP (ϑGP ) = GP fx∗ ∼ N
(
0, P f2

x∗ − (Pfx∗)
2
)
,

i.e., we know that the limit is normally distributed with zero mean and unknown variance (since both, x∗

and P , are unknown).

Since our goal is to calculate confidence intervals not only in special cases, we do not continue this
discussion here and address ourselves to more general methods.
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5. Bootstrapping Bootstrapping is a principle to gain information about the quantiles of an un-
known limit distribution by resampling ξ∗1 , ξ

∗
2 , ... from some empirical distribution Pn. From these re-

samples the bootstrap empirical measure P ∗n := 1
n

∑n
j=1 δξ∗j is constructed. For our problem, the unknown

distribution is the limit distribution of
√
n(v(Pn)− v(P )).

It will be shown below that under certain conditions it holds that
√
n(P ∗n − Pn) converges in some

sense to the same limit as
√
n(Pn − P ). The mathematical backbone of this method is the independence

of the sampling and the resampling procedure. The convergence of
√
n(P ∗n − Pn) can be carried over to

convergence statements about
√
n(v(P ∗n ) − v(Pn)) in several ways. However, a delta method statement

like Theorem 4.1 can only be given for the case that Φ′ϑ is linear. For the general case, an alternative
method is suggested in Section 5.2.

The bootstrap method was introduced in [6]. Here, we will make use of the consistency results as well
as the delta method for the bootstrap derived in [40] and [41]. For further discussion and extensions of
the bootstrap method see, e.g., [19, 11, 9]. Note that the extensions there are different from the extension
that are developed in Section 5.2.

5.1 Classical Bootstrap The classical bootstrap method rests upon a statement about convergence
of the bootstrap empirical measure in `∞(F) where the samples ξ1, ξ2, ... are considered as fixed. The
type of convergence is “conditionally to ξ1, ξ2, ... in distribution”, which will be defined below following
[40] and [41]. To motivate this definition we first define for a normed space D, e.g., D = `∞(F), the set
of bounded Lipschitz functions

BLγ(D) :=
{
h ∈ [−1, 1]D : |h(z1)− h(z2)| ≤ γ ‖z1 − z2‖ ∀ z1, z2 ∈ D

}

and we note that for D = `∞(F) weak convergence can be characterized by

Zn  Z0 ⇔ sup
h∈BL1(l∞(F))

|E [h(Zn)− h(Z0)]|→0,

if Zn ∈ `∞(F)Ω and Z0 ∈ `∞(F)Ω are measurable and tight (see [10], [40, Chapter 23]). In accordance
with [40] and [41] we define that Zn converges to Z0 conditionally to ξ1, ξ2, ... in distribution if

Zn  ∗ Z0 ⇔ sup
h∈BL1(`∞(F))

|E [h(Zn)− h(Z0) | ξ1, ξ2, ...]| P−→ 0,

where E[· | ·] and
P−→ denote the conditional expectation and convergence in probability, respectively.

With these notations we are ready to cite two results from [40].

Theorem 5.1 If F is P -Donsker then
√
n(P ∗n − Pn) ∗ G∗P in `∞(F). The limit G∗P is a P -Brownian

Bridge, thus, it has the same distribution as the limit GP in Theorem 3.1.

Proof. Theorem 23.7 in [40]. �
At this point one would expect a delta method theorem similar to Theorem 4.1 but for the bootstrap

case. However, for such a statement we need additionally that Φ′ϑ0
is linear.

Proposition 5.1 Let D be a normed space, ϑ0 ∈ D and let Φ : D → R be Hadamard directionally
differentiable at ϑ0 with derivative Φ′ϑ0

being linear. Let further ϑn ∈ DΩ and ϑ∗n ∈ DΩ and Z ∈ DΩ and√
n(ϑ∗n − ϑn) ∗ Z and

√
n(ϑn − ϑ0) Z. Then:

√
n(Φ(ϑ∗n)− Φ(ϑn)) ∗ Φ′ϑ0

(Z).

Proof. Theorem 23.9 in [40] (set DΦ = D). �
Applied to our problem this means

Corollary 5.1 If Ψ′ϑP is linear, then it holds that

√
n (v(P ∗n)− v(Pn)) =

√
n
(
Ψ
(
ϑP∗n

)
−Ψ (ϑPn)

)
 ∗ Ψ′ϑP (ϑG∗P )

in R with G∗P being a P -Brownian Bridge in `∞(F).
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The limit Ψ′ϑP (ϑG∗P ) is the same as in Corollary 4.1. This fact can be used to approximate the distri-
bution Ψ′ϑP (ϑGP ) and to derive confidence intervals for the (unknown) value v(P ) = min {Pf : f ∈ F},
i.e., the optimal value of the stochastic program (1).

Given ξ1, ξ2, ..., ξn, i.e given Pn, with n fixed sufficiently large, the distribution Ψ′ϑP (ϑGP ) can be ap-
proximated by some empirical distribution of

√
n(v(P ∗n )−v(Pn)) gained from sufficiently many resampled

n-tuples ξ∗1 , ξ
∗
2 , ..., ξ

∗
n from Pn. This means: if ζ∗α,m is a lower α-quantile of an empirical distribution of√

n(v(P ∗n )− v(Pn)) gained from m (sufficiently large) resamples then for α1 < 50% > α2 the interval
[
v(Pn)− 1√

n
ζ∗1−α1,m, v(Pn)− 1√

n
ζ∗α2,m

]
(8)

is an asymptotic confidence interval5 at level α1 + α2 for the optimal value v(P ), i.e.,

lim inf
n,m→∞

P
(
v(P ) ∈

[
v(Pn)− 1√

n
ζ∗1−α1,m, v(Pn)− 1√

n
ζ∗α2,m

])
≥ 1− α1 − α2.

5.2 Extended Bootstrap As seen in the previous sections, the classical empirical delta method
for bootstrapping works only if the Hadamard directional derivative of Φ at ϑ0 is linear. As discussed in
Remark 4.1, for the infimal value mapping Ψ this is only the case under strong additional assumptions.
The question arises, whether there’s another method to derive confidence intervals that works without
this assumption of linearity. The answer is yes, but, of course, this is more involved and more expensive
in terms of computation, too.

First of all, we cite another result from [40] that will be needed below.

Proposition 5.2 In `∞(F) it holds that
(√

n (Pn − P ) ,
√
n (P ∗n − Pn)

)
 (GP , G

∗
P )

with GP and G∗P being independent P -Brownian Bridges.

Proof. See Proof of Theorem 23.9 in [40]. �
Note that G∗P ∼ GP . Note further, that this is a convergence statement about ordinary weak conver-

gence, i.e., unconditional. Of course, in `∞(X) this means
(√
n (ϑPn − ϑP ) ,

√
n
(
ϑP∗n − ϑPn

))
 
(
ϑGP , ϑG∗P

)

Next, we establish a kind of alternative delta method suitable for this framework.

Lemma 5.1 Let Φ : D → F be Hadamard directionally differentiable in ϑ0 ∈ D and let ϑ∗n, ϑn ∈ DΩ

(n ∈ N) be given satisfying (
√
n (ϑn − ϑ0) ,

√
n (ϑ∗n − ϑn)) (Z,Z∗) with Z,Z∗ ∈ DΩ. Then it holds that

√
n (Φ(ϑ∗n)− Φ(ϑn)) Φ′ϑ0

(Z∗ + Z)− Φ′ϑ0
(Z)

Proof. We define mappings

gn : D ×D → F

(h∗, h) 7→ √
n
(

Φ
(
ϑ0 + 1√

n
(h∗ + h)

)
− Φ

(
ϑ0 + 1√

n
h
))

then due to the Hadamard directional differentiability of Φ it holds that

gn (h∗n, hn)

=
√
n
(

Φ
(
ϑ0 + 1√

n
(h∗n + hn)

)
− Φ (ϑ0)

)
−√n

(
Φ
(
ϑ0 + 1√

n
hn

)
− Φ (ϑ0)

)

→ Φ′ϑ0
(h∗0 + h0)− Φ′ϑ0

(h0)

for (h∗n, hn)→ (h∗0, h0). Hence, the continuous mapping theorem [40, Theorem 18.11] applies and we get

gn
(√

n(ϑ∗n − ϑn),
√
n(ϑn − ϑ0)

)
=
√
n (Φ (ϑ∗n)− Φ (ϑn)) Φ′ϑ0

(Z∗ + Z)− Φ′ϑ0
(Z)

�
Note that the latter result does not require linearity of the Hadamard derivative. Putting the previous

two results together leads to

5Note that ζ∗1−α1,m
≥ ζ∗α2,m

since 1−α1 > 50% > α2, so we have indeed that
h
v(Pn)− 1√

n
ζ∗1−α1,m

, v(Pn)− 1√
n
ζ∗α2,m

i

is an interval.
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Corollary 5.2 In R it holds that√
n (v(P ∗n )− v(Pn)) =

√
n
(
Ψ
(
ϑP∗n

)
−Ψ (ϑPn)

)
 Ψ′ϑP (ϑG∗P + ϑGP )−Ψ′ϑP (ϑGP )

with GP and G∗P being independent P -Brownian Bridges in `∞(F).

This result also shows that, if Ψ′ϑP is not linear, one cannot expect that the sequence√
n
(
Ψ
(
ϑP∗n

)
−Ψ (ϑPn)

)
converges conditionally to ξ1, ξ2, ... in distribution to Ψ′ϑP (ϑGP ) or Ψ′ϑP (ϑG∗P ).

However, it is possible to define another sequence containing the unknown value Ψ(ϑP ) that converges
to the same limit Ψ′ϑP (ϑG∗P +ϑGP )−Ψ′ϑP (ϑGP ). This idea is developed in the following modified version
of Theorem 4.1.

Lemma 5.2 Let Φ : D → F be Hadamard directionally differentiable at ϑ0 ∈ D and let ϑ̃n, ϑ̄n ∈ DΩ

(n ∈ N) be given satisfying
(√
n(ϑ̄n − ϑ0),

√
n(ϑ̃n − ϑ0)

)
 
(
Z̄, Z̃

)
with Z̄, Z̃ ∈ DΩ. Then it holds that

√
n
(

2Φ
(

1
2 (ϑ̄n + ϑ̃n)

)
− Φ(ϑ̃n)− Φ(ϑ0)

)
 Φ′ϑ0

(Z̄ + Z̃)− Φ′ϑ0
(Z̃)

Proof. Again, we define mappings

gn : D ×D → F(
h̄, h̃

)
7→ √

n
(

2Φ
(
ϑ0 + 1

2
√
n

(
h̄+ h̃

))
− Φ

(
ϑ0 + 1√

n
h̃
)
− Φ(ϑ0)

)

then due to the Hadamard directional differentiability of Φ it holds that

gn

(
h̄n, h̃n

)

= 2
√
n
(

Φ
(
ϑ0 + 1

2
√
n

(
h̄n + h̃n

))
− Φ (ϑ0)

)
−√n

(
Φ
(
ϑ0 + 1√

n
h̃n

)
− Φ (ϑ0)

)

→ Φ′ϑ0

(
h̄0 + h̃0

)
− Φ′ϑ0

(
h̃0

)

for
(
h̄n, h̃n

)
→
(
h̄0, h̃0

)
. Hence, the continuous mapping theorem [40, Theorem 18.11] applies again and

we obtain

gn

(√
n
(
ϑ̄n − ϑ0

)
,
√
n
(
ϑ̃n − ϑ0

))
=
√
n
(

2Φ
(

1
2 (ϑ̄n + ϑ̃n)

)
− Φ(ϑ̃n)− Φ(ϑ0)

)

 Φ′ϑ0
(Z̄ + Z̃)− Φ′ϑ0

(Z̃).

�
If we sample twice from P independently, i.e., given ξ̃1, ξ̄1, ξ̃2, ξ̄2, ...

iid∼ P , then, of course, with P̃n :=
1
n

∑n
j=1 δξ̃j and P̄n := 1

n

∑n
j=1 δξ̄j , it holds that
√
n(ϑP̃n − ϑP ) ϑG̃P and

√
n(ϑP̄n − ϑP ) ϑḠP

in `∞(X) with two independent P -Brownian Bridges G̃P and ḠP and ϑP̃n ∈ `∞(X)Ω defined by ϑP̃n(x) =∑n
j=1 fx(ξ̃j) and ϑP̄n analogously. Thus,

√
n
(
2Ψ
(

1
2 (ϑP̄n + ϑP̃n)

)
−Ψ

(
ϑP̃n

)
−Ψ(ϑP )

)
 Ψ′ϑP (ϑḠP + ϑG̃P )−Ψ′ϑP (ϑG̃P )

Because both pairs, ḠP and G̃P as well as G∗P and GP , are independent, it holds that (ḠP , G̃P ) ∼
(G∗P , GP ), hence

Ψ′ϑP (ϑḠP + ϑG̃P )−Ψ′ϑP (ϑG̃P ) ∼ Ψ′ϑP (ϑG∗P + ϑGP )−Ψ′ϑP (ϑGP ).

Since we can approximate the distribution of Ψ′ϑP (G∗P + GP ) − Ψ′ϑP (GP ) by sampling and resampling
without knowing P or Ψ(ϑP ), we can construct confidence intervals in a similar way as above: Let ζ∗α be
a lower α-quantile of (an approximation of) Ψ′ϑP (ϑG∗P + ϑGP ) − Ψ′ϑP (ϑGP ), then for α1 < 50% > α2 it
holds that[

2Ψ
(

1
2 (ϑP̄n + ϑP̃n)

)
−Ψ(ϑP̃n)− 1√

n
ζ∗1−α1

, 2Ψ
(

1
2 (ϑP̄n + ϑP̃n)

)
−Ψ(ϑP̃n)− 1√

n
ζ∗α2

]
(9)

is an approximate confidence interval at level α1 + α2 for the optimal value Ψ(ϑP ) = v(P ).

Remark 5.1 Here, in contrast to classical bootstrapping, the samples ξ1, ξ2, ..., ξn are at no time fixed.
To get one sample point for the empirical distribution function of the approximation of Ψ′ϑP (ϑG∗P +

ϑGP )−Ψ′ϑP (ϑGP ) one has to sample both, ξ1, ξ2, ..., ξn
iid∼ P and ξ∗1 , ξ

∗
2 , ..., ξ

∗
n
iid∼ Pn(ξ1, ξ2, ..., ξn). Hence,

the computational effort is twice as high as for the classical bootstrap method. Moreover, in practice,
sampling from P might be much more expensive than (re)sampling from the empirical distribution Pn.
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6. Examples To demonstrate the significance of the results derived above, we provide some numer-
ical evidence.

6.1 Problem (unique solution) We consider the example in [33, Section 7]:

min

{
x′
(
−1.5
−4

)
+

∫

Ξ

φ(ξ − x)dP (ξ) : x ∈ {0, 1, 2, 3, 4, 5}2
}

(10)

with

φ(t) := min




y′




−16
−19
−23
−28


 : y ∈ {0, 1}4 ,

(
2 3 4 5
6 1 3 2

)
y ≤ t





and ξ being uniformly distributed on the two dimensional integer grid between 5 and 15

Ξ′ :=

{(
5
5

)
,

(
5
6

)
, ...,

(
5
15

)
,

(
6
5

)
, ...,

(
15
15

)}
,

i.e., P ({η}) = 1/121 for η ∈ Ξ′. This example has the form of (1) with k = m = r = 2, h(ξ) = ξ,
T (ξ) = I2, m̂ = 4, m̄ = 0 and Ξ = conv(Ξ′). The exact solution is x = (0, 4) with optimal value
v(P ) = −62.29 (see [33]). This solution is unique6 and X consists of isolated points only, thus the theory
derived in Section 5.1 holds here (see Remark 4.1).

6.2 Classical Bootstrapping Suppose that we don’t know the distribution P but we are able to
sample from it. Further, suppose we know that the solution is unique. The classical bootstrap procedure
for deriving confidence intervals for the optimal value works as follows:

(i) Fix n ∈ N, sample from P and solve the approximated problem. We used n = 75 and got
v(Pn) = −61.2667

(ii) Resample from Pn using the same sample-size n and solve the new problem. Repeat this m times
to get an empirical distribution function of

√
n(v(P ∗n ) − v(Pn)) conditional to Pn. We worked

with m = 500 and obtained

v(P ∗n)
√
n(v(P ∗n)− v(Pn))

-58.64 22.7476

-61.8533 -5.08068

-58.56 23.4404
...

...

-63.9867 -23.5559

(iii) Calculate the quantiles at level 1 − α1 and α2 (αj small) of the empirical distribution function
of the

√
n(v(P ∗n )− v(Pn)) values. We used α1 = α2 = α/2 and got

α [ζ∗α/2,m, ζ
∗
1−α/2,m]

10% [-28.5211, 23.7868]

5% [-33.0822, 28.7520]
2% [-39.2021, 35.4493]

(iv) Convert these quantiles to quantiles for the optimal value v(P ) according to formula (8). In our
example this leads to

α confidence interval for v(P )

10% [-64.0133, -57.9733]

6Uniqueness is only required for the first stage solution x, so we don’t claim that y(ξ) is unique, too. We “proved” the

uniqueness of x with CPLEX by calculating the 36 solutions of the problem with x fixed at (0, 0) , (0, 1) , ... and, indeed, it

turned out that −62.29 is only reached for x = (0, 4).
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5% [-64.5867, -57.4467]

2% [-65.3600, -56.7400]

(v) This procedure was repeated 200 times in order to approve the level of the confidence intervals
empirically. Counting the number of confidence intervals covering the true optimal value −62.29
leads to

α # covering intervals ratio average interval length

10% 180/200 90% 6.01218

5% 188/200 94% 7.1325

2% 197/200 98.5% 8.4506

Of course, enlarging n leads to smaller confidence intervals. Because
√
n(v(P ∗n )−v(Pn)) has approximately

the same probability distribution as the fixed random element Ψ′ϑP (ϑGP ) we can expect a decrease of

order 1√
n

for the size of the confidence intervals of v(P ). For α = 5% we got

sample-size n average interval length length∗√n
50 8.5852 60.70
75 7.1325 61.77

150 4.8139 58.95

200 4.3117 60.98

300 3.4112 59.08

so indeed the decrease is approximately of order 1√
n

since length times
√
n is almost constant.

6.3 Problem (non-unique solution) We changed problem (10) to

min

{
x′
(

−1.5
−3.768595041

)
+

∫

Ξ

φ(ξ − x)dP (ξ) : x ∈ {0, 1, 2, 3, 4, 5}2
}

(11)

with φ, P and Ξ as above. Here, the solution is no longer unique. The optimal value −61.363636 is
attained at x = (0, 3) and at x = (0, 4). Thus, classical bootstrapping is not theoretically justified here.

6.4 Extended Bootstrapping We applied the extended bootstrap method developed in section
5.2 to derive confidence intervals for the optimal value of problem (11). The procedure here is slightly
different than that in Section 6.2. The main difference is that the approximation of the limit distribution
is carried out independently from the estimation of the center of the confidence interval. The procedure
works as follows:

(i) Fix n ∈ N. We used n = 75.

(ii) Sample from P and solve the approximate problem. We got v(Pn) = −60.5725. Resample from
Pn using the same sample-size n and solve the resulting problem. We got v(P ∗n ) = −59.2439.

(iii) Repeat the previous step (sampling and resampling) m times to obtain an empirical distribution
function of

√
n(v(P ∗n)− v(Pn)). We chose m = 500 and obtained

v(Pn) v(P ∗n )
√
n(v(P ∗n )− v(Pn))

-60.5725 -59.2439 11.506

-62.9277 -63.2391 -2.69685
-57.1905 -57.6172 -3.69504

...
...

...

-65.3144 -65.403 -0.767256

(iv) Calculate the quantiles at level 1 − α1 and α2 (αj small) of the empirical distribution function
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of the
√
n(v(P ∗n )− v(Pn)) values. We used α1 = α2 = α/2 and got

α [ζ∗α/2,m, ζ
∗
1−α/2,m]

10% [-29.4241,23.6338]

5% [-35.0455, 29.3868]

2% [-42.5669, 32.6578]

(v) Sample independently from P with sample-size n twice to get P̃n and P̄n. Calculate v(P̃n) and
v( 1

2 (P̃n+ P̄n)). We got 2v( 1
2 (P̃n+ P̄n))−v(P̃n) = 63.1277. Using the quantiles from the previous

step formula (9) leads to

α confidence interval for v(P )

10% [-65.8567, - 59.7301 ]
5% [-66.5210, -59.0810]

2% [-66.8987, -58.2125]

(vi) We repeated the previous step 200 times in order to approve the level of the confidence intervals
empirically. We counted the number of confidence intervals covering the true optimal value
−61.363636. We got:

α # covering intervals ratio average interval length

10% 182/200 91% 6.1277
5% 191/200 95,5% 7.4400

2% 195/200 97.5% 8.6862

Note that the quantiles ζ∗α/2,m and ζ∗1−α/2,m can remain fixed for α = 10%, 5%, 2%, respectively,
during this approving procedure.

Of course, enlarging n leads again to a decrease of order 1√
n

for the size of the confidence intervals for

v(P ).

6.5 Technical Details These results were produced with ILOG CPLEX 8.0 and the ILOG Concert
Technology Interface for C++. We used the GNU C++ compiler gcc version 3.0.4 on a Suse Linux
system. As random number generator we took the RANLIBC/StatLib library. In CPLEX, the following
accuracy parameters were used: epOpt =epGap = epRHS = 10−6. This means that the solutions of the
approximate problems may be considered as exact.
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[5] J. Dupačová and R. J.-B. Wets, Asymptotic behavior of statistical estimators and of optimal solutions of
stochastic optimization problems, Ann. Statist. 16 (1988), 1517–1549.

[6] B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Statist. 7 (1979), 1–26.

[7] Y. M. Ermoliev and V. I. Norkin, Normalized convergence in stochastic optimization, Ann. Oper. Res. 30
(1991), 187–198.

[8] A. Futschik and G. C. Pflug, Confidence sets for discrete stochastic optimization, Ann. Oper. Res. 56 (1995),
95–108.
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