
ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS
WITH REOPTIMIZATION ALGORITHMS BASED ON SET-PARTITIONING

MODELS

PHILIPP FRIESE AND JÖRG RAMBAU

ABSTRACT. We develop and experimentally compare policies for the control of a system
of k elevators with capacity one in a transport environment with` floors, an idealized
version of a pallet elevator system in a large distribution center of the Herlitz PBS AG
in Falkensee. Each elevator in the idealized system has an individual waiting queue of
infinite capacity. On each floor, requests arrive over time in global waiting queues of
infinite capacity. The goal is to find a policy that, without any knowledge about future
requests, assigns an elevator to each request and a schedule to each elevator so that certain
expected cost functions (e.g., the average or the maximal flow times) are minimized. We
show that a reoptimization policy for minimizing average squared waiting times can be
implemented to run in real-time (1s) using dynamic column generation. Moreover, in
discrete event simulations with Poisson input it outperforms other commonly used policies
like multi-server variants of greedy and nearest neighbor.

1. INTRODUCTION

Our research on elevator control was motivated by the following practical application.
In a large distribution center of Herlitz PBS AG, organized by the company eCom Logis-
tik, there are two transportation modules consisting of five elevators each. These elevator
systems connect the eight commissioning floors and the stacker crane terminals of the large
warehouse with the ground floor. The individual elevators are controled independently by
either a FIFO or a NEAREST-NEIGHBORheuristic (more detailed descriptions in Section 2
and 4).

It was observed by the staff (already quite some time ago) that FIFO was problematic
in high load periods whereas the NEAREST-NEIGHBORheuristic was fast but unreliable in
the following sense: Surprisingly often, individual pallets were not transported at all for a
very long time.

This triggered our research in how to control a single elevator so that both average and
maximal flow times of pallets (the times pallets spend in the system) can be bounded.
Our results in [4, 20, 21] suggested a policy that has guaranteed maximal, and hence also
average flow and waiting times, depending on the load of the system [20]. This so-called
IGNOREpolicy bases its decisions on a current tentative schedule. Whenever a new request
arrives it is buffered. Only when the current schedule is completed, a new schedule with
minimal makespan is computed for all known requests. Another policy, called REPLAN

revises in contrast to IGNOREthe tentative schedule at the arrival of each new request. This
can be shown to produce unbounded deferment of requests, and hence unbounded flow and
waiting times.

Simulation results for this so-called IGNOREpolicy were quite satisfactory on a single
elevator system [17]. Also the results for the related REPLAN policy, though theoretically
inferior, were quite good: better than IGNORE for the average flow and waiting times,

2000 Mathematics Subject Classification.90B06.
Key words and phrases.elevator group control, policy, reoptimization, online, real-time, simulation.
Research supported by the DFG Research Center MATHEON »Mathematics for key technologies« in Berlin.
Research supported by the DFG graduate program »Graduiertenkolleg 621 (MAGSI)«, Berlin.

1



2 PHILIPP FRIESE AND JÖRG RAMBAU

worse for the maximal flow and waiting times. When, however, we put together five el-
evators, each controlled with the IGNORE or the REPLAN policy, the results were less
encouraging. Why was this?

Before the scheduling of individual elevators can be done, each pallet has to be assigned
to an elevator. This assignment, of course, greatly influences what can be achieved during
scheduling. Deciding on the assignment without taking into account the consequences for
scheduling led to results that more or less completely leveled off the gains of the good
scheduling policy.

This led us to the conclusion that integrated assignment-and-scheduling policies were
in place. In order to implement an IGNOREor a REPLAN type integrated policy, one needs
an real-time compliant reoptimization modulefor the static optimization problem for a
snapshot state of the system: For all pallets already known to the system, find a tentative
assignment and schedules for elevators so that some objective is minimized. The result of
such an optimization, i.e., a dispatch, is then used for some time for the control decisions.

The original single-elevator policies IGNOREand REPLAN used the makespan of a dis-
patch as objective function, because, in contrast to the average flow time functional, there
are efficient combinatorial algorithms to solve this problem for a single elevator [21].

Our first attempt in that direction, documented in [30], was to reoptimize the makespan
of a tentative dispatch in a multi-elevator system. Motivated by a successful application
to a warehouse single-server stacker crane in [2], we modeled the reoptimization problem
as a multi-server asymmetric traveling salesman problem. We proposed a branch & cut
algorithm to solve the resulting integer linear program. Computational results, however,
showed that the run times of such a reoptimization algorithm were far too large to be used
as a control algorithm in real-time. Moreover, we observed in experiments that the run-
times exponentially scaled with the number of pallets. That means: the more pallets the
slower the algorithm, no matter how many elevators we spend.

For quite some time, we thought that exact reoptimization approaches were hopeless,
and we gave up on the multi-elevator dispatching problem.

In the meantime, we succesfully developed a real-time reoptimization algorithm for the
online dispatching of automobile service units for the German Automobile Association
(ADAC). This algorithm was able to assign 200 help requests to 80 service vehicles and
to schedule these vehicles almost optimally in about 10s. The reoptimization goal was
a complicated function, put together essentially from late, drive, and overtime cost. The
crucial property of the algorithm: its run time only scaled exponentially with the number
of requests per unit. The technique used was a dynamic column generation procedure,
especially tuned to run in real-time [28].

Since, for the single elevator, the minimization of the average flow time or the average
waiting time, or a similar function of flow or waiting times, is computationally harder than
makespan minimization, we did not even think about these functionals for a multi-elevator
reoptimization. (The famous discouraging result about flow time scheduling in [24] says
that the weighted average flow time for jobs with release times on a single machine can
only be approximated within a factor ofΩ(

√
n), wheren is the number of requests. This

contrasts the polynomial solvability of the single elevator scheduling problem, as shown in
[21].)

After the success in the ADAC project, however, it occured to us that the multi-elevator
reoptimization could essentially be done with a modified algorithm from the ADAC project,
thereby reoptimizing some function on the flow or waiting times. (Interestingly enough,
a makespan minimization turned out to be conceptionally harder in the dynamic column
generation model, with a selection variable for each possible tour of a server through a set
of requests, than an average waiting time minimization.)

In this paper, we finally present the results of extensive simulation studies on how these
new reoptimization policies, that use an adopted reoptimization algorithm form the ADAC



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 3

project, perform w.r.t. to the considerably harder real-time requirement of 1sanswer time.
Our simulation studies have been carried out w.r.t. an idealized, symmetric elevator system,
removing the capacity restrictions in the waiting queues. This was to emphasize the gen-
uine role of the interplay between assignment and scheduling, untweaked by specialities
of the real system that might not be tranferrable to other systems.

As input distribution we used Poisson arrivals. It turned out that the performance of
reoptimization policies, in particular w.r.t. the maximal waiting times, heavily depends on
the reoptimization objective. The best results over all could be achieved by minimizing the
sum of squared waiting times in each reoptimization. Since the reoptimization algorithm
is flexible in that respect, more complicated objectives for the reoptimization models are
conceivable. We investigated some of them, but since the most significant improvements
stem from the minimization of the sums of squared waiting times, we stick to the »pure«
objectives in this presentation.

Currently, we aim at applying the key learnings of this work to the real elevator system
in the distribution center of Herlitz.

1.1. Related Work. Optimization literature on elevator control in particular is surprisigly
sparse. In [11, 12], elevators with higher capacities for human passengers are controlled
with reinforcement learning techniques. Their setting is different from ours in that the
neither the number of passengers on a floor nor their destinations are know to the controller.

Only after the development of so-called destination control, telling the controller how
many people want to go to which floor, (at Schindler Lifts Ltd., productive in 1996), it
became more interesting to compute optimal tentative schedules. This was, e.g., done in
[25] a reoptimization technique based on branch & bound was used to generate tentative
stop sequences for a single elevator minimizing the average waiting time of the passengers.
In the same paper and in [26], a concept was introduced how this reoptimization can be
integrated into an AI-based formal online control system. Still, the control of elevators
with capacities larger than one poses completely different optimization problems than the
control of a unit capacity elevator.

Another model that fits the elevator control problem is the general online dial-a-ride
problem, which is usually investigated with competitive analysis. Several results for a
single elevator are available: competetive algorithms are only known if the goal is to min-
imize the long-term makespan [4] or the weighted sum of completion times (measured
from a global time zero) [27]. For minimization of the maximal or average flow times,
it is known that the aforementioned IGNORE policy is guaranteed to perform well under
reasonable load [20], but no competitive online algorithm can exist. That the makespan
reoptimization can be done in polynomial time, at least if stopping and starting times of
the elvator are neglected, was shown in [21]. Even with additional starting and stopping
times, the same agorithm yields asymptotically almost surely an optimal solution [10].

There is a vast literature on dynamic vehicle routing problems. We can view elevators as
vehicles traveling through a set of requests, where the distances are asymmetric, given by
the connecting moves. This model was used in the online control of the (two-dimensional)
movements of an automated stacker crane, serving a warehouse (see [2]). The evaluation
of the resulting reoptimization policy was done by simulation experiments: significant
improvements over a priority based control policy could be achieved.

Other dynamic vehicle routing problems have been used as test cases for models that
are supposed to deal appropriately with the dynamics of the system. An overview of what
principle difficulties have to be taken into account can already be found in [32].

There are several heuristic approaches that are all some kind of approximation of re-
optimization policies. Tabu-search based methods are proposed in [15]. Diversion issues
(diversion = changing the next customer of a vehicle) are investigated in [22]. An overview
over some heuristic methods can be found in [16]. Another local search method is used as



4 PHILIPP FRIESE AND JÖRG RAMBAU

the reoptimization module in [35], but the main focus in that paper is how the concurrency
of certain events is resolved in the controller.

A newer type of dynamic heuristic is the multiple plan approach presented in [5]. This
heuristic might be especially interesting if the system might run into an infeasible state,
e.g., when hard time windows are present.

Another attempt to avoid too complicated reoptimization by feed-back mechanisms in
logistic queueing networks was proposed in [31] for the management of a fleet of vehicles
ot service a known set of loads. This approach might help whenever exact reoptimization
techniques can not be implemented to run in real time.

To theoretically evaluate the expected performance of control policies w.r.t. some input
distribution, Markov decision models are certainly theoretically appropriate. Alas, the
computational effort for an exact evaluation of the expected performance of a policy is
for all but the most trivial vehicle routing problems prohibitive. Nevertheless, based on
a Markov decision model, in [29] a decomposition heuristic is designed that can be used
for moderatly sized vehicle dispatching problems for the delivery of goods. This heuristic,
however, is only evaluated in the case when the decisions irrevocably fix the complete
routes for the vehicles until the routes have been traversed completely. In a sense, the
considerations in that paper have been restricted to IGNORE-type policies.

Theoretical results on the basic dynamic traveling repairman problem w.r.t. the mini-
mization of the expected total waiting time can be found in [8, 9]. Here, the input distribu-
tion of requests is given by Poisson arrivals in each point of a bounded area in the Euclidean
plane. In our language, a variant of FIFO is stable and optimal as the load approaches zero,
whereas variants of IGNOREare stable and provably good in heavy load.

In spite of some successes in the theoretical evaluation of policies for vehicle routing,
for large-scale systems simulation experiments seems still unavoidable. A data model that
is suitable for the simulation of an elevator system must take into account that elevators are
moving objects and processing severs at the same time. A clean simulation data model for
this can be found in [34]. Nevertheless, it would be desirable to find at least computational
bounds on the expected performance of a policy. Maybe the method in [6] could produce
a suitable tool, but so far nothing in this direction is in sight for elevator control.

We close this section with a reference that is in sync with our aim to design proper
reoptimization policies for dynamic dispatching problems like the multi-elevator control
problem. The main encouragement for the use of exact reoptimization policies can be
found in [7]. Based on a thourough analysis of various aspects of dynamic and stochastic
vehicle routing, the authors come to the following conclusion: »A reoccurring finding in
the analysis is that static vehicle routing methods when properly adapted can yield optimal
or near optimal policies for dynamic routing problems«. In this spirit, we try to find out the
right models for reoptimization so that the corresponding reoptimization policies perform
well.

1.2. Our Contribution. We present simulation experiments that compare the performance
of various policies for the dynamic elevator dispatching problem (defined below) that have
not been thoroughly compared before.

Some of the policies are common in practice, some are new. For the first time, we quan-
titatively show that exact reoptimization, where assignment decisions and scheduling de-
cisions are integrated into one model, firstly, improves the performance of a multi-elevator
system significantly and can, secondly, be implemented to run in real-time.

More specifically: exact reoptimization w.r.t. the minimization of the sum of squared
waiting times leads to a stable system for very high loads, when other heuristic policies
like variants of NEAREST-NEIGHBOR let the system overflow already. Thereby, the reop-
timization of the sum of sqared waiting times leads to the best maximal individual waiting
times (fairness). We furthermore found out that, under high load, heuristic reoptimization



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 5

by means of best-insertion or two-exchange methods can not completely cope with exact
reoptimization.

Our exact reoptimization can be implemented so that all reoptimizations can finish with
an optimality gap below 5% in only 1s whenever the number of requests per elevator is
not larger than five. Our implementation is a column generation algorithm with dynamic
pricing control, based on a vehicle dispatching algorithm ZIBDIP, used for the real-time
dispatching of automobile service units.

Although most people will not be surprised that a first-in-first-out (or first-come-first-
serve) policy is inefficient, we show quantitatively how disastrous the use of such a policy
is. In our idealized elevator system with 16 floors the following can be observed: in or-
der to achieve a fixed average waiting time, without any optimization one needs around
60% more elevators than with rigorous mathematical reoptimization; with very common,
heuristically optimizing policies one needs around 20% more elevators.

1.3. Structure of the Paper. In Section 2, we describe the idealized elevator system under
consideration and the aspects that have been simplified in contrast to the motivating real
system. In Section 3, we present models for the underlying dynamic and the static multi
elevator dispatching problem, which yields mathematical formulations of both our special
control problem and the corresponding reoptimization problems. Section 4 inroduces and
classifies some policies. The simulation environment as well as the computational results
are provided in Section 5. We add some remarks about possible extensions in Section 6,
before we close the paper with our conclusions in Section 7.

2. THE SYSTEM OF STUDY

The multi-elevator system (sometimes called an »elevator group«) under consideration
is an idealized system. It consists ofk elevators traveling at unit speed. Stopping, entering,
exiting, starting, and turning may take individual additional time, but we will not mention
this in the sequel, for the ease of exposition. Each elevator has capacity one, i.e., it can
only carry one request at a time. There is a global waiting queue for each floor with infinite
capacity. Requests become known to the system control when they arrive in this queue. In
front of each elevator, a seperate local waiting queue with infinite capacity exists. From
the global waiting queue, each local queue, and hence each elevator, can be reached in
the same constant amount of time. From the local waiting queue in front of an individual
elevator only that elevator can be reached. In neither waiting queue, requests can overtake
each other.

In the motivating application, each elevator’s local waiting queue has capacity one, the
global waiting queue is a circular conveyor moving the palets around the elevator system,
passing the elevators’ local waiting queues one by one. Therefore, in reality the time to
reach the local waiting queue of an elevator depends on the elevator.

The reason for studying the idealized system in detail is that we would like to understand
better the core of the underlying more general online dispatching problem, unmixed with
the very special situation in the motivating application that might not be present in similar
applications. A thourough investigation of the real system is currently work in progress,
exploiting principles revealed in this paper.

3. MODELING

We present models for the dynamic and the static multi elevator dispatching problem.

3.1. Model of the Dynamic Multi Elevator Dispatching Problem. An instance of the
dynamic multi elevator dispatching problem consists of a multi elevator system as de-
scribed above and a distribution of requests.



6 PHILIPP FRIESE AND JÖRG RAMBAU

Requests arrive over time, and no information is available about future requests. Re-
questsr are triplesr = (τ(r),o(r),d(r)) with enter timeτ(r), origin flooro(r), and desti-
nation floord(r). The enter timeτ(r) of r is the time at whichr becomes known and is
available in the global waiting queue on its origin flooro(r). The transportation task is to
carryr from flooro(r) to floord(r) without preemption, i.e., requests can only be dropped
at their final destination.

An online algorithm as well as a dynamic control policy for such an elevator system
must make the following two control decisions over and over again:

(1) Whenever a new request arrives, choose an elevator to serve this request (online
assignment).

(2) Whenever an elevator is idle, either choose a yet unserved request in one of the
elevator’s local waiting queues to be served next or decide that the elevator be idle
for a specified amount of time (online scheduling; see Figure 1).

Elevator−Control

Move Elevator
to Next Request

Elevator Empty

Choose Next Request

Serve Request

Elevator Occupied

FIGURE 1. The basic control cycle for the control of a single elevator

The difference in the literature between an online-algorithm and a (control) policy is
that an online-algorithm has never any information about the input distribution, whereas a
policy may know the input distribution. Moreover, online algorithms are usually evaluated
by competitive analysis, which measures their worst-case deviation from an a-posteriori
offline-optimum solution on finite input sequences, whereas policies are usually evaluated
by expected performance w.r.t. to an input distribution, an average measure. We will stick
to the term policy, because our experimental evaluations are average performances w.r.t.
an input distribution, although all policies considered in this paper are in fact online algo-
rithms, i.e., they do not use any knowledge about the input distribution.

A server move mis a quadruplem= (θ(m),o(m),d(m), r(m)), whereθ(m) is the start
time of the move,o(m) is the origin floor of the move,d(m) is the destination of the
move, andr(m) is either the carried request of the move or EMPTY ifm is an empty
move. Atransportation protocol P= (Ps)s∈S is a vector that consists ofk sequencesPs =
ms

1,m
s
2, . . . ,m

s
ns of server moves, one sequence for each servers∈ S. These moves must

be consecutive, i.e.,d(ms
j) = o(ms

j+1) for all 1≤ j < ns and alls∈ S. Moreover, since no
preemption is allowed,o(m) = o(r(m)) andd(m) = d(r(m)) wheneverr(m) 6= EMPTY.
We denote bymP(r) the move inP that carries requestr. For every finite realization of the
request distribution, each policy induces a finite transportation protocol transcribing the
effect of the policy’s decisions.

We consider the following cost functions on transportation protocols:



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 7

1. The average waiting time of a transportation protocolP for a setRof n requests is given
by

cavgwait(P) :=
1
n ∑

r∈R

(
θ(mP(r))− τ(r)

)
2. The maximum waiting time of a transportation protocolP for a setR of n requests is

given by

cmaxwait(P) := max
r∈R

{
θ(mP(r))− τ(r)

}
3. The average squared waiting time of a transportation protocolP for a setRof n requests

is given by

cL2-wait(P) :=

√
1
n ∑

r∈R

(
θ(mP(r))− τ(r)

)2

Essentially, all three objectives areLp-norms of the waiting time vector, whose entries
are the individual waiting times of the requests inR. The average waiting time is thenth
fraction of theL1-norm, the maximal waiting time is theL∞-norm, and theL2 waiting time
is the

√
nth fraction of theL2-norm of the waiting time vector.

We remark that, even for a single server, for none of these objectives there are competi-
tive online-algorithms. This is because, no matter where an online algorithm has positioned
its server, a malicious adversary could issue a requests with large enter time somewhere
else; since the enter time is large, an offline optimum could serve that request with waiting
time zero by moving the server there in advance, whereas the online algorithm still has to
move its server to the request, incurring a strictly positive waiting time.

We further note, that an optimal policy for our dynamic dispatching problem that mini-
mizes the expectation of one of the average cost functions—let alone the maximal waiting
cost—is not known. Classical computational methods like value or policy iteration seem
prohibitive since the number of states necessary to describe the system is astronomic.

We resort to an evaluation of special policies by discrete event based simulation in order
to estimate the expected performance of the policies under consideration.

3.2. Model of the Static Multi Elevator Dispatching Problem. In this section, we present
an integer linear programming model for the underlying offline optimization problem start-
ing in an arbitrary system state. An instance of this static multi elevator dispatching prob-
lem is a system state of the dynamic problem. Such a state consists of

1. A setRof requests that are not yet being carried by a server.
2. A subsetR′ ⊆ R of requests that are already irrevocably assigned to a server, i.e., that

are already in one of the servers’ local waiting queues. Fors∈ S, the setR′s⊆ R′ is the
set of requests already assigned to servers.

3. For each servers, the requestr0(s) that it is currently carrying.
4. For each servers, the timeθ0(s) and positiono0(s) at which it will be empty next. If

the server is empty then this is the time and position at which it can stop next (usually
the next floor in its current direction).

What is such a model good for? Since we currently have no clever idea how to make use
of the input distribution (and we would not trust that information in practice anyway), we
plan to base our decisions in the dynamic problem on what we have in hands: the current
system state. Using this as an input, we will solve an optimization problem w.r.t. some
objective in order to produce a currently optimal dispatch, i.e., a transportation plan for the
future, from which we can draw all decisions until the system state changes (i.e., at the
arrival of a new request).

The model is based on set partitioning w.r.t. the set of all requests inR into server
toursfor the servers inS. That is, we have a variablexT for everyfeasible server tour. This
allows us to includeprecedence constraintsandpreassignment constraintsinto a feasibility



8 PHILIPP FRIESE AND JÖRG RAMBAU

check for tours that areimplicitly enumeratedrather than modeled mathematically. We
explain this in more detail in the following.

A server tour, or tour for short, is given by a serversand a sequenceT of requests with
the meaning that servers serves the requests of the sequence in the order of the sequence.
Without loss of generality, for the objectives under consideration (norms of waiting time
vectors) each server traverses such a tour in the fastest possible way, since there are no
conflicts between various servers, and all requests have been released already. That is,
all server moves in a tour including their start times are w.l.o.g. given by the sequence
of requests to be served. As start times of the moves we will always assume the earliest
possible start time.

The start time of a tour of servers is the timeθ0(s) at which the server will have finished
its service on the requestr0(s), i.e. the request currently carried bys. All start times the
the following moves in a tour are uniquely given by the distances (in floors) the server has
to travel in order to complete the moves. Thecost cT of a tourT can be any cost function.
We mainly consider the sum of waiting times and the sum of squared waiting times of the
requests inT.

A server tour isfeasibleif the precedence constraintsof the global waiting queues and
thepreassignment constraintsfor the requests inR′⊆Rare satisfied. The precedences stem
from the motivating application because palets can not overtake each other on a conveyor
belt. The precedences enforce that all requests with the same origin floor must appear in
the tour in the order of their enter times in the global waiting queue on their common floor.
The preassignment constraints are induced by requests that have already entered the local
waiting queues of the elevators and can therefore not be assigned to a different elevator
anymore. If, e.g., a requestr is in R′s for a servers, then a tour fors is only feasible if it
containsr, and the tour for the other servers are only feasible if they do not containr.

A feasible dispatch Dis a set of feasible tours, one for each server, so that each request
is in exactly one tour. The cost of a feasible dispatch is the sum of the costs of its tours.

We callT the set of all feasible tours (including void tours in which the set of served
requests is empty), andTs is the set of feasible tours for servers for s∈ S. Let A =
(arT )r∈R,T∈T ) be the incidence matrix of requests and tours and letB = (bsT)s∈S,T∈T ) be
the incidence matrix of servers and tours.

Let now x ∈ {0,1}T be a decision variable with the meaningxT = 0 if and only if T
is in a dispatch. Moreover, letc∈ {0,1}T be the vector of the corresponding tour costs.
With this notation, we can formulate the static multi elevator dispatching problem as the
following integer linear program:

mincTx

s.t.

Ax= 1 (Partitioning of Requests)

Bx= 1 (Partitioning of Servers)

x∈ {0,1}T

In the case whencT is the sum of waiting times or the sum of squared waiting times in
T, the costcTx of a feasible solutionx is the sum of waiting times or the sum of squared
waiting times over all requests. The former objective is equivalent to the average wait-
ing time, and the latter objective is equivalent to theL2-waiting time, introduced for the
evaluation of tranport protocols in Section 3.1.

Of course, the dimension of this program is huge. The variables, however, can be
generated implicitely. This so-called dynamic column generation procedure is by now a
well-established technique. The two big advantages of a model based on tour variables,
rather than on multicommodity flow variables, are, first, the possibility to model difficult,



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 9

non-linear side-constraints and costs, and, second, the smaller integrality gap between the
model and its linear programming relaxation.

4. POLICIES FOR THE DYNAMIC ELEVATOR DISPATCHING PROBLEM

In this section, we introduce policies for the dynamic elevator dispatching problem.
Some of them are commonly used in practice, some appear in the literature. We addi-
tionally propose reoptimization policies that use exact methods for reoptimization; such
policies are very often discarded based on the assumption that the corresponding solution
algorithms can not be implemented to meet real-time requirements like 1s answer times.
That exact reoptimization methods can indeed be real-time compliant in certain applica-
tions was proven for the dynamic dispatching of automobile service units for the german
automobile association (ADAC) in [28, 18]. Actually, a more serious problem of such poli-
cies is their sometimes undesired dynamic behaviour, as was shown in [20], which heavily
depends on the specific problem, as we will see in the computational results in Section 5.3.

According to the two basic control decisions a policy has to make, the problem can be
hierarchically decomposed: first for every new request we need an assignment decision,
second each server must make scheduling decisions for each request assigned to it. It
is in principle possible, to put together a policy by combining an arbitrary assignment
policy with an arbitrary scheduling policy. This decomposition is often calledcluster-first-
schedule-second.

Of course, the assigment decisions influence what will be possible in the scheduling
decisions of the individual servers. Therefore, the assignment decisions and scheduling
decisions might also be made in a coordinated way. We call policies of this typeintegrated
policies.

4.1. Assignment Policies.We list some natural assignment policies that are commonly
used. The possible assignment decisions are few, so the core of the problem is not in
the computational effort in some optimization problem but is completely in the unknown
future.

4.1.1. Rule-Based Policies.This is the easiest assignment policy: just assign to theith
request server with numberi modk. This policy does not base its decisions on any cal-
culation related to efficiency. Therefore, it is believed that the expected result is very
inefficient. Nevertheless, this policy is widely used.

4.1.2. Greedy Policies.In this policy, for each server the number of yet unserved requests
is continuously updated (or some other load measure: shortest queue on the origin floor,
least amount of loaded floors to be traveled for the already assigned requests, etc.). Assign
a new request to the—in that sense—least loaded server.

4.2. Scheduling Policies.Scheduling policies can be drawn from the literature on the on-
line dial-a-ride problem [13, 4, 19]. Most investigations, however, concern competitive
analysis for online algorithms. Simulation studies can be found in [17]. Policies for sched-
uling the individual servers get the assignment policies’ outputs as their inputs. This makes
the assignment decisions so important.

4.2.1. Rule-Based Policies.This class of policies makes its control decisions on the basis
of external rules with no calculations according to cost. The main example of such a policy
is FIFO: all requests are served in the order of appearance.

In the Operations Research community it is quite accepted that such a policy leads often
to inefficient system behaviour. It is, however, sometimes claimed that it implements more
»fairness« in the system than other policies heading for efficiency.

It will be shown in Section 5.3 that if at all their is fairness to FIFO it is fairness on a
very low level of service quality: all requests have to wait long and the system’s throughput
(the rate of requests that the system can handle without overflowing) is very low.



10 PHILIPP FRIESE AND JÖRG RAMBAU

Other rule-based policies include PRIORITY: each request belongs to a certain priority
class, and requests with higher priority are served first, where ties are broken according
to FIFO. Our experience is that for PRIORITY it is often overseen that it is exactly the
tie-breaker FIFO that leads to inefficient behaviour of PRIORITY [2, 3].

4.2.2. Myopic Policies.This class of policies tries to find a control decision that incurs
the least immediate cost. The most famous one is NEAREST-NEIGHBOR: always serve
the closest request next. That means, NEAREST-NEIGHBOR minimizes the length of the
server’s empty move to the next request. For unit speed, this is the same as minimizing the
start time of the next loaded move.

The NEAREST-NEIGHBOR policy is usually observed to have very small average wait-
ing times, but individual waiting times can become quite large. Instances can be con-
structed in which some requests are never served.

4.2.3. Heuristic Reoptimization Policies.Here, and in the next section, the decisions are
based on the solution of a reoptimization problem that is an instance of a static single-
elevator control problem w.r.t. some fixed cost function and maybe additional side con-
straints. Sometimes the cost function and the side constraints are exactly as in the dynamic
problem. We call thiscongruent reoptimization. One cost function in the literature used
for reoptimization that is not congruent to the dynamic problem is the makespan [20]. The
reoptimization problem is constructed at the arrival of each new request. The policies in
this section solve this problem by heuristic means, i.e., they do not give any information
about the optimality gap of the solution obtained.

The most prominent representatives are probably REOPT-BESTINSERT and REOPT-
TWOOPT. At the arrival of a new request, the policy REOPT-BESTINSERTstarts with the
previously computed schedule. It removes all requests that have been served already and
inserts the new request so that the resulting schedule has the smallest possible cost. The
policy REOPT-TWOOPT goes further: it iteratively exchanges the position of two requests
in the resulting schedule so that the schedule stays feasible and that the cost decreases; this
is done until no progress can be made this way anymore.

It has been stated in the literature [35, p. 5] that heuristic reoptimization might help
to leave some slack in the solutions that lead to more robustness w.r.t. to possible future
requests. We will see that this hope is not always based on facts.

4.2.4. Exact Reoptimization Policies.As in the previous section, decisions are based on
the outcome of a reoptimization procedure, but here we use exact methods in the sense that
the opimality gap can be computed.

For dial-a-ride problems like the static single elevator dispatching problem, there are
ideal cases where the reoptimization problem w.r.t. makespan minimization can be solved
in polynomial time [21]. For the waiting time based objectives the reoptimization problems
are mostly NP-hard, e.g., because the Traveling Repairmen Problem can be reduced to
them.

A general solution method is branch & bound. The performance heavily depends on
the specific problem. We say that an implementation of such a reoptimization procedure is
real-time compliant if it produces a gap below 1%–5% within the required answer time,
which is 1s in our case.

4.3. Integrated Policies. In this section, we introduce some integrated policies that in-
clude into their assignment decisions the impact on the scheduling problem for the indi-
vidual elevators. To this end, they maintain a current schedule for each elevator (i.e., a
tentative dispatch) that is updated immediately after each assignment decision. This as-
signment decision takes the resulting updated schedules into account beforehand.



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 11

4.3.1. Greedy-Type Policies.Greedy-type policies are characterized by the fact that they
never change the start time of a request in an elevator’s schedule: new requests are either
inserted so that the following requests are not postponed or they are appended. As eamples,
we introduce two greedy-type policies GREEDY-LATE and GREEDY-DRIVE. Both assign
a request as early as possible into a gap in an elevator’s schedule. If this can not be done,
both append the new request to one of the schedules. The policy GREEDY-LATE picks
the elevator such that the new request has the smallest possible waiting time. The policy
GREEDY-DRIVE chooses the elevator so that the length of the emtpy move to the new
requests is as small as possible. Ties are broken in both cases in a round-robin fashion.
While the former policy is quite natural by itself, the latter policy is motivated by the
common opinion that avoiding empty moves leads to a more efficient system.

4.3.2. Heuristic Reoptimization Policies.Heuristic as well as exact reoptimization poli-
cies are allowed to change the current dispatch according to all available degrees of free-
dom. This means that in order to evaluate an assignment decision, all previously made
tentative scheduling decisions, if not yet implemented irrevocably, can be revised.

More formally, at the arrival at each new request a static multi elevator dispatching
problem is constructed. The input for this offline optimization problem is the current state
of the system in the sense of Section 3.2. As in the single server case, a feasible solution can
be obtained by taking the current dispatch, removing all served requests, and inserting the
new request at least possible cost. This leads to the REOPT-BESTINSERTpolicy. Similarly,
there is a REOPT-TWOOPT policy that tries to iteratively reduce the cost of a dispatch by
exchanging the positions of two requests.

At times it is claimed that in practice very often REOPT-TWOOPT yields results very
close to what an exact optimization can do.

4.3.3. Exact Reoptimization Policies.Here, we reoptimize so that provable optimality
gaps for the solutions to the reoptimization problems are available. Again we say that
an implementation of a reoptimization procedure is real-time compliant if it produces a
gap below 1%–5% within the required answer time, which is 1s in our case. Our main
tool for obtaining such tight quality guarantees is dynamic column generation for a linear
programming relaxation of the integer linear programming model in Section 3.2. The input
is again given by the current state of the system.

Note that when the cost of a tour is the sum of waiting times, an optimal dispatch
also minimizes the average waiting time over all requests. That means, for minimizing
the average waiting time in the dynamic problem such a tour cost defines a congruent
reoptimization. The same is true for theL2 waiting time in the dynamic problem when the
cost of a tour is chosen to be the sum of squared waiting times.

It is not true that congruent reoptimization is always good in expectation. We will see,
however, that for some objectives in the dynamic problem it is the best that we currently
know.

5. SIMULATION EXPERIMENTS

In this section, we compare a selection of policies described in the previous section.
Before presenting the figures, we describe the implementations and the computational en-
vironment.

5.1. The Implementation Of Exact Reoptimization. For a very long time it was claimed
that an integer linear programming algorithm for a complicated offline optimization prob-
lem like the static multi elevator dispatching problem could not be implemented to meet
real-time requirements like 1s answer time. In [28], however, a large scale real-world
application was presented, in which an integer linear programming algorithm based on dy-
namic column generation could solve static service vehicle dispatching problems with 80
vehicles and 200 service requests in 10s to (near) optimality.



12 PHILIPP FRIESE AND JÖRG RAMBAU

The special algorithm ZIBDIP in that work used a concept calledDynamic Pricing
Control that, for that particular application, led to a rapidly converging column generation
procedure. It occured to us that many characteristic aspects also appear in the static multi
elevator dispatching problem. The implementation used for the exact reoptimization poli-
cies REOPT-ZIBDIP, considered in this paper w.r.t.cavgwaitandcL2-wait, resp., are therefore
based on ZIBDIP. Precedence constraints and preassignment constraints had to be added
to the column generation procedure. The implementation of our reoptimization algorithm
is real-time compliant whenever the number of unserved requests per elevator is around
five. In order to guarantee real-time compliance of the policy, the reoptimization run is
interrupted after 1s. If the reoptimization is interrupted this way prematurely, then the al-
gorithm may not have closed the optimality gap below 5%. In these cases, it represents
only a heuristic reoptimization method. However, in terms of the quality of the reoptimiza-
tion results, REOPT-ZIBDIP dominates both REOPT-BESTINSERTand REOPT-TWOOPT,
since both heuristics are used in ZIBDIP’s preprocessing anyway.

5.2. Computational Environment. We simulated cargo elevator systems with 5 elevators
operating on 16 floors in 12 samples with 2 hours of simulation time each. Thereby, we
investigated low system load as well as high system load. The requests were generated
randomly with exponentially distributed inter-arrival times. For the results, we monitored
the average waiting time, theaverage squared waiting time, themaximum waiting time,
and theload histogram(how many known requests are unserved at a point in time) of each
elevator system. All waiting times can be seen as a measure for the Quality of Service
(QoS), as the load histogram indicates the stability of the system, since in a real system the
waiting queues have finite capacities.

We call a policystableif it is able to reduce the number of known unserved requests
below a constant number again, no matter how long the system has been running already.
For an unstable policy, the »downpeaks« of the system load over time are constantly in-
creasing. In the histograms, this can be easily checked by looking at the lower envelope of
the graph: if the lower envelope of the graph is bounded by a constant, then the policy is
(experimentally) stable, otherwise not.

In order to be able to display the results of the various policies side by side, we use the
following shortcuts for policies:

Shortcut Policy

A FIFO

B NEAREST-NEIGHBOR

C REPLAN

D IGNORE

E GREEDY-DRIVE

F GREEDY-LATE

G REOPT-BESTINSERTw.r.t cavgwait

H REOPT-TWOOPT w.r.t cavgwait

I REOPT-ZIBDIP w.r.t cavgwait

J REOPT-BESTINSERTw.r.t cL2-wait

K REOPT-TWOOPT w.r.t cL2-wait

L REOPT-ZIBDIP w.r.t cL2-wait

M REOPT-ZIBDIP w.r.t cavgwait and Extreme Load Model
N REOPT-ZIBDIP w.r.t cL2-wait and Extreme Load Model

TABLE 1. Investigated policies and their Shortcuts.

We performed three consecutive simulation series. In the first series, we compared the
policies A to D as representatives for hierarchical policies, making assignment decisions



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 13

and scheduling decisions independently. In the second series, we compared the »winner«
of this series with the policies E and F, representing heuristic ideas to integrate assignment
and scheduling decisions. Finally, in the third series, we compared the »winner« of the
previous series with the policies G to N, representing the integrated reoptimization policies.
Note, that the load histogram of each policy is only displayed once in the results.

5.2.1. Hardware and Software Setup.All simulations have been carried out on a 2.4 GHz
Intel Xeon machine, equipped with 2.0 GB of RAM, running Linux as operating system
(kernel version 2.6.8). The source codes were compiled using theGNU C++-compiler
gcc, version 3.3.4 (pre 3.3.5 20040809) [14] with the compiler flag-O2. The algorithm
ZIBDIP used the linear programming (LP) and integer programming (ILP) solverCPLEX
version 9.0 [23]. We disabled the presolving mechanism ofCPLEX by setting the parame-
terCPX_PARAM_PREIND to CPX_OFF, because we had some trouble with extracting correct
dual prices when the presolving mechanism was active.

5.2.2. Simulation Environment.Our simulation tool based on the »low level« simulation
library AMSEL, a callable C-library to design event-based simulation programs. The input
data of a simulation experiment consists of a set ofevent points, a set ofmodules, and a
collection of requests. Each request becomes anobjectwhich flows through the system
via the event points. For each event point a method is specified that derives for each object
entering that event point a successor event from the current state of the system. If an object
is logically located on an event point (i.e., the event »happens« for this object), then the
event is stored in the chronologically sorted globalevent listtogether with a time stamp
and the object identifier; the object stores the same event as its current event.

The basic flow of objects is modeled as follows: the currently next event in time is
read from the event list. Then the successor event is derived together with the point in
time when this event should be processed. Now, the object updates its current event to
the successor event, and the successor event is inserted into the global event list; the old
event is deleted from the list. Modules are closed regions in the system where the number
of objects inside is constrained by a capacity value. Modules are entered through entry
event points and left through exit event points. In order to compare different policies for
elevator systems, it is possible to simulate multiple system configurations simultaneously.
For more details onAMSEL see [1]. For more background on the underlying priciples of
discrete event simulation, see [33].

5.3. Computational Results. In this section we present our computational results of the
simulations. We start with the evaluation of policies for low system load. Afterwards we
do the same for high system load.

Finally, we evaluate in an extra simulation series, how much capacity (in terms of el-
evators) at a given QoS (in terms of average waiting time) can be saved by using exact
integrated reoptimization REOPT-ZIBDIP w.r.t. cL2-wait, as opposed to simple policies like
FIFO and NEAREST-NEIGHBOR.

5.3.1. Low load. As described in section 5.2, we ran three simulation series. The results
for the first series are shown in Figure 2. The policy REPLAN provided the best results,
whereas FIFO was completely inefficient. Considering the load histograms in Figure 3, all
policies seemed to work in an adequate way, with FIFO obviously being almost unstable.

For the next series, we used the »winner« policy C (REPLAN) as a competitor for the
policies E and F. The results are shown in Figure 4. The best results were provided by
policy F (GREEDY-LATE). The performance of policy E (GREEDY-DRIVE) is as bad as
FIFO’s. The load histograms in Figure 5 indicate the stability of the policies.

Again, we used the »winner« policy F (GREEDY-LATE) of the last serie as comparing
element for the policies G to N. As shown in Figure 6, reoptimization policies beat all the



14 PHILIPP FRIESE AND JÖRG RAMBAU

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

DCBA

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait
Maximum Wait

FIGURE 2. Results of policies for low system load.

3.1: Policy A 3.2: Policy B

3.3: Policy C 3.4: Policy D

FIGURE 3. Load histograms of policies at low system load.

others by a substantial margin. There are no differences between the specific reoptimiza-
tion policies, except the maximum waiting time. For this objective, reoptimization policies
w.r.t cL2-wait provide a far better performance than reoptimization policies w.r.t.cavgwait.
This is plausible, since the penalty for long waiting times is much more emphasized in the
quadratic case than in the linear case. The load histograms are shown in Figure 8.



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 15

 0

 100

 200

 300

 400

 500

 600

 700

 800

FEC

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait
Maximum Wait

FIGURE 4. Results of policies for low system load.

5.1: Policy E 5.2: Policy F

FIGURE 5. Load histograms of policies at low system load.

 0

 10

 20

 30

 40

 50

 60

 70

NMLKJIHGF

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait
Maximum Wait

FIGURE 6. Results of policies for low system load.



16 PHILIPP FRIESE AND JÖRG RAMBAU

 0

 2

 4

 6

 8

 10

 12

NMLKJIHG

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait

FIGURE 7. Enlarged bar chart from Figure 6 without maximal waiting times.

5.3.2. High load. In the following, we describe the results under high load. We expected
an even better potential for the exact reoptimization policies, since at any time there are
more known requests to plan with. The results for the first series are displayed in Figure 9.
We see here, and, even more so, in the load histograms in Figure 10, that policies A,
C, and D are extremely instable. The number of unserved known requests is constantly
increasing. Policy B (NEAREST-NEIGHBOR), however, provided the best results in this
series and seemed to achieve a stable performance.

Using policy B (NEAREST-NEIGHBOR) as the »winner« of the previous series, the re-
sults for the policies E, and F are shown in Figure 11. Like in the corresponding low load
series, policy F (GREEDY-LATE) provided the best results, whereas Policy E (GREEDY-
DRIVE) is completely instable (see Figure 12). This seemed very surprising, at first glance.
A reduction of empty moves is very often considered synonymous to efficiency. In the
multi-server case, however, a reduction of empty moves does not lead to a fast service.
In principle it is conceivable that all but one server are idle if the only moving server can
serve the requests essentially without empty moves.

The results of the third series, shown in Figure 13, demonstrate the power of reopti-
mization policies. All policies are (experimentally) stable in our sense (see Figure 15).

Especially interesting is the following fact: the reoptimization policies w.r.t.cL2-wait

provide almost the same average waiting times as the policies reoptimizing w.r.t.˙cavgwait;
they achieve, however, by far better maximal waiting times. This means that essentially
one can choosecL2-wait as reoptimization goal without regret, no matter whether fairness is
more or less important.

Policy REOPT-TWOOPT yields a surprisingly weak improvement over REOPT-TWOOPT.
It should be noted, however, that the reoptimization model only decides one single assign-
ment in one reoptimization run, whereas previous assignments stay fixed. Remember that
this is because the former requests have already entered their assigned elevators’ local wait-
ing queues. Because of this, REOPT-TWOOPT can simply not perform so many feasible
exchanges.

The exact reoptimization methods provided almost 10 % better performance than the
heuristic reoptimization methods (see Figure 14). We have to admit, that this is rather an
incremental improvement over heuristic reoptimization methods, in particular if compared
to the improvement that the heuristic integrated reoptimization policies yield over the other
policies. However, in view of the single free assignment decision per reoptimization, it is
rather remarkable that, w.r.t. bothcavgwait andcL2-wait, Policy REOPT-ZIBDIP, based on



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 17

8.1: Policy G 8.2: Policy H

8.3: Policy I 8.4: Policy J

8.5: Policy K 8.6: Policy L

8.7: Policy M 8.8: Policy N

FIGURE 8. Load histograms of policies at low system load.



18 PHILIPP FRIESE AND JÖRG RAMBAU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

DCBA

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait
Maximum Wait

FIGURE 9. Results of policies for high system load.

10.1: Policy A 10.2: Policy B

10.3: Policy C 10.4: Policy D

FIGURE 10. Load histograms of policies at high system load.

dynamic column generation, can still squeeze out almost 10% in terms of average waiting
times against REOPT-BESTINSERTand REOPT-TWOOPT.

5.3.3. Capacity. To give a very compact view on what can be achieved with mathematical
optimization for our idealized cargo elevator model, we compared FIFO (representing rule



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 19

 0

 1000

 2000

 3000

 4000

 5000

 6000

FEB

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait
Maximum Wait

FIGURE 11. Results of policies for high system load.

12.1: Policy E 12.2: Policy F

FIGURE 12. Load histograms of policies at high system load.

 0

 200

 400

 600

 800

 1000

 1200

 1400

NMLKJIHGF

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait
Maximum Wait

FIGURE 13. Results of policies for high system load.



20 PHILIPP FRIESE AND JÖRG RAMBAU

 0

 20

 40

 60

 80

 100

NMLKJIHG

Ti
m

e 
in

 S
ec

on
ds

Policy

Average Wait
Av. Squared Wait

FIGURE 14. Enlarged bar chart from Figure 13 without maximal wait-
ing times.

based planning), NEAREST-NEIGHBOR (representing heuristically optimized planning),
and REOPT-ZIBDIP w.r.t. cL2-wait (representing mathematically optimized planning) in
another experiment: we investigated how many elevator a policy needs, such that theaver-
age flow timedoes not exceed a certain time threshold. We used a threshold of 40 seconds
for our systems (see Figure 16.1).

Subsequently, we used the number of elevators that the winner policy needed to reach
the threshold also for the other two policies; we wanted to know how substantial the thresh-
old would be violated (see Figure 16.2).

Qualitatively, the result is not surprising. What is surprising, is the amount of im-
provement that can be achieved with mathematical optimization. That REOPT-ZIBDIP
can save three out of eight elevators against FIFO and still one out of six elevators against
NEAREST-NEIGHBOR is significant. Moreover, NEAREST-NEIGHBOR significantly de-
grades in performance when used with five elevators. Even more so: if FIFO has to get
away with five elevators (no problem for REOPT-ZIBDIP), then the system breaks down
completely (average waiting time of several thousands of seconds).

6. EXTENSIONS

We already mentioned that the reoptimization objective can be chosen to be more com-
plicated than just the sum of squared waiting times. In practice, it has proven to be useful
to introduce a low-weight penalty for the driving distance. This acts as a perturbation of
the reoptimization problem and is therefore technically desirable.

We also mentioned that the degrees of freedom for each reoptimization are quite re-
stricted because former assignments are irrevocable. We have experimented with a delayed
assignement model: each assignment is only tentative and can be revised, i.e., the request
stays in the global waiting queue. This remains so until an elevator needs to get access to a
special request in the middle of the global waiting queue. At that point in time, all requests
waiting in front of the special request have to flow into the local queues of their currently
assigned elevators. With this method, an additional improvement, though not too large,
can be achieved. This delayed assignment, however, modifies the basic rules of the game,
and all new heuristics might be possible that also show better performance. Therefore, we
did not present any of these results in this work.

Lower bounds for a-posteriori optimal long-term dispatches can be computed in princi-
ple. We found out, however, that the knowledge about the future requests is so strong that



ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 21

15.1: Policy G 15.2: Policy H

15.3: Policy I 15.4: Policy J

15.5: Policy K 15.6: Policy L

15.7: Policy M 15.8: Policy N

FIGURE 15. Load histograms of policies at high system load.



22 PHILIPP FRIESE AND JÖRG RAMBAU

S1 (8 elevators) S2 (6 elevators) S3 (5 elevators)
0

10

20

30

40
A

ve
ra

ge
 F

lo
w

 T
im

e 
in

 S
ec

on
ds

16.1: Results (linear scale). Number of
elevators for systems with 16 floors using
the policy FIFO (S1), NEAREST-NEIGHBOR

(S2) and REOPT-ZIBDIP (S3), such that the
average flow time does not exceed the time
threshold of 40 seconds.

S1 (5 elevators) S2 (5 elevators) S3 (5 elevators)
1

10

100

1000

10000

A
ve

ra
ge

 F
lo

w
 T

im
e 

in
 S

ec
on

ds

16.2: Results (semilog scale). Systems
with 5 elevators operating on 16 floors using
the policy FIFO (S1), NEAREST-NEIGHBOR

(S2) and REOPT-ZIBDIP (S3).

FIGURE 16. Results for cargo elevator systems.

even this so-called experimental competitive analysis gives no relevant information about
by how much our policies could still be improved.

7. CONCLUSION

In dynamic multi elevator dispatching with the goal of small average and maximal wait-
ing times, reoptimization w.r.t. the sum of the squared waiting times is the best policy we
could find. It outperforms common heuristic policies by a surprisingly large margin.

Compared with the results about reoptimization w.r.t. the average waiting time, it is
apparent that the change in the reoptimization objective can keep the maximal individual
waiting time low without significantly increasing the average waiting time. In our view,
a proper adaption of static methods in the spirit of [7] is, therefore, to use the quadratic
waiting time objective.

It would be desirable to compare reinforcement learning and evolutionary policies against
our reoptimization policies. Since the parameter tuning of such policies is rather an art than
a science (and we are not particularly skilled in implementing these special methods prop-
erly), we invite the specialists in that area to arrange for a shoot-out of policies.

The capacity planning of transport systems like the elevator system in the distribution
center at Herlitz (how many elevators do we need?) is very often done w.r.t. specific control
policies, mostly FIFO. In this context, it is interesting to see that one can save a substan-
tial amount of elevators at the same level of average waiting time if capacity is planned
based on the use of our reoptimization policy. To what extent this observation can be
implemented into the real system, is the subject of future research.

REFERENCES

1. Norbert Ascheuer,Amsel—a modelling and simulation environment library, Developed at Konrad-Zuse-
Zentrum für Informationstechnik, Berlin, available online1.

2. Norbert Ascheuer,Hamiltonian path problems in the on-line optimization of flexible manufacturing systems,
Dissertation, Technische Universität Berlin, 1995.

1http://www.zib.de/Optimization/Software/Amsel

http://www.zib.de/Optimization/Software/Amsel


ONLINE-OPTIMIZATION OF MULTI-ELEVATOR TRANSPORT SYSTEMS 23

3. Norbert Ascheuer, Martin Grötschel, Sven O. Krumke, and Jörg Rambau,Combinatorial online optimization,
Proceedings of the International Conference on Operations Research (OR’98) (Peter Kall and Hans-Jakob
Lüthi, eds.), Gesellschaft für Operations Research e.V. (GOR), Springer, 1998, pp. 21–37.

4. Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau,Online dial-a-ride problems: Minimizing the com-
pletion time, Proceedings of the 17th International Symposium on Theoretical Aspects of Computer Science,
vol. 1770, Springer, 2000, pp. 639–650.

5. Russel W. Bent and Pascal van Hentenryck,Scenario-based planning for partially dynamic vehicle routing
with stochastic demands, Preprint, Brown University, 2002.

6. Dimitris J. Bertsimal,A mathematical programming approach to stochastic and dynamic optimization prob-
lems, Working Paper 3668-94, Sloan School of Management, MIT, 1994.

7. Dimitris Bertsimas and David Simchi-Levi,A new generation of vehicle routing research: robust algorithms,
addressing uncertainty, Operations Research44 (1996), 286–304.

8. Dimitris J. Bertsimas and Garret van Ryzin,A stochastic and dynamic vehicle routing problem in the eu-
clidean plane, Operations Research39 (1991), 601–615.

9. , Stochastic and dynamic vehicle routing in the euclidean plane with multiple capacitated vehicles,
Operations Research41 (1993), 60–76.

10. Armin Coja-Oglan, Sven O. Krumke, and Till Nierhoff,A heuristic for the stacker crane problem on trees
which is almost surely exact, Proceedings of the 14th Annual International Symposium on Algorithms and
Computation, Lecture Notes in Computer Science, Springer, 2003, to appear.

11. Robert H. Crites and Andrew G. Barto,Improving elevator performance using reinforcement learning, Ad-
vances in Neural Information Processing Systems 8 (S. Touretsky, D. C. Mozer, M. and E. Hasselmo, M.
eds.), MIT Press, Cambridge MA, 1996.

12. , Elevator group control using multiple reinforcement learning agents, Machine Learning33 (1998),
no. 2–3, 235–262.

13. Esteban Feuerstein and Leen Stougie,On-line single server dial-a-ride problems, Manuscript, submitted for
publication, 1998.

14. GNU Compiler Collection, Software under the GNU Public Licence (GPL), online available2.
15. Michel Gendreau, François Guertin, Jean-Yves Potvin, and Éric Taillard,Parallel tabu search for real-time

vehicle routing and dispatching, Transportation Science33 (1999), no. 4, 381–390.
16. Michel Gendreau and Jean-Yves Potvin,Dynamic vehicle routing and dispatching, Fleet Management and

Logistics (Teodor G. Crainic and Gilbert Laporte, eds.), Kluwer Academic Publishers, London, 1998,
pp. 115–126.

17. Martin Grötschel, Dietrich Hauptmeier, Sven O. Krumke, and Jörg Rambau,Simulation studies for the on-
line dial-a-ride-problem, Preprint SC 99-09, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1999,
Extended abstract accepted for presentation at Odysseus 2000, first workshop on freight transportation and
logistics, Crete, 2000.

18. Martin Grötschel, Sven O. Krumke, Jörg Rambau, and Luis M. Torres,Online-dispatching of automobile
service units, Operations Research Proceedings (Ulrike Leopold-Wildburger, Franz Rendl, and Gerhard
Wäscher, eds.), Springer, 2002, pp. 168–173.

19. Martin Grötschel, Sven O. Krumke, Jörg Rambau, Thomas Winter, and Uwe T. Zimmermann,Combinatorial
online optimization in real time, Online Optimization of Large Scale Systems (Martin Grötschel, Sven O.
Krumke, and Jörg Rambau, eds.), Springer, 2001, pp. 679–704.

20. Dietrich Hauptmeier, Sven O. Krumke, and Jörg Rambau,The online dial-a-ride problem under reasonable
load, Proceedings of the 4th Italian Conference on Algorithms and Complexity, Lecture Notes in Computer
Science, vol. 1767, Springer, 2000, Long version to appear in: Theoretical Computer Science, pp. 137–149.

21. Dietrich Hauptmeier, Sven O. Krumke, Jörg Rambau, and Hans C. Wirth,Euler is standing in line—dial-a-
ride problems with FIFO-precedence-constraints, Discrete Applied Mathematics113(2001), 87–107.

22. Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin,Diversion issues in real-time vehicle dispatching,
Transportation Science34 (2000), no. 4, 426–438.

23. ILOG-CPLEX-9.0, Mathematical Programming Optimizer Software, Information online available3.
24. Hans Kellerer, Thomas Tautenhahn, and Gerhard Woeginger,Approximability and nonapproximabiblity re-

sults for minimizing total flow time on a single machine, Proceedings of the Symposium on the Theory of
Computing, 1996.

25. Jana Koehler and Daniel Ottiger,An ai-based approach to destination control in elevators, AI Magazine23
(2002), 59–78.

26. Jana Koehler and Kilian Schuster,Elevator control as a planning problem, Proceedings of the Fifth Inter-
national Conference on Artificial Intelligence Planning Systems (Steve Chien, Subbarao Kambhampati, and
Craig A. Knoblock, eds.), AAAI, 2000, pp. 331–338.

27. Sven O. Krumke, Willem E. de Paepe, Diana Poensgen, and Leen Stougie,News from the online traveling
repairman, Theoretical Computer Science295(2003), 279–294.

2http://www.gnu.org/gcc
3http://www.ilog.com/products/cplex

http://www.gnu.org/gcc
http://www.ilog.com/products/cplex


24 PHILIPP FRIESE AND JÖRG RAMBAU

28. Sven O. Krumke, Jörg Rambau, and Luis Miguel Torres,Realtime-dispatching of guided and unguided au-
tomobile service units with soft time windows, Algorithms – ESA 2002, 10th Annual European Symposium,
Rome, Italy, September 17–21, 2002, Proceedings (Rolf H. Möhring and Rajeev Raman, eds.), Lecture Notes
in Computer Science, vol. 2461, Springer, 2002.

29. Alan S. Minkoff,A markov decision model and decomposition heuristic for dynamic vehicle dispatching,
Operations Research41 (1993), 77–90.

30. Marco Müller,Online-optimierung und layout-planung von aufzugsystemen, Master’s thesis, Technische
Universität Berlin, 2000.

31. Warren B. Powell, Tassio A. Carvalho, Gregory A. Godfrey, and hugo P. Simão,Dynamic fleet management
as a logistic queueing network, Annals of Operations Research61 (1995), 165–188.

32. Harilaos N. Psaraftis,Dynamic vehicle routing: Status and prospects, Annals of Operations Research61
(1995), 143–164.

33. H.-J. Siegert,Simulation zeitdiskreter systeme, Oldenbourg, München, Wien, 1991.
34. Antonio Stagno, Patrick Chénais, and Thomas M. Liebling,Qobj modeling, OR Spektrum (1998), no. 20,

109–122.
35. Kenny Qili Zhu and Kar-Loon Ong,A reactive method for real time dynamic vehicle routing problem, Pro-

ceedings of the 12th ICTAI, 2000.

PHILIPP FRIESE AND JÖRG RAMBAU , ZUSE-INSTITUTE BERLIN, TAKUSTR. 7, 14195 BERLIN, GER-
MANY

E-mail address: {philipp.friese,rambau}@zib.de


	1. Introduction
	1.1. Related Work
	1.2. Our Contribution
	1.3. Structure of the Paper

	2. The System Of Study
	3. Modeling
	3.1. Model of the Dynamic Multi Elevator Dispatching Problem
	3.2. Model of the Static Multi Elevator Dispatching Problem

	4. Policies For The Dynamic Elevator Dispatching Problem
	4.1. Assignment Policies
	4.2. Scheduling Policies
	4.3. Integrated Policies

	5. Simulation Experiments
	5.1. The Implementation Of Exact Reoptimization
	5.2. Computational Environment
	5.3. Computational Results

	6. Extensions
	7. Conclusion
	References

