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Abstract

We consider potential type dynamical systems in finite dimensions with two meta-stable states.
They are subject to two sources of perturbation: a slow external periodic perturbation of period T

and a small Gaussian random perturbation of intensity ε, and therefore mathematically described as
weakly time inhomogeneous diffusion processes. A system is in stochastic resonance provided the small
noisy perturbation is tuned in such a way that its random trajectories follow the exterior periodic
motion in an optimal fashion, i.e. for some optimal intensity ε(T ). The physicists’ favorite measures
of quality of periodic tuning – and thus stochastic resonance – such as spectral power amplification or
signal-to-noise ratio have proven to be defective. They are not robust w.r.t. effective model reduction,
i.e. for the passage to a simplified finite state Markov chain model reducing the dynamics to a pure
jumping between the meta-stable states of the original system. An entirely probabilistic notion of
stochastic resonance based on the transition dynamics between the domains of attraction of the meta-
stable states – and thus failing to suffer from this robustness defect – was proposed before in the
context of one-dimensional diffusions. It is investigated for higher dimensional systems here, by using
extensions and refinements of the Freidlin-Wentzell theory of large deviations for time homogeneous
diffusions. Large deviation principles developed for weakly time inhomogeneous diffusions prove to be
key tools for a treatment of the problem of diffusion exit from a domain and thus for the approach of
stochastic resonance via transition probabilities between meta-stable sets.

Introduction

The ubiquitous phenomenon of stochastic resonance has been studied by physicists for about 20 years
and recently discovered in numerous areas of natural sciences. Its investigation took its origin in a
toy model from climatology which may serve to explain some of its main features.
To give a qualitative explanation for the almost periodic recurrence of cold and warm ages (glacial
cycles) in paleoclimatic data, Nicolis [10] and Benzi et al. [1] proposed a simple stochastic climate
model based on an energy balance equation for the averaged global temperature T (t) at time t. The
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balance between averaged absorbed and emitted radiative energies leads to a deterministic differential
equation for T (t) of the form

Ṫ (t) = b(Q(t), T (t)). (0.1)

The solar constant Q(t) fluctuates periodically at a very low frequency of 10−5 times per year due to
periodic changes of the earth orbit’s eccentricity (Milankovich cycles), which coincide roughly with the
observed frequency of ice and warm ages. Under reasonable assumptions, for frozen q the nonlinear
function b(q, T ) describes the force associated with a double well potential possessing two stable
temperature states which represent cold and warm ages. As Q varies periodically, these states become
meta-stable and are moved periodically by Q(t). Most importantly, transitions between these states
are impossible. Only the addition of a stochastic forcing allows for spontaneous transitions between
the meta-stable climate states thus explaining roughly transition mechanisms leading to glacial cycles.
In general, trajectories of the solutions of differential equations of this type, subject to two independent
sources of perturbation, an exterior periodic one of period T , and a random one of intensity ε, say, will
exhibit some kind of randomly periodic behavior, reacting to the periodic input forcing and eventually
amplifying it. The problem of optimal tuning at large periods T consists in finding a noise amplitude
ε(T ) (the resonance point) which supports this amplification effect in a best possible way. During
the last 20 years, various concepts of measuring the quality of periodic tuning to provide a criterion
for optimality have been discussed and proposed in many applications from a variety of branches of
natural sciences (see Gammaitoni et al. [5] for an overview). Its mathematical treatment started only
very recently, and criteria for finding an optimal tuning are still under discussion.

The first approach towards a mathematically precise understanding of stochastic resonance was done
by Freidlin [3]. Using large deviations theory he explains basic periodicity properties of the trajectories
in the large period (small noise) limit by the effect of deterministic quasi-periodic motion, but fails
to account for optimal tuning. The most prominent quality measures for periodic tuning from the
physics literature, the signal-to-noise ratio and the spectral power amplification coefficient (SPA)
were investigated in a mathematically precise way in Pavlyukevich’s thesis [11], and seen to have a
serious drawback. Due to the high complexity of original systems, when calculating the optimal noise
intensity, physicists usually pass to the effective dynamics of some kind of simple caricature of the
system reducing the diffusion dynamics to the pure inter well motion (see e.g. [9]). The reduced
dynamics is represented by a continuous time two state Markov chain. Surprisingly, due to the
importance of small intra well fluctuations, the tuning and resonance pattern of the Markov chain
model may differ essentially from the resonance picture of the diffusion. It was this lack of robustness
against model reduction which motivated Herrmann and Imkeller [7] to look for different measures
of quality of periodic tuning for diffusion trajectories, retaining only the rough interwell motion of
the diffusion. The measure they treat in the setting of one-dimensional diffusion processes subject to
periodic forcing of small frequency is related to the transition probability during a fixed time window
of exponential length, the position of which is tracked by a parameter of period length in which
maximization is performed to account for optimal tuning.

The subject of the present paper is to continue our previous work in the general setting of finite
dimensional diffusion processes. Our approach of stochastic resonance thereby is based on the same
robust probabilistic notion of periodic tuning. This extension is by no means obvious, since the
multidimensional problem requires entirely new methods. We recall at this point that in [7] methods
of investigation of stochastic tuning were heavily based on comparison arguments which are not an
appropriate tool from dimension 2 on. Time inhomogeneous diffusion processes such as the ones under
consideration were compared to piecewise homogeneous diffusion processes by freezing the potential’s
time dependence on small intervals. We study a dynamical system in d-dimensional Euclidean space
perturbed by a d–dimensional Brownian motion W , i.e. we consider the solution of the stochastic
differential equation

dXε
t = b

( t

T
,Xε

t

)
dt +

√
ε dWt, t ≥ 0. (0.2)

One of the system’s important features is that its inhomogeneity is weak in the sense that the drift
depends on time only through a re-scaling by the time parameter T = T ε which will be assumed to be
exponentially large in ε. This corresponds to the situation in [7] and is motivated by the well known
Kramers-Eyring law which was mathematically underpinned by the Freidlin-Wentzell theory of large
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deviations ([4]). The law roughly states that the expected time it takes for a homogeneous diffusion
to leave a local attractor e.g. across a potential wall of height v

2 is given to exponential order by
T ε = exp(v

ε ). Hence, only in exponentially large scales of the form T ε = exp(µ
ε ) we can expect to see

effects of transitions between different domains of attraction. b is assumed to be one-periodic w.r.t.
time. The deterministic system ξ̇t = b(s, ξt) with frozen time parameter s is supposed to have two
domains of attraction that do not depend on s ≥ 0. In the “classical” case of a drift derived from a
potential, b(t, x) = −∇xU(t, x) for some potential function U , equation (0.2) describes the motion of
a Brownian particle in a d-dimensional time inhomogeneous double-well potential.

Since our stochastic resonance criterion is based on transition times between the two meta-stable
sets of the system, our analysis relies on a suitable notion of transition or exit time. The Kramers-
Eyring formula suggests to consider the parameter µ from T ε = exp(µ

ε ) as a natural measure of scale.
Therefore, if at time s the system needs energy e(s) to leave some meta-stable set, an exit from that
set should occur at time

aµ = inf{t ≥ 0 : e(t) ≤ µ}
in the diffusion’s natural time scale. If ai

µ are the transition times for the two domains of attraction
numbered i = ±1, we look at the probabilities of transitions between them within a time window
[(ai

µ − h)T ε, (ai
µ + h)T ε] for small h > 0. Assume for this purpose that the two corresponding meta-

stable points are given by xi, i = ±1, and denote by τ−i
% the random time at which the diffusion reaches

the %-neighborhood B%(x−i) of x−i. Then we use the following quantity to measure the quality of
periodic tuning:

M(ε, µ) = min
i=±1

sup
x∈B%(xi)

IPx

(
τ−i
% ∈ [(ai

µ − h)T, (ai
µ + h)T ]

)
,

the minimum being taken in order to account for transitions back and forth. In order to exclude
trivial or chaotic transition behavior, the scale parameter µ has to be restricted to an interval IR

of reasonable values which we call resonance interval. With this measure of quality, the stochastic
resonance point may be determined as follows. We first fix ε and the window width parameter h > 0,
and maximize M(ε, µ) in µ, eventually reached for the time scale µ0(h). Then we call the eventually
existing limit limh→0 µ0(h) resonance point.

To calculate µ0(h) for fixed positive h we use large deviations techniques. In fact, our main result
contains a formula which states that

lim
ε→0

ε log
{
1−M(ε, µ)

}
= max

i=±1

{
µ− ei(ai

µ − h)
}
.

We show that this asymptotic relation holds uniformly w.r.t. µ on compact subsets of IR, a fact which
enables us to perform a maximization and find µ0(h). The techniques needed to prove our main result
feature extensions and refinements of the fundamental large deviations theory for time homogeneous
diffusions by Freidlin-Wentzell [4]. We prove a large deviations principle for the inhomogeneous
diffusion (0.2) and strengthen this result to get uniformity in system parameters. Similarly to the
time homogeneous case, where large deviations theory is applied to the problem of diffusion exit
culminating in a mathematically rigorous proof of the Kramers-Eyring law, we study the problem
of diffusion exit from a domain which is carefully chosen in order to allow for a detailed analysis of
transition times. The main idea behind our analysis is that the natural time scale is so large that re-
scaling in these units essentially leads to an asymptotic freezing of the time inhomogeneity, which has
to be carefully studied, to hook up to the theory of large deviations of time homogeneous diffusions.

The material in the paper is organized as follows. Section 1 is devoted to the careful extension
of large deviations theory to diffusions with slow time inhomogeneity. The most useful result for
the subsequent analysis of exit times is Proposition 1.10 with a large deviations principle for slowly
time dependent diffusions, uniform with respect to a system parameter. In section 2 upper and lower
bounds for the asymptotic exponential exit rate from domains of attraction for slowly time dependent
diffusions are derived. The main result Theorem 2.3 combines them. Section 3 is concerned with
developing the resonance criterion and computing the resonance point from the results of the preceding
section.
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1 Large deviations for diffusion processes

Let us now consider dynamical systems driven by slowly time dependent vector fields, perturbed by
Gaussian noise of small intensity. We shall be interested in their large deviation behavior. Due to
the slow time inhomogeneity, the task we face is not covered by the classical theory presented in
Freidlin, Wentzell [4] and Dembo, Zeitouni [2]. For this reason we shall have to extend the theory
of large deviations for randomly perturbed dynamical systems developed by Freidlin, Wentzell [4] to
drift terms depending in a weak form to be made precise below on the time parameter. Before doing
so in the second subsection, we shall recall the classical results on time homogeneous diffusions in the
following brief overview.

1.1 The time homogeneous case: classical results

For a more detailed account of the following well known theory see [2] or [4].
We consider the family of IRd-valued processes Xε, ε > 0, defined by

dXε
t = b(Xε

t ) dt +
√

ε dWt, Xε
0 = x0 ∈ IRd, (1.1)

on a fixed time interval [0, T ], where b is Lipschitz continuous and W is a d-dimensional Brownian
motion. This family of diffusion processes satisfies in the small noise limit, i.e. as ε → 0, a large
deviations principle (LDP) in the space C0T := C([0, T ], IRd) equipped with the topology of uniform
convergence induced by the metric ρ0T (ϕ,ψ) := sup0≤t≤T ‖ϕt − ψt‖, ϕ,ψ ∈ C0T . The rate function
or action functional is given by Ix0

0T : C0T → [0, +∞],

Ix0
0T (ϕ) =

{
1
2

∫ T

0
‖ϕ̇t − b(ϕt)‖2 dt, if ϕ is absolutely continuous and ϕ0 = x0,

+∞, otherwise.
(1.2)

Moreover, Ix0
0T is a good rate function, i.e. it has compact level sets. The LDP for this family

of processes is mainly obtained as an application of the contraction principle to the LDP for the
processes

√
εW , ε > 0. More precisely, in the language of Freidlin and Wentzell, the functional Ix0

0T

is the normalized action functional corresponding to the normalizing coefficient 1
ε . In the sequel we

will not consider scalings other than this one. We have Ix0
0T (ϕ) < ∞ if and only if ϕ belongs to the

Cameron-Martin space of absolutely continuous functions with square integrable derivatives starting
at x0, i.e.

ϕ ∈ Hx0
0T :=

{
f : [0, T ] → IRd

∣∣∣ f(t) = x0 +
∫ t

0

g(s) ds for some g ∈ L2([0, T ])
}

.

We omit the superscript x0 whenever there is no confusion about the initial condition we are referring
to.

Observe that I0T (ϕ) = 0 means that ϕ (up to time T ) is a solution of the deterministic equation

ξ̇ = b(ξ), (1.3)

so I0T (ϕ) is essentially the L2-deviation of ϕ from the deterministic solution ξ. The cost function V

of Xε, defined by
V (x, y, t) = inf

{
I0t(ϕ) : ϕ ∈ C0t, ϕ0 = x, ϕt = y

}

takes into account all continuous paths connecting x, y ∈ IRd in a fixed time interval of length t, and
the quasi-potential

V (x, y) = inf
t>0

V (x, y, t)

describes the cost of Xε going from x to y eventually. In the potential case, V agrees up to a constant
with the potential energy to spend in order to pass from x to y in the potential landscape, hence the
term quasi-potential.
As far as we know, the LDP for the process Xε is only proven in the case of the usual global Lipschitz
and linear growth conditions from the standard existence and uniqueness results for SDE. In our setting
the coefficients will not be globally Lipschitz. Though the extension is immediate, we therefore state
it for completeness in the following proposition.
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Proposition 1.1. Assume that the equation (1.1) has a unique strong solution that never explodes
and that the drift is locally Lipschitz. Then Xε satisfies on any time interval [0, T ] a weak LDP with
rate function I0T . More precisely, for any compact F ⊂ C0T we have

lim sup
ε→0

ε log IP(Xε ∈ F ) ≤ − inf
ϕ∈F

I0T (ϕ), (1.4)

and for any open G ⊂ C0T

lim inf
ε→0

ε log IP(Xε ∈ G) ≥ − inf
ϕ∈G

I0T (ϕ). (1.5)

Proof. For R > 0 let bR(x) be a continuous function with bR(x) = b(x) for x ∈ BR(x0) and bR(x) = 0
for x /∈ B2R(x0), and let X̃ε be the solution of (1.1) with b replaced by bR with the same initial
condition x0. We denote by BR(x0) the ball of radius R in C0T for the uniform topology. Then there
exists R > 0 such that K ⊂ BR(x0). Hence IP(Xε ∈ K) = IP(X̃ε ∈ K). Since the drift of X̃ε is
globally Lipschitz it satisfies a large deviations principle with some good rate function IR. Applying
this large deviations principle we obtain

lim sup
ε→0

ε log IP(Xε ∈ K) ≤ − inf
ϕ∈K

IR
0T (ϕ) = − inf

ϕ∈K
I0T (ϕ),

which is the claimed upper bound.
For the lower bound, due to its local nature (see, for instance, Theorem 3.3 in [4]), it is sufficient to
show that for all δ > 0, ϕ ∈ C0T

lim inf
ε→0

ε log IP(Xε ∈ Bδ(ϕ)) ≥ −I0T (ϕ).

This is obvious due to the LDP for X̃ and since IR
0T (ϕ) = I0T (ϕ) for R large enough.

Remark 1.2.

(i) A sufficient condition for the existence of a non-exploding and unique strong solution is a locally
Lipschitz drift term b which satisfies

〈x, b(x)〉 ≤ γ
(
1 + ‖x‖2 )

for all x ∈ IRd (1.6)

for some constant γ > 0 (see [14], Theorem 10.2.2). This still rather weak condition is obviously
satisfied if 〈x, b(x)〉 ≤ 0 for large enough x, which means that b contains a component that pulls
X back to the origin. In the gradient case b(x) = −∇U(x), (1.6) means that the potential may
not grow stronger than linearly in the same direction as x.

(ii) A strengthening of condition (1.6) ensuring superlinear growth will be used in subsequent sections.
In that case, the law of Xε is exponentially tight, and so Xε satisfies not only a weak but the
full LDP (i.e. the upper bound (1.4) holds for all closed sets), and I0T is a good rate function.
Recall that the laws of (Xε) are exponentially tight if there exist some R0 > 0 and a positive
function ϕ satisfying limx→∞ ϕ(x) = +∞ such that

lim sup
ε→0

ε log IP(σε
R ≤ T ) ≤ −ϕ(R) for all R ≥ R0. (1.7)

Here σε
R denotes the first time that Xε exits from BR(0).

We will also make use of the following strengthening of (1.4) and (1.5) which expresses the fact
that the convergence statements in the asymptotic results of Proposition 1.1 are uniform on compact
sets of the state space. Let us denote by IPy(Xε ∈ ·) the law of the diffusion Xε starting in y ∈ IRd .

For the proof see [2], Corollary 5.6.15.

Corollary 1.3 (Uniformity of LDP w.r.t. initial conditions). Assume the conditions of Propo-
sition 1.1 and that (Xε) is exponentially tight. Let K ⊂ IRd be compact.

(i) For any closed set F ⊂ C0T

lim sup
ε→0

ε log sup
y∈K

IPy(Xε ∈ F ) ≤ − inf
y∈K

inf
ϕ∈F

Iy
0T (ϕ). (1.8)

(ii) For any open set G ⊂ C0T

lim inf
ε→0

ε log inf
y∈K

IPy(Xε ∈ G) ≥ − sup
y∈K

inf
ϕ∈G

Iy
0T (ϕ). (1.9)
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1.2 General results on weakly time inhomogeneous diffusions

Let us now come to inhomogeneous diffusions with slowly time dependent drift coefficients. For our
understanding of stochastic resonance effects of dynamical systems with slow time dependence, we
have to adopt the large deviations results of the previous subsection to diffusions moving in potential
landscapes with different valleys slowly and periodically changing their depths and positions. In this
subsection we shall extend the large deviations results of Freidlin and Wentzell to time inhomogeneous
diffusions which are almost homogeneous in the small noise limit, so that in fact we are able to
compare to the large deviation principle for time homogeneous diffusions. The result we present in
this subsection is not strong enough for the treatment of stochastic resonance (one needs uniformity
in some of the system parameters), but it most clearly exhibits the idea of the approach, which is why
we state it here.
Consider the family Xε, ε > 0, of solutions of the SDE

dXε
t = bε(t,Xε

t ) dt +
√

ε dWt, t ≥ 0, Xε
0 = x0 ∈ IRd . (1.10)

We assume that (1.10) has a global strong solution for all ε > 0. Our main large deviations result
for diffusions for which time inhomogeneity fades out in the small noise limit is summarized in the
following Proposition.

Proposition 1.4 (Large deviations principle). Assume that the drift of the SDE (1.10) satisfies

lim
ε→0

bε(t, x) = b(x) (1.11)

for all t ≥ 0, uniformly w.r.t. x on compact subsets of IRd, for some locally Lipschitz function
b : IRd → IRd. If the laws of (Xε) are exponentially tight then (Xε) satisfies a large deviations
principle on any finite time interval [0, T ] with good rate function I0T given by (1.2). More precisely,
for any closed F ⊂ C0T we have

lim sup
ε→0

ε log IP(Xε ∈ F ) ≤ − inf
ϕ∈F

I0T (ϕ),

and for any open G ⊂ C0T

lim inf
ε→0

ε log IP(Xε ∈ G) ≥ − inf
ϕ∈G

I0T (ϕ).

Proof. Let Y ε denote the homogeneous diffusion associated with the drift b, i.e. the solution of (1.1)
with the same initial condition x0. For notational convenience, we drop the ε-dependence of X and
Y . We shall prove that X and Y are exponentially equivalent, i.e. for any δ > 0 we have

lim sup
ε→0

ε log IP
(
ρ0T (X, Y ) > δ

)
= −∞. (1.12)

In order to verify this, fix some δ > 0, and observe that

‖Xt − Yt‖ ≤
∫ t

0

‖bε(u,Xu)− b(Xu)‖ du +
∫ t

0

‖b(Xu)− b(Yu)‖ du.

For R > 0 let τR := inf{t ≥ 0 : Xt /∈ BR(x0)}, let τ̃R be defined similarly with X replaced by Y , and
σR := τR ∧ τ̃R. The Lipschitz continuity of b implies the existence of some constant KR(x0) such that
‖b(x)− b(y)‖ ≤ KR(x0)‖x− y‖ for x, y ∈ BR(x0). An application of Gronwall’s Lemma yields

ρ0T (X,Y ) ≤ eKR(x0)T

∫ T

0

‖bε(u,Xu)− b(Xu)‖ du on {σR > T}.

Due to uniform convergence, for any η > 0 we can find some ε0 > 0 s.t.

sup
x∈BR(x0)

‖bε(t, x)− b(x)‖ ≤ η for t ∈ [0, T ], ε < ε0.

This implies
ρ0T (X, Y ) ≤ ηTeKR(x0)T for ε < ε0 on {σR > T}. (1.13)
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By choosing η small enough s.t. ρ0T (X, Y ) ≤ δ/2 on {σR > T} (i.e. X and Y are very close before
they exit from BR(x0)), we see that for ε < ε0

IP
(
ρ0T (X, Y ) > δ

) ≤ IP(τR ≤ T ) + IP(τ̃R ≤ T ).

Since X and Y are close within the ball BR(x0), we deduce that if X escapes from BR(x0) before
time T , then Y must at least escape from BR/2(x0) before time T (if R > δ). So we have

IP
(
ρ0T (X, Y ) > δ

) ≤ IP(τ̃R/2 ≤ T )

for ε < ε0. This argument also guarantees the LDP for Y . Indeed the exponential tightness of the
laws of X and Y is linked by the closeness of these diffusions. Hence the LDP for Y gives

lim sup
ε→0

ε log IP
(
ρ0T (X,Y ) > δ

) ≤ − inf
{
V (x0, y, t) : 0 ≤ t ≤ T, ‖y − x0‖ ≥ R/2

}
.

Sending R →∞ yields the desired result (see Theorem 4.2.13 in [2]).

It is easy to see that Corollary 1.3 also holds for the weakly inhomogeneous process Xε of this
proposition. One only has to carry over Proposition 5.6.14 in [2], which is easily done using some
Gronwall argument. Then the proof of the Corollary is the same as in the homogeneous case (see [2],
Corollary 5.6.15). We omit the details.

1.3 Weak inhomogeneity through slow periodic variation

In this subsection we shall deal with some particular diffusions for which the drift term is subject to
a very slow periodic time inhomogeneity. More precisely, we shall be concerned with solutions of the
following stochastic differential equation taking their values in d−dimensional Euclidean space, driven
by a d−dimensional Brownian motion W of intensity ε:

dXε
t = b

( t

T ε
, Xε

t

)
dt +

√
ε dWt, t ≥ 0, X0 = x0 ∈ IRd . (1.14)

Here T ε is a time scale parameter which tends to infinity as ε → 0. In the subsequent sections, we
shall assume that T ε is exponentially large, in fact

T ε = exp
µ

ε
with µ > 0. (1.15)

The drift b(t, x) of (1.14) is a time-periodic function of period one. Concerning its regularity properties,
we suppose it to be locally Lipschitz in both variables, i.e. for R > 0, x ∈ IRd there are constants
KR(x) and κR(x) such that

‖b(t, y1)− b(t, y2)‖ ≤ KR(x) ‖y1 − y2‖ , (1.16)

‖b(t, y)− b(s, y)‖ ≤ κR(x) |t− s| (1.17)

for all y, y1, y2 ∈ BR(x) and s, t ≥ 0. Furthermore, we shall assume that the drift term forces the
diffusion to stay in compact sets for long times in order to get sufficiently “small” level sets. We
suppose that there are constants η, R0 > 0 such that

〈x, b(t, x)〉 < −η ‖x‖ (1.18)

for t ≥ 0 and ‖x‖ ≥ R0. This condition is stronger than (1.6), so the existence of a unique strong and
non-exploding solution is again guaranteed. Moreover, this growth condition implies the exponential
tightness of the diffusion (see Proposition 1.5 for the precise asymptotics).

1.3.1 Boundedness of the diffusion

The aim of this subsection is to exploit the consequences of the growth condition (1.18). In fact it
implies that the diffusion (1.14) cannot leave compact sets in the small noise limit. For positive ε, it
stays for a long time in bounded domains. In the following Proposition we shall make precise how
the law of the exit time from bounded domains depends on ε. The arguments are borrowed from the
framework of self-attracting diffusions, see [12] or [8].
For R > 0 let σε

R := inf{t ≥ 0 : ‖Xε
t ‖ ≥ R} denote the first exit time from the ball BR(0).
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Proposition 1.5. Let δ > 0, and let r : (0, δ) → (0,∞) be a function satisfying limε→0
ε

r(ε) = 0.
There exist R1, ε1 > 0 and C > 0 such that for R ≥ R1, ε < ε1

IPx

(
σε

R ≤ r(ε)
) ≤ Cη2 r(ε)

ε
e−

ηR
ε for ‖x‖ ≤ R

2
. (1.19)

Proof. For convenience of notation, we suppress the superscript ε in Xε, σε
R etc. Choose a C2-

function h : IRd → IR s.t. h(x) = ‖x‖ for ‖x‖ ≥ R0 and h(x) ≤ R0 for ‖x‖ ≤ R0, where R0 is the
constant given in the growth condition (1.18). By Itô’s formula we have

h(Xt) = h(x) +
√

ε

∫ t

0

∇h(Xs) dWs +
∫ t

0

〈∇h, b
(

s
T ε , ·)〉(Xs) ds +

ε

2

∫ t

0

4h(Xs) ds.

Let ξt :=
∫ t

0
‖∇h(Xs)‖2 ds, i.e. ξt is the quadratic variation of the continuous local martingale

Mt :=
∫ t

0
∇h(Xs) dWs, t ≥ 0. Since ∇h(x) = x

‖x‖ for ‖x‖ ≥ R0, we have dξt = dt on {‖Xt‖ ≥ R0}.
Now we introduce an auxiliary process Z which shall serve to control ‖X‖. According to Skorokhod’s
lemma (see Revuz, Yor [13]) there is a unique pair of continuous adapted processes (Z,L) such that
L is an increasing process of finite variation which increases only at times t for which Zt = R0, and
Z ≥ R0, which satisfies the equation

Z := R0 ∨ ‖x‖+
√

εM − ηξ + L.

Here R0 and η are the constants from the growth condition (1.18). We will prove that

‖Xt‖ ≤ Zt a.s. for all t ≥ 0. (1.20)

For that purpose, choose f ∈ C2(IR) such that
{

f(x) > 0 and f ′(x) > 0 for all x > 0,

f(x) = 0 for all x ≤ 0.

According to Itô’s formula, for t ≥ 0

f(h(Xt)− Zt) = f(h(x)− ‖x‖ ∨R0) +
∫ t

0

f ′(h(Xs)− Zs) d(h(X)− Z))s

+
1
2

∫ t

0

f ′′(h(Xs)− Zs) d〈h(X)− Z〉s.

By definition of h and Z we have h(Xt) ≤ Zt on {‖Xt‖ ≤ R0}, so {h(Xt) > Zt} = {‖Xt‖ > Zt}.
Moreover by definition, h(X)− Z is a finite variation process. Hence the expression

∫ t

0

f ′
( ‖Xs‖ − Zs

){
1

‖Xs‖
〈
Xs, b

( s

T ε
, Xs

)〉
+

ε

2
4h(Xs) + η

}
ds

−
∫ t

0

f ′(‖Xs‖ − Zs) dLs

is an upper bound of f(h(Xt)−Zt). Furthermore, 4h(x) = d−1
‖x‖ for ‖x‖ ≥ R0, which by (1.18) implies

1
‖Xs‖

〈
Xs, b

( s

T ε
, Xs

)〉
+

ε

2
4h(Xs) + η <

1
‖Xs‖

(ε

2
(d− 1)− η

)
+ η on {‖Xs‖ > Zs}.

The latter expression is negative if ε is small enough, so we can find some ε0 > 0 such that f(‖Xt‖ −
Zt) ≤ 0 for ε < ε0. This implies ‖Xt‖ ≤ Zt a.s. by the definition of f , and (1.20) is established.
We therefore can bound the exit probability of X by that of Z. If Q denotes the law of the process
Z, we see that for any α > 0

IPx(σR ≤ r(ε)) ≤ Q(σR ≤ r(ε)) ≤ eαr(ε) IEQ[e−ασR ]. (1.21)
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In order to find a bound on the right hand side of (1.21), let K := sup‖x‖≤R0
‖∇h(x)‖2. Note that h

can be chosen so that K ≤ 2R0. Now observe that for any ϕ ∈ C2(IR)

d
(
ϕ(Zt) e−

α
K ξt

)
=
√

ε ϕ′(Zt)e−
α
K ξt dMt + ϕ′(Zt) e−

α
K ξt dLt

+ e−
α
K ξt

{ε

2
ϕ′′(Zt)− ηϕ′(Zt)− α

K
ϕ(Zt)

}
dξt.

Now let R ≥ R0. If we choose ϕ such that
{

ε
2ϕ′′(y)− ηϕ′(y)− α

K ϕ(y) = 0 for y ∈ [R0, R],
ϕ′(R0) = 0, ϕ(R) = 1,

then ϕ(Zt)e−
α
K ξt is a local martingale which is bounded up to time σR. Hence we are allowed to apply

the stopping theorem to obtain

ϕ(R0 ∨ ‖x‖) = IEQ[ϕ(ZσR
)e−

α
K ξσR ] = IEQ[e−

α
K ξσR ]. (1.22)

Since ξt ≤ Kt for all t ≥ 0, we have ξσR
≤ KσR which implies IEQ[e−

α
K ξσR ] ≥ IEQ[e−ασR ], and we

deduce from (1.21) that

IPx(σR ≤ r(ε)) ≤ eαr(ε) IEQ[e−
α
K ξσR ] ≤ eαr(ε)ϕ(R0 ∨ ‖x‖). (1.23)

Solving the differential equation for ϕ yields

ϕ(x) =
−λ−eλ+(x−R0) + λ+eλ−(x−R0)

−λ−eλ+(R−R0) + λ+eλ−(R−R0)

with λ± =
η±
√

η2+2 α
K ε

ε . Hence

ϕ(x) ≤ (λ+ − λ−) eλ+(x−R0)

(−λ−) eλ+(R−R0)
.

Taking α = r(ε)−1 in (1.23) we obtain

IPx(σR ≤ r(ε)) ≤ exp(1)ϕ(R0 ∨ ‖x‖) ≤ λ+ − λ−

−λ−
exp

{
1 + λ+(R0 ∨ ‖x‖ −R)

}
.

It is obvious that exp
{
λ+(R0 ∨ ‖x‖ − R)

} ≤ exp
{ − ηR

ε

}
for R ≥ 2(‖x‖ ∨ R0), so it remains to

comment on the prefactor. We have

λ+ − λ−

−λ−
=

2
√

η2 + 2 α
K ε√

η2 + 2 α
K ε− η

≤
4
(
η2 + 2ε

Kr(ε)

)

2ε
Kr(ε)

.

Since limε→0
ε

r(ε) = 0 the latter expression behaves like 2η2K r(ε)
ε as ε → 0. Putting these estimates

together yields the claimed asymptotic bound.

1.3.2 Properties of the quasi-potential

Taking large period limits in the subsequently derived large deviations results for our diffusions with
slow periodic variation will require to freeze the time parameter in the drift term. The corresponding
rate functions are given a separate treatment in this subsection. We shall briefly discuss their regularity
properties. This will be of central importance for the estimation of exit rates in section 2. For
s ≥ 0, T > 0 we consider

Is
0T (ϕ) =

{
1
2

∫ T

0
‖ϕ̇t − b(s, ϕt)‖2 dt, if ϕ is absolutely continuous,

+∞, otherwise.
(1.24)

As in the first section, we need associated cost functions. For s ≥ 0, x, y ∈ IRd they are given by

V s(x, y, t) = inf{Is
0t(ϕ) : ϕ ∈ C0t, ϕ0 = x, ϕt = y}. (1.25)
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V s(x, y, t) is the cost of forcing the frozen system

dY ε
t = b(s, Y ε

t ) dt +
√

ε dWt, t ≥ 0,

to be at the point y at time t when starting at x. The corresponding quasi-potential

V s(x, y) = inf
t>0

V s(x, y, t) (1.26)

describes the cost for the frozen system to go from x to y eventually. Let us note that since the drift
b is locally Lipschitz in the time variable, the family of action functionals Is

0T is continuous w.r.t.
the parameter s, and the corresponding cost functions and pseudo-potentials inherit this continuity
property. Let us recall some further useful properties of the quasi-potentials and their underlying cost
and rate functions. The following properties are immediate.

Lemma 1.6. For any x, y, z ∈ IRd, s ≥ 0 and t ≥ 0 we have

a) V s(x, y, t) ≤ V s(x, z, t) + V s(z, y, t),

b) (s, y) 7→ V s(x, y, t) is continuous on IR+× IRd,

c) inf‖y‖≥R V s(x, y, t) −−−−→
R→∞

∞ uniformly w.r.t. s ≥ 0.

The following Lemma establishes the Lipschitz continuity of the quasi-potential w.r.t. the state
variables.

Lemma 1.7. Let K be a compact subset of IRd, M a compact subset of IR+ . Then there exists Γ such
that

sup
s∈M

V s(x, y) ≤ Γdist(x, y) for all x, y ∈ K.

Proof. Let x and y belong to K. There exists some radius R > 0 such that Γ ⊂ BR(0). Set
T = dist(x, y). We define a particular path ϕ in C0T by ϕt = x + y−x

dist(x,y) t for t ∈ [0, T ]. Since b(s, ·)
is locally Lipschitz uniformly in s ∈ M , we obtain an upper bound for the energy of ϕ:

sup
s∈M

Is
0T (ϕ) =

1
2

sup
s∈M

∫ T

0

‖ϕ̇t − b(s, ϕt)‖2dt

≤ 1
2

∫ T

0

( ‖y − x‖
dist(x, y)

+ sup
s∈M

‖b(s, ϕt‖
)2

dt

≤ 1
2

∫ T

0

(1 + KR(0)diam(M) ‖ϕt‖)2dt ≤ T

2
(1 + RKR(0) diam(M))2.

For Γ := 1
2 (1 + RKR(0)diam(M))2 and by the definition of T , we obtain

sup
s∈M

V s(x, y) ≤ sup
s∈M

Is
0T (ϕ) ≤ Γdist(x, y).

1.3.3 Large deviations

We shall now specialize the general large deviations results of the previous subsection to the family
Xε, ε > 0, of solutions of (1.14). At the same time they will be strengthened, to obtain uniformity
w.r.t. to some of the system’s parameters: the scale parameter µ, the starting time, and the initial
condition.
It is an immediate consequence of Proposition 1.4 that the solution of (1.14) satisfies a large deviations
principle with rate function I0

0T , i.e. the rate function is the same as that of a homogeneous diffusion
governed by the frozen drift b(0, ·). In order to see this, one only has to mention that limε→0 b

(
t

T ε , x
)

=
b(0, x) locally uniformly w.r.t. x due to the Lipschitz assumptions on b.
But this result is not strong enough. We also need some uniformity w.r.t. the starting times of the
diffusions we consider. Our large deviations statements derived so far rely on comparison arguments
which yield exponential equivalence with time homogeneous diffusions for which an LDP is well known
from the classical theory of Freidlin and Wentzell. Uniform large deviations estimates require an
appropriate concept of exponential equivalence which is presented in the following proposition.
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Proposition 1.8 (Uniform exponential equivalence). Let Y ε and Xε
i , i ∈ J, ε > 0, be a family

of random variables taking values in a Polish space (X , ρ). For δ > 0 and closed resp. open sets F

resp. G in X denote by F δ the closed δ-blowup of F , and by Gδ the complement of (Gc)δ. Suppose
that (Y ε) satisfies an LDP with good rate function I and (Xε

i )i∈J are uniformly exponentially close
to Y of distance δ0 ≥ 0, i.e.

lim sup
ε→0

ε log sup
i∈J

IP(ρ(Xi, Y ) > δ) = −∞.

for all δ > δ0. Then, for any closed F ⊂ X we have

lim sup
ε→0

ε log sup
i∈J

IP(Xε
i ∈ F ) ≤ − inf

ϕ∈F δ0
I(ϕ),

and for any open G ⊂ X
lim inf

ε→0
ε log inf

i∈J
IP(Xε

i ∈ G) ≥ − inf
ϕ∈Gδ0

I(ϕ).

In particular, if δ0 = 0 then the family (Xε
i )i∈J is uniformly exponentially equivalent to Y and satisfies

a uniform LDP with rate function I.

Proof. In order to establish the upper bound, fix some δ > δ0 and let F ⊂ X be closed. Then we
have for all i ∈ J

IP(Xε
i ∈ F ) ≤ IP(Y ε ∈ F δ) + IP(ρ(Xε

i , Y ε) > δ).

This yields

lim sup
ε→0

ε log sup
i∈J

IP(Xε
i ∈ F )

≤ lim sup
ε→0

ε log max
{

IP(Y ε ∈ F δ), sup
i∈J

IP(ρ(Xε
i , Y ε) > δ)

}
≤ − inf

ϕ∈F δ
I(ϕ).

By taking the limit δ → δ0 we get the asserted upper bound since I is supposed to be a good rate
function (see [2], Lemma 4.1.6).
For the lower bound let G ⊂ X be an open set, and choose ϕ ∈ Gδ0 and δ > δ0 such that Bδ(ϕ) ⊂ G.
Then we have for all i ∈ J

IP(Y ε ∈ Bδ(ϕ)) ≤ IP(Xi ∈ G) + IP(ρ(Xε
i , Y ε) > δ),

and so
IP(Y ε ∈ Bδ(ϕ)) ≤ inf

i∈J
IP(Xi ∈ G) + sup

i∈J
IP(ρ(Xε

i , Y ε) > δ).

This implies

−I(ϕ) ≤ − inf
ψ∈Bδ(ϕ)

I(ψ) ≤ lim inf
ε→0

ε log IP(Y ε ∈ Bδ(ϕ))

≤ max
{

lim inf
ε→0

ε log inf
i∈J

IP(Xi ∈ G), lim sup
ε→0

ε log sup
i∈J

IP(ρ(Xε
i , Y ε) > δ)

}
.

Taking the infimum over ϕ ∈ Gδ0 and appealing to the assumption of uniform exponential closeness
establish the lower bound.

Remark 1.9. Reconsidering the preceding proof, we see how a uniform bound in the LDP as in the case
of uniformity w.r.t. initial conditions for diffusions (Corollary 1.3) carries over to the parametrized
family we are interested in. More precisely, assume that (Xε

i,k)i∈J, k∈K and (Y ε
k )k∈K are families of

random variables such that (Y ε
k )ε>0 satisfies an LDP for each k ∈ K with some good rate function Ik.

Assume furthermore that, for closed (resp. open) sets F ⊂ X (resp. G ⊂ X )

lim sup
ε→0

ε log sup
k∈K

IP(Y ε
k ∈ F ) ≤ − inf

k∈K
inf
ϕ∈F

Ik(ϕ),

lim inf
ε→0

ε log inf
k∈K

IP(Y ε
k ∈ G) ≥ − sup

k∈K
inf

ϕ∈G
Ik(ϕ).
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If there exists δ0 ≥ 0 s.t. for all δ > δ0

lim sup
ε→0

ε log sup
i∈J,k∈K

IP(ρ(Xi,k, Yk) > δ) = −∞,

then for any closed F ⊂ X we have

lim sup
ε→0

ε log sup
i∈J,k∈K

IP(Xε
i,k ∈ F ) ≤ − inf

k∈K
inf

ϕ∈F δ0
Ik(ϕ),

and for any open G ⊂ X

lim inf
ε→0

ε log inf
i∈J,k∈K

IP(Xε
i,k ∈ G) ≥ − sup

k∈K
inf

ϕ∈Gδ0
Ik(ϕ).

We now are in a position to derive a large deviations principle for our family of diffusions (1.14),
which is uniform with respect to both the starting time and the scale parameter. This will be our main
tool for estimating the asymptotics of exit time laws in the subsequent section. The diffusion (1.14)
is a time inhomogeneous Markov process. The solution starting at time r ≥ 0 with initial condition
x ∈ IRd has the same law as the solution Xr,x of the SDE

dXr,x
t = b

(r + t

T ε
, Xr,x

t

)
dt +

√
ε dWt, t ≥ 0, Xr,x

0 = x ∈ IRd . (1.27)

We denote its law by IPx,r(·), assume from now on that T ε = exp µ
ε for some µ > 0, and fix T ≥ 0.

Proposition 1.10. Let V ⊂ (0,∞), K ⊂ IRd a compact set, and for µ ∈ V, r ∈ [0, 1] and β ≥ 0 let
Sr,β(ε, µ) be a neighborhood of rT ε such that

lim sup
ε→0

sup
µ∈V,r∈[0,1]

diam(Sr,β(ε, µ))
T ε

≤ β.

Then for γ0 = γ0(β) = βTeKR(0)T and for any closed F ⊂ C0T

lim sup
ε→0

ε log sup
y∈K,µ∈V,u∈Sr,β(ε,µ)

IPy,u(Xε ∈ F ) ≤ − inf
y∈K

inf
ϕ∈F γ0 ,ϕ0=y

Ir
0T (ϕ),

and for any open G ⊂ C0T

lim inf
ε→0

ε log inf
y∈K,µ∈V,u∈Sr,β(ε,µ)

IPy,u(Xε ∈ G) ≥ − sup
y∈K

inf
ϕ∈Gγ0 ,ϕ0=y

Ir
0T (ϕ).

These bounds hold uniformly w.r.t. r.

Remark 1.11. The upper bound means that for any ϑ > 0 we can find ε0 > 0 s.t. for ε ≤ ε0 we have

ε log sup
y∈K,µ∈V,u∈Sr,β(ε,µ)

IPy,u(Xε ∈ F ) ≤ − inf
y∈K

inf
ϕ∈F γ0 ,ϕ0=y

Ir
0T (ϕ) + ϑ.

The uniformity in the statement means that ε0 can be chosen independently of r. A similar statement
holds for the lower bound.

Proof of Proposition 1.10. Let us concentrate on the first statement of the Proposition. Fix β ≥ 0.
For an initial condition y, and for r ∈ [0, 1] let Y r,y be the solution of the homogeneous equation

dY r,y
t = b(r, Y r,y

t ) dt +
√

ε dWt, t ≥ 0, Y r,y
0 = y.

Let W ⊂ [0, 1] and r0 ∈ W. By the preceding proposition, it is sufficient to prove that the family
{Xu,y : u ∈ Sr,β(ε, µ), µ ∈ V, r ∈ W} is uniformly exponentially close to Y r0,y. For R > 0 let
τu,y
R := inf{t ≥ 0 : Xu,y

t /∈ BR(0)}, let τ̃ r0,y
R be defined similarly with Xu,y replaced by Y r0,y, and

σu,y,r0
R := τu,y

R ∧ τ̃ r0,y
R . Then we see just as in the proof of Proposition 1.4 that for r, r0 ∈ [0, 1], u ∈

Sr,β(ε, µ)

ρ0T (Xu,y, Y r0,y) ≤ eKR(0)T

∫ T

0

∥∥∥∥b
(u + t

T ε
, Xu,y

t

)
− b(r0, X

u,y
t )

∥∥∥∥ dt on {σu,y,r0
R > T}.
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This implies

ρ0T (Xu,y, Y r0,y) ≤ TeKR(0)T

(
diam(Sr,β(ε, µ)) + T

T ε
+ |r − r0|

)
on {σu,y,r0

R > T}.

Due to our assumption the last expression is bounded by

β1 = β1(W) := sup
r∈W

(β + |r − r0|) TeKR(0)T as ε → 0.

If we fix γ > β1(W), we infer from this the existence of some ε0 > 0 such that for ε ≤ ε0

sup
r∈W,y∈K,µ∈V,u∈Sr,β(ε,µ)

IP(ρ0T (Xu,y, Y r0,y) > γ) ≤ sup
y∈K

IP(τ̃ r0,y
R−γ ≤ T ).

By the uniform LDP for Y r0,y we have

lim sup
ε→0

ε log sup
y∈K

IP(τ̃ r0,y
R−γ ≤ T ) ≤ − inf

{
V r0(y, z, t) : t ≤ T, y ∈ K, ‖z‖ ≥ R− γ

}
.

By Lemma 1.6 c) the latter expression approaches −∞ as R →∞. This yields the uniform exponential
closeness of the families Xu,y and Y r0,y. By Proposition 1.8 and Remark 1.9 we have

lim sup
ε→0

ε log sup
r∈W,y∈K,µ∈V,u∈Sr,β(ε,µ)

IPy,u(Xε ∈ F ) ≤ − inf
y∈K

inf
ϕ∈F β1 ,ϕ0=y

Ir0
0T (ϕ). (1.28)

The particular choice W = {r0} corresponds to β1(W) = γ0 = γ0(β) given in the statement and yields
the claimed bound.
It remains to prove the uniformity w.r.t. r. For that purpose fix ϑ > 0, and for r0 ∈ [0, 1], choose a
neighborhood Wr0 of r0. By the continuity of r 7→ Ir

0T and Lemma 4.1.6 in [2] we can assume Wr0 to
be small enough such that for r ∈ Wr0 , denoting β1 = β1(Wr0),

inf
y∈K

inf
ϕ∈F β1 ,ϕ0=y

Ir0
0T (ϕ) ≥ inf

y∈K
inf

ϕ∈F γ0 ,ϕ0=y
Ir0
0T (ϕ)− ϑ/4 ≥ inf

y∈K
inf

ϕ∈F γ0 ,ϕ0=y
Ir
0T (ϕ)− ϑ/2.

Due to compactness we can choose finitely many points r1, ..., rN such that their corresponding neigh-
borhoods cover [0, 1]. Denote β̃n := β1(Wrn). For each 1 ≤ n ≤ N , there exists some εn > 0, such
that for ε ≤ εn and r ∈ Wrn ,

ε log sup
y∈K,µ∈V,u∈Sr(ε,µ)

IPy,u(Xε ∈ F ) ≤ − inf
y∈K

inf
ϕ∈F β̃n ,ϕ0=y

Irn

0T (ϕ) +
ϑ

2

≤ − inf
y∈K

inf
ϕ∈F γ0 ,ϕ0=y

Ir
0T (ϕ) + ϑ.

Hence for ε ≤ min1≤n≤N εn, the preceding inequality holds for all r ∈ [0, 1].

2 Exit and entrance times of domains of attraction

We continue to study asymptotic properties of diffusions with weakly periodic drifts given by the SDE

dXε
t = b

( t

T ε
, Xε

t

)
dt +

√
ε dWt, t ≥ 0, Xε

0 = x0 ∈ IRd . (2.1)

In this section we shall work out the effects of weak periodicity of the drift on the asymptotic be-
havior of the exit times of its domains of attraction. This will be done under simple assumptions
on the geometry associated with it. So we will have to specify some assumptions on the attraction
and conservation properties of b. Essentially, we shall assume that IRd is split into two domains of
attraction, separated by a simple geometric boundary which is invariant in time. Apart from that, we
shall assume that the drift is pointing inward sufficiently strongly so that the diffusions will not be
able to leave compact sets in the small noise limit. Let us make these assumptions more precise. We
recall that, according to the Kramers-Eyring law (see for example [7]), the mean time a homogeneous
diffusion of noise intensity ε needs to leave a potential well of depth v

2 is of the order exp v
ε . Nature

therefore imposes the time scales T ε with which we have to work. For simplicity we measure these
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scales in energy units: with µ > 0 we associate the time scale T ε = exp µ
ε . We assume as before that

b satisfies the local Lipschitz conditions (1.16) and (1.17), and that the growth of the inward drift is
sufficiently strong near infinity which is expressed by (1.18).
The additional conditions concerning the geometry of b are specified in the following.

Assumption 2.1. The two-dimensional ordinary differential equation

ϕ̇s(t) = b(s, ϕs(t)), t ≥ 0, (2.2)

admits two stable equilibria x− and x+ in IRd which do not depend on s ≥ 0. Moreover, the domains
of attraction defined by

A±(s) = {y ∈ IRd : ϕ̇s(t) = b(s, ϕs(t)) and ϕs(0) = y implies lim
t→∞

ϕs(t) = x±} (2.3)

are also independent of s ≥ 0 and denoted by A±. They are supposed to satisfy A− ∪A+ = IRd, and
∂A− = ∂A+. We denote by χ the common boundary.

a b

c

d

e

f

w

PSfrag replacements
A−
A+

x−
x+

ϕs(t)
ϕs(t)

χ

Figure 1: Domains of attraction

This assumption could be weakened. We could let the stable equilibrium points and the domains
of attraction depend on s ≥ 0. The asymptotic results concerning the exit and entrance time remain
true in this more general setting. We stick to Assumption 2.1 for reasons of notational simplicity.
The main subject of investigation in this section is given by the exit times of the domains of attraction
A±, provided that the weakly time inhomogeneous diffusion starts near the equilibrium points x±.
By obvious symmetry reasons, we may restrict our attention to the case of an exit from A−. As we
shall show, this exit time depends on the quasi-potential, that is on the cost function taken on the set
of all functions starting in the neighborhood of x− and exiting the domain of attraction through χ.

For this reason we introduce the one-periodic energy function

e(s) := inf
y∈χ

V s(x−, y) < ∞ for s ≥ 0, (2.4)

which is continuous on IR+. In the gradient case b(t, x) = −∇xU(t, x), this function coincides with
twice the depth of the potential barrier to be overcome in order to exit from A−, i.e. the energy
the diffusion needs to leave A−. Therefore scales µ – corresponding to the Kramers-Eyring times
T ε = exp(µ

ε ) according to the chosen parametrization – at which we expect transitions between the
domains of attraction must be comprised between

µ∗ := inf
t≥0

e(t) and µ∗ := sup
t≥0

e(t).

These two constants are finite and are reached at least once per period since e(t) is continuous and
periodic. Now fix a time scale parameter µ. This parameter serves as a threshold for the energy, and
we expect to observe an exit from A− at the first time t at which e(t) falls below µ. For µ ∈]µ∗, µ∗[
we therefore define
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Figure 2: Definition of aµ and αµ

aµ = inf{t ≥ 0 : e(t) ≤ µ}, αµ = inf{t ≥ 0 : e(t) < µ}. (2.5)

The subtle difference between aµ and αµ may be important, but we shall rule it out for our consider-
ations by making the following assumption.

Assumption 2.2. The energy function e(t) is strictly monotonous between its (discrete) extremes,
and every local extremum is global.

Under this assumption we have aµ = αµ. We are now in a position to state the main result of this
section. Let % > 0 be small enough such that the Euclidean ball B%(x+) ⊂ A+, and let us define the
first entrance time into this ball by

τ% = inf{t ≥ 0 : Xε
t ∈ B%(x+)}. (2.6)

This stopping time depends of course on ε, but for notational simplicity we suppress this dependence.

Theorem 2.3. Let µ < e(0). There exist η > 0 and h0 > 0 such that for h ≤ h0

lim
ε→0

ε log sup
y∈Bη(x−)

IPy(τ% /∈ [(aµ − h)T ε, (αµ + h)T ε]) = µ− e(aµ − h).

Moreover, under Assumption 2.2 this convergence is uniform w.r.t. µ on compact subsets of ]µ∗, e(0)[.

Note that Assumption 2.2 implies the continuity of µ 7→ µ − e(aµ − h). The statement of the
theorem may be paraphrased in the following way. It specifies time windows in which transitions
between the domains of attraction will be observed with very high probability. In particular, if e(t)
is strictly monotonous between its extremes, we prove that the entrance time into a neighborhood of
x+ will be located near aµT ε in the small noise limit. The assumption µ < e(0) is only a technical
assumption in order to avoid instantaneous jumping of the diffusion to the other valley. It can always
be achieved by simply starting the diffusion a little later. We could even assume that e(0) = µ∗ which
then would yield uniform convergence on compact subsets of ]µ∗, µ∗[.
The rest of this section is devoted to the proof of this main result and is subdivided into separate
subsections in which lower and upper bounds are established.

2.1 Lower bound for the exponential exit rate: diffusion exit

We have to establish upper and lower bounds on the transition time τ% which both should be exceeded
with an exponentially small probability that has to be determined exactly. It turns out that the
probability of exceeding the upper bound (αµ−h)T ε vanishes asymptotically to all exponential orders,
so the exact large deviations rate is determined only by the probability IPx

(
τ% ≤ (aµ − h)T ε

)
of

exceeding the lower bound.
For a lower bound of the latter probability as well as for an upper bound on IPx

(
τ% ≥ (αµ − h)T ε

)
,

one has to prove large deviations type upper bounds of the asymptotic distribution IPx

(
τ% ≥ s(ε)) for
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suitably chosen s(ε). This can be expressed in terms of the problem of diffusion exit from a carefully
chosen bounded domain.
Recall that τ% is the first entrance time of a small neighborhood B%(x+) of the equilibrium point x+.
Consider for R, % > 0 the bounded domain

D = D(R, %) := BR(0) \B%(x+),

and let
τD := inf{t ≥ 0 : Xt /∈ D}

be the first exit time of X from D. An exit from D means that either X enters B%(x+), i.e. we
have a transition to the other equilibrium, or X leaves BR(0). But, as a consequence of our growth
condition (1.18), the probability of the latter event does not contribute on the large deviations scale
due to Proposition 1.5, as the following simple argument shows.

Let s(ε, µ) = sT ε for some s > 0. Since τD = τ% ∧ σR where σR is the time of the diffusion’s first exit
from BR(0), Proposition 1.5 provides constants R1, ε1 > 0 s.t. for R ≥ R1, ε ≤ ε1

IPx(τ% ≥ s(ε, µ)) ≤ IPx({τ% ≥ s(ε, µ)} ∩ {σR ≥ s(ε, µ)}) + IPx(σR < s(ε, µ))

≤ IPx(τD ≥ s(ε, µ)) + Cη2 s(ε, µ)
ε

e−
ηR
ε for ‖x‖ ≤ R

2
.

By the choice of s(ε, µ) and T ε = exp
(

µ
ε

)
, the right term in the last sum is of the order 1

ε exp µ−ηR
ε ,

i.e. it can be assumed to be exponentially small of any exponential order required by choosing R

suitably large. Obviously, this holds uniformly with respect to µ on compact sets. This argument
shows that the investigation of asymptotic properties of the laws of τ% may be replaced by a study of
similar properties of τD, with an error that may be chosen arbitrarily small by increasing R.

Similarly to the time homogeneous exit problem, we need a lemma which shows how to approximate
the energy of a transition by the cost along particular trajectories which exit some neighborhood of
D. This is of central importance to the estimation of the asymptotic law of τD.

Lemma 2.4. Let ϑ > 0 and M a compact interval of IR+. Then there exist T0 > 0 and δ > 0 with
the following property:
For all x ∈ D and s ∈ M , we can find a continuous path ζx,s ∈ C0T0 starting in ζx,s

0 = x and ending
at some point of distance d(ζx,s

T0
, D) ≥ δ away from D such that

Is
0T0

(ζx,s) ≤ e(s) + ϑ for all s ∈ M.

Proof. This proof extends arguments presented in Lemma 5.7.18 and 5.7.19 in [2].
Fix ϑ > 0, and let us decompose the domain D into three different ones. Fixing l > 0, define a domain
βl by

βl = {x ∈ D : dist(x, χ) < l}.
We recall that χ is the separation between A− and A+. Then we define two closed sets D− =
(D \ βl) ∩ A− and D+ = (D \ βl) ∩ A+. We shall construct appropriate paths from points y ∈ D to
points a positive distance away from D not exceeding the energy e(s) by more than ϑ uniformly in
s ∈ M in four steps.
Step 1. Assume first that y ∈ D−. For l > 0 small enough we construct δl

1 > 0, Sl
1 > 0 and a path

ψs,y,l
1 defined on a time interval [0, τs,y,l

1 ] with τs,y,l
1 ≤ Sl

1 for all y ∈ D−, s ∈ M and along which we
exit a δl

1–neighborhood of D− at cost at most e(s) + 2
3ϑ.

Step 1.1 In a first step we go from y to a small neighborhood Bl(x−) of x−, in time at most T l
1 < ∞,

without cost.
We denote by ϕs,y,l

1 the trajectory starting at ϕs,y,l
1 (0) = y ∈ D− of

ϕ̇1(t) = b(s, ϕ1(t)),

and reaching Bl(x−) at time σy,s,l
1 . Since D− ⊂ A− and due to Assumption 2.1, σy,s,l

1 is finite.
Moreover, since b is locally Lipschitz, stability of solutions with respect to initial conditions and
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smooth changes of vector fields implies that there exist open neighborhoods Wy of y and Ws of
s and T s,y,l

1 > 0 such that, for all z ∈ Wy, u ∈ Ws, σu,z,l
1 ≤ T s,y,l

1 . Recall that D− is compact.
Therefore we may find a finite cover of D− ×M by such sets, and consequently T l

1 < ∞ such
that for all y ∈ D− and s ∈ M , σs,y,l

1 ≤ T l
1. Denote zs,y,l = ϕs,y,l

1 (σs,y,l
1 ).

Step 1.2 In a second step, we go from a small neighborhood Bl(x−) of x− to the equilibrium point
x−, in time at most 1, at cost at most ϑ

3 .
In fact, by the continuity of the cost function, for l small enough, s ∈ M , there exists a con-
tinuous path ϕs,y,l

2 of time length σs,y,l
2 ≤ 1 such that ϕs,y,l

2 (0) = zs,y,l, ϕs,y,l
2 (σs,y,l

2 ) = x− and
I0σs,y,l

2
(ϕs,y,l

2 ) ≤ ϑ/3.

Step 1.3 In a third step, we exit some δ–neighborhood of D−, starting from the equilibrium point
x−, in time at most T3 < ∞, at cost at most e(s) + ϑ

3 for s ∈ M.

By (2.4) and the continuity of the cost function for any s ∈ M there exists zs /∈ A− ⊃ D−,
T s

3 < ∞, some neighborhood Ws of s and for u ∈ Ws we have ϕu
3 ∈ C0σu

3
such that ϕu

3 (0) = x−,
ϕu

3 (σu
3 ) = zs, σu

3 ≤ T s
3 and

sup
u∈Ws

Iu
0σu

3
(ϕu

3 ) ≤ e(s) + ϑ/3.

Use the compactness of M to find a finite cover of M by such neighborhoods, and thus some
T3 < ∞ such that all the statements hold with σs

3 ≤ T3 for all s ∈ M. Finally remark that the
exit point is at least a distance δ = infi∈J |zi| away from the boundary of D−, if zi, i ∈ J, are
the exit points corresponding to the finite cover.

In order to complete step 1, we now define a path ψs,y,l
1 ∈ C0τs,y,l

1
by concatenating ϕs,y,l

1 , ϕs,y,l
2 and

ϕs
3. This way, for small l > 0 we find Sl

1 > 0 such that for all s ∈ M, y ∈ D− we have τs,y,l
1 ≤ Sl

1,
ψs,y,l

1 (τs,y,l
1 ) = y, ψs,y,l

1 (τs,y,l
1 ) 6∈ A− and

Is
0τs,y,l

1
(ψs,y,l

1 ) ≤ e(s) + 2
3ϑ for all s ∈ M, y ∈ D−.

At this point, we can encounter two cases. In the first case ψs,y,l
1 exits a δl–neighborhood of BR(0).

In this case we continue with step 4. In the second case, ψs,y,l
1 exits D− into βl, and we continue with

Step 2.

Step 2. For l small enough, we start in y ∈ βl, to construct Sl
2 > 0 and a path ψs,y,l

2 defined on a
time interval [0, τ s,y,l

2 ] with τs,y,l
2 ≤ Sl

2 for all y ∈ D−, s ∈ M and along which we exit βl into the
interior of D+ at cost at most ϑ

3 .

In fact, due to the continuity of the cost function (see Lemma 1.6), there exists l > 0 small enough
such that for any s ∈ M,y ∈ βl there exists zs,y,l in the interior of D+, such that ψs,y,l

2 (0) = y,
ψs,y,l

2 (τs,y,l
2 ) = zs,y,l and Iu

0τs,y,l
2

(ψs,y,l
2 ) ≤ ϑ/3. We may take Sl

2 = 1.

Step 3. We start in y ∈ D+, to construct δl
3 > 0, Sl

3 > 0 and a path ψs,y,l
3 defined on a time interval

[0, τ s,y,l
3 ] with τs,y,l

3 ≤ Sl
3 for all y ∈ D−, s ∈ M and along which we exit D+ into B%−δl

3
(x+) at no

cost.
Let δl

3 = %/2. Since D+ is compact and contained in the domain of attraction of x+, stability of
the solutions of the differential equation ϕ̇(t) = b(s, ϕ(t)) with respect to the initial condition y ∈ D+

and the parameter s guarantees the existence of some time Sl
3 > 0 such that the entrance time τs,y,l

3

of B%/2(x+) by the solution starting in y is bounded by Sl
3. Therefore we may take ψs,y,l

3 to be defined
by this solution restricted to the time interval before its entrance into B%/2(x+).

Step 4. For l > 0 small enough we start in x ∈ D− and construct T0 > 0, δ > 0 and a path ζs,x

defined on the time interval [0, T0], exiting a δ–neighborhood of D at cost at most e(s) + ϑ for all
s ∈ M.

For l small enough, take T0 = Sl
1 + Sl

2 + Sl
3. We just have to concatenate paths constructed in

the first three steps. Recall that ψs,x,l
1 passes through the equilibrium x− due to Step 1. In case

ψs,x,l
1 exits a δl

1–neighborhood of BR(0), just let the path spend enough time in x− without cost to
obtain a path ζs,x,l defined on [0, T0], and take δ = δl

1. In the other case, we concatenate three paths
constructed in Steps 1 - 3, to obtain a path defined on a subinterval of [0, T0] depending on s, x, l and
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which exits a δl
3–neighborhood of D. Recall from step 1 that this path also passes through x−. It

remains to redefine the path by spending extra time at no cost in this equilibrium point, to complete
the proof.

We now proceed to the estimation of uniform lower bounds for the asymptotic law of τD. The
uniformity has to be understood in the sense of Remark 1.11.

Proposition 2.5. Let K be a compact subset of D.

a) If e(s) > µ, then
lim inf

ε→0
ε log inf

x∈K
IPx(τD < sT ε) ≥ µ− e(s),

locally uniformly on {(s, µ) : µ∗ < µ < min(e(0), e(s)), 0 ≤ s ≤ 1}.
b) If e(s) < µ, then

lim
ε→0

ε log sup
x∈K

IPx(τD ≥ sT ε) = −∞,

locally uniformly on {(s, µ) : e(s) < µ < e(0), 0 ≤ s ≤ 1}.

Proof. We choose a compact subset L of [0, 1] and a compact subset M of ]µ∗, e(0)[ as well as some
ϑ > 0 such that

|e(s)− µ| ≥ ϑ ∀(s, µ) ∈ L×M.

Later on we shall assume that e(s)− µ is uniformly positive resp. negative in order to prove a) resp.
b).
In a first step, we apply Lemma 2.4 to approximate the energy function e(s) by the rate function
along a particular path, uniformly w.r.t. s. For the chosen ϑ it yields T0 > 0 and δ > 0 as well as
continuous paths ζx,s indexed by x ∈ D and s ∈ [0, 1] ending a distance at least δ away from D such
that for all x ∈ D and s ∈ [0, 1]

Is
0T0

(ζx,s) ≤ e(s) +
ϑ

4
.

In a second step, we use the Markov property to estimate the probability of exiting D after time sT ε

by a large product of exit probabilities after time intervals of length independent of ε and µ. Since
for ε > 0, µ ∈ M the interval [0, sT ε] becomes arbitrarily large as ε → 0, we introduce a splitting into
intervals of length ν ≥ T0 independent of ε and µ. For k ∈ IN0 let tk = tk(s, ε, µ) := sT ε − kν. Then
we have for k ∈ IN0 and x ∈ D

IPx(τD ≥ tk) = IEx

(
1{τD≥tk}1{τD≥tk+1}

)
= IEx

(
1{τD≥tk+1} IE

[
1{τD≥tk} Ftk+1

] )

≤ IPx

(
τD ≥ tk+1

)
sup
y∈D

IPy,tk+1(τD ≥ ν)

Here IPy,s denotes the law of Xs,y, defined by the SDE

dXs,y
t = b

(s + t

T ε
, Xs,y

t

)
dt +

√
ε dWt, t ≥ 0, Xs,y

0 = y ∈ IRd .

On intervals [0, ν] it coincides with the law of the original process X on [s, s + ν], but of course paths
may differ. Denoting qk(s, ε, µ) := supy∈D IPy,tk

(τD ≥ ν), an iteration of the latter argument yields

sup
x∈K

IPx

(
τD ≥ sT ε

) ≤
N(ε,µ)∏

i=1

qk(s, ε, µ) (2.7)

whenever N(ε, µ) ν < sT ε. For the further estimation of the qk we apply some LDP to the prod-
uct (2.7). This relies on the following idea. We choose N(ε, µ) of the order εT ε. Then the starting
times tk appearing in the product belong to some neighborhood of sT ε that, compared to T ε, shrinks
to a point asymptotically. Consequently, the family of diffusions underlying the product is uniformly
exponentially equivalent to the homogeneous diffusion governed by the drift b(s, ·).
This will be done in the following third step. For x ∈ D, s ∈ [0, 1] let

Ψ(x, s) :=
{
ψ ∈ C0T0 : ρ0T0(ψ, ζx,s) < δ

2

}
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be the open δ/2-neighborhood of the path chosen in the first step, and let

Ψ(x) :=
⋃

s∈[0,1]

Ψ(x, s).

To apply our large deviations estimates in this situation, note first that conditions concerning τD

translate into constraints for the trajectories of Xε as figuring in the preceding section: due to the
definition of Ψ(x, s), the choice ν ≥ T0 and Lemma 2.4 we know that for y ∈ D, k ≤ N(ε, µ), if
Xtk,y belongs to Ψ(x), then for sure Xtk,y exits D before time ν. Keeping this in mind, we may apply
Proposition 1.10 to the neighborhoods

Ss,0(ε, µ) =
[
sT ε − νN(ε, µ), sT ε + ν

]

of sT ε. Each of the intervals [tk, tk + ν] is contained in Ss,0(ε, µ). As mentioned before, N(ε, µ) is
chosen of the order εT ε, and this can be done uniformly w.r.t. µ ∈ M . More precisely, we assume to
have constants 0 < c1 < c2 such that c1εT

ε ≤ N(ε, µ) ≤ c2εT
ε. Then

lim
ε→0

sup
s∈[0,1], µ∈M

diam Ss,0(ε, µ)
T ε

= 0,

and by the large deviations principle of Proposition 1.10 we obtain the lower bound

lim inf
ε→0

ε log inf
y∈K, µ∈M, k≤N(ε,µ)

IPy,tk
(τD < ν) ≥ − sup

y∈K
inf

ψ∈Ψ(y)
Is
0T0

(ψ)

≥ − sup
y∈K

Is
0T0

(ζy,s) ≥ −e(s)− ϑ

4
.

We stress that this bound is uniform w.r.t. s in the sense of Remark 1.11, so we can find ε0 > 0
independent of s such that for ε ≤ ε0, µ ∈ M and k ≤ N(ε, µ)

1− qk(s, ε, µ) = inf
y∈D

IPy,tk
(τD < ν)

≥ inf
y∈D, µ∈M, j≤N(ε,µ)

IPy,tj (τD < ν) ≥ exp
{
− 1

ε

(
e(s) +

ϑ

2

)}
.

From this we obtain

sup
x∈K

IPx

(
τD ≥ sT ε

) ≤
N(ε,µ)∏

i=1

qk(s, ε, µ) ≤
(
1− exp

{
− 1

ε

(
e(s) +

ϑ

2

)})N(ε,µ)

= exp
{

N(ε, µ) log
(
1− exp

{
− 1

ε

(
e(s) +

ϑ

2

)})}
=: m(ε, µ).

Since log(1− x) ≤ −x for 0 ≤ x < 1 we have

m(ε, µ) ≤ exp
{
− c1ε exp

{µ

ε
− 1

ε

(
e(s) +

ϑ

2

)}}
.

In the fourth and last step, we exploit this bound of m(ε, µ) to obtain the claimed asymptotic bounds.
In order to prove a), assume that µ < e(s) for (s, µ) ∈ L×M . Then the inner exponential approaches 0
on L×M . Using the inequality 1−e−x ≥ x exp(−1) on [0, 1], we conclude that there exists ε1 ∈ (0, ε0)
such that for all ε ≤ ε1 and (s, µ) ∈ L×M

ε log inf
x∈K

IPx

(
τD < sT ε

) ≥ ε log
(
1−m(ε, µ)

)

≥ ε log
(
εc1 exp(−1) exp

{1
ε

(
µ− e(s)− ϑ

2

)})

= −ε + ε log c1 + ε log ε + µ− e(s)− ϑ

2
≥ µ− e(s)− ϑ.
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For b) assume µ > e(s) on L×M . Then

ε log sup
x∈K

IPx

(
τD ≥ sT ε

) ≤ ε log m(ε, µ)

≤ −c1ε exp
{
− 1

ε

(
µ− e(s)− ϑ

2

)}
−−−→
ε→0

−∞.

As a consequence of these large deviations type results on the asymptotic distribution of τD and the
remarks preceding the statement of Lemma 2.4 and Proposition 2.5, we get the following asymptotics
for the transition time of the diffusion.

Proposition 2.6. Let x ∈ A−. There exists h0 > 0 such that

lim inf
ε→0

ε log IPx(τ% ≤ (aµ − h)T ε) ≥ µ− e(aµ − h), (2.8)

lim
ε→0

ε log IPx(τ% ≥ (αµ + h)T ε) = −∞, (2.9)

for h ≤ h0. Moreover, these convergence statements hold uniformly w.r.t. x on compact subsets of D

and w.r.t. µ on compact subsets of ]µ∗, e(0)[.

Proof. As the estimation based on Proposition 1.5 at the beginning of the section shows, we may
derive the required estimates for τD instead of τ%, if R is chosen large enough.
Let M be a compact subset of ]µ∗, e(0)[. Then 0 < aµ < 1 for µ ∈ M which yields the existence of
h0 > 0 such that the compact set Lh := {aµ− h : µ ∈ M} is contained in ]0, 1[ for h ≤ h0. Moreover,
we have e(s) > µ for 0 < s < aµ due to the assumptions on e, uniformly w.r.t. (s, µ) ∈ Lh ×M by
the continuity of e. Hence by Proposition 2.5 a)

lim inf
ε→0

ε log inf
x∈K

IPx(τD ≤ sT ε) ≥ µ− e(s),

uniformly on Lh ×M for all h ≤ h0. By setting s = aµ − h we obtain the first asymptotic inequality.
The second one follows in a completely analoguous way from Proposition 2.5 b) since αµ = aµ and
e(aµ + h) < µ for small enough h.

2.2 Upper bound for the exponential exit rate

Let us next derive upper bounds for the exponential exit rate which resemble the lower bounds just
obtained. We need an extension of a result obtained by Freidlin and Wentzell (Lemma 5.4 in [15]).

Lemma 2.7. Let K be a compact subset of A− \ {x−}. There exist T0 > 0 and c > 0 such that for
all T ≥ T0, s ∈ [0, 1] and for each ϕ ∈ C0T taking its values in K we have

Is
0T (ϕ) ≥ c(T − T0).

Proof. Let φs,x be the solution of the differential equation

φ̇s,x(t) = b(s, φs,x(t)), φs,x(0) = x ∈ K.

Let τ(s, x) be the first exit time of the path φs,x from the domain K. Since A− is the domain of
attraction of x− and since K is a compact subset of A− \ {x−}, we obtain τ(s, x) < ∞ for all x ∈ K.
The function τ(s, x) is upper semi-continuous with respect to the variables s and x (due to the
continuous dependence of φs,x on s and x). Hence the maximal value T1 := sups∈[0,1], x∈K τ(a, x) is
attained.
Let T0 = T1 + 1, and consider all functions ϕ ∈ C0T0 with values in K. This set of functions is closed
with respect to the maximum norm. Since there is no solution of the ordinary differential equation
in this set of functions, the functional Is

0T0
reaches a strictly positive minimum on this set which is

uniform in s. Let us denote it by m. By the additivity of the functional Is
0T , we obtain, for T ≥ T0

and ϕ ∈ C0T with values in K

Is
0T (ϕ) ≥ m

⌊
T

T0

⌋
≥ m

(
T

T0
− 1

)
= c(T − T0),

with c = m
T0

.
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Let us recall the subject of interest of this subsection:

τ% = inf
{
t ≥ 0 : Xε

t ∈ B%(x+)
}
,

the hitting time of a small neighborhood of the equilibrium point x+. First we shall consider upper
bounds for the law of this time in some window of length βT ε where β is sufficiently small. The
important feature of the following statement is that β is independent of s while the uniformity of the
bound again has to be understood in the sense of Remark 1.11.

Proposition 2.8. For all ϑ > 0, there exist β > 0, η > 0 such that for all s ∈ [0, 1]

lim sup
ε→0

ε log sup
x∈Bη(x−)

IPx

(
sT ε ≤ τ% ≤ (s + β)T ε

) ≤ µ− e(s) + ϑ.

This bound holds locally uniformly w.r.t. µ ∈]µ∗, e(0)[ and uniformly w.r.t. s ∈ [0, 1].

Proof. Let M be a compact subset of ]µ∗, e(0)[, and fix ϑ > 0. We first introduce some parameter
dependent domains the exit times of which will prove to be suitable for estimating the probability
that τ% is in a certain time window.
For this purpose, we define for δ > 0 and s ∈ [0, 1] an open domain

D(δ, s) :=
{

y ∈ IRd : V s(x−, y) < µ∗ +
1

1 + δ
, dist(y,A+) > δ

}
,

and we let D = D(δ) = ∪s∈[0,1]D(δ, s). Then D is relatively compact in A−, dist(y, A+) > δ for
all y ∈ D(δ), and a transition to a %-neighborhood of x+ certainly requires an exit from D(δ). The
boundary of D(δ) consists of two hyper surfaces one of which carries an energy strictly greater than
µ∗ and thus greater than e(s) for all s ∈ [0, 1]. The minimal energy is therefore attained on the other
component of distance δ from A+ which approaches χ = ∂A− as δ → 0. Thus, by the joint continuity
of the quasi-potential, we can choose δ0 > 0 and η > 0 such that for δ ≤ δ0 and s ∈ [0, 1]

e(s) = inf
z∈χ

V s(x−, z) ≥ inf
z∈∂D(δ)

V s(x−, z) ≥ inf
y∈Bη(x−)

inf
z∈∂D(δ)

V s(y, z) ≥ e(s)− ϑ

4
. (2.10)

Let τD be the first exit time of Xε from D. For s ∈ [0, 1] and β > 0 we introduce a covering of the
interval of interest [sT ε, (s+β)T ε] into N = N(β, ε, µ) intervals of fixed length ν, i.e. ν is independent
of ε, µ, s and β. We will have to assume that ν is sufficiently large which will be made precise later
on. Thus we have Nν ≥ βT ε, and we can and do assume that N ≤ βT ε. For k ∈ Z, k ≥ −1, let

tk = tk(s, ε, µ) := sT ε + kν

be the starting points of these intervals. We consider t−1 since we need some information about the
past in order to ensure the diffusion to start in a neighborhood of the equilibrium x−. Then for
x ∈ Bη(x−) we get the desired estimation of probabilities of exit windows for τ% by those with respect
to τD:

IPx

(
sT ε ≤ τ% ≤ (s + β)T ε

) ≤
N∑

k=0

IPx(tk ≤ τD ≤ tk+1).

In a second step we will fix k ≥ 0 and estimate the probability of a first exit from D during each
of the intervals [tk, tk+1] separately. Here the difficulty is that we don’t have any information on
the location at time tk. We therefore condition on whether or not Xε has entered the neighborhood
Bη(x−) in the previous time interval. For that purpose, let

σk := inf
{
t ≥ tk ∨ 0 : Xε

t ∈ Bη(x−)
}
, k ≥ −1.

Then for k ≥ 0

IPx(tk ≤ τD ≤ tk+1) ≤ IPx(tk ≤ τD ≤ tk+1|σk−1 ≤ tk) + IPx(τD ∧ σk−1 ≥ tk). (2.11)

In the next step we shall estimate the second term on the right hand side of (2.11). Let K =
K(δ, η) = D(δ) \Bη(x−). Then K is compact, and by the Markov property we have

IPx(τD ∧ σk−1 ≥ tk) ≤ sup
y∈K

IPy,tk−1(τD ∧ σ1 ≥ ν),
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where IPy,t is as defined in the previous section. Now we wish to further estimate this exit probability
using large deviations methods. The neighborhoods

Ss,β(ε, µ) = [sT ε − ν, (s + νN(β, ε, µ))T ε]

of sT ε contain each interval [tk, tk+1], −1 ≤ k ≤ N(β, ε, µ), and they satisfy

lim sup
ε→0

sup
µ∈M, s∈[0,1]

diam(Ss,β(ε, µ))
T ε

≤ β.

Hence by the uniform LDP of Proposition 1.10, applied to the closed set

ΦK(y, δ, η) =
{
ϕ ∈ C0,ν : ϕ0 = y, ϕt ∈ K(δ, η) for all t ∈ [0, ν]

}
,

we obtain the upper bound

lim sup
ε→0

ε log sup
y∈K, µ∈M, k≤N

IPy,tk−1(τD ∧ σ1 ≥ ν)

≤ lim sup
ε→0

ε log sup
y∈K, µ∈M, t∈Ss,β(ε,µ)

IPy,t(Xε ∈ ΦK(y, δ, η)) (2.12)

≤ − inf
y∈K

inf
ϕ∈ΦK(y,δ,γ)γ0(β)

Is
0,ν(ϕ),

where γ0(β) = βνeKR(0)ν is the “blowup-factor” induced by the diameter β. Since γ0(β) → 0 as
β → 0, we can find β0 > 0 such that for β ≤ β0

⋃

y∈K(δ,η)

ΦK(y, δ, η)γ0(β) ⊂
⋃

y∈K( δ
2 , η

2 )

ΦK

(
y,

δ

2
,
η

2

)

which amounts to saying that, instead of blowing up the set of paths, we consider the slightly enlarged
domain K( δ

2 , η
2 ). Thus

− inf
y∈K

inf
ϕ∈ΦK(y,δ,γ)γ0(β)

Is
0,ν(ϕ) ≤ − inf

y∈K
inf

ϕ∈ΦK(y, δ
2 , γ

2 )
Is
0,ν(ϕ).

By Lemma 2.7 the latter expression, and therefore the r.h.s. of (2.12), approaches −∞ as ν → ∞,
uniformly w.r.t. s ∈ [0, 1]. So the second term in the decomposition of IPx(tk ≤ τD ≤ tk+1) can be
neglected since it becomes exponentially small of any desired order by choosing ν suitably large.

In the next and most difficult step, we treat the first term on the r.h.s. of (2.11). It is given by
the probability that, while Xε is in Bη(x−) at time σk−1, it exits within a time interval of length
tk+1 − σk−1 ≤ 2ν. Hence by the strong Markov property

IPx(tk ≤ τD ≤ tk+1|σk−1 ≤ tk) ≤ sup
tk−1≤t≤tk, y∈Bη(x−)

IPy,t(τD ≤ 2ν).

Applying the uniform LDP to the closed set

FD(y, δ) := {ϕ ∈ C0,2ν : ϕ0 = y, ϕt0 /∈ D(δ) for some t0 ≤ 2ν},

yields the upper bound

lim sup
ε→0

ε log sup
y∈Bη(x−), µ∈M, t∈Ss,β(ε,µ)

IPy,t(τD ≤ 2ν) ≤ − inf
y∈Bη(x−)

inf
ϕ∈FD(y,δ)γ0(β)

Is
0,2ν(ϕ), (2.13)

where γ0(β) = 2βνe2KR(0)ν . By the same reasoning as before we can replace the blow-up of the path
sets FD(y, δ) by an enlargement of the domain D(δ). We find β1 > 0 such that for β ≤ β1

− inf
y∈Bη(x−)

inf
ϕ∈FD(y,δ)γ0(β)

Is
0,2ν(ϕ) ≤ − inf

y∈Bη(x−)
inf

ϕ∈FD(y, δ
2 )

Is
0,2ν(ϕ) ≤ − inf

y∈Bη(x−)
inf

z∈∂D( δ
2 )

V s(y, z).
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Now we apply (2.10) and recall the uniformity of the LDP w.r.t. s. We find ε0 > 0 such that we have
for ε ≤ ε0, s ∈ [0, 1], µ ∈ M and β ≤ β1

ε log sup
y∈Bη(x−), t∈Ss,β(ε,µ)

IPy,t(τD ≤ 2ν) ≤ − inf
y∈Bη(x−)

inf
z∈∂D( δ

2 )
V s(y, z) +

ϑ

4

≤ −e(s) +
ϑ

2
. (2.14)

We finally summarize our findings. We conclude that there exists ε1 > 0 such that for ε ≤ ε1, µ ∈ M

and s ∈ [0, 1] we have

ε log sup
x∈Bη(x−)

IPx(sT ε ≤ τ% ≤ (s + β)T ε)

≤ ε log
{ N(β,ε,µ)∑

k=0

sup
x∈Bη(x−)

IPx

(
tk ≤ τD ≤ tk+1

∣∣σk−1 ≤ tk
)}

+
ϑ

4

≤ ε log
{

βT ε exp
(
− 1

ε

[
e(s)− ϑ

2
])}

+
ϑ

4
= ε log β + µ− e(s) +

3
4
ϑ

≤ µ− e(s) + ϑ.

This completes the proof.

Remark 2.9. If we stay away from s = 0, in the statement of Proposition 2.8 the radius of the
starting domain Bη(x−) can be chosen independently of the parameter ϑ. It may then be brought into
the following somewhat different form.

Proposition 2.10. Let L and M be compact subsets of ]0, 1] resp. ]µ∗, e(0)[. Let η > 0 be small
enough such that Bη(x−) belongs to the domain

{y ∈ IRd : V s(x−, y) < µ∗ for all s ∈ L}.

Then, for all ϑ > 0, there exists some β > 0 such that we have

lim sup
ε→0

ε log sup
x∈Bη(x−)

IP(sT ε ≤ τ% ≤ (s + β)T ε) ≤ µ− e(s) + ϑ.

uniformly w.r.t s ∈ L and µ ∈ M .

Proof. To prove Proposition 2.10, one has to modify slightly the preceding proof. Instead of just η

one has to choose two different parameters: η0 for the definition of the starting domain D and some
η1 for the description of the location of the diffusion at time tk, i.e. for the definition of the stopping
times σk.

In the following Proposition, we derive the upper bound for the asymptotic law of transition times,
corresponding to the lower bound obtained in Proposition 2.6.

Proposition 2.11. Let µ < e(0), and recall from (2.5) the definition aµ = inf{t ≥ 0 : e(t) ≤ µ}.
There exist γ > 0 and h0 > 0 such that for all h ≤ h0

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ≤ (aµ − h)T ε) ≤ µ− e(aµ − h). (2.15)

This bound is uniform w.r.t. µ on compact subsets of ]µ∗, e(0)[.

Proof. Let M be a compact subset of ]µ∗, e(0)[. To choose h0, we use our assumptions on the geometry
of the energy function e. Recall Assumption 2.2 according to which e is strictly monotonous in the
open intervals between the extrema ]µ∗, µ∗[. It implies that e is monotonically decreasing on the
interval [ae(0), aµ] for any µ ∈ M. By choice of M , we further have ae(0) < infµ∈M aµ. Now choose h0

such that
inf

µ∈M
aµ − h0 > ae(0).
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Then we have for h ≤ h0

inf
µ∈M

aµ − h > 0, (2.16)

e(0) > sup
µ∈M,h≤h0

e(aµ − h), (2.17)

e(s) ≥ e(aµ − h) for all s ≤ aµ − h. (2.18)

To see (2.18), note that for 0 ≤ s ≤ ae(0), by definition of ae(0), the inequality e(s) ≥ e(0) > e(aµ−h)
holds, while for ae(0) ≤ s ≤ aµ − h by monotonicity e(s) ≥ e(aµ − h).

Next fix h ≤ h0. For µ ∈ M , let Λ0 = Λ0(µ) = 0, and Λ1(µ) ≤ infµ∈M (aµ−h)T ε. For N ∈ IN∗ we
set Λi(µ) = Λ1 + i−1

N−1 ((aµ − h)T ε − Λ1), 2 ≤ i ≤ N, thus splitting the time interval [0, (aµ − h)T ε]
into the N intervals [Λi(µ), Λi+1(µ)], 0 ≤ i ≤ N − 1. Then for γ > 0, x ∈ Bγ(x−)

IPx(τ% ≤ (aµ − h)T ε) ≤
N−1∑

i=0

IPx(τ% ∈ [Λi(µ), Λi+1(µ)]),

which implies

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ≤ (aµ − h)T ε)

≤ max
0≤i≤N−1

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λi(µ), Λi+1(µ)]).

Fix ϑ > 0 such that for h ≤ h0, µ ∈ M we have e(0) ≥ e(aµ − h) + ϑ. This is guaranteed by (2.17).
We shall show that

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λi(µ), Λi+1(µ)]) ≤ µ− e(aµ − h) + ϑ

uniformly in 0 ≤ i ≤ N − 1 and µ ∈ M.

Let us treat the estimation of the first term separately from the others. In fact, by Proposition
2.8, setting s = 0, β = Λ1/T ε, we may choose Λ, ε0 > 0 and γ0 > 0 such that for Λ1 ≤ ΛT ε, ε ≤
ε0, γ ≤ γ0, µ ∈ M the inequality

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λ0(µ), Λ1(µ)]) ≤ µ− e(0) + ϑ

holds. Now we use the inequality e(0) ≥ e(aµ − h) + ϑ, valid for all µ ∈ M. Hence there exists Λ > 0,
ε0 > 0 and γ0 > 0 such that for Λ1 ≤ ΛT ε, ε ≤ ε0, γ ≤ γ0, µ ∈ M

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λ0(µ), Λ1(µ)]) ≤ µ− e(aµ − h).

Let us next estimate the contributions for the intervals [Λi(µ), Λi+1(µ)] with i ≥ 1. We use Proposition
2.8, this time with s = Λi(µ)/T ε, β = 1

N−1 supµ∈M aµ. By the definition of aµ, we get e(s) > e(aµ)
for all s < aµ. By (2.18), we have e(s) = e(Λi(µ)/T ε) ≥ e(aµ − h). By Remark 2.9,

lim sup
ε→0

ε log sup
x∈Bγ(x−)

IPx(τ% ∈ [Λi(µ), Λi+1(µ)]) ≤ µ− e(aµ − h) + ϑ

uniformly w.r.t 1 ≤ i ≤ N and µ ∈ M . Letting ϑ tend to 0, which implies that N tends to infinity
and Λ1 tends to zero, we obtain the desired upper bound for the exponential exit rate.

3 Stochastic resonance

Given the results of the previous section on the asymptotics of exit times which are uniform in the scale
parameter µ, we are now in a position to reconsider the problem of finding a satisfactory probabilistic
notion of stochastic resonance that does not suffer from the lack of robustness defect of physical
notions such as spectral power amplification. We continue to study the SDE

dXε
t = b

( t

T ε
, Xε

t

)
dt +

√
ε dWt, t ≥ 0, Xε

0 = x0 ∈ IRd
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introduced before, thereby recalling that the drift term b satisfies the local Lipschitz conditions (1.17)
and (1.16) in space and time, as well as the growth condition (1.18). Moreover, b is assumed to be
one-periodic in time such that T ε is the period of the deterministic input of the randomly perturbed
dynamical system described by Xε.
In typical applications, b = −∇xU is given by the (spatial) gradient of some time periodic double-
well potential U (see Pavlyukevich [11]). The potential possesses at all times two local minima well
separated by a barrier. The depth of the wells and the roles of being the deep and shallow one change
periodically. The diffusion Xε then roughly describes the motion of a Brownian particle of intensity ε

in a double-well landscape. Its attempts to get close to the energetically most favorable deep position
in the landscape makes it move along random trajectories which exhibit randomly periodic hopping
between the wells. The average time the trajectories need to leave a potential well of depth v

2 being
given by the Kramers-Eyring law T ε = exp( v

ε ) motivates our choice of time scales T ε = exp(µ
ε ) and

also our convention to measure time scales in energy units µ.

The problem of stochastic resonance consists of characterizing the optimal tuning of the noise, i.e.
the best relation between the noise amplitude ε and the input period T ε – or, in our units the energy
parameter µ – of the deterministic system which makes the diffusion trajectories look as periodic as
possible. Of course, the optimality criterion must be based upon a quality measure for periodicity in
random trajectories.
In this section we shall develop a measure of quality based on the transition probabilities investigated
in section 2 and with respect to this measure for fixed small ε (in the small noise limit ε → 0) exhibit
a resonance energy µ0(ε) for which the diffusion trajectories follow the periodic forcing of the system
at intensity ε in an optimal way. We shall in fact study the problem in a more general situation which
includes the double-well potential gradient case as an important example, and draws its intuition from
it. The deterministic system

ϕ̇s(t) = b(s, ϕs(t)), t ≥ 0,

has to satisfy Assumption 2.1, i.e. it possesses two well separated domains of attraction the common
boundary of which is time invariant. In the first subsection we shall describe the resonance interval
i.e. the set of all parameter values µ for which in the small noise limit trivial behavior, i.e. either
constant or continuously jumping trajectories, are excluded. The second subsection shows that a
quality measure of periodic tuning is given by the exponential rate at which the first transition from
one domain of attraction to the other one happens within a fixed time window around aµT ε. This
quality measure is robust, as demonstrated in the last subsection: in the small noise limit the diffusion
and its reduced model, a Markov chain jumping between the domains of attraction reduced to the
equilibrium points, have the same resonance pattern.

3.1 Resonance interval

According to Freidlin [3], quasi-periodic hopping behavior of the trajectories of our diffusion in the
small noise limit of course requires that the energies required to leave the domains of attraction of the
two equilibria switch their order periodically: if e± denotes the energy needed to leave A±, then e+

needs to be bigger than e− during part of one period, and vice versa for the rest. We assume that e±
both satisfy Assumption 2.2 and associate to each of these functions the transition time

a±µ (s) = inf{t ≥ s : e±(t) ≤ µ}.

The time scales µ for which relevant behavior of the system is expected, clearly belong to the intervals

Ii =] inf
t≥0

ei(t), sup
t≥0

ei(t)[, i ∈ {−, +}.

Our aim being the observation of periodicity, we have to make sure that the process can travel back
and forth between the domains of attraction on the time scales considered, but not instantaneously.
So, on the one hand, in these scales it should not get stuck in one of the domains. On the other hand,
they should not allow for chaotic behavior, i.e. immediate re-bouncing after leaving a domain has to
be avoided.

To make these conditions mathematically precise, recall that transitions from Ai to A−i become
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possible as soon as the energy ei needed to exit from domain i falls below µ which represents the
available energy. Not to get stuck in one of A±, we therefore have to guarantee

µ > max
i=±

inf
t≥0

ei(t).

To avoid immediate re-bouncing, we have to assure that the diffusion cannot leave A−i at the moment
it reaches it, coming from Ai. Suppose we consider the dynamics after time s ≥ 0, and the diffusion
is near i at that time. Its first transition to A−i occurs at time ai

µ(s)T ε where ai
µ(s) is the first time

in the original scale at which ei falls below µ after s. Provided e−i(ai
µ(s)) is bigger than µ, it stays

there for at least a little while. This is equivalent to saying that for all s ≥ 0 there exists δ > 0 such
that on [ai

µ(s), ai
µ(s) + δ] we have µ < e−i. Since by definition for t shortly after ai

µ(s), we always
have ei(t) ≤ µ, our condition may be paraphrased by: for all s ≥ 0 there exists δ > 0 such that on
[ai

µ(s), ai
µ(s) + δ] we have µ < maxi=± ei. This in turn is more elegantly expressed by

µ < inf
t≥0

max
i=±

ei(t).

Our search for a set of scales µ for which the diffusion exhibits non-trivial transition behavior may
be summarized in the following definition. The interval

IR =] max
i=±

inf
t≥0

ei(t), inf
t≥0

max
i=±

ei(t)[

is called resonance interval (see Figure 3).

i

a

b

PSfrag replacements
e−(t)
e+(t)

IR

Figure 3: Resonance interval

In this interval, for small ε, we have to look for an optimal energy scale µ(ε) in the following
subsection. See [7] and [6] for the definition of the corresponding interval in the one-dimension case
and in the case of two state Markov chains. In Freidlin’s [3] terms, stochastic resonance in the sense
of quasi-deterministic periodic motion is given if the parameter µ exceeds the lower boundary of our
resonance interval.

Let us briefly consider the potential gradient case. Assume that b(t, x) = −∇xU(t, x), t ≥ 0, x ∈
IRd, where U is some time periodic double-well potential with time invariant local minima x± and
separatrix. Then A− and A+ represent the two wells of the potential, χ the separatrix. The energy
e± is, in fact, the energy some Brownian particle needs to cross χ. Freidlin and Wentzell [4] give the
link between this energy and the depth of the well.

Lemma 3.1. If D±(t) = infy∈χ U(t, y)−U(t, x±) denote the depths of the wells, then e±(t) = 2D±(t)
for all t ≥ 0.

This link is the origin of the name “quasipotential”. The minimal energy e is reached by some
path which intersects the level sets of the potential with orthogonal tangents. This path satisfies an
equation of the form

ϕ̇s = ∇xU(t, ϕs), s ∈ (−∞, T ), ϕT ∈ χ.

The resonance interval is given by

IR =] max
i=±1

inf
t≥0

2Di(t), inf
t≥0

max
i=±1

2Di(t)[.
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3.2 Transition rates as quality measure

Let us now explain in detail our measure of quality designed to give a concept of optimal tuning
which, as opposed to physical measures (see Pavlyukevich [11]), is robust for model reduction to
Markov chains just retaining the jump dynamics between the equilibria of the diffusion. We shall use
a notion that is based just on this rough transition mechanism. In fact, generalizing an approach for
two state Markov chain models (see [6]), we measure the quality of tuning by computing for varying
energy parameters µ the probability that, starting in xi, the diffusion is transferred to x−i within the
time window [(ai

µ − h)T ε, (ai
µ + h)T ε] of width 2hT ε. To find the stochastic resonance point for large

T ε (small ε) we have to maximize this measure of quality in µ ∈ IR. The probability for transition
within this window will be approximated by the estimates of the preceding section. Uniformity of
convergence to the exponential rates will enable us to maximize in µ for fixed small ε.

Let us now make these ideas precise. To make sure that the transition window makes sense at
least for small h, we have to suppose that ai

µ > 0, i = ±1 for µ ∈ IR. This is guaranteed if

ei(0) > inf
t≥0

max
i=±

ei(t), i = ±.

If this is not granted from the beginning, it suffices to start the diffusion a little later. For % small
enough so that B%(x±) ⊂ A± we call

M(ε, µ, %) = min
i=±

sup
x∈B%(xi)

IPx(τ−i
% ∈ [(ai

µ − h)T ε, (ai
µ + h)T ε]), ε > 0, µ ∈ IR, (3.1)

transition probability for a time window of width h. Here

τ i
% = inf{t ≥ 0 : Xε

t ∈ B%(xi)}.

We are ready to state our main result on the asymptotic law of transition time windows.

Theorem 3.2. Let M be a compact subset of IR, h0 > 0 and % be given according to Theorem 2.3.
Then for all h ≤ h0

lim
ε→0

ε log(1−M(ε, µ, %)) = max
i=±

{
µ− ei(ai

µ − h)
}

(3.2)

uniformly for µ ∈ M.

Proof. This is an obvious consequence of Theorem 2.3.

It is clear that for h small the eventually existing global minimizer µR(h) of

IR 3 µ 7→ max
i=±1

{
µ− ei(ai

µ − h)
}

is a good candidate for our resonance point. But it still depends on h. To get rid of this dependence,
we shall consider the limit of µR(h) as h → 0.

Definition 3.3. Suppose that

IR 3 µ 7→ max
i=±

{
µ− ei(ai

µ − h)
}

possesses a global minimum µR(h). Suppose further that

µR = lim
h→0

µR(h)

exists in IR. We call µR the stochastic resonance point of the diffusion (Xε) with time periodic drift
b.

Let us now illustrate this resonance notion in a situation in which the energy functions are related
by a phase lag φ ∈]0, 1[, i.e. e−(t) = e+(t + ϕ) for all t ≥ 0. We shall show that in this case the
stochastic resonance point exists if one of the energy functions, and thus both, has a unique point of
maximal decrease on the interval where it is strictly decreasing.
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Theorem 3.4. Suppose that e− is twice continuously differentiable and has its global maximum at t1,
and its global minimum at t2, where t1 < t2. Suppose further that there is a unique point t1 < s < t2
such that e−|]t1,s[ is strictly concave, and e−|]s,t2[ is strictly convex. Then µR = e−(s) is the stochastic
resonance point.

Proof. As a consequence of the phase lag of the energy functions,

max
i=±

{
µ− ei(ai

µ − h)
}

=
{
µ− e−(a−µ − h)

}
.

Write aµ = a−µ and recall that on the interval of decrease of e−, aµ = e−1
− (µ). Therefore, the differen-

tiability assumption yields

1 = e′−(aµ − h) · a′µ = e′−(aµ − h) · 1
e′−(aµ)

.

Our hypotheses concerning convexity and concavity of e− essentially means that e′′−(s) = 0, and
e′′−|]t1,s[ < 0, e′′−|]s,t2[ > 0, which may be stated alternatively by saying that µ 7→ e′−(aµ) has a local
maximum at aµ = s. Hence for h small there exists a unique point aµ(h) such that

e′−(aµ(h)− h) = e′−(aµ(h))

and
lim
h→0

aµ(h) = s.

To show that aµ(h) corresponds to a minimum of the function

µ 7→ [µ− e−(aµ − h)],

we take the second derivative of this function at aµ(h), which is given by

e′−(aµ(h)− h)e′′−(aµ(h))− e′′−(aµ(h)− h)e′−(aµ(h))
e′−(aµ(h))

.

But e′−(aµ(h)), e′−(aµ(h)−h) < 0, whereas e′′−(aµ(h)−h) > 0, e′′−(aµ(h)) < 0. This clearly implies that
aµ(h) corresponds to a minimum of the function. But by definition, as h → 0, aµ(h) → s. Therefore,
finally, e−(s) is the stochastic resonance point.

3.3 The robustness of stochastic resonance

In the small noise limit ε → 0, it seems reasonable to assume that the periodicity properties of the
diffusion trajectories caused by the periodic forcing the drift term exhibits, are essentially captured
by a simpler, reduced stochastic process: a continuous time Markov chain which just jumps between
two states representing the equilibria in the two domains of attraction. Jump rates correspond to
the transition mechanism of the diffusion. This is just the reduction idea ubiquitous in the physics
literature, and explained for example in McNamara, Wiesenfeld [9]. We shall now show that in the
small noise limit both models, diffusion and Markov chain, produce the same resonance picture, if
quality of periodic tuning is measured by transition rates.

To describe the reduced model, let e± be the energy functions corresponding to transitions from A∓
to A± as before. Assume a phase locking of the two functions according to the previous subsection, i.e.
assume that e−(t) = e+(t + φ), t ≥ 0, with phase shift φ ∈]0, 1[. So, let us consider a time-continuous
Markov chain {Y ε

t , t ≥ 0} taking values in the state space S = {−,+} with initial data Y ε
0 = −.

Suppose the infinitesimal generator is given by

G =

( −ϕ( t
T ε ) ϕ( t

T ε )

ψ( t
T ε ) −ψ( t

T ε )

)
,

where ψ(t) = ϕ(t + φ), t ≥ 0, and ϕ is a 1-periodic function describing a rate which just produces the
transition dynamics of the diffusion between the equilibria ±, i.e.

ϕ(t) = exp
{
− e+(t)

ε

}
, t ≥ 0. (3.3)
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Note that by choice of ϕ,

ψ(t) = exp
{
− e−(t)

ε

}
, t ≥ 0. (3.4)

Transition probabilities for the Markov chain thus defined are easily computed (see [6], section 2).
For example, the probability density of the first transition time σi is given by

p(t) = ϕ(t) exp
{
−

∫ t

0

ϕ(s)ds
}

, if i = −, (3.5)

q(t) = ϕ(t + φ) exp
{
−

∫ t

0

ϕ(s + φ)ds
}

, if i = +,

t ≥ 0. Equation (3.5) can be used to obtain results on exponential rates of the transition times σi if
starting from −i, i = ±. We summarize them and apply them to the following measure of quality of
periodic tuning

N (ε, µ) = min
i=±

IPi(σ−i ∈ [(ai
µ − h)T ε, (ai

µ + h)T ε]), ε > 0, µ ∈ IR, (3.6)

which is called transition probability for a time window of width h for the Markov chain.
Here is the asymptotic result obtained from a slight modification of Theorems 3 and 4 of [6] which

consists of allowing more general energy functions than the sinusoidal ones used there and requires
just the same proof.

Theorem 3.5. Let M be a compact subset of IR, h0 < sup(a−1
µ , T/2− a−1

µ ). Then for 0 < h ≤ h0

lim
ε→0

ε ln(1−N (ε, µ)) = max
i=±1

{
µ− e−(ai

µ − h)
}

(3.7)

uniformly for µ ∈ M.

It is clear from Theorem 3.5 that the reduced Markov chain Y ε and the diffusion process Xε have
exactly the same resonance behavior. Of course, we may define the stochastic resonance point for Y ε

just as we did for Xε. So the following final robustness result holds true.

Theorem 3.6. The resonance points of (Xε) with time periodic drift b and of (Y ε) with exponential
transition rate functions e± coincide.
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