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Introduction

On a probability space, let (Gt) be a filtration containing a smaller filtration
(Ft). The basic question of the well known theory of enlargement of filtrations
(see [JY85]) with some relevance in simple models of financial markets with
asymmetric information (see for instance [Imk03]) is this: under which con-
ditions every (Ft)-semimartingale remains a semimartingale relative to (Gt)?
In the pioneering papers of [JY85] this inheritance property has been called
’Hypothèse (H’)’. Jacod [Jac85] gives a sufficient criterion for it to hold and
studies semimartingales’ Doob-Meyer decompositions relative to (Gt). With
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respect to vector space topologies on the set of (Ft)- and (Gt)-semimartingales
Yor [Yor85] investigates continuity properties of the associated mapping of
(Ft)-semimartingales into the space of (Gt)-semimartingales.

In this paper we reconsider the problem of the inheritance of the semi-
martingale property from a different and more general perspective. In fact,
in section 1 we derive inheritance results generalizing Jacod’s [Jac85], which
were proved in the setting of initial enlargements by the information stored
in random elements with values in Lusin spaces. Our proofs are based on the
concept of the decoupling measure, which allows an independent view on the
additional information contained in the enlarged filtration, specified in σ-fields
Ht enlarging Ft to obtain Gt = Ft ∨ Ht. The key observation is that under
the decoupling measure every (Ft)-martingale is a (Gt)-martingale. Hence, en-
larging the filtration can be seen as stepping from a view of processes through
the decoupling measure to a view by the original measure. In particular, the
associated Girsanov transform can be used to obtain explicit representations
of the Doob-Meyer decomposition w.r.t. the larger filtration. This idea goes
back to [FI93], where this method was used to analyze initial enlargements of
the Wiener filtration by some random variable G. Later [AIS98] and [GP98]
extended these techniques to more general stochastic bases and semimartin-
gales. In more recent approaches it was rediscovered in terms of a Bayesian
interpretation of simple models of insider trading by Gasbarra and Valkeila
[GV03]. Of course, the cost of this approach consists in the very assumption
of the existence of the decoupling measure. It restricts generality to a non-
trivial extent, as is seen if compared for example to the setting of [ADI04].
For instance, if the information drift to be deducted from a martingale in
the larger filtration does not generate an equivalent martingale measure cap-
turing the change of views from the small to the large filtration, then there
will be no decoupling measure. In order to tackle the problem, as Yoeurp
[Yoe85] for the analysis of progressive anlargements, we choose a formulation
a product space: the first marginal contains the original information, while the
second describes the additional information. Under the product measure both
marginals are independent. Therefore it will be the appropriate candidate for
our decoupling measure.

Here is an outline of the structure of the material presented. Our main
occupation in section 1 consists in showing how objects are transferred from
the original space into the artificial product space and vice versa. Once this
is handled, an application of the Girsanov transform leads to explicit Doob-
Meyer decompositions. In section 2 we provide estimates of the strength of
the information drift by appropriate generalized entropies. These are used
in section 3 in order to prove continuity properties of the embedding of the
(Ft)-semimartingales into the set of (Gt)-semimartingales with respect to well
known vector space topologies. These results generalize continuity results ob-
tained by Yor [Yor85].
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1 Enlargement of filtrations and Girsanov’s theorem

Let (Ω,F , P ) be a probability space with right-continuous filtrations (Ft)t≥0

and (Ht)t≥0. Moreover, let F∞ =
∨

t≥0 Ft and H∞ =
∨

t≥0Ht.
Our objective is to study the enlarged filtration

Gt =
⋂
s>t

(Fs ∨Hs) , t ≥ 0.

We relate this enlargement to a measure change on the product space

Ω̄ = Ω ×Ω

equipped with the σ-field
F̄ = F∞ ⊗H∞.

We endow Ω̄ with the filtration

F̄t =
⋂
s>t

(Fs ⊗Hs), t ≥ 0.

Ω will be embedded into Ω̄ by the map

ψ : (Ω,F) → (Ω̄, F̄), ω 7→ (ω, ω).

We denote by P̄ the image of the measure P under ψ, i.e.

P̄ = Pψ.

Hence for all F̄-measurable functions f : Ω̄ → R we have
∫

f(ω, ω′)dP̄ (ω, ω′) =
∫

f(ω, ω)dP (ω). (1)

In the following measure the two components in Ω̄ are decoupled, and weighted
according to P :

Q̄ = P
∣∣
F∞ ⊗ P

∣∣
H∞ .

We use notations and concepts of stochastic analysis as explained in the book
by Protter [Pro04]. Most of our results only hold for completed filtrations.
Since we consider different measures relative to which completions are taken,
we use the following notation. Let (Kt) be a filtration and R a probability
measure. We denote by (KR

t ) the filtration (Kt) completed by the R-negligible
sets.

We start with a simple observation.

Lemma 1. If f̄ : Ω̄ → R is F̄ P̄
t -measurable, then the map f̄ ◦ ψ is GP

t -
measurable.

Proof. First observe that
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Gt =
⋂
s>t

σ (A ∩B : A ∈ Fs, B ∈ Hs)

=
⋂
s>t

σ
(
ψ−1(A×B) : A ∈ Fs, B ∈ Hs

)

= ψ−1

(⋂
s>t

(Fs ⊗Hs)

)
= ψ−1(F̄t).

Now let f̄ = 1A with A ∈ F̄ P̄
t . There is a set B ∈ F̄t such that P̄ (A4B) = 0.

From the first part we deduce that the map 1B ◦ψ is Gt-measurable. Since we
have P -almost surely

1A ◦ ψ = 1B ◦ ψ,

the map 1A ◦ ψ is GP
t -measurable. By standard arguments one can show the

statement for arbitrary F̄ P̄
t -measurable functions.

Lemma 2. If X̄ is (F̄ P̄
t )-predictable, then X̄ ◦ ψ is (GP

t )-predictable.

Proof. Let 0 < s ≤ t, A ∈ F̄ P̄
s and

θ̄ = 1A1]s,t]

Then, by Lemma 1, θ̄ ◦ ψ = (1A ◦ ψ)1]s,t] is (GP
t )-predictable. The proof may

be completed by a monotone class argument.

Lemma 3. Let Ȳ be (F̄ P̄
t )-adapted. Then the process

Y = Ȳ ◦ ψ

is (GP
t )-adapted. Moreover, if Ȳ is a (F̄ P̄

t , P̄ )-local martingale, then Y is a
(GP

t , P )-local martingale.

Proof. The first statement follows immediately from Lemma 1. Now suppose
that Ȳ is a (F̄ P̄

t , P̄ )-martingale. Let 0 ≤ s < t and A ∈ Gs. Then there is a
set B ∈ F̄s such that ψ−1(B) = A and hence

EP [1A(Yt − Ys)] = EP̄ [1B(Ȳt − Ȳs)] = 0.

Thus Y is a (GP
t )-martingale.

Finally, let Ȳ be a (F̄ P̄
t )-local martingale and T̄ a localizing stopping time.

The random time T = T̄ ◦ ψ is a (GP
t )-stopping time, since

{T ≤ t} = ψ−1{T̄ ≤ t} ∈ ψ−1(F̄ P̄
t ) ⊂ GP

t .

Now it is straightforward to show that Y is a (GP
t )-local martingale.

Theorem 1. Let Ȳ be a (F̄ P̄
t , P̄ )-semimartingale. Then the process Y = Ȳ ◦ψ

is a (GP
t , P )-semimartingale.
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Proof. Let Ȳ be a (F̄ P̄
t )-semimartingale and Y = Ȳ ◦ ψ. Obviously Y has

cadlag paths P -a.s. and Lemma 3 implies that Y is (GP
t )-adapted. By the

theorem of Bichteler-Dellacherie-Mokobodzki it is sufficient to show that if
(θn) is a sequence of simple (Gt)-adapted integrands converging uniformly to
0, then the simple integrals (θn ·Y ) converge to 0 in probability relative to P .
Recall that any (Gt)-simple integrand is of the form

∑
1≤i≤n 1]ti,ti+1]θi, where

θi is Gti
-measurable. Since Gt = ψ−1(F̄t) one can find simple (F̄t)-adapted

processes (θ̄n) converging uniformly to 0 such that θ̄n ◦ ψ = θn. Ȳ being a
semimartingale implies that the sequence (θ̄n · Ȳ ) converges to 0 in probability
relative to P̄ , and hence (θn · Y ) converges to 0 in probability relative to P .

So far we have seen how objects can be translated from Ω̄ to Ω. Now we
look at the reverse transfer.

Lemma 4. Let M be a right-continuous (FP
t , P )-local martingale. Then the

process M̄(ω, ω′) = M(ω) is a (F̄ Q̄
t , Q̄)-local martingale.

Proof. It is immediate that M̄ is (F̄ Q̄
t )-adapted. For 0 ≤ s < t and sets

A ∈ Fs, B ∈ Hs we have

EQ̄[1A(ω)1B(ω′)(M̄t − M̄s)] = P (B)EP [1A(Mt −Ms)] = 0.

By the monotone class theorem, for all bounded (Fs ⊗Hs)-measurable func-
tions θ we have

EQ̄[θ(M̄t − M̄s)] = 0.

Since M̄ is right-continuous, this remains true for all bounded
⋂

u>s(Fu⊗Hu)-
measurable θ, and hence M̄ is a martingale with respect to (F̄ Q̄

t ).
Via T̄ (ω, ω′) = T (ω) stopping times can be trivially extended to the prod-

uct space. This finally shows that the local martingale property translates to
Ω̄ with respect to Q̄.

In the sequel we will always assume that P̄ is absolutely continuous with
respect to Q̄, i.e.

Assumption 1.
P̄ ¿ Q̄ on F̄ .

Note that this assumption is always satisfied if (Gt) is obtained by an initial
enlargement by some discrete random variable G, i.e. Ht = σ(G) for all t ≥ 0.

Now let M be a (FP
t , P )-local martingale and M̄ its extension to Ω̄ as

in Lemma 4. Since P̄ ¿ Q̄, M̄ is a (F̄ P̄
t , P̄ )-semimartingale and hence, by

Theorem 1, M is a (GP
t , P )-semimartingale. Thus, clearly hypothesis (H’) is

satisfied. But what is its Doob-Meyer decomposition relative to (GP
t , P )?

Essentially the change of filtrations corresponds to changing the measure
from Q̄ to P̄ on the product space Ω̄. Girsanov’s theorem applies on Ω̄, since
the measure P̄ is absolutely continuous with respect to Q̄. As a consequence
we obtain a Girsanov-type result for the corresponding change of filtrations.
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For its explicit description we introduce the density process. Let (Z̄t) denote
a cadlag (F̄ Q̄

t )-adapted process with

Z̄t =
dP̄

dQ̄

∣∣∣∣
F̄Q̄

t

.

Note that we need to consider the completed filtration in order to assure the
existence of a cadlag density process. Theorem 1 implies that the process Z

defined by
Z = Z̄ ◦ ψ

is a (GP
t , P )-semimartingale. Before giving the Girsanov-type results, we show

how the quadratic variation processes behave under the projection ψ.

Lemma 5. Let X̄ and Ȳ be (F̄ P̄
t , P̄ )-semimartingales. If X = X̄ ◦ ψ and

Y = Ȳ ◦ ψ, then
[X̄, Ȳ ] ◦ ψ = [X,Y ]

up to indistinguishability relative to P .

Proof. Put X = X̄ ◦ ψ and Y = Ȳ ◦ ψ. Let t > 0 and tni = t i
2n for all

i = 0, 1, . . . , 2n. It is known that the sums

X̄0Ȳ0 +
∑

0≤i<2n

(X̄tn
i+1

− X̄tn
i
)(Ȳtn

i+1
− Ȳtn

i
)

converge to [X̄, Ȳ ]t in probability relative to P̄ (see Theorem 20, Chapter VIII
in [DM82]). Hence [X̄, Ȳ ]t ◦ ψ is the limit (in probability) of the sums

X0Y0 +
∑

0≤i<2n

(Xtn
i+1

−Xtn
i
)(Ytn

i+1
− Ytn

i
)

relative to P . Obviously the limit is also equal to [X,Y ]t, and hence we have

[X̄, Ȳ ]t ◦ ψ = [X, Y ]t.

Since both processes are cadlag, they coincide up to indistinguishability rela-
tive to P .

Let M̄ be a (F Q̄, Q̄)-semimartingale and M = M̄ ◦ ψ. Since P̄ is ab-
solutely continuous with respect to Q̄, M̄ is also a (F̄ P̄

t , P̄ )-semimartingale.
Moreover, the bracket [M̄, Z̄] relative to Q̄ is P̄ -indistinguishable from the
bracket relative to P̄ . Similarly, Lemma 5 implies that the bracket [M,Z] of
the (GP

t , P )-semimartingales M and Z coincides with [M̄, Z̄] ◦ ψ.
We are now in a position to state the first Girsanov-type result. We begin

with some definitions. Let

T̄ = inf{t > 0 : Z̄t = 0, Z̄t− > 0}

and Ūt = ∆M̄T̄ 1{t≥T̄}. We further denote by Ũ the compensator of Ū , i.e. the

(F̄ Q̄
t , Q̄)-predictable projection of Ū . Moreover, we will use the abbreviation

Û = Ũ ◦ ψ.
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Theorem 2. If M is a (FP
t , P )-local martingale with M0 = 0, then

M − 1
Z
· [M,Z] + Û (2)

is a (GP
t , P )-local martingale.

Proof. Let M be an (FP
t , P )-local martingale with M0 = 0. We may assume

that M has cadlag paths. Lemma 4 implies that the process defined by

M̄(ω, ω′) = M(ω)

is a (F̄ Q̄
t )-local martingale and the Lenglart-Girsanov Theorem yields that

M̄ − 1
Z̄
· [M̄, Z̄] + Ũt

is a (F̄ P̄
t , P̄ )-local martingale (see Théorème 3 in [Len77] or Chapter III in

[Pro04]). Since the bracket process [M̄, Z̄] ◦ ψ is P -indistinguishable from
[M, Z] (see Lemma 5), we have

(
1
Z̄
· [M̄, Z̄]) ◦ ψ =

1
Z
· [M, Z]

up to indistinguishability. With Lemma 3 we conclude that

M − 1
Z
· [M,Z] + Ût

is a (GP
t , P )-local martingale.

In case M is continuous, the preceding decomposition in the larger filtra-
tion simplifies.

Theorem 3. If M is a continuous (FP
t , P )-local martingale with M0 = 0,

then
M − 1

Z
· [M,Z]

is a (GP
t , P )-local martingale.

Proof. Let M be a continuous (FP
t , P )-local martingale with M0 = 0 and put

M̄(ω, ω′) = M(ω). The related process Ū vanishes, and hence Û vanishes as
well. The result follows now from Theorem 2.

The preceding may also be formulated in terms of the stochastic logarithm
of the density process Z̄. To this end set S̄ = inf{t > 0 : Z̄t = 0, ∆Z̄t = 0}
and define

L̄ =
∫ ·

0+

1
Z̄−

dZ̄ on [0, S̄[. (3)

So far, the process L̄ is determined P̄ -, but not Q̄-almost everywhere. (In order
to define it everywhere we may put L̄ = 0 on [S̄,∞[.) Then L̄ is an (F̄ P̄

t , P̄ )-
semimartingale but not necessarily an (F̄ Q̄

t , Q̄)-semimartingale. However, re-
stricted to the time interval [0, S̄[ it is an (F̄ Q̄

t , Q̄)-local martingale. As usual
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we write L = L̄ ◦ ψ. Alternatively, one can define L through the stochastic
integral

L =
∫ ·

0+

1
Z−

dZ.

Since the process L̄ is a (F̄ Q̄
t , Q̄)-local martingale on the interval [0, S̄[, it can

be decomposed into a unique local-martingale part L̄c and a sum of com-
pensated jumps L̄d. As before, we consider the processes Lc = L̄c ◦ ψ and
Ld = L̄d ◦ ψ.

Theorem 3 can now be reformulated as follows.

Theorem 4. If M is a continuous (FP
t , P )-local martingale with M0 = 0,

then
M − [M,L]

is a (GP
t , P )-local martingale.

Proof. Let M be a continuous (FP
t , P )-local martingale with M0 = 0. Since

M is continuous, the bracket process [M, Z] is continuous and Theorem 3
implies that

M − 1
Z
· [M, Z] = M − 1

Z−
· [M, Z]

is a (GP
t , P )-local martingale. Moreover, the definition of L implies that 1

Z−
·

[M, Z] = [M, L], P -a.s., so that M − [M,L] is a (GP
t , P )-local martingale.

Finally, we will need the following formula, in which the subtracted drift is
represented in terms of the quadration variation of the given local martingale.

Theorem 5. If M is a continuous (FP
t , P )-local martingale with M0 = 0,

then there is a (GP
t )-predictable process α such that P -a.s.

∫ ∞

0

α2
t d[M,M ]t ≤ [L,L]c∞ < ∞,

and
M − α · [M, M ]

is a (GP
t )-local martingale.

Proof. Let M be a continuous (FP
t , P )-local martingale with M0 = 0. By the

Kunita-Watanabe Inequality one has for 0 ≤ s < t,

[M, L]t − [M,L]s ≤ [L,L]1/2
t ([M,M ]t − [M, M ]s)1/2.

Since [L,L]t is finite for all t ≥ 0, the measure d[M,L] is absolutely continuous
with respect to d[M, M ] and there exists a (GP

t )-predictable process α with

α · [M, M ] = [M, L] = [M, Lc]

(see Lemme 1.36 in [Jac79]). Moreover, the processes M and O = Lc − α ·M
are orthogonal w.r.t. [·, ·]. Consequently,
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α2 · [M,M ] = [α ·M, α ·M ] ≤ [Lc, Lc] = [L,L]c.

Recall that
[L,L] =

( 1
Z̄2−

· [Z̄, Z̄]
)
◦ ψ

and that Z̄ is a uniformly integrable nonnegative (F̄ Q̄
t , Q̄)-martingale. Since

P̄ -a.s. Z̄∞ > 0, one has also inft≥0 Z̄t > 0, P̄ -a.s. Moreover, [Z̄, Z̄]∞ < ∞,
Q̄-a.s. Therefore, [L̄, L̄] is P̄ -a.s. bounded and consequently [L, L]ct converges
as t →∞ P -a.s. to some real value which we denote by [L,L]c∞.

Remark 1. In the literature the process α is sometimes called information drift
(see for example [Imk03]).

Remark 2. Due to the previous theorem the information drift obtained via the
Girsanov approach under Assumption 1 is always locally square integrable.
It was shown in [ADI04] that in case Ω is standard Borel and each (Ft)-
martingale has a continuous modification, square integrability on the product
space Ω × [0, T ] with respect to the measure d[M, M ] ⊗ P implies the abso-
lute continuity of the kernels kt(·, dω′) with respect to the conditional laws
Pt(·, dω′) of Gt− with respect to Ft, where

Pt(·, A) = P (A) +
∫ t

0

ks(·, A)dMs + LA
t , A ∈ Gt−, t ∈ [0, T ],

LA being orthogonal to M . In this case the R-N density process γt(ω, ω′) =
kt(·,dω′)
Pt(·,dω′) is identical to α if restricted to the diagonal ω = ω′. Hence this ab-
solute continuity condition (ACL) is implied by Assumption 1. Enlargements
with locally integrable but not square integrable information drifts are beyond
the scope of this article. But they provide examples for which (ACL) does not
imply Assumption 1. One example is obtained for instance by enlarging the
Wiener filtration by the maximum of the Wiener process over some finite time
interval. In this case Malliavin’s calculus can be applied and an explicit rep-
resentation of the information drift is obtained via the Clark-Ocone formula
(see [IPW01] and [Imk03]). In case Ω is not standard Borel we do not know
at the moment whether 1 is more restrictive than (ACL). The methods of
[ADI04] allow in a more general setting the description of information drifts
which are not necessarily locally square integrable.

Comparison with Jacod’s condition

In Jacod’s paper (see [Jac85]) the filtration (Ft) is supposed to be enlarged
by some random variable G taking values in a Lusin space (E, E). As a conse-
quence, for t ∈ [0, T ] regular conditional distributions Qt of G relative to Ft

exist. The following condition is assumed to be satisfied:

(A’) For every t ≥ 0 and P -a.a. ω the measure Qt(ω, ·) is absolutely
continuous with respect to the law η of G.

We will show that condition (A’) implies our assumption 1. More precisely,
with Ht = σ(G), we have the following.
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Lemma 6. If (A’) is satisfied, then P̄ ¿ Q̄ on F̄s for all s ≥ 0.

Proof. Let t ≥ 0, A ∈ Ft and B ∈ E . We put

P̃ (A×G−1[B]) =
∫

A

Qt(ω, B) dP (ω),

and extend P̃ to a probability measure on Ft ⊗ σ(G). Note that for A ∈ Ft

and B ∈ E

P̃ (A×G−1[B]) = P (A ∩G−1[B]) = P̄ (A×G−1B),

and hence P̃ = P̄ on Ft ⊗ σ(G). Now let s < t and C ∈ F̄s with P̄ (C) = 0.
We claim that Q̄(C) = 0.
Notice that also P̃ (C) = 0. Now choose a set D ∈ Ft ⊗ E such that
C is the inverse image of D under the map (ω, ω′) 7→ (ω, G(ω′)). Then∫

1D(ω, x) Qt(ω, dx) = 0 for P -a.a. ω. With assumption (A’) we conclude
that

∫
1D(ω, x) dη(x) = 0 for P -a.a. ω, and hence

Q̄(C) =
∫ ∫

1C(ω, ω′) dP (ω′) dP (ω)

=
∫ ∫

1D(ω, x) dη(x) dP (ω)

= 0.

Thus we have shown the result.

Jacod does not use Girsanov’s theorem in his paper [Jac85]. However,
he points out that his results could also be deduced by applying it to the
conditional measures P x = P (·|G = x), x ∈ E. Condition (A’) implies that
the conditional measures P x are absolutely continuous with respect to P .
Hence, by Girsanov, for a given (Ft, P )-local martingale there is a drift Ax

such that M −Ax is a (Ft, P
x)-local martingale. By combining the processes

Ax we obtain that
M −AG

is a (Gt, P )-local martingale. The main work consists in proving that the
processes Ax can be combined in a meaningful way. As far as we know, Jacod’s
sketch has never been worked out rigorously.

In our approach we embed every local martingale into the product space
Ω̄. We apply Girsanov’s theorem on the product space and then translate our
results back into the original space. One of the advantages of our approach
is that we do not have to assume regular conditional distributions to exist.
And we do not need to show how processes can be combined. Instead we have
to show how one can transfer objects from Ω to Ω̄ and vice versa. Moreover
we are not restricted to initial enlargements, but only to enlargements of the
form

Gt =
⋂
s>t

(Fs ∨Hs), t ∈ [0, T ].
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Starting with Jacod’s results one can obtain decompositions for filtrations of
this kind by using predictable projections. For this suppose A to be a bounded
variation process such that M − A is a local martingale with respect to the
initially enlarged filtration (Ft ∨H∞). If B is the predictable projection of A

onto (Gt), then M −B is a (Gt)-local martingale.

2 Estimates for the drift

Suppose M is a continuous (FP
t , P )-local martingale with M0 = 0. Under the

assumptions of the previous section we know that there is a (GP
t )-predictable

process α such that M −α · [M, M ] is (GP
t , P )-local martingale. Moreover, the

information drift α satisfies

(α2 · [M, M ])∞ ≤ [L,L]c∞. (4)

In this section we provide bounds for

E
[
(α2 · [M,M ])p

∞
]

for various moments p ≥ 1 based on inequality (4).
Throughout this section we suppose the assumptions of the previous sec-

tion and maintain the notation. More precisely, we assume that P̄ ¿ Q̄,
denote by Z̄t = dP̄

dQ̄

∣∣∣
F̄Q̄

t

the density process, and by L̄ the stochastic logarithm

of Z̄. We use again the decomposition of L̄ into a continuous part L̄c and a
part L̄d consisting of compensated jumps. As before we denote by Z, L and Lc

the corresponding (Gt)-adapted processes obtained by a right side application
of ψ.

2.1 Moment p = 1

Recall that the relative entropy of two probability measures P and Q on some
σ-algebra M is defined by

HM(P‖Q) =





EP

(
log dP

dQ

∣∣∣∣
M

)
, if P ¿ Q on M

∞, if not P ¿ Q on M.

In our situation, the relative entropy HF̄∞(P̄‖Q̄) provides an upper bound
for the first moment of [L,L]c:

Lemma 7.

1
2
EP [L,L]c∞ ≤ HF̄∞(P̄‖Q̄).

If (Z̄t)t≥0 is continuous and Z̄0 = 1, then one even has

1
2
EP [L,L]∞ = HF̄∞(P̄‖Q̄).
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Remark 3. If the σ-field F0 is trivial, then the measures P̄ and Q̄ coincide on
F0 ⊗ H0. As will be shown in Lemma 14 we have F̄ Q̄

0 = (F0 ⊗ H0)Q̄, and
hence in this case Z̄0 = 1.

Proof. To prove the first statement, we decompose L̄ into its continuous and
discontinuous part L̄ = L̄c + L̄d and let Z̄c

t = E(L̄c)t and Z̄d
t = Z̄0 E(L̄d)t.

Then Z̄t = Z̄c
t Z̄d

t on [0, S̄[. The following results are only valid when stopping
all processes at a stopping time T̄ = inf{t > 0 : Z̄t < ε} for some ε > 0. To
simplify notation, we omit the stopping times in the following computations.
One has

log Z̄t = log(E(L̄c))t + log(Z̄d
t )

= (L̄c
t − [L̄, L̄]ct) +

1
2
[L̄, L̄]ct + log Z̄d

t ,

where the term in the first brackets is a (F̄ P̄
t , P̄ )-local martingale due to

Girsanov’s theorem. Consider the function ξ(x) = x log x (x ∈ [0,∞)) and
denote Āt = Z̄t log Z̄d

t = Z̄c
t ξ(Z̄d

t ). Then Itô’s formula yields

Āt = ξ(Z̄0) +
∫ t

0+

ξ(Z̄d
s−) dZ̄c

s +
∫ t

0+

Z̄c
s−ξ′(Z̄d

s−) dZ̄d
s

+
∑

0<s≤t

Z̄c
s−

(
ξ(Z̄d

s )− ξ(Z̄d
s−)− ξ′(Z̄d

s−)∆Z̄d
s

)
,

where all summands in the previous line are non-negative due to the convexity
of ξ.

Let now (T̄n) denote a P̄ -localizing sequence of bounded stopping times
such that the integrals in the stopped processes (ĀT̄ n

t ) are Q̄-submartingales
and the stopped processes (L̄c − [L̄, L̄]c)T̄ n

are P̄ -martingales. Then

EQ̄[ĀT̄ n ] ≥ EQ̄[ξ(Z̄0)] ≥ 0,

which leads to

EQ̄[ξ(Z̄T̄ n)] ≥ EQ̄[Z̄T̄ n log Z̄c
T̄ n ] = EP̄ [log Z̄c

T̄ n ]

=
1
2
EP̄ [L̄, L̄]cT̄ n .

(5)

Note that by Jensen’s inequality for all stopping times T

EQ̄[ξ(Z̄∞)|F̄T ] ≥ ξ
(
EQ̄[Z̄∞|F̄T ]

)
= ξ

(
Z̄T

)
,

from which we deduce that EQ̄[ξ(Z̄T̄ n)] ≤ EQ̄[ξ(Z̄∞)] = HF̄∞(P̄‖Q̄). With
(5) we arrive at

1
2
EP̄ [L̄, L̄]cT̄ n ≤ HF̄∞(P̄‖Q̄)

and monotone convergence implies that 1
2EP̄ [L̄, L̄]c∞ ≤ HF̄∞(P̄‖Q̄).

It remains to show that in case (Z̄t) is continuous with Z̄0 = 1 and
EP̄ [L̄, L̄]∞ < ∞, we have 1

2EP̄ [L̄, L̄]∞ ≥ HF̄∞(P̄‖Q̄). Indeed, then (L̄t −
[L̄, L̄]t) is an L2-bounded (F̄ P̄

t , P̄ )-martingale and one has
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1
2
EP̄ [L̄, L̄]t = EP̄

[
L̄t − [L̄, L̄]t +

1
2
[L̄, L̄]t

]

= EP̄ log Z̄t = EQ̄[Z̄t log Z̄t].

The left hand side converges to 1
2EP̄ [L̄, L̄]∞ as t → ∞. On the other hand,

ξ(Z̄t) converges to ξ(Z̄∞) so that by Fatou’s lemma

lim inf
t→∞

EQ̄[Z̄t log Z̄t] ≥ EQ̄ξ(Z̄∞) = HF̄∞(P̄‖Q̄).

This completes the proof.

2.2 Moments p > 1

Now we consider moments of order p > 1. In this case the p-th moment of
[L,L]∞ can be compared to some generalized relative entropy. See [Imk96] for
elementary versions of the inequalities to be derived.

Our analysis requires some additional assumption. We suppose that (Gt)
is an initial enlargement of (Ft), i.e.

Gt =
⋂
s>t

(Fs ∨ A) , t ≥ 0,

where A is some fixed sub-σ-algebra of F . Moreover, we assume that F0 is
trivial. Additionally, we need to make the following assumption.

Assumption 2 (C). Every (FP
t , P )-martingale has a continuous modifica-

tion.

We shall see that under this condition L̄ is a continuous (F̄ Q̄
t , Q̄)-local

martingale.
We begin with the definition of the generalized relative entropy.

Definition 1. For p > 1, and probability measures P ¿ Q on a σ-algebra M,
let

Hp
M(P‖Q) := EP

(
log+

dP

dQ

∣∣∣
M

)p

.

We provide now an upper bound of E[L,L]p∞ with the help of the gener-
alized entropy of P̄ with respect to Q̄ on the set F̄∞. To simplify notations,
we omit the σ-algebra F̄∞, and write only Hp(P̄‖Q̄) and H(P̄‖Q̄). The aim
of this section is to prove

Theorem 6. For any p ≥ 1 there exists a universal constant C = C(p) < ∞
such that under the above assumptions one has

E[L, L]p∞ ≤ C
[
H(P̄‖Q̄) + Hp(P̄‖Q̄)

]
.

For the proof we need some auxiliary results. We start by showing that
there exists a continuous modification for Z̄.
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Lemma 8. Let M̄ be a uniformly integrable (F̄ Q̄
t , Q̄)-local martingale. If as-

sumption (C) is satisfied, then for P -a.a. ω′ the process M̄ω′ = M̄(·, ω′) is a
(FP

t )-local martingale.

Proof. Choose a modification such that every path of M̄ is cadlag. Now let
M̂ be an A⊗O(F)-measurable process such that for all ω′ and s ≥ 0

M̂ω′
s = EP [M̄ω′

∞ |Fs].

For the existence of such a process we refer to [SY78], Proposition 3. Put
Ct = {M̂t > M̄t}. Clearly Ct ∈ F̄ Q̄

t and Ct(·, ω′) ∈ FP
t for all P -a.a. ω′ (recall

that (Ft) is right-continuous). Moreover for t ≥ 0
∫ ∫

1Ct
(ω, ω′)(M̂ω′

t − M̄ω′
t ) dP (ω) dP (ω′)

= EQ̄[1Ct
(M̂t − M̄t)]

= EQ̄[1Ct
(M̂t − M̄∞)]

=
∫ ∫

1Ct(ω, ω′)(M̂ω′
t − M̄ω′

∞ ) dP (ω) dP (ω′)

=
∫

0 dP (ω′) = 0,

A similar result holds true on the set {M̂t < M̄t}, and as a consequence we
have for P -a.a. ω′

M̂t(·, ω′) = M̄t(·, ω′), P -a.s.

Hence for P -a.a. ω′ the process (M̄ω′
q )q∈Q+ is a (FP

t )-martingale. Since M̄t is
cadlag and uniformly integrable we obtain that also

(M̄ω′
t )t≥0

is a (FP
t )-martingale for P -a.a. ω′.

Lemma 9. If (C) is satisfied, then every uniformly integrable (F̄ Q̄
t , Q̄)-local

martingale has a continuous modification.

Proof. Let M̄ be a (F̄ Q̄
t , Q̄)-local martingale. We may suppose that M̄ is

cadlag everywhere, and hence, the set

N = {(ω, ω′) : t 7→ M̄t(ω, ω′) is not continuous}

is measurable. Fix ω′ and suppose that M̄ω′ is a (FP
t )-martingale. Then as-

sumption (C) implies that for P -a.a. ω the paths t 7→ M̄ω′
t (ω) are continuous,

i.e. P (Nω′) = 0. Now Fubini’s Theorem yields with Lemma 8

EQ̄(N) =
∫ ∫

1Nω′ (ω) dP (ω) dP (ω′)

=
∫

0 dP (ω′) = 0,

and hence the result.
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For the rest of the section we will suppose that Z̄ is a continuous mod-

ification of our density process dP̄
dQ̄

∣∣∣∣
F̄Q̄

t

. Similarly, L̄ will be assumed to be

continuous.

Proof ( of Theorem 6). We assume that H(P̄‖Q̄) and Hp(P̄‖Q̄) are finite.
Then Xt := L̄t− [L̄, L̄]t is a continuous L2-bounded P̄ -martingale by Lemma
7 and we write log Z̄t = Xt + 1

2At with At := [L̄, L̄]t = [X,X]t. Next, observe
that

Hp(P̄‖Q̄)1/p = EP̄
[
(X∞ +

1
2
A∞)p

+

]1/p

≥ EP̄
[(1

2
A∞ − (|X∞| ∧ 1

2
A∞)

)p]1/p

≥ 1
2
EP̄

[
Ap
∞

]1/p − EP̄
[|X∞|p

]1/p

≥ 1
2
EP̄ [Ap

∞]1/p − C EP̄
[
Ap/2
∞

]1/p
,

(6)

where the last inequality holds for some constant C > 0 due to the Burkholder-
Davis-Gundy inequality. Now choose ξ > 0 such that for all x ≥ 0

Cpxp/2 ≤ ξpx +
1
4p

xp.

This leads to
CpEP̄ Ap/2

∞ ≤ ξpEP̄ A∞ +
1
4p

EP̄ Ap
∞

and hence to

C EP̄
[
Ap/2
∞

]1/p ≤ ξEP̄
[
A∞

]1/p +
1
4
EP̄

[
Ap
∞

]1/p
.

With (6) we conclude that

Hp(P̄‖Q̄)1/p ≥ 1
4
EP̄

[
Ap
∞

]1/p − ξEP̄
[
A∞

]1/p =
1
4
EP̄

[
Ap
∞

]1/p − ξH(P̄‖Q̄)1/p.

Consequently,

EP̄
[
Ap
∞

]1/p ≤ 4ξH(P̄‖Q̄)1/p + 4Hp(P̄‖Q̄)1/p

≤ 8(ξpH(P̄‖Q̄) + Hp(P̄‖Q̄))1/p,

where the last step follows from the elementary inequality a+b ≤ 2(ap+bp)1/p,
a, b ≥ 0.

Remark 4. The above proof is based on the fact that there exists a constant
Cp such that for any continuous L2-bounded P̄ -martingale (Xt) with X0 = 0
and quadratic variation process (At) one has

EP̄ Ap
∞ ≤ Cp EP̄

[
X∞ +

1
2
A∞ +

(
X∞ +

1
2
A∞

)p

+

]
.

Improving the estimate to
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EP̄ Ap
∞ ≤ Cp EP̄

(
X∞ +

1
2
A∞)p

+ (7)

would lead to the better estimate EP [L,L]p ≤ Cp Hp(P̄‖Q̄). However, an
estimate stating (7) is not valid, as the following example shows.

Example 1. Let W be a Wiener process and for fixed ε > 0, let T denote
the first hitting time of the slope t 7→ ε − t/2. We consider Xt := WT

t and
At := [X, X]t. Then by the Lévy-Bachelier formula the law of T = A∞ has
density

1(0,∞)(t)
ε

t3/2
φ
(ε− t/2√

t

)
,

where φ is the density of the standard normal law. Hence,

E[Ap
∞] = ε

∫ ∞

0

tp−3/2 φ
(ε− t/2√

t

)
dt.

In particular, for ε ↓ 0, one has E[Ap
∞] ≈ ε. On the other hand,

E
[(

X∞ +
1
2
A∞

)p

+

]
= E[(WT + T/2)p] = εp

such that one can always find a sufficiently small ε > 0 for which the inequality
(7) is not valid.

We next show a result which in a sense contains the inverse statement to
Theorem 6.

Lemma 10. For p ≥ 1 there exists a universal constant C = C(p) < ∞ such
that

Hp(P̄‖Q̄) ≤ C
[
EP̄ [L̄, L̄]p∞ + 1

]
.

In particular finiteness of EP̄
(
[L̄, L̄]p∞

)
implies finiteness of the entropy

Hp(P̄‖Q̄).

Proof. We have, by Burkholder-Davis-Gundy, with a universal constant C1

Hp(P̄‖Q̄)1/p ≤ E

(
|L̄∞ − 1

2
[L̄, L̄]∞|p

)1/p

≤ E
(|L̄∞|p

)1/p + E

(
1
2
[L̄, L̄]p∞

)1/p

≤ C1E
(
[L̄, L̄]p/2

∞
)1/p

+ E

(
1
2
[L̄, L̄]p∞

)1/p

≤ C1

(
1 + E[L̄, L̄]p∞

)1/p + E

(
1
2
[L̄, L̄]p∞

)1/p

≤ C2

(
1 + E

(
[L̄, L̄]p∞

))1/p
,

and thus the result.
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Suppose now that the enlargement A is induced by some discrete random
variable G, i.e. A = σ(G). In that case one can estimate the moments of
[L,L]∞ against some generalized absolute entropy of G.

Definition 2. Let (qg) denote the probability weights of G. We denote by

Hp(G) =
∑

g

qg(log 1/qg)p.

the generalized absolute entropy of order p.

Lemma 11. One has
Hp(P̄‖Q̄) ≤ Hp(G),

and if G is F∞-measurable, then

Hp(P̄‖Q̄) = Hp(G).

Proof. For the proof we need a monotonicity property of f -divergences. Due
to Corollary 1.29 in [LV87] one has

Hp(P̄‖Q̄) = Hp(PidF∞ ,idA‖PidF∞ ⊗ PidA)

≤ Hp(PidF∞ ,G,idA‖PidF∞ ,G ⊗ PidA).

Moreover, if G is F∞-measurable, then one even has equality in the previous
line. We denote by (qg) the probability weights of G. One easily verifies that

dPidF∞ ,G,idA

dPidF∞ ,G ⊗ PidA
(ω, g, ω′) = 1{g=G(ω′)}

1
qg

.

Set f(g, g′) = 1{g=g′} 1
qg

. Then

Hp(PidF∞ ,G,idA‖PidF∞ ,G ⊗ PidA)

=
∫

f(g, G(ω′)) (log+ f(g, G(ω′)))p d(PidF∞ ,G ⊗ PidA)(ω, g, ω′)

=
∫

{(g,ω′):g=G(ω′)}

1
qg

(
log+

1
qg

)p

d(PG ⊗ PidA)(g, ω′),

since f(g, G(ω′)) = 0 if g 6= G(ω′) and the integrand does not depend on ω.
Altogether, we arrive at

Hp(P̄‖Q̄) ≤
∑

g

qg

(
log

1
qg

)p

= Hp(G)

and equality holds if G is F∞-measurable.

Example 2. Let Mt = Wt denote a Wiener process and consider the completed
filtration (Ft) = (FW

t ) generated by the Wiener process. We now consider
an initial enlargement of the filtration (Ft) by some arbitrary σ-field A, i.e.
Gt =

⋂
s>t (Fs ∧ A). Supposing that P̄ ¿ Q̄, the Doob-Meyer decomposition

for W with respect to (Gt) is of the form
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Wt = W̃t +
∫ t

0

αs ds,

where W̃ is a (Gt)-Wiener process and α is a (Gt)-adapted process. In fact,
W̃ is continuous with quadratic variation process [W̃ , W̃ ]t = t. Moreover,
since F0 is trivial and all (Ft)-martingales have continuous modifications, the
results of this section lead to the estimate

E
(∫ t

0

α2
s ds

)p

≤ Cp

[
H(P̄‖Q̄) + Hp(P̄‖Q̄)].

If in addition A = σ(G) is generated by some discrete random variable G,
then

E
(∫ t

0

α2
s ds

)p

≤ Cp

[
H(G) + Hp(G)].

3 Continuity of initial enlargements

In section 1 we have seen that every (FP
t )-semimartingale is also a semi-

martingale relative to a bigger filtration (GP
t ) if the measure P̄ is absolutely

continuous with respect to Q̄. In this section we analyze to which extent this
embedding of (FP

t )-semimartingales into some space of (GP
t )-semimartingales

is continuous. For simplicity we restrict to initial enlargements. It turns out
that the embedding is continuous if and only if some generalized entropy of
the measures P̄ and Q̄ is finite.

Let (Ω,F , (Ft), P ) be a filtered probability space as in the previous section.
Throughout this section we assume that F0 is trivial and we let

Gt =
⋂
s>t

(Fs ∨ A) , t ≥ 0,

where A is some fixed sub-σ-algebra of F . The measures P̄ and Q̄ are defined
as in the previous section and we assume again that P̄ is absolutely continuous
with respect to Q̄. As before we will abbreviate Z̄t = dP̄

dQ̄

∣∣
F̄t

, t ≥ 0. For a
treatment of basic questions and ideas of this section in the setting of initial
enlargements by random variables see [Imk96].

3.1 Preliminaries

We now recall the definition of some basic norms on the set of semimartingales.
For this let X be a (FP

t )-semimartingale. Given a decomposition X = M +A

we define for all 1 ≤ p < ∞,

jp(M,A) =
∥∥∥∥[M, M ]

1
2∞ +

∫

[0,∞[

|dAs|
∥∥∥∥

Lp

and
‖X‖Sp = inf

X=M+A
jp(M, A).
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We denote by Sp the set of all (FP
t )-semimartingales X such that ‖X‖Sp < ∞.

If we want to emphasize the filtration we are referring to we write Sp(Ft). The
space Sp is a Banach space with the following properties (see e.g. [DM82]):

• Any X ∈ Sp is a special semimartingale.
• Let X ∈ Sp and X = M̄ + Ā be the unique decomposition such that Ā is

predictable and Ā0 = 0. There is a constant c > 0, depending only on p,
such that jp(M̄, Ā) ≤ c‖X‖Sp .

• The space of all martingales in Sp, denoted by Hp, is a closed subspace.
• The set of all continuous semimartingales in Sp, denoted by Sp

c , and the set
of all continuous martingales in Sp, denoted by Hp

c , are closed subspaces.
• The set of all predictable processes with integrable variation, vanishing in

0 and with norm A 7→ ‖ ∫ |dAs|‖Lp is a closed subspace of Sp.

We will see that under suitable conditions every semimartingale in S2(Ft)
belongs to S1(Gt).

3.2 Continuity and relative entropy

We are now in a position to prove the first main result.

Theorem 7. Suppose HF̄∞(P̄‖Q̄) = C < ∞. Then the embedding

H2
c(Ft) → S1(Gt), X 7→ X,

is a continuous linear mapping with norm ≤ 1 +
√

2C.

Proof. Let M ∈ H2(Ft). By Theorem 4, (M − [M, L]) + [M, L] is a decompo-
sition relative to (Gt). The Kunita-Watanabe inequality implies

∥∥∥∥
∫ ∞

0

|d[M,L]t|
∥∥∥∥

1

≤ ‖[L,L]
1
2∞‖2‖[M, M ]

1
2∞‖2.

Hence by Lemma 7

‖M‖S1(Gt) ≤
∥∥∥∥[M, M ]

1
2∞ +

∫ ∞

0

|d[M,L]t|
∥∥∥∥

1

≤
(
1 + ‖[L,L]

1
2∞‖2

)
‖[M, M ]

1
2∞‖2

≤
(
1 + (E[L,L]∞)

1
2

)
‖M‖H2(Ft)

≤ (1 +
√

2C)‖M‖H2(Ft),

and the proof is complete.

As an immediate consequence we get the following

Corollary 1. Suppose HF̄∞(P̄‖Q̄) < ∞. Then the embedding

S2
c (Ft) → S1(Gt), X 7→ X,

is a continuous linear mapping.
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3.3 Continuity and generalized entropy

We aim at generalizing Theorem 7 and Corollary 1. Starting from the Banach
space Sr(Ft) with r > 1, what are sufficient criteria for the embedding into
the space of (Gt)-semimartingales to be continuous?

Throughout this section we assume assumption (C). In other words, we
will assume that Hp

c(Ft) = Hp(Ft) for p > 1.
We begin by stating a result obtained by Yor.

Lemma 12. (see Lemme 2 in [Yor85]) Let r ≥ 1 and p, q > 0 such that
1
r = 1

2p + 1
q . Then the following conditions are equivalent:

1) There is a constant C > 0 such that every continuous (Gt)-local martingale
satisfies ∥∥∥∥

∫ ∞

0

|d[M,L]t|
∥∥∥∥

r

≤ C‖[M, M ]
1
2∞‖q.

2) E[[L,L]p∞] < ∞.

We are now ready to state the main theorem.

Theorem 8. Suppose assumption (C) is satisfied and let p ≥ 1 and q, r ≥ 0
such that 1

r = 1
2p + 1

q . The generalized entropy Hp(P̄‖Q̄) is finite if and only
if the embedding

Sq(Ft) → Sr(Gt), X 7→ X,

is a continuous linear mapping.

Proof. Suppose Hp(P̄‖Q̄) < ∞. Theorem 6 implies that [L,L]∞ is Lp-
integrable. Thus, by Lemma 12, there is a constant C > 0 such that for
all continuous (Gt)-local martingales we have

∥∥∥∥
∫ ∞

0

|d[M,L]s|
∥∥∥∥

Lr

≤ C‖[M,M ]
1
2∞‖Lq .

Hence, for a martingale M in Sq(Ft) with decomposition M = (M− [M, L])+
[M, L] relative to (Gt), we have

‖M‖Sr(Gt) =
∥∥∥∥[M, M ]

1
2∞ +

∫ ∞

0

|d[M, L]s|
∥∥∥∥

Lr

≤ ‖[M,M ]
1
2∞‖Lr +

∥∥∥∥
∫ ∞

0

|d[M, L]s|
∥∥∥∥

Lr

≤ ‖[M,M ]
1
2∞‖Lr + C‖[M, M ]

1
2∞‖Lq

≤ (1 + C)‖[M,M ]
1
2∞‖Lq

≤ (1 + C)‖M‖Sq(Ft).

Therefore the map Sq(Ft) → Sr(Gt), X 7→ X, is continuous.
Now suppose the embedding to be continuous. Then Lemma 12 implies

E[[L̄, L̄]p∞] < ∞.

So by Lemma 10 the proof is complete.
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Example 3. Suppose A is generated by a countable partition P = {A1, A2, . . .}
of Ω into F∞-measurable sets. Then the corresponding initial enlargement
can be viewed as enlargement by the discrete random variable G(ω) :=∑

n n 1An
(ω). Hence, for p ≥ 1, we have by Lemma 11

Hp

F̄∞(P̄‖Q̄) =
∑

i≥1

P (Ai)
(

log
1

P (Ai)

)p

.

Now let q, r ≥ 0 such that 1
r = 1

2p + 1
q . Theorem 8 implies that the embedding

Sq(Ft) → Sr(Gt), X 7→ X, is a continuous if and only if

∑

i≥1

P (Ai)
(

log
1

P (Ai)

)p

< ∞.

This result was already shown by Marc Yor, using different arguments (see
Théorème 2 in [Yor85]).

3.4 Continuity and Shannon Information

If the filtration (Ft) is generated by a fixed martingale M with cadlag paths,
then the relative entropy of P̄ with respect to Q̄ is equal to the so-called
mutual information between M and the enlarging σ-algebra A. We recall this
notion.

Definition 3. Let X and Y be two random variables with values in the mea-
sure spaces (M,M) and (K,K) respectively. The mutual information between
X and Y is defined by

I(X, Y ) = HM⊗K(P(X,Y )‖PX ⊗ PY ).

Similarly, one can define the generalized mutual information to be

Ip(X,Y ) = Hp
M⊗K(P(X,Y )‖PX ⊗ PY ), p > 1.

For a given σ-algebra J ⊂ F let idJ denote the map (Ω,F) → (Ω,J ), ω 7→ ω.
The mutual information between X and J is defined by

I(X,J ) = I(X, idJ ).

We start with the following observation.

Lemma 13. If (Ft) equals the filtration generated by M , then

I(M,A) = HF̄∞(P̄‖Q̄),

and for p > 1,
Ip(M,A) = Hp

F̄∞(P̄‖Q̄).
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Proof. First observe that F̄∞ = F∞ ⊗A, because

F̄∞ =
∨
t

F̄t ⊂
∨
t

(Ft ⊗A) ⊂ F∞ ⊗A ⊂ F̄∞.

Now let D denote the Skorokhod space. We define a map φ by

Ω ×Ω → D×Ω, (ω, ω′) 7→ (M·(ω), ω′).

Since F∞ is generated by M , we have

φ−1(B(D)⊗A) = M−1(B(D))⊗A = F∞ ⊗A,

and hence
HF̄∞(P̄‖Q̄) = HB(D)⊗A(P̄φ‖Q̄φ).

Now observe
P̄φ = Pφ◦ψ = P(M,idA)

and
Q̄φ = PM ⊗ PidA ,

which yields the first claim. The second follows by similar arguments.

As a consequence we obtain the following.

Theorem 9. Suppose assumption (C) is satisfied and let p ≥ 1 and q, r ≥ 0
such that 1

r = 1
2p + 1

q . If (Ft) equals the filtration generated by M , then the
generalized mutual information Ip(M,A) is finite if and only if the embedding

Sq(Ft) → Sr(Gt), X 7→ X,

is a continuous linear mapping.

Proof. This follows by combining Theorem 8 with Lemma 13.

Example 4. Let W be the standard Wiener process and (Ft) the filtration
generated by W and completed by the negligible sets relative to the Wiener
measure. Moreover, let V be a Gaussian element independent of F∞, with zero
mean and variance w > 0. Suppose the enlarging σ-algebra A is generated by
the random variable

W1 + V.

One can easily verify that three random variables X, Y and Z satisfy

Ip(X, (Y,Z)) ≤ Ip(X,Z) + Ip(X,Y |Z) (p ≥ 1).

Consequently, we obtain for the mutual information between idA and W

Ip(W, idA) = Ip(W1 + V, (W1, (Wt)0≤t<1))

≤ Ip(W1 + V, W1) + Ip(W1 + V, (Wt)0≤t<1|W1)

= Ip(W1,W1 + V )

< ∞.

Thus, for all p ≥ 1 and q, r ≥ 0 such that 1
r = 1

2p + 1
q , the mapping Sq(Ft) →

Sr(Gt), X 7→ X, is continuous.
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A Appendix: Product filtrations satisfying the usual

conditions

Let (Ω,F , P ) be a probability space with right-continuous filtrations (Ft)t≥0

and (Ht)t≥0. In section 1 the filtration (Gt) has been defined as the smallest
right-continuous filtration containing

G0
t = Ft ∨Ht, t ≥ 0.

We will see that under suitable conditions the filtration (G0
t ) itself is already

right-continuous.
We start by analyzing the filtration (F̄t) on our product space Ω̄.

Lemma 14. The filtration

Ft ⊗Ht, t ≥ 0,

completed by the Q̄-negligible sets, is right-continuous. In particular, F̄ Q̄
t =

(Ft ⊗Ht)Q̄ for t ≥ 0.

Proof. The filtrations (Ft ⊗ {∅, Ω}) and ({∅, Ω} ⊗ Ht) are right-continuous
and independent with respect to Q̄. According to a result by Wu and Wang,
the filtration

(Ft ⊗ {∅, Ω}) ∨ ({∅, Ω} ⊗Ht), t ≥ 0,

completed by the Q̄-negligible sets, is right-continuous (see Theorem 1 in
[HW82]).

With the help of the preceding lemma we can easily derive a sufficient
criterion for the filtration (G0

t ) to satisfy the usual conditions.

Theorem 10. Suppose that (Ft)t≥0 and (Ht)t≥0 are completed by the P -
negligible sets, and hence satisfy the usual conditions. If P̄ ¿ Q̄, then also
(G0

t ) satisfies the usual conditions.

Proof. LetN Q̄ denote the set of Q̄-negligible sets. By Lemma 14, the filtration

(Ft ⊗Ht) ∨N Q̄, t ≥ 0,

is right-continuous. Consequently,

ψ−1
(
(Ft ⊗Ht) ∨N Q̄

)
= Ft ∨Ht ∨ ψ−1(N Q̄)

= G0
t ∨ ψ−1(N Q̄)

is right-continuous, too. Since P̄ ¿ Q̄, we have ψ−1(N Q̄) ⊂ NP . This implies
that (G0

t ∨ ψ−1(N Q̄)) is equal to (G0
t ), and hence the result.
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