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Abstract

The traveling wave model consisting of a hyperbolic system of lin-
ear first order PDE’s nonlinearly coupled with a system of ODE’s is
used to model the dynamics of multisection semiconductor lasers. It
is shown, how low dimensional systems of ODE’s based on the projec-
tion of the original system into the subspace spanned only on a few
instantaneously changing spectral elements allow a precise approxi-
mation of the initial model. The constructed low dimensional Mode
Approximation systems are accessible to classical bifurcation analysis
and numerical tools. The presented method is applied to character-
ize quasi-periodic orbits arising in three section distributed feedback
laser. The obtained results are highly important when applying such
pulsating lasers in optical communication systems.

1 Introduction

Multisection semiconductor lasers and coupled laser systems are important
devices in different applications. For example, frequency-tunable periodically
oscillating optical field power (self-pulsations) can be used for clock recovery
in optical communication systems [1, 2]. A deep understanding of these de-
vices is required when designing them for specific functionalities. Depending
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on the considered device or its functionality one can use models of differ-
ent complexity. They range from systems of partial differential equations
(PDE) systems originating from the Maxwell-Bloch equations [3] to systems
of delayed differential equations (DDE) [4] or simple ordinary differential
equations (ODE) based on a few rate equations.

The rather simple ODE and DDE models usually neglect some impor-
tant physical effects, but when applied to some specific laser structures they
still can recover the dynamics observed in experiments [5, 6]. The main ad-
vantage of these models is that they allow a detailed theoretical [7, 8, 9] or
numerical [10, 11, 12] analysis by means of software tools such as AUTO [13]
or DDE-BIFTOOL [14]. The corresponding bifurcation analysis provides
a deep understanding of the underlying physical processes, even though a
quantitative agreement between modeled dynamics and experiments can be
hardly expected.

Complex PDE models, in general, are more precise and describe the sys-
tem behaviour with higher accuracy, but, unfortunately, admit only very
limited possibilities for the analysis. The existing numerical continuation
and bifurcation analysis tools for PDE’s [13, 15] are either are not applica-
ble for the considered type of model equations at all, or have to deal with
large scale systems occurring after the space discretization. However, the dy-
namics of some of PDE models is mainly confined on some low-dimensional
normally hyperbolic attracting invariant manifolds [16]. In this case a proper
projection allows to approximate the full PDE model by a low dimensional
system of ODE’s which can be accessed by classical bifurcation analysis and
numerical tools. This approach applied to the Traveling Wave (TW) model
of the multisection semiconductor laser [17, 18] will be discussed below in
this paper.

The Traveling Wave model is given by a hyperbolic system of linear spa-
tially one dimensional first order PDE’s (describing the longitudinal dynam-
ics of the counter-propagating optical fields) nonlinearly coupled with a sys-
tem of nonlinear ODE’s (governing dynamics of carrier densities). As a PDE
model, it is already complicated enough and is able to recover the spatio-
temporal dynamics observed in different configurations of multisection lasers
[19, 20, 21, 22]. From the other hand, it is simple enough and, besides
straightforward integrations, it allows also a more deep analysis [23, 24| as
well as an explicit construction of an approximating low dimensional system
of ODE’s.

This Mode Approximation (MA) system of the TW model is based on
the projection of the optical field function into a finite dimensional subspace
spanned only by a few optical modes depending instantaneously on the car-
rier density [25, 26]. It has been proved in [27] that such a center manifold
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reduction of a PDE system is justified mainly due to the slow variation of
the carriers. In [24] a numerical bifurcation analysis of a single and of a
two mode approximation system was presented. In [22, 28] a qualitative
agreement of the dynamics of the full PDE model and of its two mode ap-
proximation system was shown for some restricted parameter regions. The
observed differences were due to simplifications of the TW model used for the
construction of the 2MA systems as well as due to the neglection of impor-
tant modes contributing to dynamics of the full TW model. In the present
paper, the number of the selected modes is not restricted to one or two.
Here, the identification of the modes participating in some stable stationary
regime is made after a mode expansion of the simulated optical field in the
TW model [29]. Tt will be shown how a quantitative agreement between the
computed trajectories of the corresponding MA system and the solution of
the full TW model admits such a mode selection. Furthermore, this mode
selection guarantees a quantitative agreement between the TW model and
the MA systems when continuing stable orbits or their bifurcations in the
parameter space.

Tyt % s
DFB i i DFB . .

x g P g ston Sod Figure 1: Scheme of a 3 section
— = — PhaseCOMB laser.

h
} }
%=0 1 z I2 2 I3 z=L

For the simulation and the analysis of the TW model the software LDSL-
tool (abbreviation for (L)ongitudinal (D)ynamics in multisection (S)emicon-
ductor (L)asers) was developed [29, 30]. It can be used for numerical in-
tegration of the model equations as well as for a comprehensive data post-
processing and spectral analysis, making it a powerful tool well suited for the
study of different dynamical effects. In the present paper, the possibilities
of the LDSL-tool to build and to integrate Mode Approximation systems are
discussed. Moreover, it is demonstrated, how a finite dimensional vector field
generated by the LDSL-tool can be applied for further numerical continuation
and bifurcation analysis by means of the software package AUTO [13].

To illustrate these new possibilities of the LDSL-tool, a self pulsating three
section semiconductor laser is considered. It is completely anti-reflection
coated and consists of two distributed feedback (DFB) sections and one phase
tuning section integrated in between (see scheme in Fig. 1). In [20, 30] it was
shown experimentally and theoretically that such a laser can perform nearly
harmonic field power pulsations with a ~ 40 GHz frequency required for
applications. In the present paper, these pulsations are simulated by means of
the TW model and the MA systems. Their stability domain in the parameter
plane and their locking properties are investigated by a numerical bifurcation



analysis tool. Finally, an extensive characterisation of the pulsation quality
which is highly important in applications is given by combining bifurcation
analysis and integration of model equations.

This paper is organized as follows. In Section 2 a full description of the
Traveling Wave model is given and the parameters of the considered laser are
specified. Section 3 introduces the reduced MA systems and considers the
selection of dominant modes. In the following Sections 4 and 5 the numerical
bifurcation analysis for nonmodulated and modulated MA systems is per-
formed. After giving an overview of different characteristics of pulsations in
Section 6, some conclusions are drawn. In the Appendix explicit expressions
of the functions occurring in the MA systems as well as some algorithms used
for the construction of these systems are given.

2 A mathematical model of laser dynamics

2.1 Traveling wave model

A multisection laser consisting of m sections S,, r=1, ..., m, with the lengths
I, and the total laser length L is considered (see Fig. 1 where m=3). Along
the longitudinal axis of the device counterpropagating complex slowly varying
amplitudes of optical fields E(z,t) = (ET, E~)" and polarization functions
p(z,t) = (p*,p~)7 are governed by the traveling wave equations

_ig Bt = u, {(iz‘az — B(n)) B* — kBT + i (B* —p*)|
—ip* = —iy(ET - p*) +ap’,
o) 5-i+ O o) gm0

The fields E* at the laser facets satisfy the reflecting boundary conditions
E*(0,t) =roE (0,1), E (L,t) = rp E*(L,t). (2)

The norm of the field function |E(z,t)|> = |ET|?> + |E~|? represents a local
photon density (local power at z divided by the global constant v,0 - he/Ay).
The function n(t) = (ny,...,nm)7 entering linearly into the gain function
g(n) represents sectionally averaged carrier densities within different laser
sections. The carrier rate equations governing the densities n,(¢) read as
follows:

om = "0 g () 29 (5 o) - 3(E -~ p),
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R(n) & Am,+Bm2+Cmd, r=1,...,m. (3)
Here, the expression (1;¢), = [s, n*¢dz denotes the usual scalar product of 2-
component vector functions within the section S,. The subscript indices , are
used to indicate that the parameters, functions or integration borders belong
to the section S,. When these indices are omitted, the considered operations
are done for each or for the already indicated section. Superscripts * and 7
stand for complex conjugation and transpose, respectively.

Finally, the fields, polarizations and carrier densities at the initial time
moment £, are denoted as

E(z,ty) = Em(2), p(2,t0) = pin(2), n(to) = nin. (4)

Within each section the parameters v,, &, 6, o, ¢', ny, and oy entering
Eq. (1) represent group velocity, real coupling factor between counterprop-
agating fields, static detuning, internal optical losses, effective differential
gain including the transverse confinement factor, transparency carrier den-
sity and Henry linewidth enhancement factor, respectively. An inclusion of
the polarization equations determines gain dispersion in each laser section
fitting it in frequency domain with a Lorentzian function of amplitude g> 0,
full width at half maximum 2% < co and centered at the frequency @ [17].
Sectional parameters I, o, A, B and C appearing in (3) denote injection
current, cross section area of the active zone and three recombination pa-
rameters. The function 7(t) denotes a possible current modulation and will
be discussed in more details in Section 5. Until then it is neglected supposing
I(t) = 0. Finally, h, ¢, e, Ao and ro,, are Planck constant, speed of light in
vacuum, electron charge, central wavelength, and complex facet reflectivity
coefficients, respectively.

2.2 Example

To demonstrate the performance of TW model, a self-pulsating 3 section laser
20, 29, 30] schematically depicted in Fig. 1 and determined by the parameters
of Table 1 is considered. For given parameters the considered system has a
unique attracting state which can be approached during a sufficiently long
transient time interval from arbitrary initial conditions (E;,(2), pin(2), nin)-
Such a transition towards a stable orbit during the first 10 ns is shown in
Fig. 2.

The consequent simulations of the model equations after a slight change
of initial parameters are performed starting from the new distributions F;,,
Pin and n;, determined by the last moment of the previous simulation. Such
selection of initial conditions allows to stay close to the same attractor and to



Table 1: Parameters used in simulations.

explanation

‘ Sl Sg Sg ‘units

co/vy | group velocity factor 34 34 34

[ length of section 250 400 250 | um

K coupling coefficient 130 0 130 | ecm™!

a internal absorption 25 20 25 | cm!

q effective differential gain 7 0 7 | 107'cm?

) static detuning 300 -30 -90 | cm™!

am Henry factor -4 -4

g Lorentzian gain amplitude | 200 0 200 | cm™!

@ gain peak detuning 0 0 ps !

25 FWHM of gain curve 50 50 | ps!

I current injection 70 70 | mA

o cross-section area of AZ 0.45 0.45 | pm?

Nir transparency carrier density | 1 1 108cm—3
A inverse carrier life time 0.3 03 | ps!

B bimolecular recombination 1 1 107 Y%m?3/s
C Auger recombination 1 1 1028cm®/s
Ao central wavelength 1.57 pm

ro,rr | facet reflectivity coefficient 0

Figure 2: Field output power
|E=(0,t)|? at left facet. The vertical
dotted line at t=10 ns shows where
the integration was interrupted and
restarted with a new value of the
injected current [;. Insert: con-
vergence of simulated pulsation fre-
quency with decay of grid steps in
numerical scheme. Bullets: simula-
tion results. Solid line: fitting by a
parabola.



follow its changes in the parameter space. In the given example, at t=10 ns
the value of the parameter I; was changed and a new simulation was started.
Fig. 2 shows that only a short 4 ns transient time is needed to reach again
the slightly modified attractor.

The simulations of the TW model were performed by means of second
order precision finite difference (FD) schemes of predictor-corrector type ap-
proximating the optical fields E(z,t) along the characteristic lines z + v,t =
const [29]. The expected quadratic convergence could be observed with a de-
cay of the grid steps (see, e.g., a quadratic convergence of pulsation frequency
as indicated in the insert of Fig. 2). Unfortunately, with decaying grid steps
the computation time is quadratically increasing. To perform simulations
in reasonable time the temporal grid step is fixed at ~ 7 fs, and simulated
solutions are supposed to be the “exact” solutions of the TW model (see
indication in the insert of Fig. 2). This exact solution will be used to test the
precision of another approach for simulation and analysis of the TW model,
what will be discussed in the following section.

3 Reduction of the TW model

In this section the TW model (1,2,3,4) will be reduced to a system of ODE’s.
The dimension of this system needed to get a good approximation of the
initial model will be discussed.

3.1 Mode approximation systems

The equations (1) for the field and the polarization functions can be written
in operator form giving rise to the following spectral problem:

—z% (E> — H(n) (f) ~  (H@n)—Qn)On,2)=0. (5

Here, the n-dependent operator H is given by a 4 X 4 matrix. For any &k the
k-th eigenfunction ©* is suitably scaled and satisfies the boundary conditions
corresponding to Eq. (2) (see Appendix for more details).

It was discussed in [27] that field/polarisation functions are exponentially
approaching finite dimensional invariant manifold spanned by a finite number
of instantaneous modes, i.e., these functions can be approximated by a finite
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where f(t) = (f1,..., f,)T represents the complex amplitudes of ¢ dominant
modes. The substitution of this truncated mode expansion of the field and
the polarization into Eq. (1,3) implies an approximating (2¢+m)-dimensional
MA system of ordinary differential equations for the complex mode intensity
functions f,iq), k =1,...,q, and the real carrier density functions n@, r=
1,...,m:

. g m
A = i) £+ 3 (3 K (n®)al®) £
r=1

=1 \r=
I, + I(t g .
hﬁq) — +7() _ RT(n(q)) — Re Z LZ,z(n(‘”)f,ﬁ") l(q);
el; 0, k=1
f(q)(tﬂ) = fin | (o), n(q)(to) = MNin. (7)

Here, the initial value f(to) is obtained when decomposing the initial fields
/ polarisations from (4) into the modal components by means of formula
(18). The superscript indices (@) are used to distinguish mode amplitudes and
carrier densities originated by the MA system (7) from the field amplitudes
f and the densities n representing solution of the full TW model.

Real and imaginary parts of the functions Q(n) indicate an approximate
angular frequency and damping of the modal amplitude. For any n (and
bifurcation parameters P) the values of Q(n) are determined numerically by
continuing the corresponding roots of the characteristic equation (16) from
the previously known values with slightly different n (and P). After deter-
mining Q(n) the functions K3 ;(n) and L ;(n) together with their derivatives
can be expressed by explicit formulas (19) as described in the Appendix.
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£ o 0° o Figure 3: Mode analysis of the pul-
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= lus of the mode amplitude |f| versus
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I R S T — or all time moments, respectively.
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When building the MA system (7) a few restrictions should be taken
into account: First, with the actual change of n and for all considered P
each of the main ¢ eigenvalues Q(n) should remain separated from any other
eigenvalue (see comments on Eq. (17) in Appendix). The unfolding of occur-
ring singularities can be done by selecting another basis of mode expansion



(6) close to the mode degeneracy [24, 25]. In the examples of the present
paper, nevertheless, such a mode degeneracy does never appear (see, e.g.,
Fig. 3a where the eigenvalues remain well separated during simulated dy-
namical regime).

Last but not least, in order to get a satisfactory approximation of exact
solutions, among the selected ¢ modes all dominant modes should be present.
Such modes in the expansion (6) of any attracting orbit of the TW model
should have nonvanishing amplitudes f. To determine all such modes, at the
beginning ¢ is assumed to be rather large (¢ > 20 in presented case). Next,
following [29] and formula (18) from the Appendix the simulated E(z,t)
and p(z,t) can be decomposed into modal components at a few different
time instants. The obtained mode amplitudes |f| (located at corresponding
modal frequencies Re{) are represented in Fig. 3b. It is obvious that two-
three modes in this case are strongly contributing to the optical fields and
should be included when constructing MA systems. The precision of these
systems will be discussed in more details below.

3.2 Precision of mode approximations

To estimate the precision of MA systems the comparison of optical fields
and carrier densities obtained by integrating different MA systems and the
full TW model will be done. For this reason, a trajectory of the TW model
starting from distributions E;,(z), pin(2) and n;, located near the attractor
is computed. As it was discussed above, these distributions and formula
(18) allow to find an arbitrary number of initial modal amplitudes f;,. After
choosing the number of modes ¢, the MA system (7) is integrated numerically.

This integration does not provide the optical fields directly. However,
being independent on the spatial variable, the solution (f@,n(9) of the MA
system still allows to reconstruct optical fields or polarizations at any spatial
position. For example, the field expansion (6) together with the mode scaling
factor é(n, Q) from (17) imply the following expression of the left facet field
output in the MA system:

BO-(0,6) 2 3™ 6 (n@ (8), 20 (n® (1)) 12 (0. ®)

k=1

The power (squared modulus) of this function obtained when integrating 2,
3 and 4 MA systems is depicted by different lines in Fig. 4a. Empty bullets
in this figure represent the exact solution of the full TW model.

One can see that a qualitative agreement with the TW model can be
realized already with two main modes: 2MA system provides pulsations with



Figure 4: Precision of mode approx-
imations. a: field output power at
the left facet. Dotted, dashed and
solid lines are due to 2, 3 and 4 mode
approximations. Bullets indicate the
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a bit smaller symmetric pulses (dotted line in panel a) and slightly different
frequency (see panel b). As could be expected from Fig. 3b, only a 3MA
system can guarantee a quantitative agreement between slightly asymmetric
individual pulses. The small error in the pulsation frequency, nevertheless,
still is present. This frequency error is reduced after including the fourth
mode as it is indicated in Fig. 3b. The inclusion of further modes makes
the integration of the MA system more time consuming without a significant
increase of the accuracy.

Besides the output fields (which are mostly interesting in applications
and can be measured by engineers) one can also compare the carrier densities
which are resolved directly by both the TW model and the MA approaches.
The precision of the MA systems can be rapidly estimated when checking the
smallness of the maximal separation p, between n-components of different
trajectories:

o g {min { (32 910) - 7))} . o)

In contrast to Fig. 4a, where the pulses of the TW model and the 3MA
system were nearly coinciding, this new estimation plotted in panel ¢ shows
some small but nonvanishing gap between two compared orbits.

It was shown above how three or four mode approximations are able to
recover the orbits of the full TW model with rather good precision. How-
ever, one should keep in mind that by tuning some bifurcation parameter
the impact of the modes changes and some new mode can become impor-
tant. In the following sections, where numerical bifurcation analysis will be
performed, a 4 MA system will be considered. To ensure the precision of
the approximations and the bifurcation analysis, a further comparison of the
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detected stable orbits of the MA system with the corresponding orbits of the
full TW model will be made.

4 Bifurcation analysis

In this section one and two parameter bifurcation diagrams of the TW model
and the corresponding MA systems will be presented. The 1-periodic field
phase tuning ¢ = 2L05/27 and the wavelength detuning §y = d;v,,1A3/2mcg
in the first active DFB section will play the role of bifurcation parameters.
Both these parameters, in general, depend on the current injection into the
corresponding sections and, therefore, can be controlled in experiments.

4.1 Elimination of rotational invariance

Like the TW model, the MA system is rotationally invariant, i.e., the func-
tions (f(@ei? nl@)) with arbitrary ¢ € [0, 27] represent a family of solutions
to (7). This invariance makes no harm when integrating the MA system (7),
but can be crucial when performing numerical bifurcation analysis. To avoid
such problems, for each £ = 1,...,q, the real functions

U, @) = Sm(FD 1D), Yl (1) = Re(F10" 19) (10)

are introduced so that y(()q) =0 and the modal amplitude products entering

the MA model (7) are given by

(S F2) (y) = (w1 — w5 o) (wsi s + it s) /i

Now the optical field is represented by the (2¢ —1)-dimensional real vector
function 3@ (t) = (y@, o ,yég)_l)T. After defining the functions

] q
L@ def _“r
r (na y) el .0, kZZI fl ;
” de
K:I(cq)(na y, I Lt Z Z K <‘er )> f1 fz(q);
I=1r=1
@, , 7y % [, : K" o ()
M (ny, 1) = | i(Q(n) — Qi(n)) + m O
forr=1,...,m and k=1,...,q, one can rewrite the resulting (2¢g+m—1)-

dimensional MA system without rotational invariance as follows:

gt = ReMP (00, y @ [(1)), k=1,...,q
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Bat) = SmMPD,y0 1), k=2...g
’flffl)(t) = ££¢1)(n(4) ) I,(t)/(elyo,), r=1,....m
y(q)(to) = Yin, n q)(t(]) = Nin. (11)

Here, the initial values y;, are obtained by applying the transformation (10)
to the initial values f;, from (7).

The main restrlctlon of thls approach is the assumption of nonvanishing
first mode, i.e., y* ( ) = |f ( )]2 > e > 0. Only in this case the transforma-
tion (10) can be used. In the considered case, this condition holds at least for
stable orbits: the stable pulsating regime is determined mainly by two modes
whose amplitudes | f| change only slightly in time and remain separated from
zero (see the variation of modes 1 and 2 in Fig. 3b). In general, this limita-
tion indicates a necessity of a proper selection and a possible renumbering of
the operating modes when continuing the orbits in the parameter space.

4.2 Following orbits in one parameter

In this section bifurcations of the periodic orbits which were computed and
discussed in Subsection 3.2 are considered. Fig. 5 represents the continuation
of this orbit (indicated by stars at the position ¢ = B) if the phase parame-
ter ¢ changes. It was found that stable periodic orbits of the 3MA (dashed
line) and 4MA (solid line) systems loose their stability via a Neimark-Sacker
(torus) bifurcation at ¢ = A or a saddle-node (fold) bifurcation at ¢ = C.
Moreover, in both approximations the orbits are close to each other in a
vicinity of ¢ = A, are slightly different for ¢ € [B, C| (see Fig. 5(a)), but pos-
sess similar period (frequency) over the considered parameter range (dashed
and solid lines coincide in Fig. 5(b)). The analysis of the corresponding sta-
ble orbit of the 2MA system (not indicated in Fig. 5) showed again a fold
bifurcation at ¢ =~ C, but failed totally to locate the torus or some other
bifurcation in the vicinity of p~ A.

These discrepancies can be explained after considering the Floquet multi-
pliers of the orbits in different MA systems. Each additional mode in the MA
system increases the dimension of the system by two. After neglecting the
multiplier 1, the periodic orbits in 4, 3 and 2MA systems can be represented
by 8, 6 or 4 multipliers as indicated by different grey shading in Fig. 6.

Since at the position ¢ =B the considered limit cycle is stable, all multi-
pliers in Fig. 6(b) are located inside the unit circle. At the fold bifurcation
one of these multipliers is crossing unit cycle at 1. Since this multiplier (the
black bullet on the unit circle in Fig. 6(c)) represents orbits of all three con-
sidered MA systems, we have observed the fold bifurcation in all cases. At
the phase ¢ = A a pair of complex conjugated multipliers (grey bullets in
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. Figure 5: Path following of the peri-
8- (@) ‘ S c odic orbit. a: maximal output at the
30 / AN left facet. b: frequency of pulsations.
- Solid, dashed lines and empty bullets
/ are due to 4MA, 3MA and full TW
model, respectively. Black and grey
lines show stable and unstable orbits
50 . .
(b) in MA systems. Squares and trian-
gles represent torus and fold bifurca-
tions, respectively. The stars at the
05 04 03 02 R . .
phase tuning parameter ¢ ¢ = B indicate the orbits considered
in Fig. 4.
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Figure 6: Computed Floquet mul-
@ (0) @ tipliers of the stable limit cycle at
: phases A, B and C as shown in Fig. 5.
. Orbits of 4, 3 and 2MA systems are
presented by all, empty and grey, and

only empty bullets, respectively.

Fig. 6(a)) are crossing the unit cycle. In this case the multipliers represent
only the orbits of the 3MA and 4MA systems, where torus bifurcation was
detected. In the 2MA system the multipliers (empty bullets) are remaining
inside the unit cycle, and the corresponding orbit remains stable. Similarly,
the absence of a pair of multipliers in the 3MA system did allow to locate
only one torus bifurcation of the unstable orbit branch within ¢ € [B, C],
while the corresponding orbit of the 4MA system here undergoes two conse-
quent bifurcations (see single small square and two large squares in 3MA and
AMA cases, respectively). This failure in location of the bifurcation shows
again the necessity of a proper mode selection.

To check again the precision of the MA systems, simulations of the TW
model by changing the bifurcation parameter as it was discussed in Subsec-
tion 2.2 were performed. The maxima of the output field power and the
frequency of the observed pulsations (determined by the leading components
in the Fourier transform of the output power) at each used ¢ are depicted
by open bullets in Fig. 5. As it was predicted by a bifurcation analysis of
the 3MA and the 4MA systems, the same type of stable orbit of full TW
model was found within the interval ¢ € [A,C]. After its loss of stability
at ¢ = A, a new attractor was observed possessing at least two different fre-
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quencies. The superposition of these frequencies results in multiple peaks in
the Fourier spectrum of the output power, some of which are indicated in
Fig. 5b for ¢ < A. The inspection of the Fourier spectra in order to identify
a torus bifurcation is, may be, not very precise, but it is easy accessible in
experiments [22]. Finally, the loss of stability of the periodic orbit for ¢ >C
in simulations implies a fast transition of the trajectories to some far away
in the phase space located attractor. Such a behaviour is typical after fold
bifurcation where a pair of orbits annihilate each other.

It was demonstrated in Fig. 5 and discussed above that the 4AMA as well
as the 3MA systems were properly predicting bifurcations of the full TW
model, but only orbits of 4MA system were able to be in a perfect qualitative
agreement with the exact orbits of the full model. Thus, only 4MA systems
will be considered below, where the two parameter bifurcation analysis will
be performed.

4.3 Two parameter bifurcation diagram

The continuation of the codimension 1 bifurcations of stable orbits discussed
above in the two parameter plane is summarized in Fig. 7. The inspection of
the Floquet multipliers of the orbits along the computed bifurcation curves
allows to find the stability domain of the orbit discussed in Figs. 4 and 5. The
borders of this domain in Fig. 7 are indicated by black dashed and black solid
lines corresponding to the fold and to the torus bifurcations, respectively.

The continuation of the bifurcation branches in two parameters allows to
locate codimension 2 bifurcations, some of which are indicated by different
symbols in the same figure (see, e.g., the insert of the figure where the en-
larged situation in the vicinity of a cusp and 1:1 strong resonance is given).
As it was noticed in [9, 31] these points are highly important and acting as
“organizing centers” for nearby in the parameter plane located bifurcation
diagrams.

' o v
01F /@\’"‘»\ 2 Figure 7: Two parameter bifurcation
< 02} jj m““""—“_-"-ni? 1 analysis of the 4AMA system. Empty
z-o3f /A - bullets show bifurcations of stable or-
é'o-“' ‘> * / ] bit observed in the simulation of the
g sk / ] TW model. Black lines and symbols
§ sl \ [ s indicate bifurcations of stable orbits.
‘L_Oj_ e The vertical dotted line and the star
P areird on it denote conditions considered in

28 29 3 31 32 33 34 35 36 37 ] ]
vielength deicning & Figs. 5 and 4, respectively.
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Together with the bifurcation analysis of the 4MA system simulations
of the full TW model were also performed. Like in the example of Fig. 5,
by fixing one of the bifurcation parameters and tuning the other one, the
bifurcation of periodic orbits was detected. The approximate position of
these bifurcations are represented by empty bullets in Fig. 7. The perfect
agreement in locating the bifurcations of the stable orbits by means of these
two different approaches confirms once more the precision of the MA system
based on the initially selected four modes.

Different from the direct integration of the TW model or the MA systems,
where only stable orbits are accessible, a numerical bifurcation analysis tool
[13] allows to trace the codimension 1 bifurcations in a parameter plane even
though no stable orbits are originating by these bifurcations. Some parts of
these “unstable bifurcation” branches are given by grey lines in Fig. 7. Dotted
end of such branch indicates either a further loss of stability of the involved
orbits or a violation of the nonvanishing main mode condition implied by
the MA system (11). Due to this reason and due to the existence of more
complicated orbits in our system, which can not be analysed with numerical
bifurcation analysis tools (e.g., trajectories on tori), the bifurcation diagram
is incomplete. Note also that a large number of unstable orbits (and their
bifurcations) of the infinite dimensional TW model was already neglected
when projecting this model into the finite dimensional subspace spanned by
only a few optical modes. However, the aim of this paper is not a construction
and discussion of the full bifurcation scenario, but a demonstration that
bifurcation analysis tools can be applied to our original TW model and can
suggest some simple rules to improve the performance of the pulsating laser.

5 Modulation of electrical injection

It is crusial for applications of the considered laser for the clock recovery that
the pulsation frequency could be locked by the precisely known frequency of
some external signal. That is, the existence of the unique stable periodic
orbit of the periodically forced model is required. In the discussion below
it will be shown how numerical bifurcation analysis can be used for the fast
estimation of the locking regions of the considered pulsations.

Let us assume now that the current modulation function 7(¢) in one of
the laser sections is periodic and nonvanishing. For simplicity, consider a
sinusoidal modulation which, following suggestions of [13], can be uniquely
described by a pair of real autonomous ODE’s with properly selected initial
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conditions:

I(t) = { L sin(2n far(t — to)) = Bray(t), if r=1

0, if r#1"7
ilﬂl = 27TfMCE2 — A(il?% + 33% — 1)CE1 iEl(tU) = 0, (12)
By = —2mfuzy — M@} + 23— 1)z z3(to) = 1.

The modulation amplitude I, and the frequency fj; will be considered as
bifurcation parameters. The positive constant A guarantees the uniqueness
of the attracting periodic orbit in the autonomous system (12) and is needed
for the stability of computations. Finally, the initial conditions at ¢ = {,
guarantee the validity of relation between I(t) and z; given in the first line
of Eq. (12) for all time moments. Taking into account these expressions the
equations (11, 12) are an autonomous system of ODE’s which can be again
analysed by means of bifurcation analysis tool AUTO [13].

5.1 Forced locking

One of the results of this paper is a demonstration that the physically relevant
current modulation with I =5 mA (used in most of the examples below)
corresponds to the small forcing regime, where locking region is nearly lin-
early depending on the forcing strength [32, 33].

With the vanishing modulation amplitude (I3, =0) both systems (11) and
(12) are decoupled and, independently from each other, possess attracting
orbits with the frequencies fy and fjs, respectively. The superposition of
these orbits is an invariant two-dimensional torus which attracts all trajec-
tories of the full system (11, 12). Assuming nonvanishing modulation two
oscillators are unidirectionally coupled. For the sufficiently large frequency
offset |fx — fur| the two systems are coupled only weakly implying again a
dynamics on the stable invariant tori. Such behaviour of the coupled MA
system (11, 12) as well as of the full TW model with periodic forcing is
represented by the Poincaré map iterations which are moving around the
attracting invariant closed curve as it is shown in the left insert of Fig. 8(a).
The high concentration of the iteration points at the right lower part of this
curve indicates the location where a stable and a saddle periodic orbits of the
coupled system will appear when the decreased frequency offset due to the
changes of f; will reach a critical value. After exceeding this value, the cou-
pled system possesses stable and a saddle type periodic orbits. These orbits
are fixed points of the Poincaré map located again on some closed attracting
invariant curve (see right insert of Fig. 8(a)).

After location of the stable periodic orbit of the coupled system, the
study of parameter regions allowing a realization of frequency locking is per-
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Figure 8: Study of forced locking. a:
one parameter bifurcation diagram
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mA indicates the parameters consid-
ered in diagram (a).

formed. Fig. 8(a) is due to numerical continuation of the computed stable
orbit (black bullet) of the modulated 4MA system when tuning fi;. Within
some frequency interval this orbit remains stable (black line in this diagram),
until it losses the stability in a fold bifurcation, where it collides with a sad-
dle orbit (grey line) and disappears. Next, the two fold bifurcations (empty
triangles in Fig. 8(a)) of the periodic orbit are traced in the modulation am-
plitude Ip; / frequency fys plane. These two bifurcation lines (dashed lines
in Fig. 8(b)) come together at Iy, =0 and fy; = fy. In the given case these
lines determine the borders of the locking region, where a unique stable pe-
riodic orbit of the coupled system (11,12) can be found. In the sequel the
width R of the locking region at Iy, =5 mA is called the locking range and
is considered as an important characteristic of the periodic orbits.

To estimate the precision of the modulated 4MA system the simulations
of the full TW model were performed again. To determine the modus of
the operation, the Poincaré map iterations were inspected. The approximate
parameter values, where the stable fixed point (full bullet in the right insert
of Fig. 8(a)) appears or vanishes were depicted by empty bullets in Fig. 8(b).
The small deviation of these bullets from the fold bifurcation lines of the MA
system are mainly due to finite steps when tuning the parameters as well as
due to the infinite transient times needed to distinguish the iterations of the
map at the saddle-node bifurcation.

A nearly linear rise of the bifurcation curves from the origin (I, fir) =
(0, fy) indicates a small forcing regime. In general, it can be studied by

17



asymptotic methods allowing a rather fast linear estimation of the locking
region by finding the slopes of the fold bifurcation lines at the origin. From
the other hand, one can also rapidly estimate the locking area by a linear
interpolation using the positions f; of the fold bifurcations at nonvanish-
ing I (e.g., triangles in Fig. 8(a)) and the frequency fy of the periodic
orbit in the nonmodulated system. In this case the continuation of the fold
bifurcations in fj; and, e.g., ¢ plane together with the already known depen-
dence fy=fn(p) (see Fig. 5(b)) allow a fast estimation of the locking range
dependence on the parameter (.

5.2 Locking of orbits at different phases ¢

After fixing the modulation amplitude, the continuation of folds in the (fas,¢)
plane was performed and represented in Fig. 9. To distinguish both fold lines
f1 and fo, whose frequencies f; are changing over more than 10 GHz range
(see Fig. 5(b) for corresponding frequency tuning of the periodic orbits in
the nonmodulated system) the frequency offset fys— fn is used for y-axis in
panel (a) of this figure. It was checked that for the considered parameter
range both fold lines in this diagram give the borders of the region where
a stable periodic orbit of the periodically forced MA system exists. Thus,
the separation of the fold lines gives an immediate overview on the locking
range R of the pulsations: this range significantly increases near the fold
bifurcation of the orbit in the nonmodulated system at ¢ ~ —0.2.

Assume that the diagram is a projection of the three dimensional “tube”
into a two dimensional parameter plane, where the projection direction was
corresponding to some norm of the orbit (e.g., the maxima of the field output
at the left facet, as considered in Fig. 5(a)). The intersection of this “tube”
with the fixed ¢ plane at the positions indicated by stars in Fig. 9(a) was
already represented in Fig. 8(a). That is, the front side of the “tube” corre-
sponds to the stable periodic orbit, while the back side represents the saddle
type periodic orbit.

At the edges of Fig. 9(a), where the stable orbit of the nonmodulated
system bifurcates (see Fig. 5) the situation is represented by Figs. 9(b,c). In
panel (b) ¢; is a torus bifurcation branch turning around the “tube”. When
crossing this line from right to left, the dimension of the unstable manifold
of the corresponding orbit decreases by two. The points F'T} o denote a fold-
torus interaction, where a pair of complex conjugated and a real positive
Floquet multiplier are simultaneously crossing the unit circle. The situation
in panel (c) is different. Here, ¢, is again a torus bifurcation branch, but in
this case it is located only on the front side of the “tube”. The codimension 2
points R; and R, yield the starting and final points of the branch ¢, are strong
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Figure 9: Two parameter bifurcation
diagram of the 4MA system along
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1:1 resonances. Here, two Floquet multipliers are simultaneously becoming
equal to 1. If going up towards higher frequencies (or down towards lower
frequencies) along fold branches one of these multipliers leaves (enters) the
unit circle. When going from these resonances along the ¢ branch, a pair
of multipliers split, but remain complex conjugated and located on the unit
circle. The branch ¢, distinguishes stable orbits at its left /lower side from the
orbits with two dimensional unstable manifold at its right /upper side. The
periodic orbits on the back side of the “tube” in the considered parameter
range have a one dimensional unstable manifold.

As it is shown in Figs. 9(b,c), at the edges of the parameter region, where
the stable orbit of the nonmodulated system exists, the locking range R can
be no more identified simply by the separation of the fold bifurcation lines.
However, this simple relation is violated only for the parameters located close
to the bifurcations of the orbits of the nonmodulated system (compare the
abscisse axis ranges in the diagrams (b,c) with that one in the panel (a) of
the same figure). The locking range as well as a few other for applications
important characteristics of the stable periodic orbits (pulsations) will be
summarized in the next section.

6 Quality of pulsations

In this section both the bifurcation analysis of the MA systems and the sim-
ulations of the full TW model are used for the extensive characterisation of
the pulsations occurring within the two parameter domain shown in Fig. 7.
This combined approach allows to explain origin of these pulsations, spec-
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ifies their stability and locking properties. It allows also to find regions of
multistability, and to find possible pulsation frequency tuning ranges. The
summary of all these properties which are highly important for the clock
recovery in optical communication systems [1, 2] is made in Fig. 10. Since
practical applications deal mainly with the stable, i.e., observable orbits, all
“unstable bifurcation” branches (grey lines of Fig. 7) are omitted and only
the area of the stable pulsations is discussed.

Figure 10: Properties of pulsations.
Black dashed curves in (a) are fixed
pulsation frequency lines. Different
grey shadings show locking range of
pulsations at Iy = 5 mA in (a) or
the stability of pulsations given by
the modulus of the maximal Floquet
multiplier in (b). These data are due

phase tuning parameter ¢

]

02} _1: to path following of orbits and the
g 1 bifurcation analysis of the 4MA sys-
8 -0ar 1 tem. Empty bullets and dashed line
5 :r o 1: in (b) are due to the inspection of
goer Hiosios)  the trajectories in the TW model and
i Iy i J__;_{g_gz_gég}_} indicate an approximate parameter

* wavelengihcetuning 35‘:, m ' area, where the considered periodic

orbit is the unique stable solution.

One of the requirements on the pulsating lasers is a tunability of the
pulsation frequency by control parameters. The dashed lines in Fig. 10(a),
obtained by tracing fixed period orbits in two parameter plane, indicate
an increase of the pulsation frequency with an increase of both considered
bifurcation parameters (with decrease of the injected current into the phase
section and, e.g., heating of DF B; section).

In order to guarantee good locking properties of the pulsations, one needs
sufficiently large locking range. To characterize locking of pulsations within
in Fig. 10 indicated parameter area, a two parametric bifurcation analysis
discussed in Subsection 5.2 and Fig. 9 was performed for series of fixed detun-
ing ). Different grey shadings in Fig. 10(a) represent the separation between
corresponding fold curves which in the interior of the considered area coincide
with the locking range R. This diagram shows that the best locking proper-
ties one can expect when increasing the phase ¢ (decreasing injected current
into phase section) and operating close to the fold bifurcation of periodic
orbits (upper border of the considered area).
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The next natural requirement is a better stability of the pulsations. Fol-
lowing the discussion of Subsection 4.2, it can be characterized by the factor
p=max;{|u; }. Here, like in Fig. 6, u; are inside the unit circle located Flo-
quet multipliers of the stable periodic orbit. The value of this factor for the
pulsations within the considered parameter region is represented by different
grey shading in Fig. 10(b). The factor i becomes equal to 1 at the border of
the region and is smallest, indicating therefore most stable pulsations at the
upper right side of this area.

Finally, it should be also noted that at some of discussed sets of the
parameters more than one stable regular or irregular orbit is available. To
locate other stable attractors the simulation of the full TW model by tracing
stable orbits and approaching considered parameter area from outside was
made. This continuation was performed until the transition to the origi-
nally investigated orbit was observed (see empty bullets in Fig. 10(b)). The
transitions which are generated by bifurcations of stable stationary states
or periodic orbits can be detected again by a numerical bifurcation analy-
sis tools. Other transitions are due to more complicated phenomena (e.g.,
boundary crisis of chaotic attractor) and can be only approximately detected
by inspection of simulated orbits in the TW model or the MA systems. The
parameters between the black solid and dashed lines in Fig. 10(b) support at
least two different stable solutions. This multistability should be taken into
account when trying to exploit only one of a few existing stable orbits: some
perturbation can cause switching of the laser to another, unwanted stable
operating regime.

7 Conclusion

In this paper the possibilities of the software LDSL-tool to build, to integrate
and to analyze finite dimensional systems of ODE’s properly approximating
the TW model of laser dynamics were presented. It was shown how the com-
bination of bifurcation analysis of MA systems and of integration of the TW
model allows to get an extensive characterization of the dynamical regimes
of the laser and suggests simple rules to improve the laser performance in
optical communication systems.

A Appendix

All needed functions used in Eq. (7) and (11) except of ©2(n) have analytic
expressions, which are given below in this appendix.
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Reformulation of the spectral problem. The eigenfunctions of the
spectral problem (5) are four component vector-functions

O(n,2) = (§7) = (04,07, 0;,6;)",

p

Taking into account the boundary conditions (2) applicable to the field com-
ponent Of of the eigenfunction ©, the spectral problem (5) can be split into
two parts:

0,0%(2) = —iD(n, Q)04 — ikOF
0,05(z) = iD(n,Q)Of + ikOF ’
Or(n,0) =& (1), Op(n,L)=:é(}), @ eC; (13)

_ ol
©lm 2) = S iam) — )

Or(n, 2). (14)

System (13) as well as Eq. (14) should be treated separately in each section
Sy, where the factor D(n,Q) as well as the later used factor n(n,) are,
respectively, defined by

def Q 1Qy Z(Q - (DT)
D,(n,Q?) = 05, - = = . —,
(n,Q) Br(n) + v 2 Bt il—a)
ne(n, Q) def D2 — k2.

Transfer matrices and characteristic function. After fixing n and
Q, Eq. (13) can be easily solved with respect to the function ©(z) within
each section S,. The 2 x 2 transfer matrix

M, (n, Q) def [ €OS Nely — ’5 sin 1, —% sin 1,
e % sin n, 1, cos Nyl + 11173: sin 0,1,

is used to transmit the function ©g(n, z) from the left edge 2, 1 to the right
edge z. of the section S, (see Fig. 1). Taking into account the boundary
condition (13) at z = 0, at any interface z, of the sections S, and S,,1, the
values of the function ©f can be determined by

@E(na Zr) = éoéE(na Zr; Q): where

Op(n, z;Q) = M,(n, Q) My(n, Q) (7). (15)

In the case 2 is an eigenvalue of the spectral problem, the value of the
complex vector ©Og(n, L) obtained by means of Equ. (15) should coincide
with the boundary value at z = L as it was defined in Equ. (13). This
requirement implies the following definition of the characteristic equation

X(2n) & (=rp, 1) My (n, Q) - My (n, Q) () = 0. (16)
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Thus, for any fixed n, the roots of the complex characteristic function x(€;n)
determine the eigenvalues of the spectral problem (5).

Scaling of the eigenfunctions. To derive the MA systems (7), the
orthogonality of ©® and the eigenfunctions

t— (98 _ (g=* ot VI g—+ Va9 )T
@_<®L>_(®E’®E)27@p}27®p)

of the adjoint problem by means of the scalar product [n; ¢] = [iF n*(2)¢(2)dz
of four component vector functions n and ¢ is employed. In order to have a
more simple expression for the functions K(n) and L(n) used in Eq. (7) the
eigenfunctions ©(n, z) are scaled so that [©f;©] = L. This scaling implies
the following expression of the n and 2 dependent complex scaling factor
¢o=2Co(n, Q) entering Eq. (13):

_1
2

& = (% > (14 g ) (B @E)r) S

r=1

The formula for the integral expression (©%: @), is given below in Eq. (20).

This normalization as well as the derivation of some other formulas below
is allowed if only the product [©';©] remains separated from zero. This
requirement is violated only in mode degeneracy case, i.e., if only related
eigenvalue is a multiple root of characteristic equation (16).

Field decomposition into modes. The orthogonality of the functions
O©f and O is also used when looking for the mode amplitudes f(¢) in the
decomposition (6) of the computed field 1(z,t) and the polarization p(z,t)
into the modes computed at the actual density n(t):

fult) = 7 [OM(n(e), 2); (5528)]. (18)

Definition of the functions entering Eq. (7). The algorithms and
formulas giving the functions used in Eq. (7) can be described as follows.

To determine the value of the function Q;(n) with varying n the location
of the corresponding root of the characteristic function x(2;n) is traced
numerically by means of a homotopy method. The values of Q; = Qx(n),
k =1,...,q are used to define the remaining needed functions K7 ;(n) and
Ly (n) of Eq. (7):

vg,rC0(n,Q)0(n,Q) (i+am.»)gh / A ~ .
Ky, { er(n Bt St an o (O3 @), if k£

0, if k=1"

r def g &k (n,Q)é0(n,Q igr (U —@r e LIWe
Ly, & refhflenf (g (n) . 8Giei) ) (9 ), (19)
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The integral expressions (0% OL), and (6%; ©%), depend only on the carrier
densities n and the numerically computed eigenvalues €2 and are given by

(64:8%), = “zr)[<e’“) Crad I

+ e [205°05 + pfay (05 )7+ (O5)7)] |
(O4.0L), = m[@k o —okeL] [ kAl
(6%:6L), — m[(@)@*)*@ﬁ—(@’“ )élE‘] o

Flz_ = F) - F(zn), Fl,_ < F).  (20)

The complex factors D, and 7, are determined in Eq. (15). The values of
O%(n, z) at the edges of the sections are given by the analytic formula (15).

Formulas of function derivatives. To find the derivatives of all func-
tions introduced in Eq. (7,11), for all £ and r one needs to find the partial
n, and €2, derivatives of the functions ©%(n, z; Q) computed at the edges of
all sections, at the actual value of n and at all corresponding values of 2.
At this step all € are considered as independent variables. Denote any of
these derivatives by 9,05. Due to the definition of the function ©f in (15),
the following recurrent formula can be applied:

az'(:')E|z0 = (8) ; az'C:)E|zT = (aa:Mr)C:)E Zr—1 + Mr(amC:)E)

2oy T=1,...,m.
Here, the derivatives 0, M,(n, ) are obtained by separately differentiating
each component of the transfer matrix M,. Next, all partial 0, derivatives
of the characteristic function x(Q;n) from (16), the integral expressions
(20), the scaling factor &(n, ) from (17) and the functions K7 ;(Q, S, n),
L3 (%, 4, n) from (19) need to be found.

In the second step the full n, derivatives of the needed functions taking
into account the n dependence of the eigenvalues ) are derived. In the
considered nondegenerate mode case at fixed n all 2; are simple roots of
the characteristic equation (16), i.e., for each k£ OqX|(,,n) remains separated
from zero. Thus, due to the implicit function theorem, in a neighbourhood of
this fixed n there exist differentiable functions Q4(n) and their n, derivatives
are given by

00,
on, In

- _a”rX|(Qkan)/89X‘(Qk,n): r=1,...,m.
Consequently, the full n, derivatives of K} ;(n) from Eq. (7) now are given
by
8K;;’l

on, n

o9
on, In

o0 )
‘ + 8"1" Kk,l|(9k5917n)

+ 8o Ky l@nomy |,

_ r
= Oq, K, 1] (%, ,m)
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Analogously one can find the full n, derivatives of L ;(n). If needed, in
similar manner one can also find partial derivatives with respect to some
bifurcation parameter.
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