
Numerical bifurcation analysis of travelingwave model of multisection semiconductorlasers �M. RadziunasyDecember 16, 2004AbstractThe traveling wave model consisting of a hyperbolic system of lin-ear �rst order PDE's nonlinearly coupled with a system of ODE's isused to model the dynamics of multisection semiconductor lasers. Itis shown, how low dimensional systems of ODE's based on the projec-tion of the original system into the subspace spanned only on a fewinstantaneously changing spectral elements allow a precise approxi-mation of the initial model. The constructed low dimensional ModeApproximation systems are accessible to classical bifurcation analysisand numerical tools. The presented method is applied to character-ize quasi-periodic orbits arising in three section distributed feedbacklaser. The obtained results are highly important when applying suchpulsating lasers in optical communication systems.1 IntroductionMultisection semiconductor lasers and coupled laser systems are importantdevices in di�erent applications. For example, frequency-tunable periodicallyoscillating optical �eld power (self-pulsations) can be used for clock recoveryin optical communication systems [1, 2]. A deep understanding of these de-vices is required when designing them for speci�c functionalities. Depending�Research supported by the DFG Research Center Matheon \Mathematics for keytechnologies"yWeierstra�-Institut f�ur Angewandte Analysis und Stochastik, Mohrenstrasse 39, D-10117 Berlin. radziuna@wias-berlin.de 1



on the considered device or its functionality one can use models of di�er-ent complexity. They range from systems of partial di�erential equations(PDE) systems originating from the Maxwell-Bloch equations [3] to systemsof delayed di�erential equations (DDE) [4] or simple ordinary di�erentialequations (ODE) based on a few rate equations.The rather simple ODE and DDE models usually neglect some impor-tant physical e�ects, but when applied to some speci�c laser structures theystill can recover the dynamics observed in experiments [5, 6]. The main ad-vantage of these models is that they allow a detailed theoretical [7, 8, 9] ornumerical [10, 11, 12] analysis by means of software tools such as AUTO [13]or DDE-BIFTOOL [14]. The corresponding bifurcation analysis providesa deep understanding of the underlying physical processes, even though aquantitative agreement between modeled dynamics and experiments can behardly expected.Complex PDE models, in general, are more precise and describe the sys-tem behaviour with higher accuracy, but, unfortunately, admit only verylimited possibilities for the analysis. The existing numerical continuationand bifurcation analysis tools for PDE's [13, 15] are either are not applica-ble for the considered type of model equations at all, or have to deal withlarge scale systems occurring after the space discretization. However, the dy-namics of some of PDE models is mainly con�ned on some low-dimensionalnormally hyperbolic attracting invariant manifolds [16]. In this case a properprojection allows to approximate the full PDE model by a low dimensionalsystem of ODE's which can be accessed by classical bifurcation analysis andnumerical tools. This approach applied to the Traveling Wave (TW) modelof the multisection semiconductor laser [17, 18] will be discussed below inthis paper.The Traveling Wave model is given by a hyperbolic system of linear spa-tially one dimensional �rst order PDE's (describing the longitudinal dynam-ics of the counter-propagating optical �elds) nonlinearly coupled with a sys-tem of nonlinear ODE's (governing dynamics of carrier densities). As a PDEmodel, it is already complicated enough and is able to recover the spatio-temporal dynamics observed in di�erent con�gurations of multisection lasers[19, 20, 21, 22]. From the other hand, it is simple enough and, besidesstraightforward integrations, it allows also a more deep analysis [23, 24] aswell as an explicit construction of an approximating low dimensional systemof ODE's.This Mode Approximation (MA) system of the TW model is based onthe projection of the optical �eld function into a �nite dimensional subspacespanned only by a few optical modes depending instantaneously on the car-rier density [25, 26]. It has been proved in [27] that such a center manifold2



reduction of a PDE system is justi�ed mainly due to the slow variation ofthe carriers. In [24] a numerical bifurcation analysis of a single and of atwo mode approximation system was presented. In [22, 28] a qualitativeagreement of the dynamics of the full PDE model and of its two mode ap-proximation system was shown for some restricted parameter regions. Theobserved di�erences were due to simpli�cations of the TW model used for theconstruction of the 2MA systems as well as due to the neglection of impor-tant modes contributing to dynamics of the full TW model. In the presentpaper, the number of the selected modes is not restricted to one or two.Here, the identi�cation of the modes participating in some stable stationaryregime is made after a mode expansion of the simulated optical �eld in theTW model [29]. It will be shown how a quantitative agreement between thecomputed trajectories of the corresponding MA system and the solution ofthe full TW model admits such a mode selection. Furthermore, this modeselection guarantees a quantitative agreement between the TW model andthe MA systems when continuing stable orbits or their bifurcations in theparameter space.
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2 Figure 1: Scheme of a 3 sectionPhaseCOMB laser.For the simulation and the analysis of the TW model the software LDSL-tool (abbreviation for (L)ongitudinal (D)ynamics in multisection (S)emicon-ductor (L)asers) was developed [29, 30]. It can be used for numerical in-tegration of the model equations as well as for a comprehensive data post-processing and spectral analysis, making it a powerful tool well suited for thestudy of di�erent dynamical e�ects. In the present paper, the possibilitiesof the LDSL-tool to build and to integrate Mode Approximation systems arediscussed. Moreover, it is demonstrated, how a �nite dimensional vector �eldgenerated by the LDSL-tool can be applied for further numerical continuationand bifurcation analysis by means of the software package AUTO [13].To illustrate these new possibilities of the LDSL-tool, a self pulsating threesection semiconductor laser is considered. It is completely anti-reectioncoated and consists of two distributed feedback (DFB) sections and one phasetuning section integrated in between (see scheme in Fig. 1). In [20, 30] it wasshown experimentally and theoretically that such a laser can perform nearlyharmonic �eld power pulsations with a � 40 GHz frequency required forapplications. In the present paper, these pulsations are simulated by means ofthe TW model and the MA systems. Their stability domain in the parameterplane and their locking properties are investigated by a numerical bifurcation3



analysis tool. Finally, an extensive characterisation of the pulsation qualitywhich is highly important in applications is given by combining bifurcationanalysis and integration of model equations.This paper is organized as follows. In Section 2 a full description of theTraveling Wave model is given and the parameters of the considered laser arespeci�ed. Section 3 introduces the reduced MA systems and considers theselection of dominant modes. In the following Sections 4 and 5 the numericalbifurcation analysis for nonmodulated and modulated MA systems is per-formed. After giving an overview of di�erent characteristics of pulsations inSection 6, some conclusions are drawn. In the Appendix explicit expressionsof the functions occurring in the MA systems as well as some algorithms usedfor the construction of these systems are given.2 A mathematical model of laser dynamics2.1 Traveling wave modelA multisection laser consisting ofm sections Sr, r=1; : : : ; m, with the lengthslr and the total laser length L is considered (see Fig. 1 where m=3). Alongthe longitudinal axis of the device counterpropagating complex slowly varyingamplitudes of optical �elds E(z; t) = (E+; E�)T and polarization functionsp(z; t) = (p+; p�)T are governed by the traveling wave equations�i@tE� = vg �(�i@z � �(n))E� � �E� + i�g2(E� � p�)� ;�i@tp� = �i�(E� � p�) + �!p�;�(n) def= Æ � i�2 + (i + �H)g(n)2 ; g(n) def= g0(n� ntr): (1)The �elds E� at the laser facets satisfy the reecting boundary conditionsE+(0; t) = r0E�(0; t); E�(L; t) = rLE+(L; t): (2)The norm of the �eld function jE(z; t)j2 = jE+j2 + jE�j2 represents a localphoton density (local power at z divided by the global constant vg� � hc=�0).The function n(t) = (n1; : : : ; nm)T entering linearly into the gain functiong(n) represents sectionally averaged carrier densities within di�erent lasersections. The carrier rate equations governing the densities nr(t) read asfollows:@tnr = Ir + ~Ir(t)elr�r � Rr(n)� vg;rlr <e (E; g(n)E � �g(E � p))r ;4



Rr(n) def= Arnr +Brn2r + Crn3r; r = 1; : : : ; m: (3)Here, the expression (�; �)r = RSr ���dz denotes the usual scalar product of 2-component vector functions within the section Sr. The subscript indices r areused to indicate that the parameters, functions or integration borders belongto the section Sr. When these indices are omitted, the considered operationsare done for each or for the already indicated section. Superscripts � and Tstand for complex conjugation and transpose, respectively.Finally, the �elds, polarizations and carrier densities at the initial timemoment t0 are denoted asE(z; t0) = Ein(z); p(z; t0) = pin(z); n(t0) = nin: (4)Within each section the parameters vg, �, Æ, �, g0, ntr and �H enteringEq. (1) represent group velocity, real coupling factor between counterprop-agating �elds, static detuning, internal optical losses, e�ective di�erentialgain including the transverse con�nement factor, transparency carrier den-sity and Henry linewidth enhancement factor, respectively. An inclusion ofthe polarization equations determines gain dispersion in each laser section�tting it in frequency domain with a Lorentzian function of amplitude �g>0,full width at half maximum 2� <1 and centered at the frequency �! [17].Sectional parameters I, �, A, B and C appearing in (3) denote injectioncurrent, cross section area of the active zone and three recombination pa-rameters. The function ~I(t) denotes a possible current modulation and willbe discussed in more details in Section 5. Until then it is neglected supposing~I(t) = 0. Finally, h, c, e, �0 and r0;L are Planck constant, speed of light invacuum, electron charge, central wavelength, and complex facet reectivitycoeÆcients, respectively.2.2 ExampleTo demonstrate the performance of TWmodel, a self-pulsating 3 section laser[20, 29, 30] schematically depicted in Fig. 1 and determined by the parametersof Table 1 is considered. For given parameters the considered system has aunique attracting state which can be approached during a suÆciently longtransient time interval from arbitrary initial conditions (Ein(z); pin(z); nin).Such a transition towards a stable orbit during the �rst 10 ns is shown inFig. 2.The consequent simulations of the model equations after a slight changeof initial parameters are performed starting from the new distributions Ein,pin and nin determined by the last moment of the previous simulation. Suchselection of initial conditions allows to stay close to the same attractor and to5



Table 1: Parameters used in simulations.explanation S1 S2 S3 unitsc0=vg group velocity factor 3.4 3.4 3.4l length of section 250 400 250 �m� coupling coeÆcient 130 0 130 cm�1� internal absorption 25 20 25 cm�1g0 e�ective di�erential gain 7 0 7 10�17cm2Æ static detuning 300 -30 -90 cm�1�H Henry factor -4 -4�g Lorentzian gain amplitude 200 0 200 cm�1�! gain peak detuning 0 0 ps�12� FWHM of gain curve 50 50 ps�1I current injection 70 70 mA� cross-section area of AZ 0.45 0.45 �m2ntr transparency carrier density 1 1 1018cm�3A inverse carrier life time 0.3 0.3 ps�1B bimolecular recombination 1 1 10�10cm3/sC Auger recombination 1 1 10�28cm6/s�0 central wavelength 1.57 �mr0; rL facet reectivity coeÆcient 0
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Figure 2: Field output powerjE�(0; t)j2 at left facet. The verticaldotted line at t=10 ns shows wherethe integration was interrupted andrestarted with a new value of theinjected current I1. Insert: con-vergence of simulated pulsation fre-quency with decay of grid steps innumerical scheme. Bullets: simula-tion results. Solid line: �tting by aparabola.6



follow its changes in the parameter space. In the given example, at t=10 nsthe value of the parameter I1 was changed and a new simulation was started.Fig. 2 shows that only a short 4 ns transient time is needed to reach againthe slightly modi�ed attractor.The simulations of the TW model were performed by means of secondorder precision �nite di�erence (FD) schemes of predictor-corrector type ap-proximating the optical �elds E(z; t) along the characteristic lines z � vgt =const [29]. The expected quadratic convergence could be observed with a de-cay of the grid steps (see, e.g., a quadratic convergence of pulsation frequencyas indicated in the insert of Fig. 2). Unfortunately, with decaying grid stepsthe computation time is quadratically increasing. To perform simulationsin reasonable time the temporal grid step is �xed at � 7 fs, and simulatedsolutions are supposed to be the \exact" solutions of the TW model (seeindication in the insert of Fig. 2). This exact solution will be used to test theprecision of another approach for simulation and analysis of the TW model,what will be discussed in the following section.3 Reduction of the TW modelIn this section the TW model (1,2,3,4) will be reduced to a system of ODE's.The dimension of this system needed to get a good approximation of theinitial model will be discussed.3.1 Mode approximation systemsThe equations (1) for the �eld and the polarization functions can be writtenin operator form giving rise to the following spectral problem:�i @@t �Ep � = H(n)�Ep � ) (H(n)� 
(n))�(n; z) = 0: (5)Here, the n-dependent operator H is given by a 4� 4 matrix. For any k thek-th eigenfunction �k is suitably scaled and satis�es the boundary conditionscorresponding to Eq. (2) (see Appendix for more details).It was discussed in [27] that �eld/polarisation functions are exponentiallyapproaching �nite dimensional invariant manifold spanned by a �nite numberof instantaneous modes, i.e., these functions can be approximated by a �nitedimensional sum �Ep � (z; t) � qXk=1 fk(t)�k(n; z); (6)7



where f(t) = (f1; : : : ; fq)T represents the complex amplitudes of q dominantmodes. The substitution of this truncated mode expansion of the �eld andthe polarization into Eq. (1,3) implies an approximating (2q+m)-dimensionalMA system of ordinary di�erential equations for the complex mode intensityfunctions f (q)k , k = 1; : : : ; q, and the real carrier density functions n(q)r , r =1; : : : ; m: _f (q)k = i
k(n(q))f (q)k + qXl=1� mXr=1Krk;l(n(q)) _n(q)r �f (q)l ;_n(q)r = Ir + ~Ir(t)elr�r �Rr(n(q))�<e qXk;l=1Lrk;l(n(q))f (q)�k f (q)l ;f (q)(t0) = fin def= f(t0); n(q)(t0) = nin: (7)Here, the initial value f(t0) is obtained when decomposing the initial �elds/ polarisations from (4) into the modal components by means of formula(18). The superscript indices (q) are used to distinguish mode amplitudes andcarrier densities originated by the MA system (7) from the �eld amplitudesf and the densities n representing solution of the full TW model.Real and imaginary parts of the functions 
(n) indicate an approximateangular frequency and damping of the modal amplitude. For any n (andbifurcation parameters P ) the values of 
(n) are determined numerically bycontinuing the corresponding roots of the characteristic equation (16) fromthe previously known values with slightly di�erent n (and P ). After deter-mining 
(n) the functions Krk;l(n) and Lrk;l(n) together with their derivativescan be expressed by explicit formulas (19) as described in the Appendix.
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(a) Figure 3: Mode analysis of the pul-sating regime of the TW model.Empty and full bullets show the maineigenvalues 
 (panel a) or the modu-lus of the mode amplitude jf j versustheir frequency (panel b) at �xed tor all time moments, respectively.When building the MA system (7) a few restrictions should be takeninto account: First, with the actual change of n and for all considered Peach of the main q eigenvalues 
(n) should remain separated from any othereigenvalue (see comments on Eq. (17) in Appendix). The unfolding of occur-ring singularities can be done by selecting another basis of mode expansion8



(6) close to the mode degeneracy [24, 25]. In the examples of the presentpaper, nevertheless, such a mode degeneracy does never appear (see, e.g.,Fig. 3a where the eigenvalues remain well separated during simulated dy-namical regime).Last but not least, in order to get a satisfactory approximation of exactsolutions, among the selected q modes all dominant modes should be present.Such modes in the expansion (6) of any attracting orbit of the TW modelshould have nonvanishing amplitudes f . To determine all such modes, at thebeginning q is assumed to be rather large (q > 20 in presented case). Next,following [29] and formula (18) from the Appendix the simulated E(z; t)and p(z; t) can be decomposed into modal components at a few di�erenttime instants. The obtained mode amplitudes jf j (located at correspondingmodal frequencies <e
) are represented in Fig. 3b. It is obvious that two-three modes in this case are strongly contributing to the optical �elds andshould be included when constructing MA systems. The precision of thesesystems will be discussed in more details below.3.2 Precision of mode approximationsTo estimate the precision of MA systems the comparison of optical �eldsand carrier densities obtained by integrating di�erent MA systems and thefull TW model will be done. For this reason, a trajectory of the TW modelstarting from distributions Ein(z), pin(z) and nin located near the attractoris computed. As it was discussed above, these distributions and formula(18) allow to �nd an arbitrary number of initial modal amplitudes fin. Afterchoosing the number of modes q, the MA system (7) is integrated numerically.This integration does not provide the optical �elds directly. However,being independent on the spatial variable, the solution (f (q); n(q)) of the MAsystem still allows to reconstruct optical �elds or polarizations at any spatialposition. For example, the �eld expansion (6) together with the mode scalingfactor ~c0(n;
) from (17) imply the following expression of the left facet �eldoutput in the MA system:E(q)�(0; t) def= qXk=1 ~c0�n(q)(t);
k(n(q)(t))�f (q)k (t): (8)The power (squared modulus) of this function obtained when integrating 2,3 and 4 MA systems is depicted by di�erent lines in Fig. 4a. Empty bulletsin this �gure represent the exact solution of the full TW model.One can see that a qualitative agreement with the TW model can berealized already with two main modes: 2MA system provides pulsations with9
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Figure 4: Precision of mode approx-imations. a: �eld output power atthe left facet. Dotted, dashed andsolid lines are due to 2, 3 and 4 modeapproximations. Bullets indicate theexact solution. b: di�erence betweenthe frequency of the pulsations dueto MA approach and the pulsationfrequency of the exact solution. c:normalized distance �n between theorbits generated by MA systems andthe exact orbit.a bit smaller symmetric pulses (dotted line in panel a) and slightly di�erentfrequency (see panel b). As could be expected from Fig. 3b, only a 3MAsystem can guarantee a quantitative agreement between slightly asymmetricindividual pulses. The small error in the pulsation frequency, nevertheless,still is present. This frequency error is reduced after including the fourthmode as it is indicated in Fig. 3b. The inclusion of further modes makesthe integration of the MA system more time consuming without a signi�cantincrease of the accuracy.Besides the output �elds (which are mostly interesting in applicationsand can be measured by engineers) one can also compare the carrier densitieswhich are resolved directly by both the TW model and the MA approaches.The precision of the MA systems can be rapidly estimated when checking thesmallness of the maximal separation �n between n-components of di�erenttrajectories: �n def= maxt (min� (� mXr=1 jn(q)r (t)� nr(�)j2�1=2)) : (9)In contrast to Fig. 4a, where the pulses of the TW model and the 3MAsystem were nearly coinciding, this new estimation plotted in panel c showssome small but nonvanishing gap between two compared orbits.It was shown above how three or four mode approximations are able torecover the orbits of the full TW model with rather good precision. How-ever, one should keep in mind that by tuning some bifurcation parameterthe impact of the modes changes and some new mode can become impor-tant. In the following sections, where numerical bifurcation analysis will beperformed, a 4 MA system will be considered. To ensure the precision ofthe approximations and the bifurcation analysis, a further comparison of the10



detected stable orbits of the MA system with the corresponding orbits of thefull TW model will be made.4 Bifurcation analysisIn this section one and two parameter bifurcation diagrams of the TW modeland the corresponding MA systems will be presented. The 1-periodic �eldphase tuning ' = 2L2Æ2=2� and the wavelength detuning Æ� = Æ1vg;1�20=2�c0in the �rst active DFB section will play the role of bifurcation parameters.Both these parameters, in general, depend on the current injection into thecorresponding sections and, therefore, can be controlled in experiments.4.1 Elimination of rotational invarianceLike the TW model, the MA system is rotationally invariant, i.e., the func-tions (f (q)ei�; n(q)) with arbitrary � 2 [0; 2�] represent a family of solutionsto (7). This invariance makes no harm when integrating the MA system (7),but can be crucial when performing numerical bifurcation analysis. To avoidsuch problems, for each k = 1; : : : ; q, the real functionsy(q)2k�2(t) = =m(f (q)�1 f (q)k ); y(q)2k�1(t) = <e(f (q)�1 f (q)k ) (10)are introduced so that y(q)0 = 0 and the modal amplitude products enteringthe MA model (7) are given by�f (q)�k f (q)l � (y) = (y(q)2k�1 � iy(q)2k�2)(y(q)2l�1 + iy(q)2l�2).y(q)1 :Now the optical �eld is represented by the (2q �1)-dimensional real vectorfunction y(q)(t)=(y(q)1 ; : : : ; y(q)2q�1)T . After de�ning the functionsL(q)r (n; y) def= Irelr�r �Rr(n)� <e qXk;l=1Lrk;l(n)f (q)�k f (q)l ;K(q)k (n; y; ~I) def= qXl=1 mXr=1Krk;l(n) L(q)r + ~Ir(t)elr�r! f (q)�1 f (q)l ;M(q)k (n; y; ~I) def= 0@i(
k(n)� 
�1(n)) + K(q)�1y1 1A f (q)�1 f (q)k +K(q)kfor r = 1; : : : ; m and k = 1; : : : ; q, one can rewrite the resulting (2q+m�1)-dimensional MA system without rotational invariance as follows:_y(q)2k�1(t) = <eM(q)k (n(q); y(q); ~I(t)); k = 1; : : : ; q;11



_y(q)2k�2(t) = =mM(q)k (n(q); y(q); ~I(t)); k = 2; : : : ; q;_n(q)r (t) = L(q)r (n(q); y(q)) + ~Ir(t)=(elr�r); r = 1; : : : ; m;y(q)(t0) = yin; n(q)(t0) = nin: (11)Here, the initial values yin are obtained by applying the transformation (10)to the initial values fin from (7).The main restriction of this approach is the assumption of nonvanishing�rst mode, i.e., y(q)1 (t) = jf (q)1 (t)j2 � " > 0. Only in this case the transforma-tion (10) can be used. In the considered case, this condition holds at least forstable orbits: the stable pulsating regime is determined mainly by two modeswhose amplitudes jf j change only slightly in time and remain separated fromzero (see the variation of modes 1 and 2 in Fig. 3b). In general, this limita-tion indicates a necessity of a proper selection and a possible renumbering ofthe operating modes when continuing the orbits in the parameter space.4.2 Following orbits in one parameterIn this section bifurcations of the periodic orbits which were computed anddiscussed in Subsection 3.2 are considered. Fig. 5 represents the continuationof this orbit (indicated by stars at the position '=B) if the phase parame-ter ' changes. It was found that stable periodic orbits of the 3MA (dashedline) and 4MA (solid line) systems loose their stability via a Neimark-Sacker(torus) bifurcation at ' = A or a saddle-node (fold) bifurcation at ' = C.Moreover, in both approximations the orbits are close to each other in avicinity of '=A, are slightly di�erent for ' 2 [B;C] (see Fig. 5(a)), but pos-sess similar period (frequency) over the considered parameter range (dashedand solid lines coincide in Fig. 5(b)). The analysis of the corresponding sta-ble orbit of the 2MA system (not indicated in Fig. 5) showed again a foldbifurcation at ' � C, but failed totally to locate the torus or some otherbifurcation in the vicinity of '�A.These discrepancies can be explained after considering the Floquet multi-pliers of the orbits in di�erent MA systems. Each additional mode in the MAsystem increases the dimension of the system by two. After neglecting themultiplier 1, the periodic orbits in 4, 3 and 2MA systems can be representedby 8, 6 or 4 multipliers as indicated by di�erent grey shading in Fig. 6.Since at the position '=B the considered limit cycle is stable, all multi-pliers in Fig. 6(b) are located inside the unit circle. At the fold bifurcationone of these multipliers is crossing unit cycle at 1. Since this multiplier (theblack bullet on the unit circle in Fig. 6(c)) represents orbits of all three con-sidered MA systems, we have observed the fold bifurcation in all cases. Atthe phase ' = A a pair of complex conjugated multipliers (grey bullets in12
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Figure 6: Computed Floquet mul-tipliers of the stable limit cycle atphases A, B and C as shown in Fig. 5.Orbits of 4, 3 and 2MA systems arepresented by all, empty and grey, andonly empty bullets, respectively.Fig. 6(a)) are crossing the unit cycle. In this case the multipliers representonly the orbits of the 3MA and 4MA systems, where torus bifurcation wasdetected. In the 2MA system the multipliers (empty bullets) are remaininginside the unit cycle, and the corresponding orbit remains stable. Similarly,the absence of a pair of multipliers in the 3MA system did allow to locateonly one torus bifurcation of the unstable orbit branch within ' 2 [B;C],while the corresponding orbit of the 4MA system here undergoes two conse-quent bifurcations (see single small square and two large squares in 3MA and4MA cases, respectively). This failure in location of the bifurcation showsagain the necessity of a proper mode selection.To check again the precision of the MA systems, simulations of the TWmodel by changing the bifurcation parameter as it was discussed in Subsec-tion 2.2 were performed. The maxima of the output �eld power and thefrequency of the observed pulsations (determined by the leading componentsin the Fourier transform of the output power) at each used ' are depictedby open bullets in Fig. 5. As it was predicted by a bifurcation analysis ofthe 3MA and the 4MA systems, the same type of stable orbit of full TWmodel was found within the interval ' 2 [A;C]. After its loss of stabilityat '=A, a new attractor was observed possessing at least two di�erent fre-13



quencies. The superposition of these frequencies results in multiple peaks inthe Fourier spectrum of the output power, some of which are indicated inFig. 5b for '<A. The inspection of the Fourier spectra in order to identifya torus bifurcation is, may be, not very precise, but it is easy accessible inexperiments [22]. Finally, the loss of stability of the periodic orbit for '>Cin simulations implies a fast transition of the trajectories to some far awayin the phase space located attractor. Such a behaviour is typical after foldbifurcation where a pair of orbits annihilate each other.It was demonstrated in Fig. 5 and discussed above that the 4MA as wellas the 3MA systems were properly predicting bifurcations of the full TWmodel, but only orbits of 4MA system were able to be in a perfect qualitativeagreement with the exact orbits of the full model. Thus, only 4MA systemswill be considered below, where the two parameter bifurcation analysis willbe performed.4.3 Two parameter bifurcation diagramThe continuation of the codimension 1 bifurcations of stable orbits discussedabove in the two parameter plane is summarized in Fig. 7. The inspection ofthe Floquet multipliers of the orbits along the computed bifurcation curvesallows to �nd the stability domain of the orbit discussed in Figs. 4 and 5. Theborders of this domain in Fig. 7 are indicated by black dashed and black solidlines corresponding to the fold and to the torus bifurcations, respectively.The continuation of the bifurcation branches in two parameters allows tolocate codimension 2 bifurcations, some of which are indicated by di�erentsymbols in the same �gure (see, e.g., the insert of the �gure where the en-larged situation in the vicinity of a cusp and 1:1 strong resonance is given).As it was noticed in [9, 31] these points are highly important and acting as\organizing centers" for nearby in the parameter plane located bifurcationdiagrams.
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Figure 7: Two parameter bifurcationanalysis of the 4MA system. Emptybullets show bifurcations of stable or-bit observed in the simulation of theTW model. Black lines and symbolsindicate bifurcations of stable orbits.The vertical dotted line and the staron it denote conditions considered inFigs. 5 and 4, respectively.14



Together with the bifurcation analysis of the 4MA system simulationsof the full TW model were also performed. Like in the example of Fig. 5,by �xing one of the bifurcation parameters and tuning the other one, thebifurcation of periodic orbits was detected. The approximate position ofthese bifurcations are represented by empty bullets in Fig. 7. The perfectagreement in locating the bifurcations of the stable orbits by means of thesetwo di�erent approaches con�rms once more the precision of the MA systembased on the initially selected four modes.Di�erent from the direct integration of the TW model or the MA systems,where only stable orbits are accessible, a numerical bifurcation analysis tool[13] allows to trace the codimension 1 bifurcations in a parameter plane eventhough no stable orbits are originating by these bifurcations. Some parts ofthese \unstable bifurcation" branches are given by grey lines in Fig. 7. Dottedend of such branch indicates either a further loss of stability of the involvedorbits or a violation of the nonvanishing main mode condition implied bythe MA system (11). Due to this reason and due to the existence of morecomplicated orbits in our system, which can not be analysed with numericalbifurcation analysis tools (e.g., trajectories on tori), the bifurcation diagramis incomplete. Note also that a large number of unstable orbits (and theirbifurcations) of the in�nite dimensional TW model was already neglectedwhen projecting this model into the �nite dimensional subspace spanned byonly a few optical modes. However, the aim of this paper is not a constructionand discussion of the full bifurcation scenario, but a demonstration thatbifurcation analysis tools can be applied to our original TW model and cansuggest some simple rules to improve the performance of the pulsating laser.5 Modulation of electrical injectionIt is crusial for applications of the considered laser for the clock recovery thatthe pulsation frequency could be locked by the precisely known frequency ofsome external signal. That is, the existence of the unique stable periodicorbit of the periodically forced model is required. In the discussion belowit will be shown how numerical bifurcation analysis can be used for the fastestimation of the locking regions of the considered pulsations.Let us assume now that the current modulation function ~I(t) in one ofthe laser sections is periodic and nonvanishing. For simplicity, consider asinusoidal modulation which, following suggestions of [13], can be uniquelydescribed by a pair of real autonomous ODE's with properly selected initial
15



conditions: ~Ir(t) = ( IM2 sin(2�fM(t� t0)) = IM2 x1(t); if r = 10; if r 6= 1 ;_x1 = 2�fMx2 � �(x21 + x22 � 1)x1 x1(t0) = 0;_x2 = �2�fMx1 � �(x21 + x22 � 1)x2 x2(t0) = 1: (12)The modulation amplitude IM and the frequency fM will be considered asbifurcation parameters. The positive constant � guarantees the uniquenessof the attracting periodic orbit in the autonomous system (12) and is neededfor the stability of computations. Finally, the initial conditions at t = t0guarantee the validity of relation between ~I(t) and x1 given in the �rst lineof Eq. (12) for all time moments. Taking into account these expressions theequations (11, 12) are an autonomous system of ODE's which can be againanalysed by means of bifurcation analysis tool AUTO [13].5.1 Forced lockingOne of the results of this paper is a demonstration that the physically relevantcurrent modulation with IM = 5 mA (used in most of the examples below)corresponds to the small forcing regime, where locking region is nearly lin-early depending on the forcing strength [32, 33].With the vanishing modulation amplitude (IM=0) both systems (11) and(12) are decoupled and, independently from each other, possess attractingorbits with the frequencies fN and fM , respectively. The superposition ofthese orbits is an invariant two-dimensional torus which attracts all trajec-tories of the full system (11, 12). Assuming nonvanishing modulation twooscillators are unidirectionally coupled. For the suÆciently large frequencyo�set jfN�fM j the two systems are coupled only weakly implying again adynamics on the stable invariant tori. Such behaviour of the coupled MAsystem (11, 12) as well as of the full TW model with periodic forcing isrepresented by the Poincar�e map iterations which are moving around theattracting invariant closed curve as it is shown in the left insert of Fig. 8(a).The high concentration of the iteration points at the right lower part of thiscurve indicates the location where a stable and a saddle periodic orbits of thecoupled system will appear when the decreased frequency o�set due to thechanges of fM will reach a critical value. After exceeding this value, the cou-pled system possesses stable and a saddle type periodic orbits. These orbitsare �xed points of the Poincar�e map located again on some closed attractinginvariant curve (see right insert of Fig. 8(a)).After location of the stable periodic orbit of the coupled system, thestudy of parameter regions allowing a realization of frequency locking is per-16
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Figure 8: Study of forced locking. a:one parameter bifurcation diagramof the 4MA system with modulatedforcing. The star denotes the normand the frequency fN of the orbit inthe absence of forcing. The insertsrepresent Poincar�e maps for di�erentfM . Dots indicate the iterations ofthe map. b: locking area (grey) in atwo parameter plane. The borders ofthe area (dashed lines) are given byfolds of limit cycles in the 4MA sys-tem or are estimated from full TWmodel. The dotted line at IM = 5mA indicates the parameters consid-ered in diagram (a).formed. Fig. 8(a) is due to numerical continuation of the computed stableorbit (black bullet) of the modulated 4MA system when tuning fM . Withinsome frequency interval this orbit remains stable (black line in this diagram),until it losses the stability in a fold bifurcation, where it collides with a sad-dle orbit (grey line) and disappears. Next, the two fold bifurcations (emptytriangles in Fig. 8(a)) of the periodic orbit are traced in the modulation am-plitude IM / frequency fM plane. These two bifurcation lines (dashed linesin Fig. 8(b)) come together at IM =0 and fM = fN . In the given case theselines determine the borders of the locking region, where a unique stable pe-riodic orbit of the coupled system (11,12) can be found. In the sequel thewidth R of the locking region at IM =5 mA is called the locking range andis considered as an important characteristic of the periodic orbits.To estimate the precision of the modulated 4MA system the simulationsof the full TW model were performed again. To determine the modus ofthe operation, the Poincar�e map iterations were inspected. The approximateparameter values, where the stable �xed point (full bullet in the right insertof Fig. 8(a)) appears or vanishes were depicted by empty bullets in Fig. 8(b).The small deviation of these bullets from the fold bifurcation lines of the MAsystem are mainly due to �nite steps when tuning the parameters as well asdue to the in�nite transient times needed to distinguish the iterations of themap at the saddle-node bifurcation.A nearly linear rise of the bifurcation curves from the origin (IM ; fM)=(0; fN) indicates a small forcing regime. In general, it can be studied by17



asymptotic methods allowing a rather fast linear estimation of the lockingregion by �nding the slopes of the fold bifurcation lines at the origin. Fromthe other hand, one can also rapidly estimate the locking area by a linearinterpolation using the positions fM of the fold bifurcations at nonvanish-ing IM (e.g., triangles in Fig. 8(a)) and the frequency fN of the periodicorbit in the nonmodulated system. In this case the continuation of the foldbifurcations in fM and, e.g., ' plane together with the already known depen-dence fN=fN(') (see Fig. 5(b)) allow a fast estimation of the locking rangedependence on the parameter '.5.2 Locking of orbits at di�erent phases 'After �xing the modulation amplitude, the continuation of folds in the (fM ,')plane was performed and represented in Fig. 9. To distinguish both fold linesf1 and f2, whose frequencies fM are changing over more than 10 GHz range(see Fig. 5(b) for corresponding frequency tuning of the periodic orbits inthe nonmodulated system) the frequency o�set fM�fN is used for y-axis inpanel (a) of this �gure. It was checked that for the considered parameterrange both fold lines in this diagram give the borders of the region wherea stable periodic orbit of the periodically forced MA system exists. Thus,the separation of the fold lines gives an immediate overview on the lockingrange R of the pulsations: this range signi�cantly increases near the foldbifurcation of the orbit in the nonmodulated system at ' � �0:2.Assume that the diagram is a projection of the three dimensional \tube"into a two dimensional parameter plane, where the projection direction wascorresponding to some norm of the orbit (e.g., the maxima of the �eld outputat the left facet, as considered in Fig. 5(a)). The intersection of this \tube"with the �xed ' plane at the positions indicated by stars in Fig. 9(a) wasalready represented in Fig. 8(a). That is, the front side of the \tube" corre-sponds to the stable periodic orbit, while the back side represents the saddletype periodic orbit.At the edges of Fig. 9(a), where the stable orbit of the nonmodulatedsystem bifurcates (see Fig. 5) the situation is represented by Figs. 9(b,c). Inpanel (b) t1 is a torus bifurcation branch turning around the \tube". Whencrossing this line from right to left, the dimension of the unstable manifoldof the corresponding orbit decreases by two. The points FT1;2 denote a fold-torus interaction, where a pair of complex conjugated and a real positiveFloquet multiplier are simultaneously crossing the unit circle. The situationin panel (c) is di�erent. Here, t2 is again a torus bifurcation branch, but inthis case it is located only on the front side of the \tube". The codimension 2points R1 and R2 yield the starting and �nal points of the branch t2 are strong18
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i�es their stability and locking properties. It allows also to �nd regions ofmultistability, and to �nd possible pulsation frequency tuning ranges. Thesummary of all these properties which are highly important for the clockrecovery in optical communication systems [1, 2] is made in Fig. 10. Sincepractical applications deal mainly with the stable, i.e., observable orbits, all\unstable bifurcation" branches (grey lines of Fig. 7) are omitted and onlythe area of the stable pulsations is discussed.
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The next natural requirement is a better stability of the pulsations. Fol-lowing the discussion of Subsection 4.2, it can be characterized by the factor��=maxifj�ijg. Here, like in Fig. 6, �i are inside the unit circle located Flo-quet multipliers of the stable periodic orbit. The value of this factor for thepulsations within the considered parameter region is represented by di�erentgrey shading in Fig. 10(b). The factor �� becomes equal to 1 at the border ofthe region and is smallest, indicating therefore most stable pulsations at theupper right side of this area.Finally, it should be also noted that at some of discussed sets of theparameters more than one stable regular or irregular orbit is available. Tolocate other stable attractors the simulation of the full TW model by tracingstable orbits and approaching considered parameter area from outside wasmade. This continuation was performed until the transition to the origi-nally investigated orbit was observed (see empty bullets in Fig. 10(b)). Thetransitions which are generated by bifurcations of stable stationary statesor periodic orbits can be detected again by a numerical bifurcation analy-sis tools. Other transitions are due to more complicated phenomena (e.g.,boundary crisis of chaotic attractor) and can be only approximately detectedby inspection of simulated orbits in the TW model or the MA systems. Theparameters between the black solid and dashed lines in Fig. 10(b) support atleast two di�erent stable solutions. This multistability should be taken intoaccount when trying to exploit only one of a few existing stable orbits: someperturbation can cause switching of the laser to another, unwanted stableoperating regime.7 ConclusionIn this paper the possibilities of the software LDSL-tool to build, to integrateand to analyze �nite dimensional systems of ODE's properly approximatingthe TW model of laser dynamics were presented. It was shown how the com-bination of bifurcation analysis of MA systems and of integration of the TWmodel allows to get an extensive characterization of the dynamical regimesof the laser and suggests simple rules to improve the laser performance inoptical communication systems.A AppendixAll needed functions used in Eq. (7) and (11) except of 
(n) have analyticexpressions, which are given below in this appendix.21



Reformulation of the spectral problem. The eigenfunctions of thespectral problem (5) are four component vector-functions�(n; z) = ��E�p � = (�+E;��E;�+p ;��p )T ;Taking into account the boundary conditions (2) applicable to the �eld com-ponent �E of the eigenfunction �, the spectral problem (5) can be split intotwo parts: ( @z�+E(z) = �iD(n;
)�+E � i���E@z��E(z) = iD(n;
)��E + i��+E ;�E(n; 0) = ~c0�r01 �; �E(n; L) = ~cL�1rL�; ~c0;L 2 C; (13)�p(n; z) = �� + i(
(n)� �!) �E(n; z): (14)System (13) as well as Eq. (14) should be treated separately in each sectionSr, where the factor D(n;
) as well as the later used factor �(n;
) are,respectively, de�ned byDr(n;
) def= �r(n) + 
vg;r � i�gr2 i(
� �!r)�r + i(
� �!r) ;�r(n;
) def= qD2r � �2r:Transfer matrices and characteristic function. After �xing n and
, Eq. (13) can be easily solved with respect to the function �(z) withineach section Sr. The 2� 2 transfer matrixMr(n;
) def=  cos �rlr � iDr�r sin �rlr � i�r�r sin �rlri�r�r sin �rlr cos �rlr + iDr�r sin �rlr !is used to transmit the function �E(n; z) from the left edge zr�1 to the rightedge zr of the section Sr (see Fig. 1). Taking into account the boundarycondition (13) at z = 0, at any interface zr of the sections Sr and Sr+1, thevalues of the function �E can be determined by�E(n; zr) = ~c0 ��E(n; zr; 
); where��E(n; zr; 
) def= Mr(n;
) � � �M1(n;
)�r01 �: (15)In the case 
 is an eigenvalue of the spectral problem, the value of thecomplex vector �E(n; L) obtained by means of Equ. (15) should coincidewith the boundary value at z = L as it was de�ned in Equ. (13). Thisrequirement implies the following de�nition of the characteristic equation�(
;n) def= (�rL; 1)Mm(n;
) � � �M1(n;
)�r01 � = 0: (16)22



Thus, for any �xed n, the roots of the complex characteristic function �(
;n)determine the eigenvalues of the spectral problem (5).Scaling of the eigenfunctions. To derive the MA systems (7), theorthogonality of � and the eigenfunctions�y = ��yE�yp � = ����E ;�+�E ; vg�g2� ���p ; vg�g2� �+�p �Tof the adjoint problem by means of the scalar product [�; �] = R L0 ��(z)�(z)dzof four component vector functions � and � is employed. In order to have amore simple expression for the functions K(n) and L(n) used in Eq. (7) theeigenfunctions �(n; z) are scaled so that [�y; �] = L. This scaling impliesthe following expression of the n and 
 dependent complex scaling factor~c0=~c0(n;
) entering Eq. (13):~c0 =  1L mXr=1�1 + vg;r�gr�r2(�r + i(
� �!r))2� ���yE; ��E�r!� 12 : (17)The formula for the integral expression ( ��yE; ��E)r is given below in Eq. (20).This normalization as well as the derivation of some other formulas belowis allowed if only the product [ ��y; ��] remains separated from zero. Thisrequirement is violated only in mode degeneracy case, i.e., if only relatedeigenvalue is a multiple root of characteristic equation (16).Field decomposition into modes. The orthogonality of the functions�y and � is also used when looking for the mode amplitudes f(t) in thedecomposition (6) of the computed �eld  (z; t) and the polarization p(z; t)into the modes computed at the actual density n(t):fk(t) = 1L h�ky(n(t); z); �E(z;t)p(z;t)�i : (18)De�nition of the functions entering Eq. (7). The algorithms andformulas giving the functions used in Eq. (7) can be described as follows.To determine the value of the function 
k(n) with varying n the locationof the corresponding root of the characteristic function �(
;n) is tracednumerically by means of a homotopy method. The values of 
k = 
k(n),k = 1; : : : ; q are used to de�ne the remaining needed functions Krk;l(n) andLrk;l(n) of Eq. (7):Krk;l def= ( vg;r~c0(n;
k)~c0(n;
l)(i+�H;r)g0r2L(
l�
k) ( ��kyE ; ��lE)r; if k 6= l0; if k = l ;Lrk;l def= vg;r~c�0(n;
k)~c0(n;
l)lr �gr(n)� i�gr(
l��!r)�r+i(
l��!r)� ( ��kE; ��lE)r: (19)23



The integral expressions ( ��kyE ; ��lE)r and (��kE; ��lE)r depend only on the carrierdensities n and the numerically computed eigenvalues 
 and are given by(��kyE ; ��kE)r = i�r2�2r (
k) h( ��k�E )2 � ( ��k+E )2i ���zrzr�1 ++ lrD2r(
k)�2r(
k) h2��k+E ��k�E + �rDr(
k) �( ��k�E )2 + (��k+E )2�i ���zr ;( ��kyE ; ��lE)r = iDr(
l)�Dr(
k) h��k�E ��l+E � ��k+E ��l�E i ���zrzr�1 ; k 6= l;( ��kE; ��lE)r = iDr(
l)�D�r (
k) h( ��k+E )� ��l+E � ( ��k�E )� ��l�E i ���zrzr�1 ;F jzrzr�1 def= F (zr)� F (zr�1); F jzr�1 def= F (zr�1): (20)The complex factors Dr and �r are determined in Eq. (15). The values of���E(n; z) at the edges of the sections are given by the analytic formula (15).Formulas of function derivatives. To �nd the derivatives of all func-tions introduced in Eq. (7,11), for all k and r one needs to �nd the partialnr and 
k derivatives of the functions ��kE(n; z; 
k) computed at the edges ofall sections, at the actual value of n and at all corresponding values of 
k.At this step all 
k are considered as independent variables. Denote any ofthese derivatives by @x ��E. Due to the de�nition of the function ��E in (15),the following recurrent formula can be applied:@x ��Ejz0 = �00� ; @x ��Ejzr = (@xMr) ��Ejzr�1 +Mr(@x ��E)jzr�1; r = 1; : : : ; m:Here, the derivatives @xMr(n;
k) are obtained by separately di�erentiatingeach component of the transfer matrix Mr. Next, all partial @x derivativesof the characteristic function �(
k;n) from (16), the integral expressions(20), the scaling factor ~c0(n;
k) from (17) and the functions Krk;l(
k;
l; n),Lrk;l(
k;
l; n) from (19) need to be found.In the second step the full nr derivatives of the needed functions takinginto account the n dependence of the eigenvalues 
 are derived. In theconsidered nondegenerate mode case at �xed n all 
k are simple roots ofthe characteristic equation (16), i.e., for each k @
�j(
k;n) remains separatedfrom zero. Thus, due to the implicit function theorem, in a neighbourhood ofthis �xed n there exist di�erentiable functions 
k(n) and their nr derivativesare given by @
k@nr ���n = �@nr�j(
k;n).@
�j(
k ;n); r = 1; : : : ; m:Consequently, the full nr derivatives of Krk;l(n) from Eq. (7) now are givenby@Krk;l@nr ���n = @
kKrk;lj(
k ;
l;n)@
k@nr ���n + @
lKrk;lj(
k;
l;n)@
l@nr ���n + @nrKrk;lj(
k;
l;n):24
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