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Abstract

We suppose a convergent sequence of curved rods made from an isotropic
elastic material and clamped on the lower basis or on both bases, and the lin-
earized elasticity system posed on the sequence of the curved rods. We study the
asymptotic behaviour of the stress tensor and the solution to this system, when
the radius of the domains tends to zero. The curved rods with a nonsmooth line
of centroids are covered by the used asymptotic method as well.
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1 Introduction

The aim of this paper is to continue with the study of thin elastic curved rods which
started in Tiba, Vodak [8]. We suppose the sequence of smooth curved rods, converging
to a unit speed curve which has generally absolutely continuous regular parametriza-
tion, with the radius e. In the general case of a nonsmooth curve, we introduce another
small parameter € associated to the approximating sequence of the smooth curved
rods. We derive an asymptotic one dimensional model for the curved rod from the
three dimensional linearized elasticity system posed on the sequence of the smooth
curved rods, and we show that the used asymptotic method requires for the proof of
the strong convergence of the stress tensors and the solutions to this three dimensional
model in special cases the suitable choice of the body force H = (Hj;)?;_; or the ap-
proximating sequence of the curved rods, which can affect the form of the limit stress
tensor as well.

The related results concerning with the asymptotic methods for isotropic or
anisotropic straight rods can be found in Aganovi¢, Tutek [1] and Murat, Sili [6],
respectively. The case of the smooth curved rods was studied in Jurak, Tambaca [4],
[56]. The construction of the approximating sequence of the smooth rods and the re-
laxation of the regularity assumptions was done in Tiba, Voddk [8], where the above
mentioned one dimensional model was derived for the curved rods clamped on both
bases and H = 0. We refer also the reader to [2] for the related theory for shells.

The paper is organized as follows: In Section 2, we establish the basic notation used
throughout the paper. The Section 3 contains auxiliary lemmas. In Section 4, we in-
troduce the linearized elasticity systems for the curved rods clamped on the lower basis
and on both bases, and we transform the models on a cylinder, which does not depend
on the parameter €. Section 5 deals with the derivation of the asymptotic one dimen-
sional model and with the analysis of the asymptotic behaviour of the displacements
and the stress tensors. Section 6 contains a corrector result for the stress tensor.

Our main results can be summarized in the following theorems and corollary:

Theorem 1.1 Assume that the function ® € W'>(0,1)® is the parametrization of
a unit speed curve generating the local frame t, n, b. Let the functions t., n., b,
satisfying (3.2)—~(3.5) form the smooth approzimation of this local frame. Let, further,
F c L2(Q)%, G € L*(0,1; L*(8S)?), H € L*(Q)°, K € L*(S)® and the functions Fy g
and K be defined in Lemma 5.5. Then there erists a unique pair (U, ¢) € V,f’"’b(O, 1),
generating the unique solution U, to the boundary value problem (5.77), such that

U. — U in H'(Q)?, (1.1)

1

5. ((02Uc, b) = (85U, be)) = ¢ in L2(9), (1.2)
€

where the functions U, € V4(Q) are the unique solutions to the equation (4.6). In

addition,

%wE(UE) S ¢ in T2, (1.3)



where the tensors w*(U,) and ( are defined by the relations (4.8)—(4.11) and (5.71)—
(5.76).

Theorem 1.2 Let the assumptions of Theorem 1.1 be fulfilled and K = 0. Then
the convergences (1.1)-(1.3) remain valid for the functions U, € V() and (U, ¢) €
VirP(0,1), U, € HL(0,0)* solving the equations (4.12) and (5.77) (for all (V,4) €
V,fb"b(O,l)), respectively, if one of the following conditions holds:

1. there exist no constants Cyy, Ci1 € R such that ty = Cigty and t3 = Ci1t1, where
t;, 1 =1,2,3, are the components of the tangent vector t;

2. there exist the functions t., n., b, salisfying (3.2)—(3.5) such that t1(z1) =
n1e(z1) =0, by (z1) =1 for z, € [T7 — €2,Z1 + €] C [0,1], where q € (0, %)

3. there exist constants Cyy, Ci1, Ci13 € R and the functions t., n., b, satisfying
(3.2)(3.5) such that ty = Cigt1, t3 = Ci1ty and t; e = Cist1 # 0, nj = Ciany,
bj. = Ci3bi . on an interval I, |I.| — 0 for ¢ — 0, for all e € (0,1) and for j =2
or j = 3, where C3 # Cyy or Ci3 # Cqq, respectively,

4. there exist constants Cyy, Ci1 € R such that t5 = Cioty and t3 = Cq1t1, and the
identity

1
A
t —(H. Hss) — Hy1 dzodzsdz; = 0. 1.4
/0 1/5)\+2M( 99 + Hss) 11 GT2aT30X1 (1.4)
holds,

5. the vectors t, n, b are constant vectors and the functions t., n., b, are their
smooth approzimations in C*([0,1])* satisfying (3.2) and such that ||t.—t||c (o) <
Ce?, p> 1.

In the cases 1.-4., the form of the tensor ( is given by the relations (5.71)—(5.76). In
the last case, we get the form of the tensor ¢ adding the constant - fo A+2u(H22 + Hs3)—
Hy1 dzodzsdzy to the relations (5.71), (5.74) and (5.75).

Corollary 1.3 Let the function U be given by Theorem 1.1 or 1.2 and let Uf be its
approximation introduced in Proposition 3.4 (see also Remark 3.7). Then there ezist
functions U5 and U? bounded in L?(Q)* such that

Losuy) = Lor(0) 5 0 in L2(0), (1.5)

€ €

where U, = US + €U + €2Us.



2 Preliminaries

Without risk of confusion, we denote by the symbol | - | the Lebesgue measure of
some measurable set, absolute value of a scalar function and the norm in the three
dimensional Euclidean space R3. This norm is generated by the usual scalar product
(,-). We shall denote by (-,-) any ordered pair. The summation convention with
respect to repeated indices will be also used, if not otherwise explicitly stated.

We denote by S C R? a bounded simply connected domain of class C! satisfying
the symmetry condition

/1'2 diL‘gdCL‘g = / T3 d(CdeL‘g = / Tol3 diL‘gdCL‘g =0. (21)
S S S

The symbols Q and €, stand for the open cylinders (0,1) xS and (0,1) x €S, respectively,
where [ > 0 and € > 0 small, are given.

We use for constants the symbols C or C;, i € Ny = {0,1,2,...}. We adopt the
usual notation for the function spaces and their norms, i.e. C™(O), with m € Ny,
denotes the space of continuous functions, whose derivatives up to the order m are
continuous in the domain O, with the norm || - lgm oy, H'(O) and LP(O), p € [1,00],
mean the standard Sobolev and Lebesgue spaces endowed with the norms || - || z1(0)
and | - || (o), respectively, and the symbols L?(0,l; X') and C([0,1]; X'), where X is a
Banach space, stand for the Bochner spaces with the norms

! P
[Vl e (o) = </ [[o(21)[% dﬂh) and [[vlloqog:x = max [lo(z1)]x-
0 #1€[0,

Further, we define the spaces:
H,(0,1) = {v € H'(0,1); v(0) = 0},

Hy (0,1) = {v € H'(0,1); v(0) = v(l) = 0},
sz(S) = {<’02,’U3>; Vg = 01563 + Cz, V3 = —Ol.’L‘g + 03, Oz € R, 1= 1, 2,3},

rdy (S) = {(va,v3) € L*(9)% /v,- drodrs =0, i = 2,3,
s

/[—562'03 + £C3’U2] d(Czd.’L‘g = 0}
S

Let C represent a unit speed curve in R® defined by its parametrization ® : [0,1] — R®.
The local frame of this curve is formed by its tangent, normal and binormal vectors
denoted by t, n, b, respectively. We use the analogous notation, i.e. ®, t., n., b, for
the smooth approximation of the curve C and its local frame t, n, b, where the curves
C. defined by its parametrization ®, remain unit speed curves for arbitrary ¢ > 0. We
refer the reader to Proposition 3.1 for other properties of the functions t., n. and b,.



Using the assumed orthonormality of the local basis t., n., b., we can derive the
laws of motion of the local frame:

tle = aebe + /Benea

nle = _/Bete - ’)Iebe; (22)
b’F = 7aEtE + Yelle.
The mappings R, and P,, defined by
R.: Q — Q. Rz, 29, x3) = (21, €9, €x3), (2.3)
Pe : Qe — Rs; Pe(y) - (ﬁe(yl) + y?ne(yl) + ySbe(yl)) (24)

(y1,¥2,93) € (0,1) x €S, represent the parametrization of the curved rod Q, = (P, o
R.)(€2). From Corollary 3.2 and (2.10), it follows that

de(y) = det (VP (y)) = 1 — Be(y1)y2 — ae(y1)ys > 0 for all y € Q, (2.5)

and thus the mapping P, : Q, — Q. is a C'-diffeomorphism, Ciarlet [2], Theorem 3.1-
1. We distinguish by the notation 8,V (y) = %V(@, 9= (01,92,93) € Qe, OV (y) =
a%iV(y), y=(y1,Y2,93) € Q, O,V (z) = 6%‘/(:{:), z = (x1, 22, z3) € Q, where a function
and its derivatives are defined. We suppose throughout this subsection that all needed
derivatives exist which follows from Proposition 3.1.

Using the relations g; (y) = 8;Pc(y), y € Q, and (g ., 8") = 67,4, j = 1,2,3, we

can establish the covariant and contravariant basis by the vectors
81.(¥) = (1 — y2Be(y1) — yae(y1))te(y1) + yave(y1)ne(y1) — y2ve(y1)be(v1),

g2,6(y) = HE(yl)a gS,E(y) = bE(yl)a (2'6)
and
() = ), ge(y) = )

3 Y2Ye(y1)te(h

g3, (y) = M + be(yl)a (27)
de(y)

respectively, and the covariant and contravariant metric tensors (gij,ﬁ)f’jzl and

(99)2;_, by the matrices with the components

+ nﬁ(yl)a

Gije = (8ic &) and g = (g™, &™), (28)
respectively. After substitution y = R.(z), we adopt the notation

97 (z) = 37 (Re(2), gije(2) = Gije(Re(2)), 8ic(z) = Bie(Re(2)),  (2.9)

g’ (z) = 8" (Re(2)), de(w) = de(Re()), (2.10)

)



where x € ). We can derive analogously the covariant and contravariant basis at the
point (P.oR,)(z), z € Q, and the covariant and contravariant metric tensors (0;.)3

» t,j=1
and (0"°)} ;_;, where the last one has the form
1 —Z3%e Ta%Ye
dz dz dz
ij,E 3 _ —I3%e l z%'YsZ 7z2m373 2 11
(o )i,j:l = a2 2 a2 a2 . (2.11)
2
Z2%e —T2T3Y 5 ’Yr
A - R

We refer the reader to [8] for the more detailed derivation.
The definitions of the domains €2, and €2 enable us to introduce the function spaces

Vio(Q) = {V € HY(Q.)? : V|p ({i1xes) = O},
Vin(Q) = {V € H'(Q)* : V]03xs) = Vlyxs) = 0}

and further we introduce the space
Vi (0,0) = {(V,9) € Hyy(0,0)° x L2(0,0) = (V',8) =
and V, = — ¢t + (V',b)n — (V',n)b € H;;(0,1)°}. (2.12)

From the above definitions, we can deduce easily the definitions of the spaces Vb(ﬁﬁ),
V,(Q) and VF™P(0,1) (compare with the definition of the spaces H}'(0,1) and HJ(0,1)).

.{0yxes) = Vb,

3 Auxiliary propositions

Proposition 3.1 [8] Let ® € W*°(0,1)® be the parametrization of the unit speed
curve C. Then there exist vectors t, n, b, which belong to L>(0,1)* and form the local
frame corresponding to the curve C, such that

lt| =|n|=|b| =1, tlnlb ae. in (0,]). (3.1)
In addition, there exist functions

{®}ec01), {tetec©1), {neteco1)s {Peteco,y € C([0,1])?

such that
|t€| = ‘ne‘ = |b€‘ = 1, tELHELbE on [0,” (32)
foralle € (0,1),
te > t, n. > n, b, — b in measure in (0,1) (3.3)
fore — 0,
Itz [InLllze@ps, (DLl ~ O(F), (3.4)
€21 e 002, (e[ roqo s, (DY ||L°° 0,1)3 ~ O(%)
and .
oz, 1Bl Vellz=ny ~ O(F), (3.5)

el = 0,1), ||5 ||L°° 0.); ||76||L°° 0 ~ O( =), 7 €(0,3),
where the functions a., B, 7. € C*([0,1]) are determined by (2.2).

6



Corollary 3.2 [8] There ezist constants C;, j = 4,5,6, such that the function d.
defined by (2.5) and (2.10) satisfies 0 < Cy < d(z) < Cs for all z € Q, and the
function ed./v;0%<v; defined by (2.11), where v;, i =1, 2 3, are the components of the
unit outward normal for (0,1) x 8S, satisfies 0 < d.(z)e\/vi(z)o"<(z)vj(z) < Cg for
all z € (0,1) x 8S and € € (0,1). In addition,

d. —11in C(Q), (3.6)

ede(:ﬁ)\/V,-(x)oij’f(m)l/j(:c) — 1in C((0,1) x 85), (3.7)
for e — 0.

Remark 3.3 After a simple modification of the proof of Proposition 3.1 in [8] and
Theorem 3.1 in [3], we can construct the functions t., n., b, which satisfy the condition
2. or 3. from Theorem 1.2.

Proposition 3.4 [8] Let t., n., b, be the functions from Proposition 3.1 and let the
space V,f,j’""b‘(o,l) be defined by (2.12) using the functions t., n., b, instead of t, n,
b. Let, further, (V,4) € Vi;"(0,1) be an arbitrary but fized couple. Then there exist
couples (V1) € V™ (0,1) generating the functions V.. such that {V}eeo),
{Vieteewn) € O (0,0)%, {thetecony € Cip(0,1),

V.=V, V.. — V,in Hy(0,0)%, ¥, — v in L*(0,1), (3.8)

fore — 0 and p € [1,00), and

1
IVellzps ~O(= ) 1ell 20 ~ O( ) re(0,3). (3.9)
Proposition 3.5 [8] Let A > 0, u > 0 and
Aijkl — )\gij,egkl,e +u(gik,egjlf+gzl Fg]k e). (310)

Then there ezists a constant C > 0 independent of € such that the estimate

C € ij 1 € 1 €
IVl < I (Vlaap < € [ A 0 (V)i (V) de 1)

holds for all V € V() and € € (0,1).

Proposition 3.6 [8] Suppose that {e,}2>, C (0,1) and ¢, — 0. Let, in addition, a
sequence {U,, }o°, C V() be such that

U, — U in H'(Q)? (3.12)

1

—w(U,,) — ¢ in L*(Q)? (3.13)

€n



for €, — 0. Then the couple (U, ¢) € V,f,;n’b(O,l) (in the sense ;U = 0, j = 2,3),
where the function ¢ is such that

ZL ((82Uen, b.,) — (85U, nen)) — ¢

€n

in L*(Q) for ¢, — 0. In addition, the couple (U, ¢) generates the function U, €
H}(0,1)% which together with the function U satisfy the relations

(U',t) =0 a.e. on|0,l], (3.14)

(U:‘, t) = (93(12 — (92(13 mn L2(O, l, Hil(S)), (315)
(U,,n) = —03(11 a.e. on 0,1, (3.16)
(UL, b) = (41 a.e. on [0,1]. (3.17)

If the sequence {~w(U,, )}, converges strongly in L?(Q)°, then the convergence in
(3.12) is strong as well.

Remark 3.7 Proposition 3.4, 3.5 and 3.6 can be analogously checked on the spaces
C2(0,1), V4(Q) and VI™P(0,1).

4 Transformation of variational equations for the
curved rods

Let Q. be a three-dimensional homogeneous isotropic elastic body with the Lamé con-
stants A > 0 and p > 0 defined by the mapping P, o R, (see (2.3)—(2.4)), for € € (0, 1)
arbitrary but fixed, and clamped on the basis P.({0} x €S). We consider the variational
equation posed on ﬁe

/~ TiMley (0, )ens (V) df = /
Qe

(F., V) d§+/~ Hij.eii (V) dy
Qe Qe

+/ (G, V) dS.dy +/ (K., V) dS,., YV € V3(.), (4.1)
(P.oR)((0,1)xS) (P.oR)({1}xS)

where F, and (f[ijye)?’jzl are the body forces, G, and K, are the surface tractions
acting on the curved rod €, such that F, € L2(€,)3, G, € L*((P. o R.)((0,1) x 8S))3

K, € L2((P. o R)({l} x S))® and (H;.)},_, € L*(.)? for € € (0,1). Further, S,
(P.oR.)((0,1) x 8S), Sic = (P oR,)({I} x S) , Akl — \§#i gkt 4 (867 4 6157%) and
(ei]-({f))ijzl stands for the symmetric part of the gradient of the function V.

According to Theorem 1.2-1. (b) from [2], we can transform the last term in (4.1)
as

b

/ (Kea -{}) d§l,e - / (Kea Vs)de V ni,egij’snj,e d‘gl,e
(PeoRe) ({1} xS) {I}xeS

8



= /S(I_{E(l),\_fe(l)) dyays = € /(KE,VE(Z)) dzazs,

s
where 7; ., i = 1,2, 3, are the components of the unit outer normal vector to {l} x €S
(i.e. me=1,m=0and n3,=0),and K, = K. oP., K, = (K. ocR,)(l), V.= Vo P,
and V. = V.o R.. Now, we decompose the tensor (H;;.)?._, in the covariant basis

~ _ ~

HijeoP. = Hg [8; |; (4.2)

for arbitrary but fixed i = 1, 2,3. We apply the same decomposition on ﬁﬁ’s[gﬁ}j, for
arbitrary but fixed 7 = 1,2, 3, which yields

Hi/j\,e[g'j,e]j = Tj\,e[g?,e}l[g;,e]] (43)
In [8] it was proved that

€ij (V) © PE = w;l(vﬁ)[gk’s}i[gl’s}ﬁ Za] =1,2,3. (44)

Hence, together with the properties of the covariant and contravariant basis, we deduce
after the substitution R, that

/~ f[ij,seij({f) dg: 62/ Hij’ﬁwiej(vs)dﬁ dz (45)
Qe Q

for H;;. = Hyj. o R.. We refer the reader to [8] for the detailed transformation of the
other terms in (4.1). Using the scaling F. = €’F, G, = ¢*G, (H;.)} ;1 = €(H3;)} -, =
eH, K. = ¢’K, we can rewrite the equation (4.1) as

. 1 1
/A?“—w;,(UE)—wi‘j(V)dE dr = /(F,V)dE dx+/Hij—wfj(V)dE dz
O € € Q Q €

+/ / (G, V)ed./v;09cv; dSdz, +/(K,V(l)) dzadzs (4.6)
©.1) Jos s

for all V € V4(92), where v;, i = 1,2, 3, are the components of the unit outward normal

to (0,1) x S, and
ATE = Xgeghhe 4 u(g*e gt + gheg’™). (4.7)

The symmetric tensor w(V) , obtained from (4.4) after the composition with R., has
the form

W(V) = 20°(V) + w5(V), (4.8)

€

where the individual nonzero components of the symmetric tensors ¢ and k¢ are defined
by

1
9;2(V) = 5(62V7g1,6)a HSZ(V) = (62V7 IIE), 9;3(V) = (83V’ bE), (4'9)

9



Ua(V) = 5@ V.8, 05(V) = £ (@V.b) +(@:V.n)),  (410)

1 1
k11 (V) = (01, 81,), £12(V) = 501V, 1), k35(V) = 501V, be). (4.11)

The other components of 6 and k¢ are equal to zero.
Analogously we can derive the equation

1 1 1
/ Ai’kl—wZ,(Ue)—wfj(V)de dz = / (F,V)d, dz + / Hij-wi;(V)d. dz
Q € € Q Q €

+/ (G, V)ede/vi0¥ev; dSdzy, YV € Viy(Q), (4.12)
0.1 Jos

for the curved rods clamped on both bases.

5 Proofs of Theorem 1.1 and 1.2

The proofs of Theorem 1.1 and 1.2 will be decomposed in this section to several propo-
sitions, lemmas and corollaries.
Using (3.11), (4.6) and Corollary 3.2, we can derive easily the estimate

1 € 2 C2 ijkl, € € 02 1 €
6_2”‘” (Ue)HL?(Q)9 < Ce2 QAe wiy(Ue)wy;(Ue)de dz = a\ Jo Hijng‘j(Ue)de dz

I
4—/(]5‘,U5)dE dzx +/ (G, U.)dcer/vjocv; dSdzq + /(K,Uf(l)) dxzdx;;)
Q o Jas s

0205
- O

1
(11 20y~ 0" (Ullz2(ep + Il zaqeye [ Uelln o
|Gz 12205 | Uell 2052200512 + 1K L2252 [0l s

1 €
< O[Ol + —IIw (Ue)llzz@ye) < C—llw (Ue)ll 2o (5.1)

for all € € (0,1), because U, € V4(Q) which implies that U, € C([0,1]; L*(S)?) and
U, € L?(0,1; L*(8S)?) in the sense of the trace. By the inequalities (3.11) and (5.1)
(passing to a subsequence), we have that
U, — Uin H'(Q)?, (5.2)
1
—w(U,,) — ¢ in L*(Q)? (5.3)
€n

for €, — 0, where U € H}(0,1)* according to Proposition 3.6 and Remark 3.7. To
simplify the notation, we will use further € instead of ¢,.
Now, we will study the properties of the tensor (.

10



Proposition 5.1 Let the tensor ¢ be the limit determined by (5.3). Then it satisfies
the equation

/M%m M/sz ) dz, YV € L*(0,1; H'(S)?), (5-4)

where the tensor 6°(V) is defined by

0 (62V t) (63Vat)
2
0" (V) _ (82;’,1:) (62V Il) w . (55)
(GsVyt)

2

P ro o f: Analogously as in [8] we can prove that 0°(V) + ex*(V) — 0°(V) in L*(Q2)*
for e — 0 and that

APM — AZH in C(Q), where AF™ = A§Y5* 4 (667 + 5767%), (5.6)

for i,7,k,1 = 1,2,3. The rest of the proof follows from density of the space V() in
L2(0,1; HY(S)?) and from (5.5) and (5.6). O

Now, we introduce the notation:

Ci1, C33 (a3 + l Ci1, Czs = (o3 (5.7)

-~ 1
_|_ — -
a2 = Qa2 2)\ y

2)\+

Corollary 5.2 Let the equation (5.4) hold. Then (we do not use the summation con-

vention here)
/C I/H /C I/H =2
17 — 5 135 ;L5 = - 15Z5, ] = 4,9,
s ! 2p Js ! s Y 2p Js Y

1
/ Ci2z3 + (1322 = 2— / Hiyzs + Hizzo, (5.8)

/C23 _/H23, /ngxg —/H23I2, /C23I3 —/H23x3, (5.9)

/ Coz + Gz = /(C22 + C33) 2 /S(H22 + Hss)z,

)\+2u

/9(622 + 233)373 Y _:2'u /:g(H22 + Hjs)zs. (5.10)

P roof: Using in the equation (5.4) the test functions Vz,, Vs, Vz2/2, Vz2/2 and
Vzyx3, where V = vt, V = vn and V = vb for some function v € L?(0,1), we deduce
the relations (5.8)—(5.10) in the same way as in the proof of Corollary 8.2 in [8] for
Hy=0,4,7=123. 0

11



Corollary 5.3 We have

/Q A(Can + Con)? + 20(E + 2+ 28] da

= /[H22C22 + H33(33 + 2H93(03 + (Haog + H33)C11] dz. (5.11)
Q

A+ 2u

P r oo f: If we take an arbitrary function V € L?(0,l; H'(S)?) such that (V,t) = 0,
we get from (5.4) that

/Q[)\(Cn + Co2 4+ (33)((02V,n) 4+ (05V, b)) 4+ 21((22(0; V, n) + (33(05V, b)

(82Va b) + (63V7 n)
2

+2C23 )] dr = /[H22(82V, Il) + H33(83V, b)
Q

(6.V,b) + (05V,n)

| dz. (5.12)
Now, we define the function

Vo, = ~((U..n)n + (U, b.)b).

€2

Since U, € V4(Q), n., b, € C>=([0,1])® and n, b € L>=(0,1)3, we can easily check that
Vuy. € L*(0,1; H'(S)?) for all € € (0,1). After the substitution of the function Vy, to
the equality (5.12), we obtain, using the notation from (4.8)—(4.11), that

/P\(Cll + (a2 + Css)(%Wi(Ue) + %W§3(Ue)) + QN(széwiz(Ue) + §33%w§3(UE)
Q

1 1 1 1
+2C23€w;3(UE))] dr = /[HQZEwSQ(UE) + H33€w§3(UE) + 2H23Ew;3(UE)] dz. (5.13)

Q

The functions (1, (29, (33 and (o3 belong to L?(Q2) and thus the convergence in (5.3)
enables us to pass from the equality (5.13) to the equality

/Q[)\(Cu + Con + C33) (Coz + Cas) + 20(Chy + (35 + 2(35)] dz

= /[H22C22 + H33(33 + 2H33(03] dz. (5.14)
Q

The term on the left-hand side can be rewritten as

A(Cur + Coo + Ca3) (Con + Gaz) + 2u(Coy + Cog + 2¢35)

A
A4 p

57) .~ ~
L A(Ca2 + (33 + i

Y+ uCu)(@z + 6\33 -

~ A
Ci1) +2p((Co2 — %mfu)z

12



~ 1 A

+(Ca3 — EmCu)Q +2C2) = Moz + Ca3)? — A1 (Goz + Caa)

+2u(G, + G + 2033)- (5.15)
From (3.16) and (3.17), it follows that

Ci1 = Qo + (U,,b)zs — (U, n)zs (5.16)

for some function Qy € L?(0,1). After the substitution (5.15) to (5.14) and using (5.10)
and (5.16), we get (5.11). O

Lemma 5.4 Let S be a simply connected domain and let 8S € C'. Then
1
(Ci2, Ci3) = *E(U;, t)(02p — T3, O3p + T2) + (Oapr, O3PH), (5.17)

where the functions p € H*(S) and py € L*(0,1; H'(S)) are the unique solutions to the
Neumann problems

/S [(82p — 23)ar + (O5p + 2)057] daadas = 0, /S p dasday = 0, (5.18)
for allr € H'(S), and
/S[angaﬂ + O3pgOsr| dzedrs = i /S[H1262r + Hy3057] dzodzs, (5.19)
for all T € H'(S),
/SpH dzodzs =0, (5.20)

respectively, where (5.19)—(5.20) are fulfilled on the whole interval (0,1).

P roof: After putting V = pt, ¢ € L?(0,1; H'(S)), as a test function in the equation
(5.4) and taking the equality (3.15), we get the system of equations

/Q(<C12,C13>aV23‘P)2 dr = i /Q(<H12;H13>5 Vasp)s dz, (5.21)

for all ¢ € L?(0,1; H*(S)),

/((Clz,C13>,1"0t23¢)2 dr = /(Ul,t)w dz, V¢ € Hblb(Q)a (5-22)
Q

Q

where we have denoted Vg = (O, 03¢), rotegth = (—031, a1), and (-, -)2 means the
scalar product in the usual two dimensional Euclidean space R?. Substituting (5.17) to
(5.21)—(5.22), we can check that this couple is a solution to the system (5.21)—(5.22).
We refer the reader to [4] or [8] for the proof of uniqueness. O

13



Now, we derive the asymptotic one-dimensional model. First, we introduce the
notation

I3 —/:cg dzodzs, 1,2 —/:c§ dzadzs, (5.23)
s

3)\ 2
E = +ep K / 62p - iE3 (63]) + $2)2] dﬂ']gdil?g, (524)

where p € H'(S) is the unique solution of the Neumann problem (5.18).

Lemma 5.5 Let the functions U, be the solutions of the problem (4.6) satisfying (5.2)
and (5.3). Then the limit couple (U, ¢) € Vi™P(0,1) obtained in Proposition 3.6 (see
Remark 3.7) generates the function U,, which satisfies the equation

1
/ B(QulS|(Wh, ) + Ls(U, b)(V', b) + Ls(UL, n)(V%, ) + uK (UL t)(V, )] day
0

A

= e 2 /Q(H22 + H33)(332(V;,b) — $3(V;,n) 4 (W;g,t)) dr

v /Q[Hu(vg, £)(—Bp + ) — His(V", £)(Osp + 22)] da

+/ Hu((Ve, b)az — (Vi n)zs + (Wh, t)) d$+/l(FF+G,V) dz;+ (K, V(1)) (5.25)

for all functions Wp € H(0,1)® and V, € H}(0, l) generated by any arbitrary couple
(V) € VI™P(0,1) (see (2.12)), where Friq(z1) = [(F dzodzs + [,o G dS, 2, €
(0,1), and K = [ K dzsdzs.

Proof: Let (V,9) be an arbitrary couple from the space V,f’"’b(O, [). Proposition 3.4

and Remark 3.7 enable us to approximate the couple (V, ) with couples (V,1.) €
VierePe(0) 1) satisfying (3.8), (3.9). Further, we define the functions W, € C>(Q)? by

W.(o1,22,2) = — ((Vi(21), o)) + (Vi(@1), be(a))as ) tolan)

— 230 (z1)nc(z1) + 229 (21)be(21) (5.26)

for (z1,x9,73) € Q. Let Wp be an arbitrary function from H}(0,1)3. Using the
functions V., W, and Wp, we establish the function V. by

V.=V, + W, +cWp € C®(Q) N V4(Q). (5.27)

Analogously as in [8] Lemma 8.4, we can derive that the tensor B, = (B#)?_, is such
that BY = 0 except for i = j = 1 and

B:1 = 62 ((/861:2 + aEx3)(m2(V;, ) + 1‘3( ) 66x3,¢)6 + o IZ’d)F (W’Pa tf))

14



+3e3(( W, ) + (W, ) — 725 (5 We, be) + (W, bo)) ). (5.28)

Hence and from (4.8)—(4.11), it follows that

w (V) = €Y(V,., Wh) + B, (5.29)
where
Til(v*,fa W;D) (V:k s’ )373 + (V* J€) b )372 + (W;Da tE)) (5'30)
! € ! ! 1 !
TiZ(V*,ea WP) = T21 (V*,ea WP) 9 (V* € ) + E(WP’ nE)a (5'31)
€ € 1
TiB(V*,Ea W;D) = Tél (V*,Ea W;D) (V; € ) E(W;Dﬂ bE) (5'32)
and
TEJ-(V*’E, W;D) =0, 475=23. (5.33)

Since we know that t. — t, n. — n, b, — b in measure in (0,[), we can prove that
T5(Vie, W) = Ti5(V,, W) in L(Q), 4,5 =1,2,3. (5.34)
Moreover, using (3.4), (3.5), (3.9) and (5.28), we can easily check that

1

). 5.35
) (5.35)
These convergences and estimates together with (3.6), (3.7), (5.2), (5.3), (5.6) en-

able us to pass to the limit in the equation (since V, € C®(Q)* N V4(2))

1Bl = [|B:]l2 < €7, 7 e (0,

P | 1 ~ ~
AAZ]kleZl(UE)Ew;j(V )d. dx—/Q(F V.)d, dm+/Hz] ~wi;(Ve)de dz

!
+/ (G, V)ed/vjocv; dSdz, + /(K,VE(Z)) dzodzs
0o Jas S

and to establish

/ AP (V. Wh) dz = /

F,V)dz + T;;(V., W) dz
i
Q

+/l (G,V) dex1+/(K,V(l)) dzydzs (5.36)

for all Wp € HL(0,1)* and (V,9) € Vi™"(0,1), where the last couples generate the
functions V, (see (2.12)).

By the form of the tensor (Aéjkl) k11 (see (5.6)), we have after the substitution
(5.30)—(5.33) for “e = 0" (see (5.34)) 5.36) that

/ Af)j“Cszij(V*, W) de = /[)\(Cu + Coo + (33) + 20(11] Y11 (V, Wh) dz
Q

Q

15



+ / [4.U(C12T12(V*; W;:) + C13T13(V*, W;:))] dz.
Q

Hence, using (5.7), (5.24) and (5.30)—(5.32), we can rewrite (5.36) as

Q Q

-|-/Ol /65(G,V) dSdz, + /S(K,V(l)) dzadzs, (5.37)

where

T~ [ 1861+ MG+ Gall(Visblas — (Vimms + (W t)] do, (538)

Ig = 2/,1, /(;[CH(V;, t)il?;; + Clg(w’p, Il) — Clg(V;, t)ﬂ?g + C13(W;3, b)} dx. (539)

After the substitution of (5.10) and (5.16) to (5.38), we can conclude using (2.1) and
(5.23)~(5.24) that

1
7= [ BIQuISI(Wh. ) + (UL, B)(VL,b) + Ly(UL, m)(V2, )] doy
0

A
A+2u
After the substitution of (5.17) to (5.39), we obtain

+ /Q [(Has + Hys)(22(V',b) — z5(V', 1) + (Wh, t))] da. (5.40)

1, = N/Q[(_(azp — z3)z3 + (O3p + z2)z2) (U, t)

+200pHTs — QaspHmﬂ(V;a t) dr + 2#/ ClZ(W’Pa n) - C13(WIPa b) dz, (5-41)
Q

where the functions p and py are the unique solutions to the Neumann problems (5.18)
and (5.19)—(5.20), respectively. Analogously as in [8], we can verify that

u / (— (D5 — 23)s + (Fgp + 22)a2) (UL, )(V', t) dan

— /l pK (U t)(V.,t) dz;. (5.42)

In addition, from (5.18)—(5.20), it follows that

2#/ aszSCs(V;at) - 53PH$2(V;at) dr = 2.“/[82PH(_82P + .’L‘g)(V;,t)
Q 9)
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—33PH(3310 + l‘g)(V;, t)] dr + 2#/ 32PH52P(V;a t) + 53PH33P(V;a t) dz
Q

= /(H1282p+ Hy305p)(V, t) dr, (5.43)
Q
and we deduce from (5.8) that

2/,(,/ Clg(W},n) + C13(W’P7b) dr = / ng(W;D,n) + H13(W93,b) dz. (544)
Q Q

The relations (5.29)—(5.34) enable us to express the second term from the right-hand
side of the equation (5.37) as a sum of the integrals

/ H11T11(V*, W;;) dr = / _Hll(V:(; Il)l'g + Hll(V;; b).'E2 + Hll(Wlp, t) d.’L‘, (545)
Q Q

2/ H12T12(V*,W;3) dr = / H12(V;,t)l'3 + H12(WIP, Il) d.’L‘, (546)
Q Q
2/ H13T13(V*,Wlp) dr = / —H13(V;,t)1'2 + H13(WIP, b) dr. (547)
Q Q
Substituting (5.38)—(5.47) to (5.37) we obtain (5.25). O

Corollary 5.6 Let the assumptions of Lemma 5.5 hold. Then

A .
EQ0|S| + /S b\ n 2'1_1,(H22 + H33) — H11 d(ngCCg =01 (0,l) (548)

Proof: If weput V, =0 (i.,e. V=0 and ¢ = 0) as a test function in (5.25), we get
that

1
A :
/ [EQU|S| + (/ (H22 + H33) — H11 dmde3)](W ,t) dl‘l =0 (549)
0 s A+ 2u

for all W € H}(0,1)%. If we put W = (W;,0,0), W = (0, W,,0) and W = (0,0, W3),
where W; € H(0,1), j = 1,2, 3, we conclude that

[EQ()‘S‘ + (/ (H22 + H33) - H11 d(ng(Cg)]tz = Oi+6 in (0, l), 1= 1, 2, 3. (550)

But we can take also the functions W; such that W;(l) = 1, j = 1,2,3, because
W € H}(0,1)®. Then the relations (5.49) and (5.50) give (5.48). O

Lemma 5.7 The sequence {=w™ (U, )}2, from (5.3) converges strongly to ¢ in
L*(Q2)? for e, — 0.
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P r o o f: In the proof, we will write € instead of ¢, to simplify the notation. Let us

define ) )
A, = /K;Aijkl (Ew;l(UE) — gk,> (waj(UE) — gi]-> d. dx. (5.51)

According to Proposition 3.5 and Remark 3.7, there exists a constant C' > 0 indepen-
dent of € such that

< CA.. (5.52)

Equation (4.6) implies that
I
A, = /(F,UE)dE dx +/ (G, U.)dcer/vioiicy; dSdxy
Q 0 Jas
/(K U.( dedngr/H “ w0t (U)d, dz

y 1 1
—|—/QA?H <(Ckl - szl(Ue)>Cij - Ckzzwi‘j(Ue)> de dz. (5.53)

As a result of (3.6), (3.7), (5.2), (5.3) and (5.6), we obtain the convergence of the
sequence A, i.e.

e—0

I
A =limA, = / (Friq,U) dz; + (K, U(1)) + / Hi;Cij dx — / ARGy de. (5.54)
0 Q Q
In the same way as in [8] we can derive the identity

/ Aéjleleij dr =
Q

/Q[EC121 + 4p((ly + Cls) + )‘(@2 + 233)2 + 2#((@2)2 + (533)2 + 2(223)2)} dr.  (5.55)

The expressions for (11, (12 and (i3, i.e (5.16) and (5.17), imply after their substitution
o (5.55) that

/ A do = / B + 4u(Cy + ) + AGon + C)?
Q Q

2 2u(Gon)? + (Ga)? + 2(Coa)?)] d *OLT / (E(Qy + (U, b)z, — (U, n)s)?
Q

1, 1, .
+4/-‘L(_§(U*a t)(Gop — x3) + asz)z + 4#(—§(U*a t)(Osp + x2) + 53101{)2 + A(Co2 + Ga3)?

(2.1),(5.18)

+20((Co2)” + (Gas)” + 2(C8)?)] da 5

18



1
/ (B(Ls (UL b)? + Ly (UL n)?) + uK (UL, t)?] da,
0

+ / [EQ§ + 4p(82pm)® + 4(85pw)?] dz + / [)\(222 + 633)2
Q Q

1

F2((Gon)? + (Ga)? + 2(Go)?)) dp MO BT W / (Frrc, U) de; + (K, U(D)
0

A
A+2u

/(sz + H33)($2(U;, b) — 5’33(U;, n)) dr
Q
+/[H12(Ul,t)(—32p + z3) — Hi3(U,, t)(0sp + z2)] dz
Q
1
+ [ Hu((ULbas — (Um)as) do+ [ BQS) da
Q 0

+2/ Hy50,py + H1303py dz + / )‘(622 + 233)2 + 2#((622)2 + (633)2 + 2(623)2) dzr
Q Q

l
S [ (o, 0) day + (K(D), UW)

0

!
A
—|—/ QO(EQU‘S‘ —|—/ (ng + Hgg) — H11 dI‘gdCBg) d£C1 + / HijCij dCC (556)
0 s A+ 2u Q
Using (5.48) we get, after the substitution of (5.56) to (5.54), that A = 0. O

It remains to express the components (o9, (33, (23 of the tensor (. To find their
forms, we use the decomposition of the space H'(S)? given by

HY(S)? = rdy(S) @ rdy (S) (5.57)
([7]), where rdy(S) can be also defined by
rdy(S) = {v = (v, v3) € H'(S)? ey(v) =0; 4, j = 2,3}, (5.58)

where (e;;(v))i j—2,3 means the symmetric part of the gradient of the function v. It is
easy to verify that rd, (S) is a nontrivial Hilbert space with the scalar product

((v,w)) —/eij(v)eij(w) dzodzs (5.59)
s
and that the Korn inequality
3
Vli2 < C ) lles(¥)lrxs) (5.60)
1,j=2
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holds for all v € rdy (S). Then the problem
)\/(82?)\51 + 83ﬁ§[)(6202 + (93’03) dil?gdil?g + 2/,6/ eij(ﬁH)ez-j(v) dil?gdil?g
S S

—/Hijeij(v) dﬂ?gdiﬂg (561)
S

has a unique solution p” € L%*(0,l;rdy (S)) satisfying the estimate (see (5.60) and
(5.61))

||ﬁH||L2(U,l;H1 < O Z ||€U ||L2 Ule < O Z || ||L2 Ule ) (562)

1,j=2 1,j=2

Analogously as we have derived the relations (5.9) and (5.10), we can check that

/ Oyl +83 / / Oapil + 63 1 /
— 5~ 5. = 5— | Haszo,
S 2u Js

8P + B3P
/ 2Py ; Gz /H23:c3, (5.63)
S

[0t + auplt =
S

1
oD + O3t )y = / Hy + H.
/s( WDy + O3D3 )To N+ 2n S( 99 + Hsz)zs,
1
0 0 H H . 5.64
/S(z + 3P3) )\‘|‘2M/s( 99 + Hjz)zs ( )

Lemma 5.8 We have
0oD% + 03Py

; (5.65)

C22 = 32132 ) C33 331)3 , Cog =

P r oo f: If we use the function v = (vy, v3), where v, = (V,n) and v3 = (V,b) for
V € L*(0,1; H'(S)?), as a test function in the equation (5.61), we get that the right-
hand side in the equation (5.61) is nothing but the right-hand side in the equation
(5.12). Subtracting (5.61), after the above substitution, from (5.12), we obtain that

/Q[)\(Cn + Ca2 — 621751 + (33 — O3p3)((02V,n) + (05V, b)) + 2u((Co2 — 32551)(82‘/, n)

82]/7\:1;{ + 83;35{ (82V, b) + (83V, n)

+(Cas — 9593 )(D5V, b)) + 2(Cos — 5 ) 5 | dz = 0. (5.66)
Further, we define the function
U, ~ U, ~
VUs,ﬁH = [(6_2’ nE) o (PHa n)]n + [(6_2’ bf) o (PH7 b)]b, (567)
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where
P? = pi'n +pi'b.

(5.68)

Using the estimate (5.62) and the fact that U, € V,(Q2), we can easily check that
Vy.pu € L*(0,1; H'(S)?) for all € € (0,1). After the substitution of the function
Vy. sz to the equality (5.66), we obtain analogously as in (5.13) and (5.14) that

/[)\(Cu + (o2 — 5213;{ + (33 — 53??)@22 — 5213;{ + (33 — 531’5?)
Q

+20((C2 — Py )* + (Cas — Bap3 )* + 2(Cas — H

Using the analogous computation as in (5.15), we conclude that
/[)‘(sz — ByPy + (33 — Osp% )°
Q
—~ =N ~ = R a ﬁH + a ﬁH
+2u((C22 — 82105)2 + (Ca3 — 5310;{)2 + 2(Cos — el B
(5.10),(5.16),(5.64)

= )\/ Cu(fm + Cag — OoDs — Osp3’) dx e 0.
Q

Corollary 5.9 The tensor ¢ has the following form:

5.16),(5.48 , ,
G 1 (UL b)Yz, — (UL, m)as
1 A
—W Sm(sz‘i‘Hss) — Hyy dzodzs |,
517y 1.,
Ci2 527 _E(U*’ t)(0op — z3) + Oopu,
517 1,
Ci3 527 _E(U*’ t)(0sp + z2) + OspH,
(5.7),(5.16),(5.48),(5.65) » oy 1 A , ,
(a2 = 2pe — 5+ |(UL, b)zs — (U, n)z3
22+
! / A (Hyp + Hag) — Hir daad
— — zodx
E|S| Sy 22 33 11 aT20T3 | |,
¢ (5.7),(5.16),(5.48), (5.65) 8;3H—1 A (U b)zs — (U, n)z
33 3M3 2A+,U, %9 2 %9 3
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(5.73)

(5.74)



1 A
7E‘S‘ (L )\ T 2M(H22 + H33) - H11 dl’ngg)] , (575)

7).5.65) Oapy + Oy’
Cy T3 w ’ (5.76)

where the functions p, py and P are the unique solutions to the problems (5.18),
(5.19)—(5.20) and (5.61), respectively.

Remark 5.10 In Lemma 5.5 for Wp = 0, we have proved that the asymptotic one-
dimensional model for the curved rods has the form

/ (B3 (UL, b)(V2 )+ L5(UL,m)(V2ym) + K (U, £)(V2, 1) da

A

T 2t 2u /Q[(Hm + Hss)(22(V,, b) — z3(V,,n))] dzx

i /Q[le(v;, £)(—Bp + ) — His(V',t)(Osp + 22)] da

+/Q[H11((v;,b)x2_ (V' n)zs) dx+/0 (Fpoa, V) do + (K, V(Q),  (5.77)

for all functions V, € H}(0,1)* generated by any arbitrary couple (V, %) € Vy™"(0,1)
(see (2.12)). We refer the reader to Proposition 8.7 in [8] for the proof of the uniqueness.
Thus it is not necessary to pass to weak convergent subsequences in (5.2) and (5.3),
which are actually strong convergent according to Proposition 3.6, Remark 3.7 and
Lemma 5.7.

Now, we will concentrate our attention on the curved rods clamped on both bases.

Remark 5.11 In the case of the curved rods clamped on both bases, we can derive in
the same way the assertions of Proposition 5.1, Corollary 5.2, 5.3 and Lemma 5.4, 5.5,
5.8, and thus the asymptotic one-dimensional model has the form (5.77) for K = 0,
V. € HL(0,1)* and (V,%) € VE™P(0,1). In what follows, we want to express the
function @, from the relation (5.16) and thus to find the form of the tensor (. We saw
in the proof of Lemma 5.7 that this problem is connected via the identity (5.48) with
the problem about the strong convergence of the tensors fw®(U,).

Lemma 5.12 Let there exist no constants Ciy, C11 € R such that t5 = Cigt; and
t3 = Ci1t1, where t;, i = 1,2,3, are the components of the tangent vector t. Then

A .
EQ0|S| + /9 m(HQZ + H33) - HH dil?gdﬂ'],g =01 (0, l) (578)

and .
—w(U,) = ¢ in L*(Q)? for e — 0.
€
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Otherwise,

EQU|S|t1 + tl/ (ng + H33) — H11 diL‘gdCL‘g = 012 € [—IZ(H), IZ(H)] (579)

on (0,1), where

1 [t A
[l(H) = IA tlL )\+2'u(H22 +H33) - H11 d$2d$3dl'1 . (580)

P r o o f: We start with the proof of the first part of the lemma. Analogously as in
the proof of Corollary 5.6, we can check the relation (5.50). Assuming the contrary,
we suppose that the function EQq|S| + fs ﬁ(Hzg + Hs3) — Hyp dzadzs is not equal
to zero on (0,1) and without loss of generality we can suppose that ¢; # 0 on (0,1) and
thus the constant C7 from (5.50) is not equal to zero. Thus the relation (5.50) enables
us to express the components of the tangent vector t as

Cite
t; = Zhs on (0,1), j=1,2,3, (5.81)
J EQU|S|+fsﬁ(H22+H33)_H11 d(CdeCg
and thus
C;.¢C C;
g6 = It i=2,3,  (5.82)

t, =
! C7EQU|S| + fS ﬁ(ng + Hgg) - H11 dI2d$3) 07

which is a contradiction.
If there exist constants Cjg, C; such that to = Cigtq, t3 = Ci1t1, we have only one
identity, namely,

A
EQo‘S‘tl + tl / 7(H22 + H33) - H11 d$2d$3 = Clg on (0, l) (583)

We assume again the contrary, i.e. |Cio| > [;(H). Then

1
A
/0 Qu(EQ|S| + /s PR 2M(sz + Hs3) — Hyy dzodzs)dzy

1 : A 2
B m/(; (EQO|S|+/g)\+2u(H2Z+H33)HH da:ng;3> dz,

1 ! A
B ————(Hyy + Hs3) — Hyy dzodzs)(EQq|S
E|S|/o(/5)\+2u( 22+ Hi) 11 dzadzs)(EQ|S]|

A
+/5 m(Hm + Hyz) — Hu dzodzs) = (2)
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(new notation). Using the identity uv = (ut,vt), the dependence of the functions s,
t3 on tq, (5.83) and the assumption |Cy2| > I;(H), we deduce that

(Z) = W((l + C’120 + C121)0122l

1
A
*(1 + 0120 + 0121)012/ tl / (H22 + H33) — H11 d$2d$3dl'1) 2 0. (584)
0 sA+2p

Now, we can repeat the proof of Lemma 5.7 and from (5.52), (5.54), (5.56) and (5.84),
it follows that

l

A

/ QO(EQU‘S‘ + / 7(1{22 + H33) — H11 diL‘gdCCg)d(Cl = 0. (585)
0 s A+ 2u

On the other hand, we get from (5.83) that

1
A
/0 Qo(EQo|S| + /5 Pyt 2N(H22 + Hs3) — Hyp dzedzs)dxy

I
=(1+Chh+ 0121)012/ Qot1 dzy, (5.86)
0

which together with (5.85) imply that either Cjy = 0 or [J Qut; d; = 0. Then the
identity (5.83) gives a contradiction. O

Remark 5.13 In the proof of Lemma 5.12, we could see that the straightforward way,
which was possible in the proof of Corollary 5.6 for the curved rods clamped on the
lower basis, does not provide in general an analogous expression for the function @, as
(5.48). Thus we infer that the form of the constant Cj, in (5.83) depends on

1. the properties of the function @y, which can be also defined by the weak conver-
gence

0, U, g . _
/ OU68Le) iy — 00lS] in L2(0,1) (5.87)
S

€
(see (2.1), (5.3) and (5.16));
2. the properties of the functions H;;, i = 1, 2, 3;

3. the properties of the approximating local frames given by the vector functions t.,
n., b..

Hereafter, we concentrate our attention on two last cases, because it has no sense to

01Uc,g1,6)
€

suppose some properties of the functions @ or fs ( dxodzxs in a general case.
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Lemma 5.14 1. Let the components t;, n;, b;, i = 1,2, 3, of the vectors t, n, b be
constant vectors and let the functions t., n., b, be their smooth approrimations
in C'([0,1))* satisfying (3.2) and such that ||t. — t||co) < Ce®, p > 1. Then

A
/ QO E‘S‘Qg —|—/ )\ n 2 (H22 + Hgg) H11 diL‘gdCL‘g)d(Cl = 0, (588)

1 [t [ A
=—| = —(H. Hs3) — Hqyq dzodzsd
Qo E9] (l /0 /5)\4‘2/1( 99 + Hs3) 11 GT20T30T

A
— H. Hss) — Hy; dzod 0,1): 5.89
/S)\er( 20 + Has) — Hyy dzy 953) on (0,1); (5.89)
2. Let there exist constants Cyy, C11 € R such that ty = Cipt; and tz3 = Ciity, and
let
: A
t —(H. Hsz) — Hyy dxodzsdz, = 0. 5.90
/0 1/5)\+2M( 22 + Hss) 11 GT20T30T ( )
Then
EQ|S|+/ A (Hoy + Hs3) — Hyp dzod 0 (0,1) (5.91)
— zTodzs = 0 on . )
0 N+ 2u 22 33 11 GX2aT3 .
In both cases .
—w(U,) = ¢ in L*(Q)? for e — 0. (5.92)
€
Proof:
1. The convergence in (5.87) together with (2.6) and the assumptions of this lemma
imply that
01U, 81,
/QOS dz; = //gu do =lim | wdm (22120
e~
t t
lim (aer’ dx ~ hm/ / (01U t)
e—0 Q e—0

(U.,t)
—hm/ al/ ~0, (5.93)
e—0

because U, € Vj(Q2) and thus [ (U, t) dzodzs € Hy,(0,1) for all € € (0,1). The
rest of the proof follows from (5.56) and (5.83).

2. Analogously as in (5.84) we can derive that

1
A
/ QO(EQU|S| —|—/ (H22 + Hgg) — H11 diL‘gdCL‘g)d(Cl Z 0, (594)
0 s A+ 2u
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which together with (5.56) imply the strong convergence of the functions 1w®(U,)
and provide the identity

1

A

/ QO(EQ()‘S‘ —+ / 7(H22 + H33) — H11 d$2d$3)dl'1 = 0. (595)
0 sA+2p

Hence we can conclude using (5.86) that either the constant Cs in (5.83) is equal
to zero or fol Qoty dz; = 0. The rest follows from (5.83).

O

Lemma 5.15 Let the functions t., n., b, satisfy (3.2)—(3.5) and the condition 2. from
Theorem 1.2. Then

A
EQU|S| + /S m(Hzg + H33) — Hll d(CdeL‘g =0 on (0, l) (596)

1

€

9

and the functions *w(U,) converge strongly to ¢ in L*(Q)°.

P ro o f: Let us take the function V.= ¢W, W € H}(0,1)%, as a test function in the
equation (4.12). Since

€ € € € €
Wi (W) = (W', g1,0), wiz(eW) = o(W'rne), wiz(eW) = o(W',b),  (5.97)

Wia(EW) = Wiy (W) = wiy (W) = 0 (5.98)

according to (4.8)—(4.11) (compare with (5.29)—(5.33)), we can rewrite the left-hand
side of the equation (4.12) as

i 1
/QA?klZwZ,(UE)waj(GW)dE dz

1
= / (IP(g1c) + I () + I;*(b,), W) dz1, (5.99)
0

where

1
IP<(g1) = /()\gu"gkl" + Z;Lglk"g”’f)Zw,ﬁ,(Ue)degl,E dzodzs, (5.100)
s

1
IY¢(n,) = /S(Ag”"g“" + u(g"t g + ng’Egll"));le(Ue)dene dzodzs,  (5.101)

1
I;Js(be) — /S()\gIS,egkl,e +u(g1k,693l,e _l_g3k,eg1l,e))szl(Ue)debE d.TdeL'g. (5102)

We get analogously for the right-hand side of the equation (4.12) that
1 —
E/(F,W)dE dr + / Hij—wfj(eW)dE dr + e/ / (G, W)ed/vioy; dSdz,
Q Q € (0,1)) Jas
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1 1
= [ W) don ot [ ) + () 1 (), W) dar, (5109
0 0

where
L{HG = / Fd, dzodzs + Gedcy/viocv; dS, (5.104)
S oS
IlHll (gl,ﬁ) = / Hllgl,ede d$2d$3, I;I”(nﬁ) = / ngnEdE d$2d$3, (5105)
) s
;" (b;) = / Hyzbed, drydz;. (5.106)
S

Further, we will use the notation I].U‘(w), I]H“(w) and I}, i,7 = 1,2, 3, if we have a
function w instead of the functions g, n. and b,.. Using (5.99) and (5.103), we can
rewrite the equation (4.12) as

l
/ (17" (1) — I (8re) + I (ne) — " () + I3 (be) — I3 (be), W') day
0

!
— e/ (IFTS W) dz. (5.107)
0
Hence we get that

d
(17 (grdi) — L™ (i) + I (nie) — L™ (nie) + I (bie) — 157 (i)

dIl
= eI % in (0,1) (5.108)

for i = 1,2,3, and both terms belong to L?(0,1). After integration of (5.108) over an
interval [z1, z2] C (0,1), we obtain the equality

(I (grei) — I ([greli) + 177 (nie) — 1372 (nie) + I3 (bie) — 137 (bie)) (1)
—(I7([g1,eli) — T ([g1.eli) + 137 (nie) — 1572 (nie) + 13 (bire) — I3 (bie) ) (22)

21
= e/ IFYGi () dzy, i =1,2,3. (5.109)

Z2

A~ _.q A~ q] — A~ _ﬂ ~ i o,
We can take z9 € [T7—€?,T1+€?] = U@e[af%,aﬁ%}[x? 5, T2+ 5] (see the condition 2.
€4

from Theorem 1.2) and integrate the equality (5.109) over the intervals [Z; — <, Z;+ 5],
j = 1,2. Then using the properties of the functions ¢ ., ny, b1 and (2.6) lead to the

estimate

(I ([g1.el1) — L ([8reln) + I3 (nae) — 1372 (nae) + Iy < (bre) — I3 (br,e)) (21))

1 7r71+% 1 7r72+% - " U H
< g[ — (7 (—evez) — [T (—eveze) + I3 (1) — 157%(1))(22) d22ds]

4 €1 [~ e
.’15172 m272
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T+ 2 1 To+ - 2
/ / / IF1+G1 1'1 d$1d22d$2| (5110)

2

for all z; € (0,1), which implies that

||I1UE([g1,e]1) — I ([greh) + I35 () — 1372 (nae) + 137 (bre) — 1372 (bre) || 2oy <

T ] z2+— R
(|—/ . (I (—eyez) — I (—evezs) + 17 (1) — I3 (1)) (25) dzods|

el €9
T2

+e([|F([z2(0)2 + |Gl r2(04;22(85)3 ))) (5.111)

Let us suppose for a moment that the convergence

1 $1+§ 52+§ - .
o [ e - 1 e
T1—5 T

+I7<(1) — If19(1))(22)] dzadiy — 0 (5.112)
holds for € — 0. Then the estimate (5.111) yields
117 (lgrch) — I ([grehh) + I (nae) — 137 (o)

+17¢ (by,e) — 13{113(171,5)||L2(0,l) — 0 (5.113)
for € — 0. Further, we can derive from (2.7)—(2.8) and (3.4)—(3.5) that

g |0y ~ 1+ O ), i = 1,2,3, [|g"|| =0 ~ O(e" ), (5.114)

HQB’EHL‘”(O,Z) ~ O(e'™), ngs’eHL‘”(O,l) ~ 0(62(14))- (5.115)

Using the boundedness of the tensors fw®(U.) in L*(Q2)°, (5.100)—(5.102), (5.104)-
(5.106), (5.111) and (5.113)—(5.115) lead to the convergence

1
||/ )\911 a kke Wkk(Ue)[gl,e]l + QM(gll’egll’egwll,e(Ue)[gl,e]l

1 1
+g22,egll,ezw;2 (U )nl .+ g33 fgll € (.c);g(UE)bl,E)

_Hll[gl,e]l — ngnl,e — H13b1,e]de d$2d$3||L2(0,l) — 0 for e — 0. (5116)
Furthermore, we know that
22e 1le 1
/[2ug g w12(U ) — Hislny (de dzodzs — 0, (5.117)
s
33, 1le 1 € : 2
[2ug™ g 6(.¢)13(U6) — Hiy3)by (de dzodzs — 0 in L7(0,1) (5.118)
s
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according to (3.6), (5.3) and (5.8), and

1 1 in 20,
/[)\911 cghhe WZk(U ) + 2#911 “gthe Wll,e(Ue) - Hll][gl,e]lde dzodzs 0D
S

/P‘(Cn + Coo + C33) + 2uCin — Hilty dzodzs
S

(0524 /[ECM + )\(222 + Eas) — Hy|ty dzodzy
s

(2:1),(5-10),6-16).(5:83) 1 (5.119)

Hence and from (5.116), we conclude that Cj5 = 0 and we can prove analogously as in
the proof of Lemma 5.7 that the tensors 1w®(U,) converge strongly to ¢ in L?(2)°.
It remains to prove (5.112). First, we detect the terms in the integral

T1+5- 2 Tz+*
/ / (—evem) — I (—evaza) + IV°(1) — 195(1)) (z2) dzadal,

which need not converge to zero. Using (5.100), (5.102), (5.114)—(5.115) and the bound-

edness of the tensors 1w®(U,) in L?(Q)°, we can deduce, for instance, the estimate

To+ - 2 1 R
6211 / / /gll 6933F w13(UE)dE dm2d$3d22da’:2‘

_eq
2

6177'

< C| sup

52+§ 1
- q / ||_Wf3(Ue)(Zza Y ')||L2(s)9 d22|
Grclm- Lo+ ¢ Ja-g €

<Ce™TTE 50 (5.120)

for € — 0, because ¢ € (0,2) and 7 € (0,3). We can estimate analogously the other

terms using (5.114)—(5.115) and we find that the only terms, which need not converge
to zero, are contained in the integral

e mTz e ganel e U.) — Hysld, doodzzdzydT 5.121
. 2 [9 g ew”( e) 13] e AL2AT3022AT2. ( . )
ed Fg— L S

Now, we show that this integral converges to zero as well. Multiplying the equation
(4.12) by €?, we obtain the equation

% 1 € ;
/QAJ’ﬂ’Ewkl(Ue)ewU(V)aiE dr = € /Q(F,V)de dz + /Q Hijew;(V)de dz

—|-62/ (G, V)eder/vio¥<y; dSdi;. (5.122)
0,) Jas
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We put V = Wazst,, where W € H(0,1). From (2.2), (2.6), (4.8)-(4.11), it follows
that

ewl (V) = e(1 — exof8 — exza)zsW' + x5y B W — €zaz3a.y W, (5.123)
1

EW;Q(V) = %/85373W EUJ;:;(V) == 5(1 - EiEQﬁE)W, (5124)

cws, (V) = ewps(V) = ewss(V) = 0. (5.125)

After the substitution of (5.123)—(5.125) to (5.122), we get that

1 !
/Q A?klzw;l(Ue)ewfj(V)de dx = /0 IsW' + IsW dzy, (5.126)
where

1
Is = / e(1 — exof — ex;;af)xg()\gn ‘gkl €+ 2ug”° ‘g” V-wi;(Ue)de dzodzs, (5.127)
S €

1
Iﬁ = /(GZ'T%’YEﬁE € m2x3a676)()‘911 cghhe + 2ﬂglkyegll’e)_w2l(Ue)
S €
1
+€/6€.T3(Agl2 € _kle 4 ,LL( 1k,eg2l,e + g2k,egll,e))zwzl(UE)

1
+(1—€1'2/6€)()\9136 kle+u( 1k,e SZe_l_gSke 11, E))Ele(Ue)de dxgdl'g. (5128)

The right-hand side of the equation (5.122) can be rewritten as

62/(F,V)dﬁ dm+e2/ (G, V)ed./vioiv; dSdx, +/H ews;(V)d, dz
Q (0,1 as

!
= / e FAIHGED L Py L 10w dgy, (5.129)
0
where
IsH = / Hllﬁ(l — 61'2,85 — 1'3(15)1'3(15 dl’gdﬁg, (5130)
s
I = / Hyi (2278 — €xozs0ye) + Hizefexs + Hiz(1 — exo8.)d, dzadrs. (5.131)
s

After the substitution of (5.126) and (5.129) to (5.122), we find the equation

1 1 1
/ (Is — IMW dazy = 62/ [ FEIHGED Yy gy / (Is — IMYW' dz;  (5.132)
0 0 0

and thus

. d
Ig — IF = (Bt H(GE) _ -5~ IHY on (0,1), (5.133)
1
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~ q ~ q
-’L‘l+% 11'2‘}’%
2q J= q ~ q
a5 Yy

where all terms belong obviously to L?(0,1). Applying the integrals -
0 (5.133), we obtain the estimate

1 $1+§ To+ 5 R _ ~
o [ ()~ 1G] ddal < O oy + [Glaaasm)

€24 e

1 ity €? Hi~ e? . e? Hi~ e? =N
Hegg [, @+ 5) K@+ 5) — L@ - o)+ I8 )] d2s). (5.134)

Using (5.128) and (5.131), we can deduce analogously as in the estimate (5.120) that
the only terms, which need not converge to zero from the integral on the left-hand side
of the estimate (5.134), are contained in the integral

2q -
€ #—<L

1 z1+ zz+— 1

= / 2#/[ 11, 6933 e w13(U ) H13]de d(Cdengnga'}\g. (5135)
S €

Since the estimate

q

+5 e R
N / /eg11 cgtler, —wu(UE(mg + 582 z3))d, drodrsdTs|

T1+e?
< C/ iUl Dlaop dal <O ¥ 50 (5136)

T

holds because of ¢ € (0,%) and the other terms from the last integral from (5.134)

satisfy analogous estimates, then from (5.134)—(5.136), it follows that

T+ 2 To+ - 2 1
62(1 / / 2/1/ 1, F933 - w13(U ) H13]d5 d$2d$3d22d53'\2| —0 (5137)

for e = 0. O

Corollary 5.16 From Lemma 5.14-1 and 5.15., it follows that the form of the function
Qo depends on the choice of approzimating local frames if the components of the tangent
vector t are constant functions.

Remark 5.17 The situation is simpler if we construct such approximating local frame
that, for instance, tg’e = ClStl,e # 0, N2 = 013721,5, b2,e = Clgbl’e on an interval IE for all

€ (0,1), |I| — 0 for € — 0, where C13 # Cy (see the condition 3. from Theorem 1.2).
Subtracting (5.109) with ¢ = 2 from (5.109) with ¢ = 1 leads to the estimate

17 (gredi) = L (i) + Iy (na,e) — 1,72 (mae) + 157 (ba,e) — I3 (b))
—Cral17 " ([g1,ch) — I ([gredn) + 177 (ma,e) — 1372 () + 157 (bae) — 157 (b1, )l p2 (o)
S O€(||F||L2(Q) + ||G||L2(0,I;L2(BS)3)) — 0fore—0

which together with (5.50), (5.117)—(5.119) and the assumption C3 # Ciy imply (5.96).
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6 Approximation of the stress tensor

In this section, we prove Corollary 1.3. We know from the previous section that the
function U, generated by the couple (U, ¢) € Vi™P(0,1) is the unique solution to the
equation (5.77). Now, we seek for a suitable approximation U, of the function U in
the form

U, = US + €U + €2 U5, (6.1)

which satisfies | .
“w(U,) — —w(U,) = 0 in L*(Q)°. (6.2)

€ €

Let the function U§ € V,f"“"b‘(o,l) be the approximation of the function U from
Proposition 3.4 and Remark 3.7, which, in addition, satisfies

. 1 1 1
(0.0 22002 ~ O(52)s 1811200y ~ O(=7)s 7 € (0, 7). (6.3)
€ € 3

The verification of (6.3) is left to the reader, because it follows from Proposition 4.2 in
[8] after a simple modification of the proof. Let, further,

Us(a1, 22, 73) = = (U3 (21), ne(1)a2 + (U5 (1), be(w1))as ) te(o1)

—23¢c(21)0(21) + Ba@e(1)be(21) (6.4)

for (z1,z9,z3) € Q. Analogously as in the proof of Lemma 8.4 in [8], we can derive
that

W(U; + €U3) = T(U7 ) + B, (6.5)
where
11, (ULL) = —((U1.) ndzs + ((U7,)', be)zs, (6.6)
€ € € € "ES €
T12(U1,*) = T21(U1,*) = ?((Ul,*)’7t6)7 (6-7)
€ € € € IZ € !
T13(U1,*) = T31(U1,*) = _E((Ul’*) ate)a (6-8)
and .
[Bella = 1B ]l2 < €077, € (0, 3): (6.10)
At the end we define the function U§ by
U5 = (U3, to)te + (U5, n.)n, + (U5, b,)b,, (6.11)
where
(U3, te) = —((US,.)' t)p + pa, (6.12)
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(Ug,n) =8 + 22 (U, b (B 22) 4 (UL, n)aas
2 e) = Po 2N+ 1 1,4) » De 5 1,+) » Ne)T2T3
) A
7E|S| (/ )\_|_2u(H22+H33) *Hll d$2d$3)], (613)
S
€ ~H 1 A € li CC% B CC% € !
(U5, be) =p3 + §m ((U1,*) ;0 )( ) — ((U1,*) ,be)zoms
I3 A
S

~

After the substitution of U, to Lw®(U,) we can check (6.2) using Lemma 5.7, (5.71)-

€

(5.76), (6.1) and (6.3)—(6.14). The same result is valid for the curved rods clamped on
both basis (see Lemma 5.12, 5.14, 5.15).
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