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Abstra
tWe present a new iterative pro
edure for solving the dis
rete multiple stoppingproblem and dis
uss the stability of the algorithm. The algorithm produ
es monoton-i
ally in
reasing approximations of the Snell envelope, whi
h 
oin
ide with the Snellenvelope after �nitely many steps. Contrary to ba
kward dynami
 programming,the algorithm allows to 
al
ulate approximative solutions with only a few nestingsof 
onditionals expe
tations and is, therefore, tailor-made for a plain Monte-Carloimplementation.1 Introdu
tionFinan
ial derivatives with several early exer
ise rights play an important role in severalmarkets. For example, ele
tri
ity markets (e.g. swing options) and interest rate markets(e.g. 
hooser 
exible 
aps). The pri
ing problem for su
h instruments is equivalent toa multiple stopping problem whi
h is solved in pra
ti
e by trinomial forests usually, seeJaillet et al. (2004) and the referen
es therein. However, this pri
ing pro
edure is re-stri
ted to models for low-dimensional underlying pro
esses, sin
e trees tend to explodewith in
reasing dimension of the underlying pro
ess.Obviously, multiple 
allable instruments with respe
t to a high dimensional interest ratemodel su
h as the very popular Libor market model, and also multiple 
allable options ona basket of several assets, do not meet this restri
tion. So new pri
ing methods for �nan-
ial instruments with early exer
ise opportunities, based on high-dimensional underlyingpro
esses, are 
alled for.The problem of exploding 
omputational 
ost, when the dimension of the underlyingpro
esses in
reases, is known as `
urse of dimensionality'. Even in the 
ase of a singleexer
ise right (i.e. the pri
ing problem of an Ameri
an option or, equivalently, the optimalstopping problem), the 
lassi
al approa
hes su
h as tree methods, initialized by Cox etal. (1979), or PDE te
hniques (Bensoussan and Lion, 1982; Van Moerbe
ke, 1976) area�e
ted by the 
urse of dimensionality. Only in re
ent years several approa
hes have beenproposed to over
ome this problem for Ameri
an style derivatives, hen
e the 
ase of asingle exer
ise right. These methods basi
ally rely on Monte-Carlo simulation and 
an beroughly divided into three groups. The �rst group dire
tly employs a re
ursive s
hemefor solving the stopping problem, known as ba
kward dynami
 programming. Di�erentte
hniques are applied to approximate the nested 
onditional expe
tations. The sto
hasti
mesh method by Broadie et al. (2000) and the least square regression method of Longsta�1



and S
hwartz (2001) are among the most popular approa
hes in this group. An alternativeto ba
kward dynami
 programming is to approximate the exer
ise boundary by simulation,see e.g. Andersen (1999), Ib�a~nez and Zapatero (2004), and Milstein et al. (2004). Thethird group relies on a dual approa
h developed in Rogers (2002), Haugh and Kogan(2004), and in a multipli
ative setting by Jamshidian (2003). For a numeri
al treatmentof this approa
h, see Kolodko and S
hoenmakers (2003). By duality, tight pri
e upperbounds may be 
onstru
ted from given approximative pro
esses.The methods in these three 
ategories 
an be transferred from one to several exer
iseopportunities be
ause the multiple stopping problem is equivalent to a system of nestedsingle stopping problems. Meinshausen and Hambly (2004) suggest an extension of theLongsta� and S
hwartz (2001)-algorithm to several exer
ise rights along these lines. Theirmain 
ontribution is, however, a derivation of the dual formulation under several exer
iserights. Ib�a~nez (2004) presents a generalization of Ib�a~nez and Zapatero (2004) for multipleexer
ise opportunities.The aim of the present paper is twofold: Firstly, we suggest an algorithm for the multiplestopping problem, whi
h generalizes a pro
edure re
ently introdu
ed by Kolodko andS
hoenmakers (2004) for the single stopping problem. Se
ondly, we analyze stability ofthe algorithm under one as well as under several exer
ise rights.The poli
y-improvement algorithm proposed in Kolodko and S
hoenmakers (2004) ismending one of the main drawba
ks of the ba
kward dynami
 programming s
heme: Sup-pose exer
ise 
an take pla
e at one out of k time instan
es. Then, in order to obtainthe value of the optimal stopping problem via ba
kward dynami
 programming, one hasto 
al
ulate nested 
onditional expe
tations of order k. No approximation of the time 0value is available prior to the evaluation of the kth nested 
onditional expe
tations. Thisprevents the use of plain Monte-Carlo simulations for approximating the 
onditional expe
-tations and requires more 
ompli
ated approximation pro
edures for these quantities. Forinstan
e, to employ the pro
edure of Longsta� and S
hwartz (2001), one has to 
hoosethe number of basis fun
tions and the basis fun
tions themselves. Moreover, the erroranalysis of the Longsta� and S
hwartz (2001)-algorithm in Eglo� (2004) suggests that theerror propagation ba
kward in time in
reases exponentially in the number of time steps.Contrary, the algorithm of Kolodko and S
hoenmakers (2004) yields approximations of thetime 0 value of the value fun
tion for every iteration step, whi
h monotoni
ally in
rease tothe Snell envelope. This allows for a plain Monte-Carlo simulation of the 
onditional ex-pe
tations. Indeed, the simulations in Kolodko and S
hoenmakers (2004) show that goodapproximations 
an be obtained with a quadrati
 simulation (i.e. two iteration steps),even for very high(d = 40!)-dimensional problems.In fa
t, the main advantage of the algorithm in Kolodko and S
hoenmakers (2004) werelost, if a multi-exer
ise version would be straightforwardly de�ned as a nesting of one-exer
ise versions. This would 
ause nested 
onditional expe
tations in ea
h iteration stepand, thus, again prevent the use of a plain Monte Carlo implementation. Instead we2



present a multiple exer
ise version of the poli
y-improvement algorithm in a way thatthe order of nestings does not depend on the number of exer
ise rights. It is thereforetailored for plain Monte-Carlo simulation of the 
onditional expe
tations. We also provethat the algorithm 
oin
ides with the Snell envelope under L exer
ise rights after the samenumber of iterations as needed for the nested dynami
 programming algorithm proposedin Carmona and Touzi (2003). This shows that our algorithm is theoreti
ally as good asba
kward dynami
 programming, but superior from a pra
ti
al point of view.The se
ond 
ontribution of our paper is a stability analysis for the poli
y-improvementalgorithm of Kolodko and S
hoenmakers (2004) and its multi-exer
ise extension. In the
ase of a single exer
ise right the stability result 
an be put in words as follows (re
all, one
an think of the stopping problem as an investor trying to maximize his expe
ted gain):The shortfall of the investor's expe
ted gain 
orresponding to m steps of the perturbedalgorithm below the expe
ted gain 
orresponding to m steps of the theoreti
al algorithm
onverges to zero. Surprisingly, it 
an happen that the perturbed algorithm performsbetter than the theoreti
al one (as is shown in example 4.1). Put di�erently, in 
ompar-ison with the theoreti
al algorithm, better approximations of the Snell envelope may bea
hieved due to simulation errors! A little weaker result is obtained in the multi-exer
ise
ase.The paper is organized as follows: In Se
tion 2 we pose the multiple stopping problemand explain its 
onne
tion to the single stopping problem. Then in Se
tion 3 we state themultiple exer
ise algorithm and prove its 
onvergen
e. In parti
ular, in Se
tion 3.2 and3.3 we put a main emphasis on the analysis of the building blo
ks of the algorithm, 
alledone-step improvements. The results of Se
tions 3.2-3.3 are 
ru
ial for the dis
ussion ofstability in Se
tion 4. Se
tion 5 
on
ludes.2 On the Multiple Stopping ProblemSuppose (Z(i): i = 0; 1; : : : ; k) is a nonnegative sto
hasti
 pro
ess in dis
rete time on aprobability spa
e (
;F ; P ) adapted to some �ltration (Fi : 0 � i � k) whi
h satis�eskXi=1 EjZ(i)j <1:We may think of the pro
ess Z as a 
ash-
ow, whi
h an investor may exer
ise L times.The investors' problem is to maximize his expe
ted gain by exer
ising optimally. He issubje
ted to the additional 
onstraint that he has to wait a minimal time Æ 2 N betweenexer
ising two rights. The introdu
tion of Æ avoids mathemati
al trivialities, as otherwisethe investor would exer
ise all rights at the same time. To emphasize that the introdu
tionof Æ is not a mathemati
al oddity, we will refer to Æ as the refra
ting period following theterminology from swing options.We now formalize the multiple stopping problem. For notational 
onvenien
e we trivially3



extend the 
ash-
ow pro
ess by Z(i) = 0 and Fi = Fk for i > k. Let us de�ne Si(L; Æ) asthe set of Fi stopping ve
tors (�1(i); : : : ; �L(i)) su
h that i � �1(i) and, for all 2 � j � L,�j�1(i) + Æ � �j(i). The multiple stopping problem may then be stated as follows: Find afamily of stopping ve
tors ��(i) 2 Si(L; Æ) su
h that for 0 � i � kEFi 24 LXj=1 Z(��j (i))35 = esssup�2Si(L;Æ) EFi 24 LXj=1 Z(�j)35 :The pro
ess on the right hand side is 
alled the Snell envelope of Z under L exer
iserights and we denote it by Y �L (i). We sometimes write Y �(i) = Y �1 (i).The 
ase of one exer
ise right L = 1 is very well studied. We 
olle
t some fa
ts, whi
h 
anbe found in Neveu (1975).1. The Snell envelope Y � of Z under one exer
ise rights is the smallest supermartingalethat dominates Z.2. A family of optimal stopping times for the stopping problem with one exer
ise rightsis given by ��(i) = inffi � j : Z(j) � Y �(j)g; 0 � i � k:If several optimal stopping families exist, then the above family is the family of �rstoptimal stopping times.The multiple stopping problem 
an be redu
ed to L nested stopping problems with oneexer
ise right (see also Carmona and Touzi (2003) and Carmona and Dayanik (2004) forthe more demanding 
ontinuous time setting). We brie
y explain the redu
tion.De�ne a sequen
e of pro
esses (X0; : : : ;XL; : : :) as follows. X0 := 0; X1 := Y �1 is the Snellenvelope of Z. XL, L � 2, is the Snell envelope of the 
ash-
ow Z(i) + EFi XL�1(i + Æ)under one exer
ise right. We also de�ne for L = 1; 2; : : : ;��L(i) = inffi � j : Z(j) +EFj XL�1(j + Æ) � XL(j)g; i � 0;i.e. the �rst optimal stopping families for the sequen
e of single stopping problems. It isstraightforward to show by indu
tion over L, thatY �L (i) = XL(i); 1 � i � k; (1)and a family of optimal stopping ve
tors for the multiple stopping problem with L exer
iserights and 
ash-
ow Z is given by��1;L(i) = ��L(i)��d+1;L(i) = ��d;L�1 (��L(i) + Æ) 1 � d � L� 1: (2)Note that, due to the 
onvention Z(i) = 0 for i > k, we have ��1;L(i) = ��L(i) = i for i � k:4



The redu
tion (1), (2) is intuitively 
lear: It basi
ally says, that the investor has to 
hoosethe �rst stopping time of the stopping ve
tor in the following way: De
ide, at time j,whether it is better to take the 
ash-
ow Z(j) and enter a new 
ontra
t with L � 1exer
ise rights starting at j + Æ, or to keep the L exer
ise rights. Then, after entering thestopping problem with L� 1 exer
ise rights, he pro
eeds to behave optimally.By the above redu
tion, any algorithm for single optimal stopping problems 
an, in prin-
iple, be applied iteratively to the multiple stopping problem. For example, Carmonaand Touzi (2003) suggested to apply ba
kward dynami
 programming iteratively to theL stopping problems. This obviously leads to even higher nestings of 
onditional expe
-tations than the dynami
 programming approa
h yields for the single stopping problems,and, as a 
onsequen
e, to tremendous simulation 
osts in a plain Monte Carlo approa
h.Contrary, we are going to present an algorithm whi
h simultaneously improves the Snellenvelope under L = 1; : : : ;D exer
ise rights with the order of nested 
onditional expe
ta-tions for a given number of iterations independent of L.3 An Algorithm for Multiple Stopping3.1 The AlgorithmWe now explain our new algorithm for the multiple stopping problem. In the 
ase of asingle exer
ise right it 
oin
ides with the pro
edure suggested in Kolodko and S
hoenmak-ers (2004). The building blo
k of the algorithm is, as in the 
ase of one exer
ise right, apoli
y improvement. More pre
isely, suppose we are given the families of stopping times�L(i); 0 � i � k; 1 � L � D;trivially extended with �L(i) = i for i > k. Re
all that k is the time horizon of the real
ash-
ow pro
ess. We are interested in the Snell envelope with L exer
ise rights for all1 � L � D and refra
ting period Æ. We interpret �L(i) as the time, when the investorexer
ises (possibly in a suboptimal way) the �rst of his L rights, given that he has notexer
ised prior to time i. This interpretation requires that the stopping families �L under
onsideration are 
onsistent in the sense of the following de�nition:De�nition 3.1 A family of integer-valued stopping times (�(i) : 0 � i � k) is said to be
onsistent, if for 0 � i < k; i � �(i) � k; �(k) � k;�(i) > i) �(i) = �(i+ 1): (3)Indeed, suppose �L(i) > i, i.e. a

ording to our interpretation the investor has not ex-er
ised the �rst right prior to time i + 1. Then he has not exer
ised the �rst right prior5



to time i, either. This means he will exer
ise the �rst right at times �L(i) and �L(i+ 1),whi
h requires �L(i) = �L(i + 1). Note: A trivial example of a non-
onsistent stoppingfamily is �(i) = min(i+ 1; k):Given 
onsistent stopping families �L, L = 1; 2; : : : ; we de�ne asso
iated stopping families�d+1;L via, �1;L(i) = �L(i)�d+1;L(i) = �d;L�1 (�L(i) + Æ) 1 � d � L� 1: (4)�d;L(i) 
an be interpreted as the time, when the investor exer
ises the dth of his L exer
iserights, provided he has not exer
ised his �rst right prior to time i.An approximation of the Snell envelope with L exer
ise rights is now given byYL(i;�1; : : : �L) := EFi " LXd=1Z(�d;L(i))# : (5)Note, YL(i;�1; : : : �L) has a simple interpretation as the expe
ted gain (
onditional on Fi)the investor obtains when he employs the stopping families �1; : : : ; �L for exer
ising the
ash-
ows.We then introdu
e intermediate pro
essesbYL(i;�1; : : : ; �L) := maxi+1�p�kEFi " LXd=1Z(�d;L(p))# (6)on whi
h a next exer
ise 
riterion is built,e�L(i) := inf nj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1) � bYL(j;�1; : : : ; �L)o ; (7)with Y0(i) := 0: Note that e�L(k) = k sin
e max ; = �1, and, obviously, the stoppingfamilies ~�L are 
onsistent for 1 � L � D.Given 
onsistent starting families of stopping times �(0)L , 1 � L � D, we de�ne iteratively,�(m)L (i) := e�(m�1)L (i);Y (m)L (i) := YL(i;�(m)1 ; : : : ; �(m)L ): (8)Canoni
al 
onsistent starting families are given, for instan
e, by �(0)L (i) = i, L = 1; 2; : : :Theorem 3.2 Suppose the stopping families �(0)L (i) are 
onsistent for all 1 � L � D.Then, for all m 2 N; 1 � L � D, and 0 � i � k,Y (m+1)L (i) � Y (m)L (i):Moreover, for m � Lk � i, Y (m)L (i) = Y �L (i);where Y �L denotes the Snell envelope of Z under L exer
ise rights.6



Remark 3.3 The algorithm provides an iteration s
heme of in
reasing lower bounds forthe Snell envelope under L exer
ise rights. By a dual method, developed by Rogers (2002)and Haugh and Kogan (2004), and extended to the 
ase of several exer
ise rights as inMeinshausen and Hambly (2004), one 
an 
onstru
t a family of 
onvergent upper boundsgiven this family of lower bounds.Remark 3.4 The reader might suggest to 
onsider the following intuitively better algo-rithm: Given 
onsistent stopping families �1; : : : ; �D, de�ne �1(i) := e�L(i); and then,re
ursively in L,�L(i) = inffj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1)� bYL(j;�1; : : : ; �L�1; �L)g:The very intuition of this modi�
ation is to use the already improved stopping times�1(i); : : : ; �L�1(i) for improving �L.For given 
onsistent starting families of stopping times �(0)L , 1 � L � D we may thende�ne, �[m℄L (i) := �[m�1℄L (i);Y [m℄L (i) := YL(i;�[m℄1 ; : : : ; �[m℄L ):It 
an be shown, that all assertions of Theorem 3.2 also hold for Y [m℄L instead of Y (m)L .However, the modi�ed algorithm Y [m℄L requires 
al
ulation of nested 
onditional expe
ta-tions within ea
h improvement step. Therefore it requires mu
h higher 
omputational 
osts,when the 
onditional expe
tations are approximated by Monte Carlo simulation. Indeed,the main advantage of the algorithm (8) based on (7) is that the order of nested 
onditionalexpe
tations for a given number of iterations does not depend on the number of exer
iserights.Before we prove Theorem 3.2 in Se
tion 3.4, we investigate in the next two subse
tions thebuilding blo
ks, whi
h we will refer to as one-step improvements in more detail. We �rst
onsider the 
ase of one exer
ise right and generalize results of Kolodko and S
hoenmakers(2004). These generalizations will be of 
ru
ial importan
e for investigating the stabilityof the proposed algorithm in Se
tion 4.3.2 A Generalization of the One-Step Improvement in the Case of OneExer
ise RightSuppose a 
onsistent stopping family (�(i) : 1 � i � k) is given. We then de�ne thepro
ess Y (i; �) := EFi [Z(�(i))℄ : (9)7



Based on the sequen
e (�(i) : 1 � i � k) Kolodko and S
hoenmakers (2004) 
onstru
t anew family (e�(i) : 1 � i � k) in the following way: Introdu
e an intermediate pro
esseY (i; �) := maxp: i�p�kEFi [Z(�(p))℄ ; (10)whi
h serves as a new exer
ise 
riterion, i.e.e�(i) := inffj : i � j � k; eY (j; �) � Z(j)g (11)= inffj : i � j � k; maxp: j�p�kEFj [Z(�(p))℄ � Z(j)g; 0 � i � k:Kolodko and S
hoenmakers (2004), Theorem 3.1, show that e� is an improvement of � inthe sense that the new strategy promises a higher expe
ted gain for the investor than theold one, i.e. Y (i; e� ) � eY (i; �) � Y (i; �):Our �rst aim is to �nd a wider 
lass of stopping families �� su
h thatY (i; �� ) � eY (i; �) � Y (i; �):To this end we �rst 
ompare the intermediate pro
esses eY (i; �) andbY (i; �) := maxp: i+1�p�kEFi [Z(�(p))℄ : (12)Lemma 3.5 Suppose the stopping family � is 
onsistent. Then, for 0 � i � k,eY (i; �) = 1f�(i)>ig bY (i; �) + 1f�(i)=igmaxnbY (i; �); Z(i)o : (13)In parti
ular, Z(i) � eY (i; �) () Z(i) � bY (i; �); (14)and e�(i) = inffj : i � j � k; bY (j) � Z(j)g: (15)Proof. By property (3), we have,EFi [Z(�(i))℄ = EFi �1f�(i)=igZ(i)�+EFi �1f�(i)>igZ(�(i+ 1))�= 1f�(i)=igZ(i) + 1f�(i)>igEFi [Z(�(i+ 1))℄ :Sin
e eY (i; �) = maxnbY (i; �); EFi [Z(�(i))℄o ;(13) follows with (14) and (15) as immediate 
onsequen
es.8



We next de�ne another stopping family, namely,b�(i) := inffj : i � j � k; bY (j) < Z(j)g: (16)By (15), b�(i) � e�(i): (17)We are now ready to state a generalization of Theorem 3.1 in Kolodko and S
hoenmakers(2004), whi
h provides the basis of our stability analysis.Theorem 3.6 Let (�(i); 1 � i � k) be a 
onsistent stopping family. Suppose (�� (i); 1 �i � k) is also 
onsistent and satis�ese�(i) � ��(i) � b�(i) 0 � i � k: (18)Then, Y (i; �� ) � eY (i; �) � Y (i; �); 0 � i � k:Remark 3.7 Obviously, the 
hoi
es �� = e� and �� = b� are examples of a family �� satisfying(3) and (18).Proof. The se
ond inequality is trivial. We prove the �rst inequality by ba
kward indu
-tion over i. For i = k, note thatY (k; �� ) = Z(k) = eY (k; �):Now suppose 0 � i � k � 1, and that the assertion is already proved for i + 1. It holdsf�� (i) = ig � fe� (i) = ig by (18). Hen
e, we obtain on the set f�� (i) = ig,Y (i; �� ) = Z(i) � eY (i; �):However, on f�� (i) > ig the indu
tion hypothesis yields,Y (i; �� ) = EFi [Z(��(i+ 1))℄ = EFi [Y (i+ 1; �� )℄ � EFi heY (i+ 1; �)i= EFi � maxi+1�p�kEFi+1 [Z(�(p))℄� � maxi+1�p�kEFi [Z(�(p))℄= bY (i; �):Property (18) implies f��(i) > ig � fb�(i) > ig. Thus, on f��(i) > ig,bY (i; �) � Z(i)and, by (13), bY (i; �) = eY (i; �) on f�� (i) > ig:This 
ompletes the proof. 9



Motivated by the previous theorem we introdu
e the notion of an improver :De�nition 3.8 Suppose � is a 
onsistent stopping family. A stopping family �� is 
alledan improver of � , if it satis�es (3) and (18) for 0 � i � k.The next theorem provides another justi�
ation for the name `improver'.Theorem 3.9 Suppose � is a 
onsistent stopping family and �� is an improver of � . ThenY (i; �) = Y �(i) for i � j + 1implies Y (i; �� ) = Y �(i) for i � j:Proof. We will exploit the fa
t that the Snell envelope is the smallest supermartingaledominating Z.By Theorem 3.6 we have, for 0 � i � k � 1,Y (i; �� ) � eY (i; �) � EFi [Z(�(i+ 1))℄ = EFi [Y (i+ 1; �)℄ :Therefore, for j � i � k � 1,Y (i; �� ) � EFi [Y �(i+ 1)℄ � EFi [Y (i+ 1; �� )℄ :This means (Y (i; �� ); j � i � k) is a supermartingale. We may also dedu
e from Theo-rem 3.6 that for 0 � i � k,Y (i; �� ) � 1f�� (i)=igZ(i) + 1f��(i)>ig eY (i; �):However, as in the proof of Theorem 3.6, we obtain1f��(i)>ig eY (i; �) � 1f�� (i)>ig bY (i; �) � 1f��(i)>igZ(i):Thus, Y (�; �� ) dominates Z. We thus have shown that (Y (i; �� ); j � i � k) is a super-martingale dominating Z. Therefore,Y (i; �� ) � Y �(i) for i � j:The reverse inequality is trivial.Remark 3.10 The proof of the previous theorem shows, that for any improver �� ,Y (i; �� ) � Z(i); 0 � i � k: (19)We end this se
tion with a 
omparison between di�erent improvers.10



Proposition 3.11 Suppose � is 
onsistent and �� is an improver of � . Then, for all0 � i � k, Y (i; b� ) � Y (i; �� ) � Y (i; e� ):Proof. We prove the se
ond inequality. The proof of the �rst one is similar. For i = keven equality holds. Suppose 0 � i � k � 1 and the inequality is proved for i + 1. Then,on f��(i) > ig \ fe� (i) > ig,Y (i; �� ) = EFi [Y (i+ 1; �� )℄ � EFi [Y (i+ 1; e� )℄ = Y (i; e� )by the indu
tion hypothesis. On f�� (i) > ig \ fe�(i) = ig we haveY (i; �� ) � Z(i) = Y (i; e� )by (19). Finally, the set f�� (i) = ig \ fe�(i) > ig is evanes
ent by the de�nition of animprover.3.3 The One-Step Improvement in the Case of Several Exer
ise RightsWe now investigate the one-step improvement under several exer
ise rights. To this end,suppose 
onsistent stopping families �1; : : : ; �D are given. Re
all that �L(i), 1 � L � D,is interpreted as the time the investor exer
ises his �rst of L rights given that he has notexer
ised the 
ash-
ow prior to time i. The stopping time �d;L(i), whi
h indi
ates the timehe exer
ises the dth of L rights provided he has not exer
ised the �rst of L rights priorto time i, is de�ned as in (4). The 
orresponding approximation YL(i;�1; : : : ; �L) of theSnell envelope under L exer
ise rights is given by (5). Finally, the new exer
ise 
riterionis based on the pro
ess bYL(i;�1; : : : ; �L) de�ned in (6).We will now derive representations of YL(i;�1; : : : ; �L) and bYL(i;�1; : : : ; �L), whi
h allowto extend Theorem 3.6 to the 
ase of several exer
ise rights.Lemma 3.12 De�ne for 2 � L � D and 0 � i � k,ZL(i;�1; : : : �L�1) = Z(i) +EFi [YL�1(i+ Æ;�1; : : : ; �L�1)℄ : (20)Then, YL(i;�1; : : : ; �L) = EFi [ZL(�L(i);�1; : : : ; �L�1)℄ ;bYL(i;�1; : : : ; �L) = maxi+1�p�kEFi [ZL(�L(p);�1; : : : ; �L�1)℄ :Proof. Fix 0 � i � p � k. Then by (4),EFi [ZL(�L(p);�1; : : : ; �L�1)℄= EFi "Z(�L(p)) + L�1Xd=1 Z(�d;L�1(�L(p) + Æ))#= EFi "Z(�1;L(p)) + L�1Xd=1 Z(�d+1;L(p))# = EFi " LXd=1Z(�d;L(p))# :11



By the previous lemma we may rewrite e�L de�ned in (7) ase�L(i) = inf �j � i; ZL(j;�1; : : : ; �L�1) � maxp�j+1EFj ZL(�L(p);�1; : : : ; �L�1)� : (21)Consequently, the step from �L to e�L is a one-step improvement with one exer
ise rightand 
ash-
ow ZL(�;�1; : : : ; �L�1).As in the 
ase of one exer
ise right we also 
onsider the stopping familyb�L(i) = inf �j � i; ZL(j;�1; : : : ; �L�1) > maxp�j+1EFj ZL(�L(p);�1; : : : ; �L�1)� : (22)De�nition 3.13 A stopping family ��L is said to be an L-improver of �L with respe
t to(�1; : : : ; �L�1), if ��L is 
onsistent ande�L(i) � ��L(i) � b�L(i): (23)In abuse of terminology we will simply speak of an improver, when L and (�1; : : : ; �L�1)are evident from the 
ontext.We now state a generalization of Theorem 3.6, whi
h justi�es the name `improver'.Theorem 3.14 Suppose 
onsistent stopping families �1; : : : ; �D are given with respe
tiveimprovers ��1; : : : ; ��D. Then, for 1 � L � D the following 
hain of inequalities holds,YL(i; ��1; : : : ; ��L) � YL(i;�1; : : : ; �L�1; ��L) � YL(i;�1; : : : ; �L�1; e�L)� maxnYL(i;�1; : : : ; �L); bYL(i;�1; : : : ; �L)o :Proof. By the previous 
onsiderations ��L is also a 1-improver of �L with respe
t to the
ash-
ow ZL(�;�1; � � � ; �L�1) (with the 
onvention Z1 = Z). In view of Lemma 3.12 these
ond inequality follows from Proposition 3.11 and the third one from Theorem 3.6. Wewill prove the �rst inequality by indu
tion over L. Note that the inequality is trivial forL = 1. The step from L� 1 to L 
an be shown as follows. By Lemma 3.12,YL(i; ��1; : : : ; ��L)� YL(i;�1; : : : ; �L�1; ��L)= EFi [Z(��L(i)) + YL�1(��L(i) + Æ; ��1; : : : ; ��L�1)℄�EFi [Z(��L(i)) + YL�1(��L(i) + Æ;�1; : : : ; �L�1)℄= EFi [YL�1(��L(i) + Æ; ��1; : : : ; ��L�1)� YL�1(��L(i) + Æ;�1; : : : ; �L�1)℄ :As the se
ond and the third inequality are already proved, the indu
tion hypothesis im-plies, YL�1(��L(i) + Æ; ��1; : : : ; ��L�1) � YL�1(��L(i) + Æ;�1; : : : ; �L�1):Thus, YL(i; ��1; : : : ; ��L)� YL(i;�1; : : : ; �L�1; ��L) � 0:12



We are now ready to give the proof of Theorem 3.23.4 Proof of Theorem 3.2The monotoni
ity assertion is a dire
t 
onsequen
e of Theorem 3.14 sin
e, by de�nition,Y (m)L (i) = Y (i;�(m)1 ; : : : �(m)L )�(m+1)d = e�(m+1)d ; 1 � d � L:Re
all that the � in Theorem 3.14, 
an always be repla
ed by e by the de�nition of animprover.We prove the se
ond assertion by indu
tion over L. For L = 1, it follows by ba
kwardindu
tion over i and making use of Theorem 3.9.Suppose 2 � L � D and that the assertion is already proved for L� 1. We �x 0 � i0 � kand m0 � Lk � i0. By the indu
tion hypothesis,Y (m)L�1(i) = Y �L�1(i);for all m � (L� 1)k � i. In parti
ular,Z(m+1)L (i) = Z(i) +EFi Y (m)L�1(i+ Æ) = Z(i) +EFi Y �L�1(i+ Æ);for all 0 � i � k and m � (L � 1)k. This means that from step (L � 1)k on we have aniteration pro
edure as in the 
ase of a single exer
ise right, but with the 
ash-
ow Z(i)repla
ed by Z(i) + EFi Y �L�1(i + Æ). Thus, due to Theorem 3.9 the time i value of thisiteration does not 
hange anymore after k � i new improvements but 
oin
ides with theSnell envelope. Hen
e, for m0 � Lk� i0 = (L� 1)k+ k� i0, Y (m0)L (i0) 
oin
ides with thetime i0 value of the Snell envelope of Z(i)+EFi Y �L�1(i+ Æ) with one exer
ise right, whi
hin turn equals Y �L (i0) by (1).Remark 3.15 The proof shows that after any m � Lk � i improvements, not only thee -improvement, the 
orresponding approximation 
oin
ides with the Snell envelope underL exer
ise rights up from time i on.3.5 A Modi�
ation of the AlgorithmWe now present a slight modi�
ation of the algorithm whi
h may appear less naturalbut sometimes yields better approximations of the Snell envelope. We emphasize thatthis modi�
ation does not a�e
t the 
onstru
tion of the improved stopping family, say e�Lstarting with �L, but, is a suggestion to repla
e YL.The modi�
ation is motivated by the well-known dynami
 programming approa
h for
onstru
ting the Snell envelope. Under one exer
ise right one hasY �(k) = kY �(i) = max�Z(i); EFi [Y �(i+ 1)℄	 :13



The dynami
 programming s
heme suggests to de�neyL(i;�1; : : : ; �L) := max�ZL(i;�1; : : : ; �L�1); EFi [YL(i+ 1;�1; : : : ; �L)℄	 ; (24)1 � L � D, 0 � i � k, given 
onsistent stopping families �1; : : : ; �D. In fa
t, yL has notsu
h an intuitive interpretation as YL but we have, however,yL(i;�1; : : : ; �L) � YL(i;�1; : : : ; �L); (25)sin
e by Lemma 3.12YL(i;�1; : : : ; �L) = 1f�L(i)=igZL(i;�1; : : : ; �L�1)+1f�L(i)>igEFi [YL(i+ 1;�1; : : : ; �L)℄:The following variant of Theorem 3.14 for yL is a dire
t 
onsequen
e of Theorem 3.14 andthe de�nition of yL.Corollary 3.16 Suppose 
onsistent stopping families �1; : : : ; �D are given with respe
tiveimprovers ��1; : : : ; ��D. Then the following 
hain of inequalities holds for 1 � L � D,yL(i; ��1; : : : ; ��L) � yL(i;�1; : : : ; �L�1; ��L) � yL(i;�1; : : : ; �L�1; e�L)� yL(i;�1; : : : ; �L):We may thus repla
e Y (m)L in Theorem 3.2 byy(m)L (i) := yL(i;�(m)1 ; : : : ; �(m)L ): (26)Theorem 3.17 All assertions of theorem 3.2 remain valid, when Y (m)L is repla
ed by y(m)L .Remark 3.18 (i) The reader may easily verify that yL(i;�1; : : : ; �L) and YL(i;�1; : : : ; �L)
oin
ide, whenZL(i;�1; : : : ; �L�1) � EFi [YL(i+ 1;�1; : : : ; �L)℄ =) �L(i) > i;and, ZL(i;�1; : : : ; �L�1) � YL(i;�1; : : : ; �L):Example 4.1-(ii) in Se
tion 4 exhibits an example where these 
onditions are violated and,(under one exer
ise right), Y (0; e� ) is stri
tly smaller than y(0; e� ) for some 
onsistentstopping family e� .(ii) Note that yL(i;�1; : : : ; �L) = maxfZL(i;�1; : : : ; �L�1);EFi [ZL(�L(i+ 1);�1; : : : ; �L�1)℄g:Thus, a Monte Carlo simulation based approximation of yL requires the same 
omputa-tional 
ost as for YL. In 
ontrast, a de�nition involving the maximum of ZL and bYL would14




ause higher 
osts.(iii) Note that yL(0;�1; : : : ; �L) 
an be 
omputed without knowledge of �1(0); : : : ; �L(0).This turns out to be a signi�
ant advantage of the algorithm for y(m)L over the algorithmfor Y (m)L , when 
onsidering stability under several exer
ise rights. Indeed, the introdu
-tion of y(m)L is mainly motivated by this stability issue and inspired by the study of theLongsta�-S
hwartz algorithm (Longsta� and S
hwartz, 2001) in Cl�ement et al. (2002).4 StabilityIn this se
tion we dis
uss the stability of the algorithm for multiple stopping, startingwith a study of the one-step improvement under one exer
ise right. We will fo
us on thestability of YL rather than yL (in (24)), sin
e all stability results for YL 
an be simplytransferred to yL. Some details of this transfer will be given in the 
ontext of severalexer
ise rights.4.1 Stability of the One-Step Improvement (L = 1)Suppose a 
onsistent stopping family � is given. As we 
annot expe
t to know the 
on-ditional expe
tations analyti
ally in general, but, may only 
al
ulate approximations, we
onsider instead of e�(i) a sequen
e of stopping familiese� (N)(i) := inffj : i � j � k; bY (j; �) + �(N)(j) � Z(j)g;where N 2 N, and �(N)(i) is a sequen
e of Fi-adapted pro
esses.We will �rst show by some simple examples that we must neither expe
te� (N)(i)! e�(i) in probability;nor Y (0; e� (N))! Y (0; e� ); (27)when limN!1 �(N)(i) = 0; P � a:s:Example 4.1 (i) Suppose (�N )N2N is a sequen
e of independent binary trials with P (�N =1) = P (�N = 0) = 1=2. We de�ne the pro
ess (Z(i) : i = 0; 1) by Z(0) = Z(1) � 1. The�-�eld F0 = F1 is the one generated by the sequen
e of trials. Moreover, the sequen
eof perturbations is de�ned by �(N)(0) = �N=N and �(N)(1) = 0. Then, starting with any
onsisting stopping family � , we get e� (N)(0) = �N :In parti
ular, no subsequen
e of e� (N)(0) 
onverges in probability.15



(ii) Let 
 = f!0; !1g, F the power set of 
, and P (f!1g) = 1=4 = 1 � P (f!0g). Wede�ne the pro
ess (Z(i) : i = 0; 1; 2) by Z(0) = Z(2) = 2, and Z(1; !0) = 1, Z(1; !1) = 3.Fi is the �ltration generated by Z. We start with the stopping family �(i) = i. AsE[Z(1)℄ = 3=2, we haveZ(0) = 2 � maxf3=2; 2g = maxfE[Z(1)℄; E[Z(2)℄g = bY (0; �):Therefore, e�(0) = 0and Y (0; e� ) = 2:The perturbation sequen
e �(N) is de�ned to be �(N)(1) = �(N)(2) � 0 and �(N)(0) = 1=N .A straightforward 
al
ulation shows that for N � 2,e� (N)(0; !0) = 2; e� (N)(0; !1) = 1:Thus, Y (0; e� (N)) = 9=4 > 2 = Y (0; e� );whi
h violates (27).We brie
y note that in this example,e�(1; !0) = 2; e�(1; !1) = 1and thus y(0; e� ) = 9=4 > 2 = Y (0; e� );i.e. the modi�ed improvement y performs better than Y . However, we emphasize, thatthe repla
ement of Y by y does not generally mend the stability problem explained in thisexample. Indeed, a 
hange of time i ! i + 1 and introdu
tion of new time 0 values, sayZ(0) = 0 and �(N)(0) = 0, transfers the same stability problem to y.At �rst glan
e, Example 4.1 paints a rather s
epti
al pi
ture of the stability properties ofthe one-step-improvement. Indeed, the best we 
an now hope for, is(ia) there is a sequen
e �� (N) of improvers of � su
h thatje� (N)(i)� �� (N)(i)j ! 0 P � a:s:(iia) The shortfall of Y (i; e� (N)) below Y (i; e� ) 
onverges to zero P -a.s.Note, however, that 
onvergen
e of the shortfall as in (iia) is the relevant question, not
onvergen
e of the distan
e as in (27), sin
e the shortfall 
orresponds to a 
hange forthe worse of e� (N) 
ompared to e� . As we are interested in an improvement it suÆ
es to16



guarantee that su
h a 
hange for the worse 
onverges to zero. An additional improvementof e� (N) 
ompared to e� due to the error pro
esses �(N) may be seen as a wel
ome side e�e
t!We now prove assertions (ia) and (iia). We �rst introdu
e a new sequen
e of stoppingfamilies whi
h turns out to 
onsist of improvers. Let us de�ne�� (N)(k) = k;and for i < k;�� (N)(i) = i () (e� (M)(i) > i for only �nitely many M)_ (e� (M)(i) = i for in�nitely many M and e� (N)(i) = i);�� (N)(i) 6= i =) �� (N)(i) = �� (N)(i+ 1):We then have the following result:Theorem 4.2 Suppose limN!1 �(N)(i) = 0 P � a:s:;for all 0 � i � k. Then �� (N) is an improver of � for every N 2 N.Proof. The 
onsistent property (3) is satis�ed by de�nition. We show (18) by ba
kwardindu
tion over i. The 
ase i = k is immediate. Suppose now 0 � i � k � 1 and (18) isalready shown for i + 1. On fe� (M)(i) = i for in�nitely many Mg we have, for in�nitelymany M (depending on !), Z(i) � bY (i; �) + �(M)(i):This means, Z(i) � bY (i; �) on fe� (M)(i) = i for in�nitely many Mg;as �(M)(i) tends to zero almost surely. However,f�� (N)(i) = ig � fe� (M)(i) = i for in�nitely many Mg:Thus, Z(i) � bY (i; �) on f�� (N)(i) = ig:But this implies e�(i) = i on f�� (N)(i) = ig. Consequently, (18) holds on f�� (N)(i) = ig.On the other hand, f�� (N)(i) > ig � fe� (M)(i) > i for in�nitely manyMg, and an analogousargument yields Z(i) � bY (i; �) on f�� (N)(i) > ig:Consequently, b�(i) > i and thus, by the indu
tion hypothesis,�� (N)(i) = �� (N)(i+ 1) � b�(i+ 1) = b�(i) on f�� (N)(i) > ig:The indu
tion hypothesis 
an be applied in the same way to show�� (N)(i) � e�(i) on f�� (N)(i) > ig \ fe� (i) > ig;whereas this inequality is trivially satis�ed on f�� (N)(i) > ig \ fe�(i) = ig. This 
ompletesthe proof of (18). 17



The next theorem 
ompletes the proof of assertion (ia).Theorem 4.3 je� (N)(i)� �� (N)(i)j ! 0 P � a:s:;or equivalently, P  \N2N 1[M=N ne� (M)(i) 6= �� (M)(i)o! = 0:Proof. The statement is obvious for i = k. Suppose now 0 � i � k � 1 and that thestatement is proved for i+ 1. De�ne,A(N; i) = 1[M=N ne� (M)(i) 6= �� (M)(i)o : (28)Clearly, A(N; i) = B(N; i) [ C(N; i) [D(N; i);where B(N; i) = 1[M=N ne� (M)(i) = io \ n�� (M)(i) > io ;C(N; i) = 1[M=N ne� (M)(i) > io \ n�� (M)(i) = io ;D(N; i) = 1[M=N ne� (M)(i) > io \ n�� (M)(i) > io \ ne� (M)(i) 6= �� (M)(i)o :Sin
e the sets B(N; i), C(N; i), and D(N; i) are de
reasing in N , we have\N2NA(N; i) =  \N2NB(N; i)! [ \N2NC(N; i)! [ \N2ND(N; i)! :We show, that the three sets on the right hand side are evanes
ent. Firstly, as �� (M) ande� (M) are 
onsistent, it holds D(N; i) � A(N; i+ 1):Hen
e, the interse
tion of the D(N; i)'s is a null set by the indu
tion hypothesis. By thede�nition of �� (M) we have,C(N; i) � 1[M=N ne� (M)(i) > io \ ne� (K)(i) > i for only �nitely many Ko :Thus, the interse
tion of the C(N; i)'s is a null set. A similar argument applies for theinterse
tion of the B(N; i)'s. 18



Assertion (iia) follows from the next theorem.Theorem 4.4 Suppose that for all i, 0 � i � k,limN!1 �(N)(i) = 0; P � a:s:Then, for all 0 � i � k,limN!1 ���Y (i; e� (N))� Y (i; �� (N))��� = 0 P � a:s:and limN!1�Y (i; e� (N))� Y (i; e� )�� = 0; P � a:s:Remark 4.5 By the dominated 
onvergen
e theorem the above 
onvergen
es also hold inL1(P ).Proof. With A(N; i) de�ned in (28) we obtain,���EFi hZ(e� (N)(i))i�EFi hZ(�� (N)(i))i���� ���EFi h�Z(e� (N)(i)) � Z(�� (N)(i))� 1A(N;i)i���� EFi �1A(N;i) max0�j�kZ(j)�! 0;by the dominated 
onvergen
e theorem, sin
elimN!11A(N;i) = 0 P � a:s:by Theorem 4.3. This proves the �rst 
laim. The se
ond 
laim then follows from Propo-sition 3.11.4.2 Stability of the Algorithm: The Case L = 1We are now going to explain how the stability result for the one-step improvement 
arriesover to the algorithm in the 
ase of one exer
ise right. We will make use of the followingperturbed monotoni
ity result.Proposition 4.6 Suppose (�N ) is a sequen
e of 
onsistent stopping families and, for all0 � i � k, limN!1 (Y (i; �N )� Y (i; �))� = 0 P � a:s:Then, for all 0 � i � k, limN!1 (Y (i; e�N )� Y (i; e� ))� = 0 P � a:s:;where e�N(i) := inffj : i � j � k; bY (j; �N ) � Z(j)g:19



Remark 4.7 For a 
onstant sequen
e �N = � for all N , with � being 
onsistent, Propo-sition 4.6 states: Y (i; �) � Y (i; �) =) Y (i; e�) � Y (i; e� ):By de�ning a preferen
e stru
ture on the set of stopping families in a natural way via� � � :() Y (i; �) � Y (i; �);we see that the improvement operator e preserves this preferen
e stru
ture.Proof. The statement will be proved by ba
kward indu
tion over i. The indu
tion basei = k is obvious. Suppose the statement is proved for some 1 � i+ 1 � k.We �rst note that by Remark 3.10,1fe�(i)=ig (Y (i; e�N )� Y (i; e� ))� � (Y (i; e�N )� Z(i))� = 0: (29)We next show that the statement is true on the set fe�M (i) = i for in�nitely many Mg.For this we need the following preliminary 
onsideration. By Jensen's inequality and thedominated 
onvergen
e theorem, for all p � i it holds,�EFi [Y (p; �N )℄�EFi [Y (p; �)℄�� � EFi �(Y (p; �N )� Y (p; �))��! 0:Thus, limN!1�bY (i; �N )� bY (i; �)�� = 0 P � a:s:; (30)sin
e the max-operator is 
ontinuous with respe
t to the metri
 generated by the negativepart. On fe�M (i) = i for in�nitely many Mg we have for in�nitely many M ,bY (i; �M ) � Z(i):Sin
e �Z(i)� bY (i; �)�� � �Z(i)� bY (i; �M )�� + �bY (i; �M )� bY (i; �)�� ;we may 
on
lude from (30), thatZ(i) � bY (i; �) on fe�M (i) = i for in�nitely many Mg:Hen
e, fe�M (i) = i for in�nitely many Mg � fe�(i) = ig:On the latter set the statement was proved in (29).It remains to verify the statement onE(i) = fe�M (i) = i for only �nitely many Mg \ fe�(i) > ig:De�ne N0(i) = 1E(i)maxfN ; e�N (i) = ig+ 1;20



and note that the pro
ess N0(i) is Fi-adapted. Sin
ee�N (i) > i on fN � N0(i)g \E(i);it follows from the indu
tion hypothesis, Jensen's inequality, and the dominated 
onver-gen
e theorem, that1fN�N0(i)g\E(i) (Y (i; e�N )� Y (i; e� ))�= 1fN�N0(i)g\E(i) �EFi [Y (i+ 1; e�N )℄�EFi [Y (i+ 1; e� )℄��� EFi �(Y (i+ 1; e�N )� Y (i+ 1; e� ))��! 0:For notational 
onvenien
e we state the stability result of the algorithm for two improve-ment steps (m = 2) only. It is immediate, how this extends to higher iterations. Wewill also skip all subs
ripts, whi
h are super
uous in the 
ase of one exer
ise right. Forinstan
e, we write � (1) instead of � (1)1;1 . First note that with � = � (0),� (1)(i) = e�(i);� (2)(i) = ee�(i) = inffj : i � j � k; bY (j; e� ) � Z(j)g:Let us suppose that for (N1; N2) 2 N�N , sequen
es �(N1)(i) and �(N1;N2)(i) are given su
hthat for 0 � i � k, limN1!1 �(N1)(i) = 0 P � a:s:;and, for 0 � i � k and N1 2 N,limN2!1 �(N1;N2)(i) = 0 P � a:s:We then de�nee� (N1)(i) := inffj : i � j � k; bY (j; �) + �(N1)(j) � Z(j)g;ee� (N1)(i) := inffj : i � j � k; bY (j; e� (N1)) � Z(j)g;ee� (N1;N2)(i) := inffj : i � j � k; bY (j; e� (N1)) + �(N1;N2)(j) � Z(j)g:Theorem 4.4 now yields limN1!1�Y (i; e� (N1))� Y (i; e� )�� = 0 P � a:s:; (31)limN2!1�Y (i;ee� (N1;N2))� Y (i;ee� (N1))�� = 0 P � a:s: (32)In view of (31) we obtain by Proposition 4.6,limN1!1�Y (i;ee� (N1))� Y (i;ee� )�� = 0 P � a:s: (33)21



From �Y (i;ee� (N1;N2))� Y (2)(i)��� �Y (i;ee� (N1;N2))� Y (i;ee� (N1))�� +�Y (i;ee� (N1))� Y (i;ee� )�� ;we then obtain,Theorem 4.8 For all 0 � i � k,limN1!1 limN2!1�Y (i;ee� (N1;N2))� Y (2)(i)�� = 0P -almost surely and in L1(P ).The generalization of this result to m iteration steps may be put into words as follows:The shortfall of the investor's expe
ted gain 
orresponding to m perturbed steps of thealgorithm below the expe
ted gain 
orresponding to m theoreti
al steps 
onverges to zero.We emphasize again that it may happen that the perturbed algorithm performs evenbetter than the theoreti
al (
ompare Example 4.1-(ii)).4.3 Stability under Several Exer
ise RightsThe stability issue be
omes more involved under several exer
ise rights. One reason isthat we 
annot expe
t to have the inequalityYL(i; ��1; : : : ; ��L) � YL(i; e�1; : : : ; e�L);where ��1; : : : ; ��L are arbitrary improvers of �1; : : : ; �L, but only the inequalities stated inTheorem 3.14. In other words, we 
annot identify a worst improver as was possible in the
ase of one exer
ise right. Theorem 3.14 suggest that we must 
on�ne ourselves with thefollowing stability result for the one-step improvement under several rights.Theorem 4.9 Suppose �1; : : : ; �D are 
onsistent stopping families. De�ne for 1 � L �D, e�L(i) = inffj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1)� bYL(j;�1; : : : ; �L) + �(N)L (j)g;where for all 1 � L � D, 0 � i � k,limN!1 �(N)L (i) = 0 P � a:s:Then, there are sequen
es of improver ��(N)1 ; : : : ; ��(N)D of �1; : : : ; �D su
h that, for all 1 �L � D, limN!1 je�(N)L (i)� ��(N)L (i)j = 0:22



Moreover, limN!1 ���YL(i; e�(N)1 ; : : : ; e�(N)L )� YL(i; ��(N)1 ; : : : ; ��(N)L )��� = 0 P � a:s:;and limN!1�YL(i; e�(N)1 ; : : : ; e�(N)L )� YL(i;�1; : : : ; �L�1; e�L)�� = 0 P � a:s:Proof. In view of Lemma 3.12 and Theorem 3.14, the theorem follows by straightforwardredu
tion to the 
ase of one exer
ise right.Again we demonstrate the stability of the multiple stopping algorithm only for two steps(m = 2). Suppose we are given 
onsistent starting families �1; : : : ; �D (with suppressedsupers
ript 0 in the notation of the algorithm). Re
all that�(1)L (i) := e�L(i);�(2)L (i) := e�(1)L (i) = ee�L(i):We next 
onsider perturbed versions,e�(N1)L (i) = inffj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1)� bYL(j;�1; : : : ; �L) + �(N1)L (j)g;ee�(N1;N2)L (i) = inffj � i; Z(j) +EFjYL�1(j + Æ; e�(N1)1 ; : : : ; e�(N1)L�1 )� bYL(j; e�(N1)1 ; : : : ; e�(N1)L ) + �(N1;N2)L (j)g;with limN1!1 �(N1)L (i) = 0 P � a:s:;limN2!1 �(N1;N2)L (i) = 0 P � a:s:In order to iterate the stability result from the previous theorem we will now additionallyassume that, for 1 � L � D, 0 � i � k � 1,��L(i) = limN1!1 e�(N1)L (i) (34)exists. Note that, by Theorem 4.9, the limit ��L 
an be rewritten as a limit of L-improvers.By the de�nition of an L-improver it is straightforward that ��L is an L-improver itself.We postpone a dis
ussion of assumption (34) and 
ontinue to prove stability under thisassumption.We denote by ee�(N1)L the theoreti
al e -improvement of e�(N1)L . The additional assumption(34) now ensures that we 
an write (by applying Lemma 3.12),ee�(N1)L (i) = inffj � i; ZL(j; ��1; : : : ; ��L�1)� maxp�j+1EFj ZL(��L(p); ��1; : : : ; ��L�1) + e�(N1)L (i)g;23



where limN1!1e�(N1)L (i) = 0 P � a:s:We now de�ne �e�(N1)L (k) = k;and �e�(N1)L (i) = i () (ee�(M)L (i) > i for only �nitely many M)_ (ee�(M)L (i) = i for in�nitely many M and ee�(N1)L (i) = i);�e�(N1)L (i) 6= i =) �e�(N1)L (i) = �e�(N1)L (i+ 1):By Theorem 4.3, we have for all 1 � L � D,limN1!1 jee�(N1)L (i)� �e�(N1)L (i)j = 0:Thus, P -almost surely,limN1!1 ����YL(i; e�(N1)1 ; : : : ; e�(N1)L�1 ; ee�(N1)L )� YL(i; ��1(i); : : : ; ��L�1(i); �e�(N1)L )���� = 0: (35)Moreover, by Theorem 4.2, for all 1 � L � D, �e�(N1)L is an improver of ��L with respe
tto the 
ash-
ow ZL(�; ��1; : : : ��L�1), and thus an L-improver with respe
t to (��1; : : : ; ��L�1)(Lemma 3.12). Hen
e, by Theorem 3.14,�YL(i; ��1(i); : : : ; ��L�1(i); �e�(N1)L )� YL(i; ��1(i); : : : ; ��L�1(i); e��L)�� = 0: (36)Here, again, e��L is the theoreti
ale-improvement of ��L. Finally, by Theorem 4.9, P -almostsurely, limN2!1�YL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� YL(i; e�(N1)1 ; : : : ; e�(N1)L�1 ; ee�(N1)L )�� = 0: (37)Clearly, the 
onvergen
e in (35) and (37) also holds in L1(P ). By 
ombining (35){(37),we obtain,limN1!1 limN2!1�YL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� YL(i; ��1; : : : ; ��L�1; e��L)�� = 0; (38)P -almost surely and in L1(P ). Re
all that ��1; : : : ; ��L are some theoreti
al improvers of�1; : : : ; �L. Thus, e��L is a theoreti
al two-step improvement of �L.We now dis
uss the additional assumption (34). (34) 
an be violated for i = 0 very easily,as the following variant of Example 4.1-(i), shows.24



Example 4.10 Suppose the initial value ZL(0;�1; : : : ; �L�1) equals the real number bYL(0;�1; : : : ; �L).Note that this 
an always be enfor
ed for some 1 � L � D by 
hanging the initial valueZ(0) of the 
ash-
ow appropriately. Moreover, assume �(N1)L (0) = �N1=N1 for a sequen
e(�N1) of independent binary trials as in Example 4.1-(i). Then again,e�(N1)L (0) = �N1 ;whi
h does not 
onverge almost surely when N1 tends to in�nity. It is 
lear that moregeneral perturbations, whi
h take positive and non-positive values with positive probability,yield the same e�e
t.The problem indi
ated in this example was our main motivation to introdu
e the modi�edalgorithm based on yL instead of YL. Suppose for the moment, that (34) is satis�ed for1 � i � k � 1 only. Then (38) holds for 1 � i � k. By the de�nition of yL and Jensen'sinequality we obtain,�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; ��1; : : : ; ��L�1; e��L)��� EFi �YL(i+ 1; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� YL(i+ 1; ��1; : : : ; ��L�1; e��L)�� :Thus, by dominated 
onvergen
e, for all 0 � i � k,limN1!1 limN2!1�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; ��1; : : : ; ��L�1; e��L)�� = 0;P -almost surely and in L1(P ).We summarize the previous dis
ussion in the following theorem:Theorem 4.11 Suppose that for all 1 � L � D and 1 � i � k � 1,��L(i) = limN1!1 e�(N1)L (i)exist. Then ��1; : : : ; ��D are improvers of �1; : : : ; �D up from time 1 (they are not de�nedat time 0).De�ne by e��L (1 � L � D) the theoreti
al e -L-improver of ��L with respe
t to (��1; : : : ; ��L�1).Then, for all 0 � i � k, 1 � L � D,limN1!1 limN2!1�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; ��1; : : : ; ��L�1; e��L)�� = 0P -almost surely and in L1(P ). The 
orresponding result for YL, i.e. (38), holds up fromtime i=1. It holds up from time i = 0, when (34) is also valid for i = 0.The previous theorem still 
alls for suÆ
ien
y 
riteria for assumption (34) for 1 � i � k�1.25



Theorem 4.12 Suppose, for all 1 � L � D, 1 � i � k � 1,P �ZL(i;�1; : : : ; �L�1) = maxp�i+1EFi [ZL(�L(p);�1; : : : ; �L�1)℄� = 0: (39)Then, (34) is satis�ed for all 1 � i � k � 1 and 1 � L � D. Moreover, for 0 � i � k � 1and 1 � L � D,limN1!1 limN2!1�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; e�1; : : : ; e�L�1; ee�L)�� = 0;P -almost surely and in L1(P ).Proof. By (21) and (22) assumption (39) guarantees that, for all 1 � L � D and1 � i � k, e�L(i) = b�L(i) P � a:s:This implies that the sequen
e ��(N)L (i) of Theorem 4.9 
oin
ides with e�L(i) for all N 2 N.In parti
ular, Theorem 4.9 yields that for all 1 � L � D and 1 � i � k,limN1!1 e�(N1)L (i) = e�L(i):The theorem now follows by appli
ation of Theorem 4.11.The pro
edure des
ribed in this se
tion 
an be iterated straightforwardly. For instan
e,under the additional (to (34)) assumption that���L(i) = limN1!1 limN2!1 ee�(N1;N2)L (i) (40)for 1 � L � D and 1 � i � k � 1 exists, we obtain for m = 3 (with obvious notations),�yL(i; eee�(N1;N2;N3)1 ; : : : ; eee�(N1;N2;N3)L )� yL(i; ���1(i); : : : ; ���L�1(i); e���L)�� ! 0 (41)P -almost surely and in L1(P ), when N3; N2; and N1 tend to in�nity. Here, one 
anverify that the limit ���L improves upon ��L de�ned in (34) up from time i = 1. Thus, ���L,1 � L � D, is a two-step improvement of �L (up from time i = 1) and e���L , 1 � L � D, isa three-step improvement of �L (up from time i = 1).If, in addition to (39), we haveP �ZL(i; e�1; : : : ; e�L�1) = maxp�i+1EFi [ZL(e�L(p); e�1; : : : ; e�L�1)℄� = 0; (42)for 1 � L � D; 1 � i � k� 1, then (34) and (40) are satis�ed and the limit in (40) equalsee�L(i). Thus, (41) yields an analogue of Theorem 4.12 for three iterations.Remark 4.13 In view of Theorem 4.8 the assumptions of this se
tion 
an be slightlyrelaxed. Indeed, for the improvement of the �rst stopping family �1 we may apply Theo-rem 4.8 dire
tly. Therefore, it suÆ
es to assume all additional properties for 2 � L � Dinstead of 1 � L � D. Then, of 
ourse, ��1, ���1 must be repla
ed by e�1, ee�1.26



Dis
ussion of stability resultsUnder one exer
ise right we were able to prove that the shortfall of the perturbed algo-rithm under the theoreti
al (non-perturbed) algorithm 
onverges to zero (Theorem 4.8).Compared to this the stability results under several rights are less satisfa
tory in two re-spe
ts. We will now explain, why the obtained results are suÆ
ient to 
all the algorithmstable, and why we think that better results are unlikely to hold.The �rst short
oming is that the stability results under several rights, (even for one step),do not allow to 
ompare the theoreti
al and the perturbed improvement dire
tly. Toover
ome this, one 
ould employ the improvement strategy of Remark 3.4. But, as weexplained there, this would 
ause mu
h higher simulation 
osts, when implementation thealgorithm. As one of the key issues of the paper is to provide an algorithm with few nest-ings of 
onditional expe
tations, we de
ided not to go along this way. When iterating theone-step improvement, the fa
t that we make use of the pro
edure in (7) 
auses the fol-lowing e�e
t: After m iterations we 
an only guarantee that the shortfall of the perturbedalgorithm below some theoreti
al (m � 1)-step improvement, not below some theoreti
alm-step improvement, 
onverges to zero (a
tually a little more, see Theorem 4.11). Hen
e,(m + 1) nestings of 
onditional expe
tations are needed to 
ompare with some m-stepimprovement. This is still mu
h less than the nestings required to 
al
ulate m steps ofthe improvement type introdu
ed in Remark 3.4. We also note that the 
omparison withsome m-step improvement instead of the theoreti
al algorithm does not make too mu
hof a di�eren
e due to Remark 3.15. Moreover, Theorem 4.12 allows to 
ompare (m + 1)perturbed steps of the yL-algorithm with m theoreti
al steps of this algorithm.The se
ond drawba
k, 
ompared to stability under one exer
ise right, is that we had toimpose additional 
onditions in order to iterate the one-step stability. Under one exer
iseright the monotoni
ity result in Proposition 4.6 allows to 
ir
umvent these assumptions.We believe a multi-exer
ise version of proposition 4.6 is unlikely to hold for the followingreason: Suppose �1; : : : ; �L and �01; : : : ; �0L are 
onsistent stopping families with respe
-tive improvers e�1; : : : ; e�L and e�01; : : : ; e�0L. Then, e�L and e�0L may be viewed as improversunder one exer
ise right with respe
t to the di�erent 
ash-
ows ZL(i;�1; : : : ; �L�1) andZL(i;�01; : : : ; �0L�1). But 
omparisons of the quality of improvements with respe
t to dif-ferent 
ash-
ows even fail, when one 
ash-
ow dominates the other. We �nally note, thatan assumption similar to (39) has been made in Cl�ement et al. (2002) in order to provestability of the Longsta�-S
hwartz algorithm for the optimal stopping problem under asingle exer
ise right.5 Con
lusionMotivated by the pri
ing problem of �nan
ial instruments with multiple early exer
iseopportunities we presented a new algorithm for the multiple stopping problem in dis
rete27



time and proved stability results for this algorithm. From a numeri
al point of view, themain feature of the algorithm is that it allows to 
al
ulate an in
reasing and 
onvergentfamily of approximations of the Snell envelope with the order of nested 
onditional ex-pe
tations for the mth approximation independent of the number of exer
ise rights. Thealgorithm is therefore tailor-made for a plain Monte-Carlo implementation and is thus ex-pe
ted to be parti
ularly powerful when the 
ash-
ow is a fun
tion of a high-dimensionalMarkov pro
ess. Under a single exer
ise right the strength of the algorithm is demon-strated by the simulation results in Kolodko and S
hoenmakers (2004). Simulations underseveral exer
ise rights will be dis
ussed in a forth
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