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Abstract

We present a new iterative procedure for solving the discrete multiple stopping
problem and discuss the stability of the algorithm. The algorithm produces monoton-
ically increasing approximations of the Snell envelope, which coincide with the Snell
envelope after finitely many steps. Contrary to backward dynamic programming,
the algorithm allows to calculate approximative solutions with only a few nestings
of conditionals expectations and is, therefore, tailor-made for a plain Monte-Carlo

implementation.

1 Introduction

Financial derivatives with several early exercise rights play an important role in several
markets. For example, electricity markets (e.g. swing options) and interest rate markets
(e.g. chooser flexible caps). The pricing problem for such instruments is equivalent to
a multiple stopping problem which is solved in practice by trinomial forests usually, see
Jaillet et al. (2004) and the references therein. However, this pricing procedure is re-
stricted to models for low-dimensional underlying processes, since trees tend to explode
with increasing dimension of the underlying process.

Obviously, multiple callable instruments with respect to a high dimensional interest rate
model such as the very popular Libor market model, and also multiple callable options on
a basket of several assets, do not meet this restriction. So new pricing methods for finan-
cial instruments with early exercise opportunities, based on high-dimensional underlying
processes, are called for.

The problem of exploding computational cost, when the dimension of the underlying
processes increases, is known as ‘curse of dimensionality’. Even in the case of a single
exercise right (i.e. the pricing problem of an American option or, equivalently, the optimal
stopping problem), the classical approaches such as tree methods, initialized by Cox et
al. (1979), or PDE techniques (Bensoussan and Lion, 1982; Van Moerbecke, 1976) are
affected by the curse of dimensionality. Only in recent years several approaches have been
proposed to overcome this problem for American style derivatives, hence the case of a
single exercise right. These methods basically rely on Monte-Carlo simulation and can be
roughly divided into three groups. The first group directly employs a recursive scheme
for solving the stopping problem, known as backward dynamic programming. Different
techniques are applied to approximate the nested conditional expectations. The stochastic
mesh method by Broadie et al. (2000) and the least square regression method of Longstaff



and Schwartz (2001) are among the most popular approaches in this group. An alternative
to backward dynamic programming is to approximate the exercise boundary by simulation,
see e.g. Andersen (1999), Ibdnez and Zapatero (2004), and Milstein et al. (2004). The
third group relies on a dual approach developed in Rogers (2002), Haugh and Kogan
(2004), and in a multiplicative setting by Jamshidian (2003). For a numerical treatment
of this approach, see Kolodko and Schoenmakers (2003). By duality, tight price upper
bounds may be constructed from given approximative processes.

The methods in these three categories can be transferred from one to several exercise
opportunities because the multiple stopping problem is equivalent to a system of nested
single stopping problems. Meinshausen and Hambly (2004) suggest an extension of the
Longstaff and Schwartz (2001)-algorithm to several exercise rights along these lines. Their
main contribution is, however, a derivation of the dual formulation under several exercise
rights. Tbdniez (2004) presents a generalization of Ibdnez and Zapatero (2004) for multiple

exercise opportunities.

The aim of the present paper is twofold: Firstly, we suggest an algorithm for the multiple
stopping problem, which generalizes a procedure recently introduced by Kolodko and
Schoenmakers (2004) for the single stopping problem. Secondly, we analyze stability of
the algorithm under one as well as under several exercise rights.

The policy-improvement algorithm proposed in Kolodko and Schoenmakers (2004) is
mending one of the main drawbacks of the backward dynamic programming scheme: Sup-
pose exercise can take place at one out of k time instances. Then, in order to obtain
the value of the optimal stopping problem via backward dynamic programming, one has
to calculate nested conditional expectations of order k. No approximation of the time 0
value is available prior to the evaluation of the kth nested conditional expectations. This
prevents the use of plain Monte-Carlo simulations for approximating the conditional expec-
tations and requires more complicated approximation procedures for these quantities. For
instance, to employ the procedure of Longstaff and Schwartz (2001), one has to choose
the number of basis functions and the basis functions themselves. Moreover, the error
analysis of the Longstaff and Schwartz (2001)-algorithm in Egloff (2004) suggests that the
error propagation backward in time increases exponentially in the number of time steps.
Contrary, the algorithm of Kolodko and Schoenmakers (2004) yields approximations of the
time 0 value of the value function for every iteration step, which monotonically increase to
the Snell envelope. This allows for a plain Monte-Carlo simulation of the conditional ex-
pectations. Indeed, the simulations in Kolodko and Schoenmakers (2004) show that good
approximations can be obtained with a quadratic simulation (i.e. two iteration steps),
even for very high(d = 40!)-dimensional problems.

In fact, the main advantage of the algorithm in Kolodko and Schoenmakers (2004) were
lost, if a multi-exercise version would be straightforwardly defined as a nesting of one-
exercise versions. This would cause nested conditional expectations in each iteration step
and, thus, again prevent the use of a plain Monte Carlo implementation. Instead we



present a multiple exercise version of the policy-improvement algorithm in a way that
the order of nestings does not depend on the number of exercise rights. It is therefore
tailored for plain Monte-Carlo simulation of the conditional expectations. We also prove
that the algorithm coincides with the Snell envelope under L exercise rights after the same
number of iterations as needed for the nested dynamic programming algorithm proposed
in Carmona and Touzi (2003). This shows that our algorithm is theoretically as good as
backward dynamic programming, but superior from a practical point of view.

The second contribution of our paper is a stability analysis for the policy-improvement
algorithm of Kolodko and Schoenmakers (2004) and its multi-exercise extension. In the
case of a single exercise right the stability result can be put in words as follows (recall, one
can think of the stopping problem as an investor trying to maximize his expected gain):
The shortfall of the investor’s expected gain corresponding to m steps of the perturbed
algorithm below the expected gain corresponding to m steps of the theoretical algorithm
converges to zero. Surprisingly, it can happen that the perturbed algorithm performs
better than the theoretical one (as is shown in example 4.1). Put differently, in compar-
ison with the theoretical algorithm, better approximations of the Snell envelope may be
achieved due to simulation errors! A little weaker result is obtained in the multi-exercise

case.

The paper is organized as follows: In Section 2 we pose the multiple stopping problem
and explain its connection to the single stopping problem. Then in Section 3 we state the
multiple exercise algorithm and prove its convergence. In particular, in Section 3.2 and
3.3 we put a main emphasis on the analysis of the building blocks of the algorithm, called
one-step improvements. The results of Sections 3.2-3.3 are crucial for the discussion of
stability in Section 4. Section 5 concludes.

2 On the Multiple Stopping Problem

Suppose (Z(i): i = 0,1,...,k) is a nonnegative stochastic process in discrete time on a
probability space (Q, F, P) adapted to some filtration (F; : 0 < ¢ < k) which satisfies

k
> E|Z(i)] < co.
i=1

We may think of the process Z as a cash-flow, which an investor may exercise L times.
The investors’ problem is to maximize his expected gain by exercising optimally. He is
subjected to the additional constraint that he has to wait a minimal time § € N between
exercising two rights. The introduction of § avoids mathematical trivialities, as otherwise
the investor would exercise all rights at the same time. To emphasize that the introduction
of § is not a mathematical oddity, we will refer to & as the refracting period following the

terminology from swing options.

We now formalize the multiple stopping problem. For notational convenience we trivially



extend the cash-flow process by Z(i) = 0 and F; = F}, for ¢ > k. Let us define S;(L, §) as
the set of F; stopping vectors (71 (%),...,7(2)) such that ¢ < 74(7) and, for all 2 < j < L,
7j—1(2) + 0 < 7j(2). The multiple stopping problem may then be stated as follows: Find a
family of stopping vectors 7*(i) € S;(L,d) such that for 0 <i < k

L L

E7i Z Z(77(i)) | = esssup,¢s,(L,q) E7i Z Z(1§)

The process on the right hand side is called the Snell envelope of Z under L exercise
rights and we denote it by Y;*(i). We sometimes write Y* (i) = Y;*(¢).

The case of one exercise right L = 1 is very well studied. We collect some facts, which can
be found in Neveu (1975).

1. The Snell envelope Y* of Z under one exercise rights is the smallest supermartingale
that dominates Z.

2. A family of optimal stopping times for the stopping problem with one exercise rights
is given by
@) =inf{i<j: Z(j) >Y*()}, 0<i<k.
If several optimal stopping families exist, then the above family is the family of first

optimal stopping times.

The multiple stopping problem can be reduced to L nested stopping problems with one
exercise right (see also Carmona and Touzi (2003) and Carmona and Dayanik (2004) for

the more demanding continuous time setting). We briefly explain the reduction.

Define a sequence of processes (Xy, ..., Xr,...) as follows. X := 0, Xy := Y}* is the Snell
envelope of Z. Xr, L > 2, is the Snell envelope of the cash-flow Z(i) + E¥ X1 _1(i + 0)
under one exercise right. We also define for L =1,2,...,

oy(i) =inf{i <j: Z(j) + BT Xy 1(j + ) > Xi(j)}, >0,

i.e. the first optimal stopping families for the sequence of single stopping problems. It is
straightforward to show by induction over L, that

Yi(6) = Xp(i), 1<i<k, (1)

and a family of optimal stopping vectors for the multiple stopping problem with L exercise
rights and cash-flow Z is given by

(i) = opi)

Tar,L(®) = Tap1(op(i)+6) 1<d<L-1. (2)
Note that, due to the convention Z(i) = 0 for i > k, we have 7{ /(i) = o7 (i) = i for i > k.
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The reduction (1), (2) is intuitively clear: It basically says, that the investor has to choose
the first stopping time of the stopping vector in the following way: Decide, at time j,
whether it is better to take the cash-flow Z(j) and enter a new contract with L — 1
exercise rights starting at 7 + 4, or to keep the L exercise rights. Then, after entering the
stopping problem with L — 1 exercise rights, he proceeds to behave optimally.

By the above reduction, any algorithm for single optimal stopping problems can, in prin-
ciple, be applied iteratively to the multiple stopping problem. For example, Carmona
and Touzi (2003) suggested to apply backward dynamic programming iteratively to the
L stopping problems. This obviously leads to even higher nestings of conditional expec-
tations than the dynamic programming approach yields for the single stopping problems,
and, as a consequence, to tremendous simulation costs in a plain Monte Carlo approach.

Contrary, we are going to present an algorithm which simultaneously improves the Snell
envelope under L = 1,..., D exercise rights with the order of nested conditional expecta-

tions for a given number of iterations independent of L.

3 An Algorithm for Multiple Stopping

3.1 The Algorithm

We now explain our new algorithm for the multiple stopping problem. In the case of a
single exercise right it coincides with the procedure suggested in Kolodko and Schoenmak-
ers (2004). The building block of the algorithm is, as in the case of one exercise right, a
policy improvement. More precisely, suppose we are given the families of stopping times

oL(i), 0<i<k, 1<L<D,

trivially extended with o, (i) = ¢ for ¢ > k. Recall that k is the time horizon of the real
cash-flow process. We are interested in the Snell envelope with L exercise rights for all
1 < L < D and refracting period §. We interpret o (i) as the time, when the investor
exercises (possibly in a suboptimal way) the first of his L rights, given that he has not
exercised prior to time . This interpretation requires that the stopping families oz, under

consideration are consistent in the sense of the following definition:

Definition 3.1 A family of integer-valued stopping times (7(i) : 0 < i < k) is said to be
consistent, if for 0 <i < k,

i <71(i) <k, 7(k) =k,

(i) >i=>71() =70+ 1). (3)

Indeed, suppose o,(i) > i, i.e. according to our interpretation the investor has not ex-
ercised the first right prior to time ¢ + 1. Then he has not exercised the first right prior



to time ¢, either. This means he will exercise the first right at times o(7) and o (i + 1),
which requires o,(i) = o(i + 1). Note: A trivial example of a non-consistent stopping
family is 7(i) = min(: + 1, k).

Given consistent stopping families o, L = 1,2, ..., we define associated stopping families
Td+1,L via,
m,L(i) = or(i)
Ta+1,L(i) = Tar-1(op(i) +6) 1<d<L-L (4)

74,1,(1) can be interpreted as the time, when the investor exercises the dth of his L exercise
rights, provided he has not exercised his first right prior to time .

An approximation of the Snell envelope with L exercise rights is now given by

L
> Z(Td,L(i))] - (5)

Y(i;01,...01) := E7

d=1
Note, Y7(i;01,...0r) has a simple interpretation as the expected gain (conditional on F;)
the investor obtains when he employs the stopping families o1,...,0, for exercising the
cash-flows.

We then introduce intermediate processes

Yi(i;01,...,01) = max E7
i+1<p<k

L
> Z (Td,L(p))] (6)

d=1

on which a next exercise criterion is built,
or(i) := inf {j > iy Z(j) + B YL 1(j + 801,...,00-1) > Yi(j; 01, ... :UL)} , (1)

with Yy(7) := 0. Note that (k) = k since max() = —oo, and, obviously, the stopping
families &7, are consistent for 1 < L < D.

(0)

Given consistent starting families of stopping times o;’, 1 < L < D, we define iteratively,

op i) = 5" V),
Yém) (1) = Yi(s; O'§m), . ,O’ém)). (8)

Canonical consistent starting families are given, for instance, by 0(0)(2') =i, L=12,...
Theorem 3.2 Suppose the stopping families O'(LU)(Z') are consistent for all 1 < L < D.
Then, for allm € N, 1< L <D, and0<1i<k,
+1),. .
v 6) > v ().

Moreover, for m > Lk — 1,
Y™ (i) = Y2 (0),

where Y7 denotes the Snell envelope of Z under L exercise rights.



Remark 3.3 The algorithm provides an iteration scheme of increasing lower bounds for
the Snell envelope under L ezercise rights. By a dual method, developed by Rogers (2002)
and Haugh and Kogan (2004), and extended to the case of several exercise rights as in
Meinshausen and Hambly (2004), one can construct a family of convergent upper bounds
given this family of lower bounds.

Remark 3.4 The reader might suggest to consider the following intuitively better algo-
rithm: Given consistent stopping families o1,...,0p, define o,(i) := or(i), and then,

recursively in L,

o (i) = inf{j >4 Z(G)+EDYL (i + 604,00 1)
ZYL(j;gla"'agLflao'L)}‘

The wvery intuition of this modification is to use the already improved stopping times

01(%),...,01_1(2) for improving or,.

For given consistent starting families of stopping times U(LO), 1 <L <D we may then
define,

oM@ = o),

YI[Jm} (1) = Yiu(s; O'gm}, . ,O'[Lm}).

It can be shown, that all assertions of Theorem 3.2 also hold for YL[m} instead of YL(m).
However, the modified algorithm YL[m} requires calculation of nested conditional erpecta-
tions within each improvement step. Therefore it requires much higher computational costs,
when the conditional expectations are approximated by Monte Carlo simulation. Indeed,
the main advantage of the algorithm (8) based on (7) is that the order of nested conditional
expectations for a given number of iterations does not depend on the number of exercise
rights.

Before we prove Theorem 3.2 in Section 3.4, we investigate in the next two subsections the
building blocks, which we will refer to as one-step improvements in more detail. We first
consider the case of one exercise right and generalize results of Kolodko and Schoenmakers
(2004). These generalizations will be of crucial importance for investigating the stability
of the proposed algorithm in Section 4.

3.2 A Generalization of the One-Step Improvement in the Case of One
Exercise Right

Suppose a consistent stopping family (7(¢) : 1 < i < k) is given. We then define the

process
Y(i;) == BT [Z(r(d))]. (9)



Based on the sequence (7(i) : 1 < i < k) Kolodko and Schoenmakers (2004) construct a

new family (7(i) : 1 < ¢ < k) in the following way: Introduce an intermediate process

Y(i;7) := max E%[Z(r(p))], (10)
p:i<p<k
which serves as a new exercise criterion, i.e.
(@) = inf{j:i<j <k Y(j7)<Z()} (11)

= inf{j:i<j<k, max E%i[Z(r(p)] < Z()}, 0<i<k.
p:j<p<k

Kolodko and Schoenmakers (2004), Theorem 3.1, show that 7 is an improvement of 7 in
the sense that the new strategy promises a higher expected gain for the investor than the

old one, i.e.
Y(47) > Y(i;7) > V(i;7).

Our first aim is to find a wider class of stopping families 7 such that

Y(i;7) >Y(i;7) > Y(3;7).

To this end we first compare the intermediate processes )N/(z, 7) and

S 7,
Plisr) = max_ 57 (Z(r(p)]. (12)
Lemma 3.5 Suppose the stopping family T is consistent. Then, for 0 <i <k,
Y (557) = Liry>iy Y (657) + Lr(i)—y max {?(i; 7), Z(i)}- (13)
In particular,
Z2() 2 Y(i7) < 2() 2 Y (i;7), (14)
and
(i) =inf{j : i <j <k, Y(j) < Z(j)} (15)
Proof. By property (3), we have,
E7Z(r(d)] = E7 [1pa-aZ@0)] + B [1asa Z(r(E +1))]
= 1ga=iy Z(0) + Ly E7 [Z(7(i + 1))
Since
V(i;) = max {¥ (i 7), B [2(r())]}

(13) follows with (14) and (15) as immediate consequences.



We next define another stopping family, namely,
(i) =inf{j:i<j <k Y(j) < 2()} (16)

By (15),
7(i) > 7(3). (17)

We are now ready to state a generalization of Theorem 3.1 in Kolodko and Schoenmakers
(2004), which provides the basis of our stability analysis.

Theorem 3.6 Let (1(i), 1 < i < k) be a consistent stopping family. Suppose (7(i), 1 <

i < k) is also consistent and satisfies
(1) <7(3) <7(t) 0<i<k. (18)

Then,

Remark 3.7 Obviously, the choices T = T and T = T are examples of a family T satisfying
(3) and (18).

Proof. The second inequality is trivial. We prove the first inequality by backward induc-
tion over ¢. For ¢ = k, note that

Y (k;7) = Z(k) = Y (k; 7).

Now suppose 0 < i < k — 1, and that the assertion is already proved for ¢ 4+ 1. It holds
{7(i) =i} C {7(i) =i} by (18). Hence, we obtain on the set {7(i) = i},

Y (i;7) = Z(i) > Y (i;7).

However, on {7(¢) > i} the induction hypothesis yields,

Y(i7) = BT [Z(FG+ 1)) = BRY(i+17)] > B [V(i+ 157)]
= E7 i+r1n§;X§k FFi+1 [Z(’r(p))]] > i+r1n§apx<k E%i [ Z(1(p))]
= Y(,r1).

Property (18) implies {7(¢) > i} C {7(¢) > ¢}. Thus, on {7(7) > i},
Y(i,7) > Z()

and, by (13), ~
Y(i,7) =Y (i,7) on {7(i) > i}.

This completes the proof. [



Motivated by the previous theorem we introduce the notion of an improver:

Definition 3.8 Suppose T is a consistent stopping family. A stopping family T is called
an improver of T, if it satisfies (3) and (18) for 0 <i < k.

The next theorem provides another justification for the name ‘improver’.

Theorem 3.9 Suppose T is a consistent stopping family and T is an improver of 7. Then
Y(i,7)=Y*() fori>j+1

implies
Y(i,7) =Y*(i) fori>j.

Proof. We will exploit the fact that the Snell envelope is the smallest supermartingale

dominating Z.
By Theorem 3.6 we have, for 0 <i < k — 1,

Y(i,7) > Y(i;7) > BT [Z(r(i + 1)) = BT [Y (i + 1; 7).
Therefore, for j <i <k —1,

Y(i,7) > ER Y+ 1)] > ER Y (i +1;7)].

This means (Y (i,7), j < i < k) is a supermartingale. We may also deduce from Theo-
rem 3.6 that for 0 < i < k,

Y (i, 7) > 1=y Z(1) + Lngysi Y (6 7).
However, as in the proof of Theorem 3.6, we obtain
Lrysa Y (57) > Lrysn Y (657) > graysiy Z(0).

Thus, Y (-,7) dominates Z. We thus have shown that (Y (i,7), j < ¢ < k) is a super-
martingale dominating Z. Therefore,

Y(i,7) >Y*(i) fori>j.
The reverse inequality is trivial. [

Remark 3.10 The proof of the previous theorem shows, that for any improver T,

Y(i,7) > Z(1), 0<i<k. (19)

We end this section with a comparison between different improvers.

10



Proposition 3.11 Suppose 7T is consistent and T is an improver of 7. Then, for all
0<i<k,
Y(,7) 2Y(i,7) = Y(i,7).

Proof. We prove the second inequality. The proof of the first one is similar. For i = k
even equality holds. Suppose 0 < i < k — 1 and the inequality is proved for ¢ + 1. Then,
on {7(7) > i} N {7(7) > i},

Y(i,7) = E5 [Y(i+1,7)] > B [Y(i+ 1,7)] = Y(i,7)
by the induction hypothesis. On {7(z) > i} N {7(¢) = ¢} we have
Y(i,7) > Z(1) =Y (,7)

by (19). Finally, the set {7(z) = i} N {7(¢) > i} is evanescent by the definition of an

improver. [

3.3 The One-Step Improvement in the Case of Several Exercise Rights

We now investigate the one-step improvement under several exercise rights. To this end,
suppose consistent stopping families oy,...,0p are given. Recall that o,(7), 1 < L < D,
is interpreted as the time the investor exercises his first of L rights given that he has not
exercised the cash-flow prior to time 7. The stopping time 74 1,(2), which indicates the time
he exercises the dth of L rights provided he has not exercised the first of L rights prior
to time 4, is defined as in (4). The corresponding approximation Y7, (i;01,...,0r) of the
Snell envelope under L exercise rights is given by (5). Finally, the new exercise criterion
is based on the process Yy, (i;01,...,07) defined in (6).

We will now derive representations of Y7, (7;01,...,0r) and ?L(i; o1,...,0L), which allow
to extend Theorem 3.6 to the case of several exercise rights.

Lemma 3.12 Define for 2< L <D and 0<1i <k,

74501, ..00-1) = Z(i) + E%i Yi-1(i 4+ 6;01,...,00-1)]. (20)
Then,

Yi(4;01,...,01) = E%i (Zr(oL(i);01,...,00-1)],

Yi(isor,...,01) = z'+r1n§apX§kE]:i [Zr(or(p);o1,...,00-1)] -

Proof. Fix 0 <i < p < k. Then by (4),

ETi [ZL(UL(p); O1,.-- ,ULfl)]

L—-1
= E% | Z(oL(p)) + Y Z(rar-1(oL(p) +6))
dzil L
= E5 | Z(rio(p) + Y Z(rap,0(p) | = BT | Z(Td’L(p))] '
d=1 d=1

11



m By the previous lemma we may rewrite o7, defined in (7) as

5L(’L) = 1nf {] Z ’i; ZL(j;O'l,...,O'L_l) Z IllaflE']:j ZL(O'L(p);O'l,... :O'L—l)}- (21)
b=y

Consequently, the step from oy, to o, is a one-step improvement with one exercise right
and cash-flow Zp(;01,...,00-1).

As in the case of one exercise right we also consider the stopping family

o (i) = inf {j >4 Zp(4;01,...,00-1) > IgaflEf" ZL(UL(p)§0'1:---:0'L1)}- (22)
b=y

Definition 3.13 A stopping family 61, is said to be an L-improver of o7, with respect to

(01,...,0L-1), if 6L is consistent and
or(i) < arp(i) <orp(i). (23)
In abuse of terminology we will simply speak of an improver, when L and (o1,...,00-1)

are evident from the contert.

We now state a generalization of Theorem 3.6, which justifies the name ‘improver’.

Theorem 3.14 Suppose consistent stopping families o1, ...,0p are given with respective
improvers &1,...,0p. Then, for 1 < L < D the following chain of inequalities holds,
YL(461,...,060) > Yr(4;01,...,00-1,0L) > YL(i501,...,00-1,0L)

> max {YL(i;al,...,aL), YL(i;Ul,...,UL)}.

Proof. By the previous considerations &y, is also a 1-improver of o;, with respect to the
cash-flow Zp(:;01, - ,0r-1) (with the convention Z; = Z). In view of Lemma 3.12 the
second inequality follows from Proposition 3.11 and the third one from Theorem 3.6. We
will prove the first inequality by induction over L. Note that the inequality is trivial for
L =1. The step from L — 1 to L can be shown as follows. By Lemma 3.12,

Y1 (4;61,...,61) — Yr(i;01,...,00-1,0L)
= E7[Z6L(G)) + Yi1(5L(3) + 8;61,...,51-1)]
—~E7 [ Z(51(3) + Y11(GL(3) + 8501,y or1)]
= E7i Y, 1(GL(i) +6;61,...,50-1) — YL 1(6L() + 8;01,...,00-1)].
As the second and the third inequality are already proved, the induction hypothesis im-
plies,
Y 1(61(2) + 8;61,...,0-1) > YL 1(60(3) + &;01,...,00-1).
Thus,
Y (3;61,...,61) — Y(4;01,...,00-1,0L) > 0.

12



We are now ready to give the proof of Theorem 3.2

3.4 Proof of Theorem 3.2

The monotonicity assertion is a direct consequence of Theorem 3.14 since, by definition,

vi™ME) = Yel™, .. ei™)
0((im+1) _ 5c(lm+1)’ 1<d<L.

Recall that the ~ in Theorem 3.14, can always be replaced by ~ by the definition of an

improver.

We prove the second assertion by induction over L. For L = 1, it follows by backward
induction over ¢ and making use of Theorem 3.9.

Suppose 2 < L < D and that the assertion is already proved for L — 1. We fix 0 < iy < k
and mg > Lk — ip. By the induction hypothesis,

Y™ ) = Y1 (6),
for all m > (L — 1)k — i. In particular,
20" (@) = Z(i) + BR Y\ ") (i + 8) = Z(i) + BT YE (i +6),

for all 0 < ¢ < k and m > (L — 1)k. This means that from step (L — 1)k on we have an
iteration procedure as in the case of a single exercise right, but with the cash-flow Z(i)
replaced by Z(i) + E7iY}_,(i + 6). Thus, due to Theorem 3.9 the time i value of this
iteration does not change anymore after £k — ¢ new improvements but coincides with the
Snell envelope. Hence, for mg > Lk — iy = (L — 1)k + k — g, YL(mO)(z'g) coincides with the
time io value of the Snell envelope of Z(i) + E”i Y;*_, (i + §) with one exercise right, which
in turn equals Y (i0) by (1).

Remark 3.15 The proof shows that after any m > Lk — i improvements, not only the
~-improvement, the corresponding approximation coincides with the Snell envelope under

L exercise rights up from time i on.

3.5 A Modification of the Algorithm

We now present a slight modification of the algorithm which may appear less natural
but sometimes yields better approximations of the Snell envelope. We emphasize that
this modification does not affect the construction of the improved stopping family, say o7,
starting with o, but, is a suggestion to replace Y7,.

The modification is motivated by the well-known dynamic programming approach for

constructing the Snell envelope. Under one exercise right one has
Y*k) = &k
V*(i) = max{Z(i), BT [Y*(+1)]}.
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The dynamic programming scheme suggests to define

yr(4;01,...,0L) := max {ZL(i;Ul, cey0L-1), E7% Yp(i+1;0q,... ,UL)]} , (24)
1< L<D,0<1i<k, given consistent stopping families o1,...,0p. In fact, yr has not
such an intuitive interpretation as Yz, but we have, however,

yL(i;Ul,...,UL)ZYL(i;Ul,...,UL), (25)
since by Lemma 3.12
YL(i; 01y ,O’L) = l{aL(i):i}ZL(i; 01y ,O'L_l)
+1{JL(i)>i}E‘ri [YL(Z + 1;0q,... ,UL)].

The following variant of Theorem 3.14 for y, is a direct consequence of Theorem 3.14 and
the definition of yy.

Corollary 3.16 Suppose consistent stopping families o1,...,0p are given with respective
improvers &1,...,0p. Then the following chain of inequalities holds for 1 < L < D,

yr(i;61,...,61) > yr(i;o1,...,00-1,61) > yr(4;01,...,00-1,0L)

> yr(i;o1,...,0L).

We may thus replace YL(m) in Theorem 3.2 by

™ (0) =y (i 0l™, . ot™). (26)

(m)

Theorem 3.17 All assertions of theorem 3.2 remain valid, when YL(m) is replaced by y;

Remark 3.18 (i) The reader may easily verify that yi,(3;01,...,01) and Y1,(i;01,...,0L)
coincide, when

ZL(i;Ul,...,UL_l) < E‘r’[YL(Z—l- 1;0‘1,...,0‘L)] - UL(i) > 1,
and,
Zr(i;01,...,00-1) < Yp(i;01,...,0L).

Ezample 4.1-(ii) in Section 4 exhibits an example where these conditions are violated and,
(under one ezercise right), Y (0;7) is strictly smaller than y(0;T) for some consistent
stopping family T.

(1) Note that

yL(i;Ul, . ,O'L) = max{ZL(i;Ul, . ,O'L_l),

E}—i [ZL(O'L(i + 1); Ty ,O'Lfl)]}.

Thus, a Monte Carlo simulation based approximation of yr requires the same computa-
tional cost as for Y. In contrast, a definition involving the maximum of Z1, and Y1, would

14



cause higher costs.

(11i) Note that yr,(0;01,...,0L) can be computed without knowledge of o1(0),...,05(0).
This turns out to be a significant advantage of the algorithm for yém) over the algorithm
for YL(m), when considering stability under several exercise rights. Indeed, the introduc-
tion of yém) is mainly motivated by this stability issue and inspired by the study of the
Longstaff-Schwartz algorithm (Longstaff and Schwartz, 2001) in Clément et al. (2002).

4 Stability

In this section we discuss the stability of the algorithm for multiple stopping, starting
with a study of the one-step improvement under one exercise right. We will focus on the
stability of Y7, rather than y;, (in (24)), since all stability results for Y7 can be simply
transferred to yz. Some details of this transfer will be given in the context of several
exercise rights.

4.1 Stability of the One-Step Improvement (L = 1)

Suppose a consistent stopping family 7 is given. As we cannot expect to know the con-
ditional expectations analytically in general, but, may only calculate approximations, we
consider instead of 7(i) a sequence of stopping families

FN @) = inf{j:i <j <k, Y(i;7)+ M) < Z2(5)},

where N € N, and e(N)(i) is a sequence of F;-adapted processes.
We will first show by some simple examples that we must neither expect
7M)(i) - 7(i) in probability,
nor
Y(0;7V) = v (0;7), (27)
when

lim €M) =0, P—a.s.

N—oc

Example 4.1 (i) Suppose (En)nen is a sequence of independent binary trials with P(Exy =
1) = P(ény = 0) = 1/2. We define the process (Z(i): i =0,1) by Z(0) = Z(1) = 1. The
o-field Fy = Fi is the one generated by the sequence of trials. Moreover, the sequence
of perturbations is defined by eN)(0) = éx/N and eN)(1) = 0. Then, starting with any

consisting stopping family T, we get

In particular, no subsequence of ?(N)(O) converges in probability.
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(11) Let Q = {wo,w1}, F the power set of Q, and P({w1}) = 1/4 = 1 — P({wo}). We
define the process (Z (i) : i =0,1,2) by Z(0) = Z(2) =2, and Z(1,wy) = 1, Z(1,w1) = 3.
Fi is the filtration generated by Z. We start with the stopping family 7(i) = i. As
E[Z(1)] = 3/2, we have

Z(0) = 2 > max{3/2, 2} = max{E[Z(1)], E[Z(2)]} = Y (0, ).

Therefore,
7(0)=0

and
Y(0;7) = 2.

The perturbation sequence €N) is defined to be €M) (1) = eV)(2) = 0 and ¢ (0) = 1/N.
A straightforward calculation shows that for N > 2,

M (0,wp) =2, FM(0,w1) = 1.

Thus,
Y(0;7M) =9/4 > 2 =Y(0;7),

which violates (27).
We briefly note that in this example,

?(1,&)0) = 25 7’\:(15"‘)1) =1

and thus
y(0;7)=9/4 >2=Y(0;7),

i.e. the modified improvement y performs better than Y. However, we emphasize, that
the replacement of Y by y does not generally mend the stability problem explained in this
example. Indeed, a change of time i — i + 1 and introduction of new time 0 values, say
Z(0) = 0 and ¢N)(0) = 0, transfers the same stability problem to y.

At first glance, Example 4.1 paints a rather sceptical picture of the stability properties of
the one-step-improvement. Indeed, the best we can now hope for, is

(ia) there is a sequence 7(N) of improvers of 7 such that
7M@) =M@ -0 P—as.
(iia) The shortfall of ¥ (i; 7(V)) below Y (4;7) converges to zero P-a.s.

Note, however, that convergence of the shortfall as in (iia) is the relevant question, not
convergence of the distance as in (27), since the shortfall corresponds to a change for
the worse of 7V) compared to 7. As we are interested in an improvement it suffices to
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guarantee that such a change for the worse converges to zero. An additional improvement

N)

of ™) compared to 7 due to the error processes e(™) may be seen as a welcome side effect!

We now prove assertions (ia) and (iia). We first introduce a new sequence of stopping
families which turns out to consist of improvers. Let us define

N (k) = k,
and for 7 < k,
7(N) (i)=i <= (?(M)(z') > i for only finitely many M)
V (7-(M) (z) = 1 for infinitely many M and F(V) (1) = 1),
MGy £ = F ™) =7M (G 4+ 1).

We then have the following result:

Theorem 4.2 Suppose
lim €M@ =0 P—a.s,

N—o00

for all 0 < i < k. Then #N) is an improver of T for every N € N.

Proof. The consistent property (3) is satisfied by definition. We show (18) by backward
induction over i. The case i = k is immediate. Suppose now 0 < i < k — 1 and (18) is
already shown for i + 1. On {F(M)(3) = i for infinitely many M} we have, for infinitely
many M (depending on w),

Z(i) > Y (i,7) + €M (5).

This means,
Z(i) > Y(i,7) on {FM)(i) =i for infinitely many M},
as €M) (4) tends to zero almost surely. However,
{#FM (i) =i} ¢ {FM)(4) =i for infinitely many M}.
Thus,
Z(i) > Y(i,r) on {#M (i) =}
But this implies 7(i) = i on {#(") (i) = i}. Consequently, (18) holds on {7V () = i}.
On the other hand, {7(™) (i) > i} ¢ {FM)(3) > i for infinitely many M}, and an analogous
argument yields
Z(i) <Y (@i,r) on {#M(i) > i}
Consequently, 7(z) > ¢ and thus, by the induction hypothesis,
NG =FMGE+1) <F@E+1) =76) on {FM () > 4.
The induction hypothesis can be applied in the same way to show
(@) > 7)) on {FM(3) > i} N {F(i) > i},
whereas this inequality is trivially satisfied on {7() (i) > i} N {F(i) = i}. This completes
the proof of (18). [
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The next theorem completes the proof of assertion (ia).

Theorem 4.3
FM @) - M@ -0 P—as.,

or equivalently,

F ( N U {6 # f<M><z'>}) =

NeN M=N

Proof. The statement is obvious for ¢ = k. Suppose now 0 < 7 < k — 1 and that the
statement is proved for ¢ + 1. Define,

ANy = |J {7M6) #7006} (28)
M=N
Clearly,
A(N,i) = B(N,i) UC(N,i) UD(N,3),
where
B(N,i) = [j FM(5) = z} N {%(M)(z) > z} ,

0
=

T
=

2
=
=
Il
G
—N —N —~N
B
S
\Y
:,_/
D)
—~
BN
S
=
Il
-~
——

S
=

I
(G

T
=

Since the sets B(N,i), C(N,i), and D(N,i) are decreasing in N, we have

(] AWV,i) = (ﬂ B(N,i)) U (ﬂ C(N,i)) U (ﬂ D(N,i)) .
NeN NeN NeN NeN

M)

We show, that the three sets on the right hand side are evanescent. Firstly, as 7(M) and

7(M) are consistent, it holds

D(N,i) C A(N,i+1).

Hence, the intersection of the D(N,4)’s is a null set by the induction hypothesis. By the

(M)

definition of 7 we have,

C(N,i) C U {?(M) (z) > z} N {?(K)(i) > i for only finitely many K} .
M=N

Thus, the intersection of the C(N,:)’s is a null set. A similar argument applies for the
intersection of the B(N,1)’s. |
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Assertion (iia) follows from the next theorem.

Theorem 4.4 Suppose that for all i, 0 <i <k,

lim MG =0, P-a.s.

N—oo

Then, for oll 0 < i < k,
lim ‘Y(z’, MY _y (g, T(N))‘ —0 P—a.s.
N—oc

and

lim (Y(i,?‘N)) —Y(z',%)) —0, P—as.

N—oc

Remark 4.5 By the dominated convergence theorem the above convergences also hold in
L'(P).

Proof. With A(N, 1) defined in (28) we obtain,
[B7 (2™ @) - B5 [26™@)]
B5 (2™ 6) - 26™(@) 1agws)|

ETi

IN

IN

14(n.) Ofél]fcl}kz(j)] — 0,

by the dominated convergence theorem, since

]\}gnoo ]-A(N,i) =0 P —a.s.

by Theorem 4.3. This proves the first claim. The second claim then follows from Propo-
sition 3.11. -

4.2 Stability of the Algorithm: The Case L =1

We are now going to explain how the stability result for the one-step improvement carries
over to the algorithm in the case of one exercise right. We will make use of the following

perturbed monotonicity result.

Proposition 4.6 Suppose (Tn) is a sequence of consistent stopping families and, for all
0<i<k,
lim (Y(i;7nv) =Y (i;7)) =0 P —a.s.

N—oc

Then, for all 0 < i < k,

where



Remark 4.7 For a constant sequence Ty = o for all N, with o being consistent, Propo-
sition 4.6 states:
Y(i,0) >Y(,7) = Y(i,o)>Y(:,7).

By defining a preference structure on the set of stopping families in a natural way via
o717 <= Y(i,o) >Y(i,1),
we see that the improvement operator ~ preserves this preference structure.

Proof. The statement will be proved by backward induction over i. The induction base
i = k is obvious. Suppose the statement is proved for some 1 <i+1 < k.

We first note that by Remark 3.10,
L=y (Y (5, 7n5) =Y (i,7)) - < (Y(i,7v) — Z(i))_ = 0. (29)

We next show that the statement is true on the set {Tjs(i) = ¢ for infinitely many M}.
For this we need the following preliminary consideration. By Jensen’s inequality and the

dominated convergence theorem, for all p > 7 it holds,
(E}—i [Y(p: TN)] - E]:i [Y(pa T)]) _ < E}—l [(Y(p: TN) - Y(p: T))—] — 0.

Thus,

-~

lim (Y(i, ) — Y, T)) —0 P—as, (30)

N—oo -
since the max-operator is continuous with respect to the metric generated by the negative
part. On {7p(i) = 4 for infinitely many M} we have for infinitely many M,

Y(i,7m) < Z(1).

Since

(z6)-76,m) < (20)-Vamn) + (Vi) -V6m)
we may conclude from (30), that
Z(i) > Y (i,7) on {Fa (i) = i for infinitely many M}.

Hence,
{7m (i) = i for infinitely many M} C {7(i) = i}.

On the latter set the statement was proved in (29).
It remains to verify the statement on
E(i) = {Tm (i) = i for only finitely many M} N {7(i) > i}.

Define
Ng(z) = lE(z) maX{N; ?N(Z) = Z} + 1,
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and note that the process Ny(i) is F;-adapted. Since
T~ (i) >4 on {N > Ny(i)} N E(7),

it follows from the induction hypothesis, Jensen’s inequality, and the dominated conver-

gence theorem, that

Linsno@ynea) (Y@ 7v) — Y (i,7))
= Lnswo@ynee (BRY(E+1,78)] — EXY (i +1,7)])
EF[(Y(i+1,7n) - Y(i+1,7)_] = 0.

IN

For notational convenience we state the stability result of the algorithm for two improve-
ment steps (m = 2) only. It is immediate, how this extends to higher iterations. We
will also skip all subscripts, which are superfluous in the case of one exercise right. For
instance, we write 7() instead of 7'1(11) First note that with 7 = 7(0),

M) = 7(),

@) = F@)=inf{j:i<j <k V(7)< Z2()}
Let us suppose that for (N7, N3) € Nx N, sequences ¢N) (i) and ¢ )(i) are given such
that for 0 <17 <k,

lim M) () =0 P—a.s.,
N1 —o0

and, for 0 <7 <k and N1 € N,

lim MM =0 P—a.s.
N2~>OO

We then define

FNI@G) = inf{j:i<j<

k
?UVI)(Z') = inf{j:i<j <k, Y(i;7™) < Z()},
k

g(Nl,NZ)(Z-) e inf{] ) SJ S

Theorem 4.4 now yields

mn(Y@#Mh—YuﬁU - 0 P-as, (31)
N1 —o0 —
~(Ny,N. ~(N
1m1<Y@$(125—YuJ(“0 = 0 P—as. (32)
Na—00 —
In view of (31) we obtain by Proposition 4.6,
~(N ~
1m1<Y@#15—Yuﬁ0 =0 P-a.s. (33)
Ni1—o0 —
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From

~(Ny,N ~(N ~(N ~
< (Y(z‘,?( Y v R “)) + (Y(m( Yy - Y(z‘,r)) ,
we then obtain,
Theorem 4.8 For all 0 < i <k,

lim lim <Y(i,?‘Nl’N2))—Y<2>(i)> =0

N1~>OO N2~>OO

P-almost surely and in L'(P).

The generalization of this result to m iteration steps may be put into words as follows:

The shortfall of the investor’s expected gain corresponding to m perturbed steps of the
algorithm below the expected gain corresponding to m theoretical steps converges to zero.

We emphasize again that it may happen that the perturbed algorithm performs even
better than the theoretical (compare Example 4.1-(ii)).

4.3 Stability under Several Exercise Rights

The stability issue becomes more involved under several exercise rights. One reason is
that we cannot expect to have the inequality

YL(i;a'l, - ,5‘L) > YL(i;&l, - ,&L),

where 71,...,0 are arbitrary improvers of o1, ...,o0r, but only the inequalities stated in
Theorem 3.14. In other words, we cannot identify a worst improver as was possible in the
case of one exercise right. Theorem 3.14 suggest that we must confine ourselves with the
following stability result for the one-step improvement under several rights.

Theorem 4.9 Suppose o1,...,0p are consistent stopping families. Define for 1 < L <
D,

5L(Z) = inf{j > i; Z(j) +E]:jYL71(j -I-(S;O'l,... ,O'L,1)
> Vi(io,..o o) + e (7)),
where for all 1 < L < D,0<1: <k,
. N),.
A}gnooe(L )(z) =0 P —a.s.

Then, there are sequences of improver c_ng), et ,6(DN) of o1,...,0p such that, for all 1 <

L<D,
. ~(N),. _(N),.
dim (569 6) - a{Y @) =o.
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Moreover,

lim ‘YL(i;agN),...,a(LN))—YL(Z';&§N),...,5‘LN))‘:0 P—as.,
N—o00
and
A}lm (YL(Z‘;5§N),...,5EN))—YL(’L';O'l,...,O'L_l,gL)) =0 P —a.s.
—00 —

Proof. In view of Lemma 3.12 and Theorem 3.14, the theorem follows by straightforward

reduction to the case of one exercise right. ]

Again we demonstrate the stability of the multiple stopping algorithm only for two steps
(m = 2). Suppose we are given consistent starting families o1,...,0p (with suppressed
superscript 0 in the notation of the algorithm). Recall that

o) = Fuli),
oP) = (1) =)

GG = inf{j >4 Z2()+ E5YL 10 + 801, 00-1)
> Viiion,...,00) + ()
5y M) = it > 2G) + EPYaG + 655)
> V(G E ) + G,
with
Nlliglooe(LNl)(z’) = 0 P-—a.s,
N£iglooe(LN1’N2)(z’) = 0 P-—a.s.

In order to iterate the stability result from the previous theorem we will now additionally
assume that, for 1 < L < D,0<i<k—1,
- ) = Tim s 34
or(i) = Jim () (34)
exists. Note that, by Theorem 4.9, the limit 67, can be rewritten as a limit of L-improvers.
By the definition of an L-improver it is straightforward that &7, is an L-improver itself.
We postpone a discussion of assumption (34) and continue to prove stability under this

assumption.

=(N C oy~ ~ " .
We denote by 05: J the theoretical = -improvement of UéNl). The additional assumption

(34) now ensures that we can write (by applying Lemma 3.12),

~(N1),. . C . . _
g, () = inf{j>i; Zp(j;a1,...,00-1)
> max B% Z,(61(p);61,...,00-1) + &5 (i)},
p>j+1
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where

N1~>OO
We now define
5 (k) = &,
and
_ ~(M
5(LN1)(i) =i (G(L )(z) > ¢ for only finitely many M)

Y (g(LM) (1) = i for infinitely many M and g(LNl)(z') =1),

sy £ — M@ =56+ ).
By Theorem 4.3, we have for all 1 < L < D,

im 500 @) - 5V @) = o.
Ni—o0

Thus, P-almost surely,

lim
Ni1—o0

Yo e, ™M) FN) vi61(0), ... 60 0(),50) =0, (35)

Moreover, by Theorem 4.2, for all 1 < L < D, gs:Nl) is an improver of 67 with respect

to the cash-flow Zp,(+;81,...55-1), and thus an L-improver with respect to (&1,...,01-1)
(Lemma 3.12). Hence, by Theorem 3.14,

(YL(Z'; 51(3), ..., 50-1(6),50) — Yi.(i;51(3), - . ,aL,l(i),EL)) —0.  (36)

Here, again, &, is the theoretical “-improvement of 57, Finally, by Theorem 4.9, P-almost
surely,

lim (YL(i;ﬁﬁN“N”,...,§(LN1’N2))—YL(i;aﬁNl),...,52{11),521‘“))) —0. (37

No—o00

Clearly, the convergence in (35) and (37) also holds in L!(P). By combining (35)—(37),

we obtain,

. . . =(N1,N3) =(N1,N2) . _ ~
lim lim (YL(z;al ey O )—YL(z;al,...,UL_l,aL)> =0, (38)
N1~>OO Nzﬁoo _
P-almost surely and in L'(P). Recall that &1,...,57, are some theoretical improvers of
o1,...,0r. Thus, 5, is a theoretical two-step improvement of o7,.

We now discuss the additional assumption (34). (34) can be violated for i = 0 very easily,
as the following variant of Example 4.1-(i), shows.

24



Example 4.10 Suppose the initial value Z1,(0;01,...,05-1) equals the real number ?L(O; o1,...

Note that this can always be enforced for some 1 < L < D by changing the initial value
Z(0) of the cash-flow appropriately. Moreover, assume eS.JNl)(O) = ¢n, /N1 for a sequence

(En,) of independent binary trials as in Ezample 4.1-(i). Then again,

~(N

Ué 1)(0) =¢&ny,
which does not converge almost surely when Ny tends to infinity. It is clear that more
general perturbations, which take positive and non-positive values with positive probability,

yield the same effect.

The problem indicated in this example was our main motivation to introduce the modified
algorithm based on yy, instead of Y. Suppose for the moment, that (34) is satisfied for
1 <i¢<k—1only. Then (38) holds for 1 < i < k. By the definition of y;, and Jensen’s
inequality we obtain,

. =(N1,N2) ~(N1,N3) . _ ~
yL(Z;Ul yos 0 )_yL(Z;o'la"'ao'Lflao'L)
~(N1,N ~(N1,N: . =
< E]:i <YL(7'+1)5§ ' 2):"':0’([4 ' 2)) _YL(Z+1;&1:"'55'L1:5'L)>

Thus, by dominated convergence, for all 0 < i < k,

~(N1,N ~(N1,N , -
lim Iim (yL(iQEE ' 2),...,U(Ll 2))—yL(Z;a'l,...,a'L_l,ﬁL)) =0,

N1~>OO N2~>oo

P-almost surely and in L'(P).

We summarize the previous discussion in the following theorem:

Theorem 4.11 Suppose that for all 1 < L <D and1<i<k—1,

N im0 (g
ar(7) Mim oy (2)
exist. Then G1,...,0p are improvers of o1,...,0p up from time 1 (they are not defined

at time 0).

Define by a1, (1 < L < D) the theoretical ~ -L-improver of 51, with respect to (&1,...,51 1).
Then, for all0<i <k, 1 <L <D,

Iim lim

. =(N1,N2) ~(N1,N2)
Ni1—00 Nag—o0

yL(Z;O'l sy O, )—yL(i;ﬁl,...,ﬁL_l,gL)> =0

P-almost surely and in L'(P). The corresponding result for Y, i.e. (38), holds up from
time i=1. It holds up from time i = 0, when (34) is also valid for i = 0.

The previous theorem still calls for sufficiency criteria for assumption (34) for 1 <7 <k—1.

25

aUL)-



Theorem 4.12 Suppose, for all 1 < L <D, 1<i<k—1,

P <ZL(Z';0'1, .. ,00-1) = Max E7i (Zr(or(p);o1,--- ,0L1)]> =0. (39)
p>i+l

Then, (34) is satisfied for all 1 <i <k —1and 1 < L < D. Moreover, for 0 <i<k—1
and 1 < L <D,

. =(N1,N2)

. . ~(N1,N2) .~ - ~
lim lim |(yg(¢;04 iy O ) —yr(i;01,...,00-1,0L) =0,
N1—00 Ny—oc _

P-almost surely and in L'(P).

Proof. By (21) and (22) assumption (39) guarantees that, for all 1 < L < D and
1<i<k,
or(i) =or(i) P —a.s.

This implies that the sequence 6(LN) (1) of Theorem 4.9 coincides with o,(z) for all N € N.

In particular, Theorem 4.9 yields that for all 1 < L < D and 1 <i <k,

. ~(N- . ~ .
Jim 57 (6) = 51(6).

The theorem now follows by application of Theorem 4.11. [

The procedure described in this section can be iterated straightforwardly. For instance,
under the additional (to (34)) assumption that

5u() = lim lim 30" () (40)

Ni1—00 Ny—oc
for 1 <L < Dand1<i<k-—1 exists, we obtain for m = 3 (with obvious notations),

~(N1,N2,N3) ~(N1,N2,N3) ~
(e E ) Sl B @, Ba@50) 0
P-almost surely and in L'(P), when N3, Ny, and N; tend to infinity. Here, one can
verify that the limit 6 improves upon &7, defined in (34) up from time i = 1. Thus, oz,
1 < L < D, is a two-step improvement of o7, (up from time ¢ = 1) and oL ,1<L<D,is
a three-step improvement of o7, (up from time i = 1).

If, in addition to (39), we have

P (ZL(i;gl, e ,EL_l) = max E}—i [ZL(gL(p);ala e ,EL_l)}) = 0, (42)
p>i+l

for1 <L <D, 1<i<k—1,then (34) and (40) are satisfied and the limit in (40) equals
or(i). Thus, (41) yields an analogue of Theorem 4.12 for three iterations.

Remark 4.13 In view of Theorem 4.8 the assumptions of this section can be slightly
relazed. Indeed, for the improvement of the first stopping family o1 we may apply Theo-
rem 4.8 directly. Therefore, it suffices to assume all additional properties for 2 < L < D
instead of 1 < L < D. Then, of course, 51, 61 must be replaced by o1, 51.
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Discussion of stability results

Under one exercise right we were able to prove that the shortfall of the perturbed algo-
rithm under the theoretical (non-perturbed) algorithm converges to zero (Theorem 4.8).
Compared to this the stability results under several rights are less satisfactory in two re-
spects. We will now explain, why the obtained results are sufficient to call the algorithm
stable, and why we think that better results are unlikely to hold.

The first shortcoming is that the stability results under several rights, (even for one step),
do not allow to compare the theoretical and the perturbed improvement directly. To
overcome this, one could employ the improvement strategy of Remark 3.4. But, as we
explained there, this would cause much higher simulation costs, when implementation the
algorithm. As one of the key issues of the paper is to provide an algorithm with few nest-
ings of conditional expectations, we decided not to go along this way. When iterating the
one-step improvement, the fact that we make use of the procedure in (7) causes the fol-
lowing effect: After m iterations we can only guarantee that the shortfall of the perturbed
algorithm below some theoretical (m — 1)-step improvement, not below some theoretical
m-step improvement, converges to zero (actually a little more, see Theorem 4.11). Hence,
(m + 1) nestings of conditional expectations are needed to compare with some m-step
improvement. This is still much less than the nestings required to calculate m steps of
the improvement type introduced in Remark 3.4. We also note that the comparison with
some m-step improvement instead of the theoretical algorithm does not make too much
of a difference due to Remark 3.15. Moreover, Theorem 4.12 allows to compare (m + 1)
perturbed steps of the yr-algorithm with m theoretical steps of this algorithm.

The second drawback, compared to stability under one exercise right, is that we had to
impose additional conditions in order to iterate the one-step stability. Under one exercise
right the monotonicity result in Proposition 4.6 allows to circumvent these assumptions.
We believe a multi-exercise version of proposition 4.6 is unlikely to hold for the following
reason: Suppose o1,...,0r and of,...,0} are consistent stopping families with respec-
tive improvers ¢1,...,0r and o4,...,07. Then, o7, and 67 may be viewed as improvers
under one exercise right with respect to the different cash-flows Z(¢;01,...,0-1) and
Zr(i;01,...,07 ;). But comparisons of the quality of improvements with respect to dif-
ferent cash-flows even fail, when one cash-flow dominates the other. We finally note, that
an assumption similar to (39) has been made in Clément et al. (2002) in order to prove
stability of the Longstaff-Schwartz algorithm for the optimal stopping problem under a
single exercise right.

5 Conclusion

Motivated by the pricing problem of financial instruments with multiple early exercise
opportunities we presented a new algorithm for the multiple stopping problem in discrete
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time and proved stability results for this algorithm. From a numerical point of view, the
main feature of the algorithm is that it allows to calculate an increasing and convergent
family of approximations of the Snell envelope with the order of nested conditional ex-
pectations for the mth approximation independent of the number of exercise rights. The
algorithm is therefore tailor-made for a plain Monte-Carlo implementation and is thus ex-
pected to be particularly powerful when the cash-flow is a function of a high-dimensional
Markov process. Under a single exercise right the strength of the algorithm is demon-
strated by the simulation results in Kolodko and Schoenmakers (2004). Simulations under
several exercise rights will be discussed in a forthcoming paper.

References

Andersen, L. (1999) A Simple Approach to the Pricing of Bermudan Swaptions in a
Multifactor LIBOR Market Model. Journal of Computational Finance, 3, 5-32.

Bensoussan, A., Lions, J. (1982) Applications of Variational Inequalities in Stochastic
Control. North Holland: Amsterdam.

Broadie, M., Glasserman, P., Ha, Z. (2000) Pricing American Options by Simulations Us-
ing a Stochastic Mesh with Optimized Weights. Probabilistic Constrained Optimization:
Methodology and Applications, S. Uryasev (ed.), Kluwer: Norwell, Mass., 32-50.

Carmona, R. and Dayanik, S. (2004) Optimal Multiple-Stopping of Linear Diffusions and
Swing Options. Preprint.

Carmona, R., Touzi, N. (2003) Optimal Multiple-Stopping and Valuation of Swing Op-
tions. Preprint.

Clément, E., Lamberton, D., Protter. P. (2002) An Analysis of a Least Square Regression
Method for American Option Pricing. Finance Stochast., 6, 449-471.

Cox, J., Ross, S., Rubinstein, M. (1979) Option Pricing: A Simplified Approach. J. Fi-

nancial Economics, 7, 229-263.

Egloff, D. (2004) Monte Carlo Algorithms for Optimal Stopping and Statistical Learning.
Ann. Appl. Probab., forthcoming.

Haugh, M. B., Kogan, L. (2004) Pricing American Options: A Duality Approach. Opera-
tions Research, 52, 258-270.

Ibdniez, A. (2004) Valuation by Simulation of Contingent Claims with Multiple Early
Exercise Opportunities. Math. Finance, 14, 223-248.

Ibénez, A., Zapatero, F. (2004) Valuation of American Options through Computation of
the Optimal Exercise Frontier. J. Financial Quant. Anal., 39, 2, 253-276.

28



Jaillet, P., Ronn, E. 1., Tompaidis, S. (2004) Valuation of Commodity Based Swing Op-
tions. Management Science, 50, 909-921.

Jamshidian, F. (2003) Minimax Optimality of American and Bermudan Claims and their
Monte Carlo Valuation. Working Paper.

Kolodko, A. and Schoenmakers, J. (2003) An Efficient Dual Monte Carlo Upper Bound
for Bermudan Style Derivative. Preprint No. 877, Weierstrass Institute Berlin.

Kolodko, A., Schoenmakers, J. (2004) Tterative Construction of the Optimal Bermudan
Stopping Time. Preprint No. 877, Weierstrass Institute Berlin, Proc. 2nd TASTED Fin.
Eng. Appl. Cambridge MA, 230-238.

Longstaff, F. A., Schwartz, R. S. (2001) Valuing American Options by Simulation: A
Simple Least-Square Approach. Review of Financial Studies, 14, 113-147.

Meinshausen, N., Hambly, B. M. (2004) Monte Carlo Methods for the Valuation of
Multiple-Exercise Options. Math. Finance, 14, 557-583.

Milstein, G.N., Rei}, O. and Schoenmakers, J. (2004) A New Monte Carlo Method for
American Options. Int. J. of Theoretical and Applied Finance, 7, 5, 591-614.

Neveu, J. (1975) Discrete Parameter Martingales. North-Holland: Amsterdam.

Rogers, L. C. G. (2002) Monte Carlo Valuation of American Options. Math. Finance, 12,
271-286.

Van Moerbecke, P. L. J. (1976) On Optimal Stopping and Free Boundary Problems.
Archive Rat. Mech. Anal., 60, 101-148.

29



