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AbstratWe present a new iterative proedure for solving the disrete multiple stoppingproblem and disuss the stability of the algorithm. The algorithm produes monoton-ially inreasing approximations of the Snell envelope, whih oinide with the Snellenvelope after �nitely many steps. Contrary to bakward dynami programming,the algorithm allows to alulate approximative solutions with only a few nestingsof onditionals expetations and is, therefore, tailor-made for a plain Monte-Carloimplementation.1 IntrodutionFinanial derivatives with several early exerise rights play an important role in severalmarkets. For example, eletriity markets (e.g. swing options) and interest rate markets(e.g. hooser exible aps). The priing problem for suh instruments is equivalent toa multiple stopping problem whih is solved in pratie by trinomial forests usually, seeJaillet et al. (2004) and the referenes therein. However, this priing proedure is re-strited to models for low-dimensional underlying proesses, sine trees tend to explodewith inreasing dimension of the underlying proess.Obviously, multiple allable instruments with respet to a high dimensional interest ratemodel suh as the very popular Libor market model, and also multiple allable options ona basket of several assets, do not meet this restrition. So new priing methods for �nan-ial instruments with early exerise opportunities, based on high-dimensional underlyingproesses, are alled for.The problem of exploding omputational ost, when the dimension of the underlyingproesses inreases, is known as `urse of dimensionality'. Even in the ase of a singleexerise right (i.e. the priing problem of an Amerian option or, equivalently, the optimalstopping problem), the lassial approahes suh as tree methods, initialized by Cox etal. (1979), or PDE tehniques (Bensoussan and Lion, 1982; Van Moerbeke, 1976) area�eted by the urse of dimensionality. Only in reent years several approahes have beenproposed to overome this problem for Amerian style derivatives, hene the ase of asingle exerise right. These methods basially rely on Monte-Carlo simulation and an beroughly divided into three groups. The �rst group diretly employs a reursive shemefor solving the stopping problem, known as bakward dynami programming. Di�erenttehniques are applied to approximate the nested onditional expetations. The stohastimesh method by Broadie et al. (2000) and the least square regression method of Longsta�1



and Shwartz (2001) are among the most popular approahes in this group. An alternativeto bakward dynami programming is to approximate the exerise boundary by simulation,see e.g. Andersen (1999), Ib�a~nez and Zapatero (2004), and Milstein et al. (2004). Thethird group relies on a dual approah developed in Rogers (2002), Haugh and Kogan(2004), and in a multipliative setting by Jamshidian (2003). For a numerial treatmentof this approah, see Kolodko and Shoenmakers (2003). By duality, tight prie upperbounds may be onstruted from given approximative proesses.The methods in these three ategories an be transferred from one to several exeriseopportunities beause the multiple stopping problem is equivalent to a system of nestedsingle stopping problems. Meinshausen and Hambly (2004) suggest an extension of theLongsta� and Shwartz (2001)-algorithm to several exerise rights along these lines. Theirmain ontribution is, however, a derivation of the dual formulation under several exeriserights. Ib�a~nez (2004) presents a generalization of Ib�a~nez and Zapatero (2004) for multipleexerise opportunities.The aim of the present paper is twofold: Firstly, we suggest an algorithm for the multiplestopping problem, whih generalizes a proedure reently introdued by Kolodko andShoenmakers (2004) for the single stopping problem. Seondly, we analyze stability ofthe algorithm under one as well as under several exerise rights.The poliy-improvement algorithm proposed in Kolodko and Shoenmakers (2004) ismending one of the main drawbaks of the bakward dynami programming sheme: Sup-pose exerise an take plae at one out of k time instanes. Then, in order to obtainthe value of the optimal stopping problem via bakward dynami programming, one hasto alulate nested onditional expetations of order k. No approximation of the time 0value is available prior to the evaluation of the kth nested onditional expetations. Thisprevents the use of plain Monte-Carlo simulations for approximating the onditional expe-tations and requires more ompliated approximation proedures for these quantities. Forinstane, to employ the proedure of Longsta� and Shwartz (2001), one has to hoosethe number of basis funtions and the basis funtions themselves. Moreover, the erroranalysis of the Longsta� and Shwartz (2001)-algorithm in Eglo� (2004) suggests that theerror propagation bakward in time inreases exponentially in the number of time steps.Contrary, the algorithm of Kolodko and Shoenmakers (2004) yields approximations of thetime 0 value of the value funtion for every iteration step, whih monotonially inrease tothe Snell envelope. This allows for a plain Monte-Carlo simulation of the onditional ex-petations. Indeed, the simulations in Kolodko and Shoenmakers (2004) show that goodapproximations an be obtained with a quadrati simulation (i.e. two iteration steps),even for very high(d = 40!)-dimensional problems.In fat, the main advantage of the algorithm in Kolodko and Shoenmakers (2004) werelost, if a multi-exerise version would be straightforwardly de�ned as a nesting of one-exerise versions. This would ause nested onditional expetations in eah iteration stepand, thus, again prevent the use of a plain Monte Carlo implementation. Instead we2



present a multiple exerise version of the poliy-improvement algorithm in a way thatthe order of nestings does not depend on the number of exerise rights. It is thereforetailored for plain Monte-Carlo simulation of the onditional expetations. We also provethat the algorithm oinides with the Snell envelope under L exerise rights after the samenumber of iterations as needed for the nested dynami programming algorithm proposedin Carmona and Touzi (2003). This shows that our algorithm is theoretially as good asbakward dynami programming, but superior from a pratial point of view.The seond ontribution of our paper is a stability analysis for the poliy-improvementalgorithm of Kolodko and Shoenmakers (2004) and its multi-exerise extension. In thease of a single exerise right the stability result an be put in words as follows (reall, onean think of the stopping problem as an investor trying to maximize his expeted gain):The shortfall of the investor's expeted gain orresponding to m steps of the perturbedalgorithm below the expeted gain orresponding to m steps of the theoretial algorithmonverges to zero. Surprisingly, it an happen that the perturbed algorithm performsbetter than the theoretial one (as is shown in example 4.1). Put di�erently, in ompar-ison with the theoretial algorithm, better approximations of the Snell envelope may beahieved due to simulation errors! A little weaker result is obtained in the multi-exerisease.The paper is organized as follows: In Setion 2 we pose the multiple stopping problemand explain its onnetion to the single stopping problem. Then in Setion 3 we state themultiple exerise algorithm and prove its onvergene. In partiular, in Setion 3.2 and3.3 we put a main emphasis on the analysis of the building bloks of the algorithm, alledone-step improvements. The results of Setions 3.2-3.3 are ruial for the disussion ofstability in Setion 4. Setion 5 onludes.2 On the Multiple Stopping ProblemSuppose (Z(i): i = 0; 1; : : : ; k) is a nonnegative stohasti proess in disrete time on aprobability spae (
;F ; P ) adapted to some �ltration (Fi : 0 � i � k) whih satis�eskXi=1 EjZ(i)j <1:We may think of the proess Z as a ash-ow, whih an investor may exerise L times.The investors' problem is to maximize his expeted gain by exerising optimally. He issubjeted to the additional onstraint that he has to wait a minimal time Æ 2 N betweenexerising two rights. The introdution of Æ avoids mathematial trivialities, as otherwisethe investor would exerise all rights at the same time. To emphasize that the introdutionof Æ is not a mathematial oddity, we will refer to Æ as the refrating period following theterminology from swing options.We now formalize the multiple stopping problem. For notational onveniene we trivially3



extend the ash-ow proess by Z(i) = 0 and Fi = Fk for i > k. Let us de�ne Si(L; Æ) asthe set of Fi stopping vetors (�1(i); : : : ; �L(i)) suh that i � �1(i) and, for all 2 � j � L,�j�1(i) + Æ � �j(i). The multiple stopping problem may then be stated as follows: Find afamily of stopping vetors ��(i) 2 Si(L; Æ) suh that for 0 � i � kEFi 24 LXj=1 Z(��j (i))35 = esssup�2Si(L;Æ) EFi 24 LXj=1 Z(�j)35 :The proess on the right hand side is alled the Snell envelope of Z under L exeriserights and we denote it by Y �L (i). We sometimes write Y �(i) = Y �1 (i).The ase of one exerise right L = 1 is very well studied. We ollet some fats, whih anbe found in Neveu (1975).1. The Snell envelope Y � of Z under one exerise rights is the smallest supermartingalethat dominates Z.2. A family of optimal stopping times for the stopping problem with one exerise rightsis given by ��(i) = inffi � j : Z(j) � Y �(j)g; 0 � i � k:If several optimal stopping families exist, then the above family is the family of �rstoptimal stopping times.The multiple stopping problem an be redued to L nested stopping problems with oneexerise right (see also Carmona and Touzi (2003) and Carmona and Dayanik (2004) forthe more demanding ontinuous time setting). We briey explain the redution.De�ne a sequene of proesses (X0; : : : ;XL; : : :) as follows. X0 := 0; X1 := Y �1 is the Snellenvelope of Z. XL, L � 2, is the Snell envelope of the ash-ow Z(i) + EFi XL�1(i + Æ)under one exerise right. We also de�ne for L = 1; 2; : : : ;��L(i) = inffi � j : Z(j) +EFj XL�1(j + Æ) � XL(j)g; i � 0;i.e. the �rst optimal stopping families for the sequene of single stopping problems. It isstraightforward to show by indution over L, thatY �L (i) = XL(i); 1 � i � k; (1)and a family of optimal stopping vetors for the multiple stopping problem with L exeriserights and ash-ow Z is given by��1;L(i) = ��L(i)��d+1;L(i) = ��d;L�1 (��L(i) + Æ) 1 � d � L� 1: (2)Note that, due to the onvention Z(i) = 0 for i > k, we have ��1;L(i) = ��L(i) = i for i � k:4



The redution (1), (2) is intuitively lear: It basially says, that the investor has to hoosethe �rst stopping time of the stopping vetor in the following way: Deide, at time j,whether it is better to take the ash-ow Z(j) and enter a new ontrat with L � 1exerise rights starting at j + Æ, or to keep the L exerise rights. Then, after entering thestopping problem with L� 1 exerise rights, he proeeds to behave optimally.By the above redution, any algorithm for single optimal stopping problems an, in prin-iple, be applied iteratively to the multiple stopping problem. For example, Carmonaand Touzi (2003) suggested to apply bakward dynami programming iteratively to theL stopping problems. This obviously leads to even higher nestings of onditional expe-tations than the dynami programming approah yields for the single stopping problems,and, as a onsequene, to tremendous simulation osts in a plain Monte Carlo approah.Contrary, we are going to present an algorithm whih simultaneously improves the Snellenvelope under L = 1; : : : ;D exerise rights with the order of nested onditional expeta-tions for a given number of iterations independent of L.3 An Algorithm for Multiple Stopping3.1 The AlgorithmWe now explain our new algorithm for the multiple stopping problem. In the ase of asingle exerise right it oinides with the proedure suggested in Kolodko and Shoenmak-ers (2004). The building blok of the algorithm is, as in the ase of one exerise right, apoliy improvement. More preisely, suppose we are given the families of stopping times�L(i); 0 � i � k; 1 � L � D;trivially extended with �L(i) = i for i > k. Reall that k is the time horizon of the realash-ow proess. We are interested in the Snell envelope with L exerise rights for all1 � L � D and refrating period Æ. We interpret �L(i) as the time, when the investorexerises (possibly in a suboptimal way) the �rst of his L rights, given that he has notexerised prior to time i. This interpretation requires that the stopping families �L underonsideration are onsistent in the sense of the following de�nition:De�nition 3.1 A family of integer-valued stopping times (�(i) : 0 � i � k) is said to beonsistent, if for 0 � i < k; i � �(i) � k; �(k) � k;�(i) > i) �(i) = �(i+ 1): (3)Indeed, suppose �L(i) > i, i.e. aording to our interpretation the investor has not ex-erised the �rst right prior to time i + 1. Then he has not exerised the �rst right prior5



to time i, either. This means he will exerise the �rst right at times �L(i) and �L(i+ 1),whih requires �L(i) = �L(i + 1). Note: A trivial example of a non-onsistent stoppingfamily is �(i) = min(i+ 1; k):Given onsistent stopping families �L, L = 1; 2; : : : ; we de�ne assoiated stopping families�d+1;L via, �1;L(i) = �L(i)�d+1;L(i) = �d;L�1 (�L(i) + Æ) 1 � d � L� 1: (4)�d;L(i) an be interpreted as the time, when the investor exerises the dth of his L exeriserights, provided he has not exerised his �rst right prior to time i.An approximation of the Snell envelope with L exerise rights is now given byYL(i;�1; : : : �L) := EFi " LXd=1Z(�d;L(i))# : (5)Note, YL(i;�1; : : : �L) has a simple interpretation as the expeted gain (onditional on Fi)the investor obtains when he employs the stopping families �1; : : : ; �L for exerising theash-ows.We then introdue intermediate proessesbYL(i;�1; : : : ; �L) := maxi+1�p�kEFi " LXd=1Z(�d;L(p))# (6)on whih a next exerise riterion is built,e�L(i) := inf nj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1) � bYL(j;�1; : : : ; �L)o ; (7)with Y0(i) := 0: Note that e�L(k) = k sine max ; = �1, and, obviously, the stoppingfamilies ~�L are onsistent for 1 � L � D.Given onsistent starting families of stopping times �(0)L , 1 � L � D, we de�ne iteratively,�(m)L (i) := e�(m�1)L (i);Y (m)L (i) := YL(i;�(m)1 ; : : : ; �(m)L ): (8)Canonial onsistent starting families are given, for instane, by �(0)L (i) = i, L = 1; 2; : : :Theorem 3.2 Suppose the stopping families �(0)L (i) are onsistent for all 1 � L � D.Then, for all m 2 N; 1 � L � D, and 0 � i � k,Y (m+1)L (i) � Y (m)L (i):Moreover, for m � Lk � i, Y (m)L (i) = Y �L (i);where Y �L denotes the Snell envelope of Z under L exerise rights.6



Remark 3.3 The algorithm provides an iteration sheme of inreasing lower bounds forthe Snell envelope under L exerise rights. By a dual method, developed by Rogers (2002)and Haugh and Kogan (2004), and extended to the ase of several exerise rights as inMeinshausen and Hambly (2004), one an onstrut a family of onvergent upper boundsgiven this family of lower bounds.Remark 3.4 The reader might suggest to onsider the following intuitively better algo-rithm: Given onsistent stopping families �1; : : : ; �D, de�ne �1(i) := e�L(i); and then,reursively in L,�L(i) = inffj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1)� bYL(j;�1; : : : ; �L�1; �L)g:The very intuition of this modi�ation is to use the already improved stopping times�1(i); : : : ; �L�1(i) for improving �L.For given onsistent starting families of stopping times �(0)L , 1 � L � D we may thende�ne, �[m℄L (i) := �[m�1℄L (i);Y [m℄L (i) := YL(i;�[m℄1 ; : : : ; �[m℄L ):It an be shown, that all assertions of Theorem 3.2 also hold for Y [m℄L instead of Y (m)L .However, the modi�ed algorithm Y [m℄L requires alulation of nested onditional expeta-tions within eah improvement step. Therefore it requires muh higher omputational osts,when the onditional expetations are approximated by Monte Carlo simulation. Indeed,the main advantage of the algorithm (8) based on (7) is that the order of nested onditionalexpetations for a given number of iterations does not depend on the number of exeriserights.Before we prove Theorem 3.2 in Setion 3.4, we investigate in the next two subsetions thebuilding bloks, whih we will refer to as one-step improvements in more detail. We �rstonsider the ase of one exerise right and generalize results of Kolodko and Shoenmakers(2004). These generalizations will be of ruial importane for investigating the stabilityof the proposed algorithm in Setion 4.3.2 A Generalization of the One-Step Improvement in the Case of OneExerise RightSuppose a onsistent stopping family (�(i) : 1 � i � k) is given. We then de�ne theproess Y (i; �) := EFi [Z(�(i))℄ : (9)7



Based on the sequene (�(i) : 1 � i � k) Kolodko and Shoenmakers (2004) onstrut anew family (e�(i) : 1 � i � k) in the following way: Introdue an intermediate proesseY (i; �) := maxp: i�p�kEFi [Z(�(p))℄ ; (10)whih serves as a new exerise riterion, i.e.e�(i) := inffj : i � j � k; eY (j; �) � Z(j)g (11)= inffj : i � j � k; maxp: j�p�kEFj [Z(�(p))℄ � Z(j)g; 0 � i � k:Kolodko and Shoenmakers (2004), Theorem 3.1, show that e� is an improvement of � inthe sense that the new strategy promises a higher expeted gain for the investor than theold one, i.e. Y (i; e� ) � eY (i; �) � Y (i; �):Our �rst aim is to �nd a wider lass of stopping families �� suh thatY (i; �� ) � eY (i; �) � Y (i; �):To this end we �rst ompare the intermediate proesses eY (i; �) andbY (i; �) := maxp: i+1�p�kEFi [Z(�(p))℄ : (12)Lemma 3.5 Suppose the stopping family � is onsistent. Then, for 0 � i � k,eY (i; �) = 1f�(i)>ig bY (i; �) + 1f�(i)=igmaxnbY (i; �); Z(i)o : (13)In partiular, Z(i) � eY (i; �) () Z(i) � bY (i; �); (14)and e�(i) = inffj : i � j � k; bY (j) � Z(j)g: (15)Proof. By property (3), we have,EFi [Z(�(i))℄ = EFi �1f�(i)=igZ(i)�+EFi �1f�(i)>igZ(�(i+ 1))�= 1f�(i)=igZ(i) + 1f�(i)>igEFi [Z(�(i+ 1))℄ :Sine eY (i; �) = maxnbY (i; �); EFi [Z(�(i))℄o ;(13) follows with (14) and (15) as immediate onsequenes.8



We next de�ne another stopping family, namely,b�(i) := inffj : i � j � k; bY (j) < Z(j)g: (16)By (15), b�(i) � e�(i): (17)We are now ready to state a generalization of Theorem 3.1 in Kolodko and Shoenmakers(2004), whih provides the basis of our stability analysis.Theorem 3.6 Let (�(i); 1 � i � k) be a onsistent stopping family. Suppose (�� (i); 1 �i � k) is also onsistent and satis�ese�(i) � ��(i) � b�(i) 0 � i � k: (18)Then, Y (i; �� ) � eY (i; �) � Y (i; �); 0 � i � k:Remark 3.7 Obviously, the hoies �� = e� and �� = b� are examples of a family �� satisfying(3) and (18).Proof. The seond inequality is trivial. We prove the �rst inequality by bakward indu-tion over i. For i = k, note thatY (k; �� ) = Z(k) = eY (k; �):Now suppose 0 � i � k � 1, and that the assertion is already proved for i + 1. It holdsf�� (i) = ig � fe� (i) = ig by (18). Hene, we obtain on the set f�� (i) = ig,Y (i; �� ) = Z(i) � eY (i; �):However, on f�� (i) > ig the indution hypothesis yields,Y (i; �� ) = EFi [Z(��(i+ 1))℄ = EFi [Y (i+ 1; �� )℄ � EFi heY (i+ 1; �)i= EFi � maxi+1�p�kEFi+1 [Z(�(p))℄� � maxi+1�p�kEFi [Z(�(p))℄= bY (i; �):Property (18) implies f��(i) > ig � fb�(i) > ig. Thus, on f��(i) > ig,bY (i; �) � Z(i)and, by (13), bY (i; �) = eY (i; �) on f�� (i) > ig:This ompletes the proof. 9



Motivated by the previous theorem we introdue the notion of an improver :De�nition 3.8 Suppose � is a onsistent stopping family. A stopping family �� is alledan improver of � , if it satis�es (3) and (18) for 0 � i � k.The next theorem provides another justi�ation for the name `improver'.Theorem 3.9 Suppose � is a onsistent stopping family and �� is an improver of � . ThenY (i; �) = Y �(i) for i � j + 1implies Y (i; �� ) = Y �(i) for i � j:Proof. We will exploit the fat that the Snell envelope is the smallest supermartingaledominating Z.By Theorem 3.6 we have, for 0 � i � k � 1,Y (i; �� ) � eY (i; �) � EFi [Z(�(i+ 1))℄ = EFi [Y (i+ 1; �)℄ :Therefore, for j � i � k � 1,Y (i; �� ) � EFi [Y �(i+ 1)℄ � EFi [Y (i+ 1; �� )℄ :This means (Y (i; �� ); j � i � k) is a supermartingale. We may also dedue from Theo-rem 3.6 that for 0 � i � k,Y (i; �� ) � 1f�� (i)=igZ(i) + 1f��(i)>ig eY (i; �):However, as in the proof of Theorem 3.6, we obtain1f��(i)>ig eY (i; �) � 1f�� (i)>ig bY (i; �) � 1f��(i)>igZ(i):Thus, Y (�; �� ) dominates Z. We thus have shown that (Y (i; �� ); j � i � k) is a super-martingale dominating Z. Therefore,Y (i; �� ) � Y �(i) for i � j:The reverse inequality is trivial.Remark 3.10 The proof of the previous theorem shows, that for any improver �� ,Y (i; �� ) � Z(i); 0 � i � k: (19)We end this setion with a omparison between di�erent improvers.10



Proposition 3.11 Suppose � is onsistent and �� is an improver of � . Then, for all0 � i � k, Y (i; b� ) � Y (i; �� ) � Y (i; e� ):Proof. We prove the seond inequality. The proof of the �rst one is similar. For i = keven equality holds. Suppose 0 � i � k � 1 and the inequality is proved for i + 1. Then,on f��(i) > ig \ fe� (i) > ig,Y (i; �� ) = EFi [Y (i+ 1; �� )℄ � EFi [Y (i+ 1; e� )℄ = Y (i; e� )by the indution hypothesis. On f�� (i) > ig \ fe�(i) = ig we haveY (i; �� ) � Z(i) = Y (i; e� )by (19). Finally, the set f�� (i) = ig \ fe�(i) > ig is evanesent by the de�nition of animprover.3.3 The One-Step Improvement in the Case of Several Exerise RightsWe now investigate the one-step improvement under several exerise rights. To this end,suppose onsistent stopping families �1; : : : ; �D are given. Reall that �L(i), 1 � L � D,is interpreted as the time the investor exerises his �rst of L rights given that he has notexerised the ash-ow prior to time i. The stopping time �d;L(i), whih indiates the timehe exerises the dth of L rights provided he has not exerised the �rst of L rights priorto time i, is de�ned as in (4). The orresponding approximation YL(i;�1; : : : ; �L) of theSnell envelope under L exerise rights is given by (5). Finally, the new exerise riterionis based on the proess bYL(i;�1; : : : ; �L) de�ned in (6).We will now derive representations of YL(i;�1; : : : ; �L) and bYL(i;�1; : : : ; �L), whih allowto extend Theorem 3.6 to the ase of several exerise rights.Lemma 3.12 De�ne for 2 � L � D and 0 � i � k,ZL(i;�1; : : : �L�1) = Z(i) +EFi [YL�1(i+ Æ;�1; : : : ; �L�1)℄ : (20)Then, YL(i;�1; : : : ; �L) = EFi [ZL(�L(i);�1; : : : ; �L�1)℄ ;bYL(i;�1; : : : ; �L) = maxi+1�p�kEFi [ZL(�L(p);�1; : : : ; �L�1)℄ :Proof. Fix 0 � i � p � k. Then by (4),EFi [ZL(�L(p);�1; : : : ; �L�1)℄= EFi "Z(�L(p)) + L�1Xd=1 Z(�d;L�1(�L(p) + Æ))#= EFi "Z(�1;L(p)) + L�1Xd=1 Z(�d+1;L(p))# = EFi " LXd=1Z(�d;L(p))# :11



By the previous lemma we may rewrite e�L de�ned in (7) ase�L(i) = inf �j � i; ZL(j;�1; : : : ; �L�1) � maxp�j+1EFj ZL(�L(p);�1; : : : ; �L�1)� : (21)Consequently, the step from �L to e�L is a one-step improvement with one exerise rightand ash-ow ZL(�;�1; : : : ; �L�1).As in the ase of one exerise right we also onsider the stopping familyb�L(i) = inf �j � i; ZL(j;�1; : : : ; �L�1) > maxp�j+1EFj ZL(�L(p);�1; : : : ; �L�1)� : (22)De�nition 3.13 A stopping family ��L is said to be an L-improver of �L with respet to(�1; : : : ; �L�1), if ��L is onsistent ande�L(i) � ��L(i) � b�L(i): (23)In abuse of terminology we will simply speak of an improver, when L and (�1; : : : ; �L�1)are evident from the ontext.We now state a generalization of Theorem 3.6, whih justi�es the name `improver'.Theorem 3.14 Suppose onsistent stopping families �1; : : : ; �D are given with respetiveimprovers ��1; : : : ; ��D. Then, for 1 � L � D the following hain of inequalities holds,YL(i; ��1; : : : ; ��L) � YL(i;�1; : : : ; �L�1; ��L) � YL(i;�1; : : : ; �L�1; e�L)� maxnYL(i;�1; : : : ; �L); bYL(i;�1; : : : ; �L)o :Proof. By the previous onsiderations ��L is also a 1-improver of �L with respet to theash-ow ZL(�;�1; � � � ; �L�1) (with the onvention Z1 = Z). In view of Lemma 3.12 theseond inequality follows from Proposition 3.11 and the third one from Theorem 3.6. Wewill prove the �rst inequality by indution over L. Note that the inequality is trivial forL = 1. The step from L� 1 to L an be shown as follows. By Lemma 3.12,YL(i; ��1; : : : ; ��L)� YL(i;�1; : : : ; �L�1; ��L)= EFi [Z(��L(i)) + YL�1(��L(i) + Æ; ��1; : : : ; ��L�1)℄�EFi [Z(��L(i)) + YL�1(��L(i) + Æ;�1; : : : ; �L�1)℄= EFi [YL�1(��L(i) + Æ; ��1; : : : ; ��L�1)� YL�1(��L(i) + Æ;�1; : : : ; �L�1)℄ :As the seond and the third inequality are already proved, the indution hypothesis im-plies, YL�1(��L(i) + Æ; ��1; : : : ; ��L�1) � YL�1(��L(i) + Æ;�1; : : : ; �L�1):Thus, YL(i; ��1; : : : ; ��L)� YL(i;�1; : : : ; �L�1; ��L) � 0:12



We are now ready to give the proof of Theorem 3.23.4 Proof of Theorem 3.2The monotoniity assertion is a diret onsequene of Theorem 3.14 sine, by de�nition,Y (m)L (i) = Y (i;�(m)1 ; : : : �(m)L )�(m+1)d = e�(m+1)d ; 1 � d � L:Reall that the � in Theorem 3.14, an always be replaed by e by the de�nition of animprover.We prove the seond assertion by indution over L. For L = 1, it follows by bakwardindution over i and making use of Theorem 3.9.Suppose 2 � L � D and that the assertion is already proved for L� 1. We �x 0 � i0 � kand m0 � Lk � i0. By the indution hypothesis,Y (m)L�1(i) = Y �L�1(i);for all m � (L� 1)k � i. In partiular,Z(m+1)L (i) = Z(i) +EFi Y (m)L�1(i+ Æ) = Z(i) +EFi Y �L�1(i+ Æ);for all 0 � i � k and m � (L � 1)k. This means that from step (L � 1)k on we have aniteration proedure as in the ase of a single exerise right, but with the ash-ow Z(i)replaed by Z(i) + EFi Y �L�1(i + Æ). Thus, due to Theorem 3.9 the time i value of thisiteration does not hange anymore after k � i new improvements but oinides with theSnell envelope. Hene, for m0 � Lk� i0 = (L� 1)k+ k� i0, Y (m0)L (i0) oinides with thetime i0 value of the Snell envelope of Z(i)+EFi Y �L�1(i+ Æ) with one exerise right, whihin turn equals Y �L (i0) by (1).Remark 3.15 The proof shows that after any m � Lk � i improvements, not only thee -improvement, the orresponding approximation oinides with the Snell envelope underL exerise rights up from time i on.3.5 A Modi�ation of the AlgorithmWe now present a slight modi�ation of the algorithm whih may appear less naturalbut sometimes yields better approximations of the Snell envelope. We emphasize thatthis modi�ation does not a�et the onstrution of the improved stopping family, say e�Lstarting with �L, but, is a suggestion to replae YL.The modi�ation is motivated by the well-known dynami programming approah foronstruting the Snell envelope. Under one exerise right one hasY �(k) = kY �(i) = max�Z(i); EFi [Y �(i+ 1)℄	 :13



The dynami programming sheme suggests to de�neyL(i;�1; : : : ; �L) := max�ZL(i;�1; : : : ; �L�1); EFi [YL(i+ 1;�1; : : : ; �L)℄	 ; (24)1 � L � D, 0 � i � k, given onsistent stopping families �1; : : : ; �D. In fat, yL has notsuh an intuitive interpretation as YL but we have, however,yL(i;�1; : : : ; �L) � YL(i;�1; : : : ; �L); (25)sine by Lemma 3.12YL(i;�1; : : : ; �L) = 1f�L(i)=igZL(i;�1; : : : ; �L�1)+1f�L(i)>igEFi [YL(i+ 1;�1; : : : ; �L)℄:The following variant of Theorem 3.14 for yL is a diret onsequene of Theorem 3.14 andthe de�nition of yL.Corollary 3.16 Suppose onsistent stopping families �1; : : : ; �D are given with respetiveimprovers ��1; : : : ; ��D. Then the following hain of inequalities holds for 1 � L � D,yL(i; ��1; : : : ; ��L) � yL(i;�1; : : : ; �L�1; ��L) � yL(i;�1; : : : ; �L�1; e�L)� yL(i;�1; : : : ; �L):We may thus replae Y (m)L in Theorem 3.2 byy(m)L (i) := yL(i;�(m)1 ; : : : ; �(m)L ): (26)Theorem 3.17 All assertions of theorem 3.2 remain valid, when Y (m)L is replaed by y(m)L .Remark 3.18 (i) The reader may easily verify that yL(i;�1; : : : ; �L) and YL(i;�1; : : : ; �L)oinide, whenZL(i;�1; : : : ; �L�1) � EFi [YL(i+ 1;�1; : : : ; �L)℄ =) �L(i) > i;and, ZL(i;�1; : : : ; �L�1) � YL(i;�1; : : : ; �L):Example 4.1-(ii) in Setion 4 exhibits an example where these onditions are violated and,(under one exerise right), Y (0; e� ) is stritly smaller than y(0; e� ) for some onsistentstopping family e� .(ii) Note that yL(i;�1; : : : ; �L) = maxfZL(i;�1; : : : ; �L�1);EFi [ZL(�L(i+ 1);�1; : : : ; �L�1)℄g:Thus, a Monte Carlo simulation based approximation of yL requires the same omputa-tional ost as for YL. In ontrast, a de�nition involving the maximum of ZL and bYL would14



ause higher osts.(iii) Note that yL(0;�1; : : : ; �L) an be omputed without knowledge of �1(0); : : : ; �L(0).This turns out to be a signi�ant advantage of the algorithm for y(m)L over the algorithmfor Y (m)L , when onsidering stability under several exerise rights. Indeed, the introdu-tion of y(m)L is mainly motivated by this stability issue and inspired by the study of theLongsta�-Shwartz algorithm (Longsta� and Shwartz, 2001) in Cl�ement et al. (2002).4 StabilityIn this setion we disuss the stability of the algorithm for multiple stopping, startingwith a study of the one-step improvement under one exerise right. We will fous on thestability of YL rather than yL (in (24)), sine all stability results for YL an be simplytransferred to yL. Some details of this transfer will be given in the ontext of severalexerise rights.4.1 Stability of the One-Step Improvement (L = 1)Suppose a onsistent stopping family � is given. As we annot expet to know the on-ditional expetations analytially in general, but, may only alulate approximations, weonsider instead of e�(i) a sequene of stopping familiese� (N)(i) := inffj : i � j � k; bY (j; �) + �(N)(j) � Z(j)g;where N 2 N, and �(N)(i) is a sequene of Fi-adapted proesses.We will �rst show by some simple examples that we must neither expete� (N)(i)! e�(i) in probability;nor Y (0; e� (N))! Y (0; e� ); (27)when limN!1 �(N)(i) = 0; P � a:s:Example 4.1 (i) Suppose (�N )N2N is a sequene of independent binary trials with P (�N =1) = P (�N = 0) = 1=2. We de�ne the proess (Z(i) : i = 0; 1) by Z(0) = Z(1) � 1. The�-�eld F0 = F1 is the one generated by the sequene of trials. Moreover, the sequeneof perturbations is de�ned by �(N)(0) = �N=N and �(N)(1) = 0. Then, starting with anyonsisting stopping family � , we get e� (N)(0) = �N :In partiular, no subsequene of e� (N)(0) onverges in probability.15



(ii) Let 
 = f!0; !1g, F the power set of 
, and P (f!1g) = 1=4 = 1 � P (f!0g). Wede�ne the proess (Z(i) : i = 0; 1; 2) by Z(0) = Z(2) = 2, and Z(1; !0) = 1, Z(1; !1) = 3.Fi is the �ltration generated by Z. We start with the stopping family �(i) = i. AsE[Z(1)℄ = 3=2, we haveZ(0) = 2 � maxf3=2; 2g = maxfE[Z(1)℄; E[Z(2)℄g = bY (0; �):Therefore, e�(0) = 0and Y (0; e� ) = 2:The perturbation sequene �(N) is de�ned to be �(N)(1) = �(N)(2) � 0 and �(N)(0) = 1=N .A straightforward alulation shows that for N � 2,e� (N)(0; !0) = 2; e� (N)(0; !1) = 1:Thus, Y (0; e� (N)) = 9=4 > 2 = Y (0; e� );whih violates (27).We briey note that in this example,e�(1; !0) = 2; e�(1; !1) = 1and thus y(0; e� ) = 9=4 > 2 = Y (0; e� );i.e. the modi�ed improvement y performs better than Y . However, we emphasize, thatthe replaement of Y by y does not generally mend the stability problem explained in thisexample. Indeed, a hange of time i ! i + 1 and introdution of new time 0 values, sayZ(0) = 0 and �(N)(0) = 0, transfers the same stability problem to y.At �rst glane, Example 4.1 paints a rather septial piture of the stability properties ofthe one-step-improvement. Indeed, the best we an now hope for, is(ia) there is a sequene �� (N) of improvers of � suh thatje� (N)(i)� �� (N)(i)j ! 0 P � a:s:(iia) The shortfall of Y (i; e� (N)) below Y (i; e� ) onverges to zero P -a.s.Note, however, that onvergene of the shortfall as in (iia) is the relevant question, notonvergene of the distane as in (27), sine the shortfall orresponds to a hange forthe worse of e� (N) ompared to e� . As we are interested in an improvement it suÆes to16



guarantee that suh a hange for the worse onverges to zero. An additional improvementof e� (N) ompared to e� due to the error proesses �(N) may be seen as a welome side e�et!We now prove assertions (ia) and (iia). We �rst introdue a new sequene of stoppingfamilies whih turns out to onsist of improvers. Let us de�ne�� (N)(k) = k;and for i < k;�� (N)(i) = i () (e� (M)(i) > i for only �nitely many M)_ (e� (M)(i) = i for in�nitely many M and e� (N)(i) = i);�� (N)(i) 6= i =) �� (N)(i) = �� (N)(i+ 1):We then have the following result:Theorem 4.2 Suppose limN!1 �(N)(i) = 0 P � a:s:;for all 0 � i � k. Then �� (N) is an improver of � for every N 2 N.Proof. The onsistent property (3) is satis�ed by de�nition. We show (18) by bakwardindution over i. The ase i = k is immediate. Suppose now 0 � i � k � 1 and (18) isalready shown for i + 1. On fe� (M)(i) = i for in�nitely many Mg we have, for in�nitelymany M (depending on !), Z(i) � bY (i; �) + �(M)(i):This means, Z(i) � bY (i; �) on fe� (M)(i) = i for in�nitely many Mg;as �(M)(i) tends to zero almost surely. However,f�� (N)(i) = ig � fe� (M)(i) = i for in�nitely many Mg:Thus, Z(i) � bY (i; �) on f�� (N)(i) = ig:But this implies e�(i) = i on f�� (N)(i) = ig. Consequently, (18) holds on f�� (N)(i) = ig.On the other hand, f�� (N)(i) > ig � fe� (M)(i) > i for in�nitely manyMg, and an analogousargument yields Z(i) � bY (i; �) on f�� (N)(i) > ig:Consequently, b�(i) > i and thus, by the indution hypothesis,�� (N)(i) = �� (N)(i+ 1) � b�(i+ 1) = b�(i) on f�� (N)(i) > ig:The indution hypothesis an be applied in the same way to show�� (N)(i) � e�(i) on f�� (N)(i) > ig \ fe� (i) > ig;whereas this inequality is trivially satis�ed on f�� (N)(i) > ig \ fe�(i) = ig. This ompletesthe proof of (18). 17



The next theorem ompletes the proof of assertion (ia).Theorem 4.3 je� (N)(i)� �� (N)(i)j ! 0 P � a:s:;or equivalently, P  \N2N 1[M=N ne� (M)(i) 6= �� (M)(i)o! = 0:Proof. The statement is obvious for i = k. Suppose now 0 � i � k � 1 and that thestatement is proved for i+ 1. De�ne,A(N; i) = 1[M=N ne� (M)(i) 6= �� (M)(i)o : (28)Clearly, A(N; i) = B(N; i) [ C(N; i) [D(N; i);where B(N; i) = 1[M=N ne� (M)(i) = io \ n�� (M)(i) > io ;C(N; i) = 1[M=N ne� (M)(i) > io \ n�� (M)(i) = io ;D(N; i) = 1[M=N ne� (M)(i) > io \ n�� (M)(i) > io \ ne� (M)(i) 6= �� (M)(i)o :Sine the sets B(N; i), C(N; i), and D(N; i) are dereasing in N , we have\N2NA(N; i) =  \N2NB(N; i)! [ \N2NC(N; i)! [ \N2ND(N; i)! :We show, that the three sets on the right hand side are evanesent. Firstly, as �� (M) ande� (M) are onsistent, it holds D(N; i) � A(N; i+ 1):Hene, the intersetion of the D(N; i)'s is a null set by the indution hypothesis. By thede�nition of �� (M) we have,C(N; i) � 1[M=N ne� (M)(i) > io \ ne� (K)(i) > i for only �nitely many Ko :Thus, the intersetion of the C(N; i)'s is a null set. A similar argument applies for theintersetion of the B(N; i)'s. 18



Assertion (iia) follows from the next theorem.Theorem 4.4 Suppose that for all i, 0 � i � k,limN!1 �(N)(i) = 0; P � a:s:Then, for all 0 � i � k,limN!1 ���Y (i; e� (N))� Y (i; �� (N))��� = 0 P � a:s:and limN!1�Y (i; e� (N))� Y (i; e� )�� = 0; P � a:s:Remark 4.5 By the dominated onvergene theorem the above onvergenes also hold inL1(P ).Proof. With A(N; i) de�ned in (28) we obtain,���EFi hZ(e� (N)(i))i�EFi hZ(�� (N)(i))i���� ���EFi h�Z(e� (N)(i)) � Z(�� (N)(i))� 1A(N;i)i���� EFi �1A(N;i) max0�j�kZ(j)�! 0;by the dominated onvergene theorem, sinelimN!11A(N;i) = 0 P � a:s:by Theorem 4.3. This proves the �rst laim. The seond laim then follows from Propo-sition 3.11.4.2 Stability of the Algorithm: The Case L = 1We are now going to explain how the stability result for the one-step improvement arriesover to the algorithm in the ase of one exerise right. We will make use of the followingperturbed monotoniity result.Proposition 4.6 Suppose (�N ) is a sequene of onsistent stopping families and, for all0 � i � k, limN!1 (Y (i; �N )� Y (i; �))� = 0 P � a:s:Then, for all 0 � i � k, limN!1 (Y (i; e�N )� Y (i; e� ))� = 0 P � a:s:;where e�N(i) := inffj : i � j � k; bY (j; �N ) � Z(j)g:19



Remark 4.7 For a onstant sequene �N = � for all N , with � being onsistent, Propo-sition 4.6 states: Y (i; �) � Y (i; �) =) Y (i; e�) � Y (i; e� ):By de�ning a preferene struture on the set of stopping families in a natural way via� � � :() Y (i; �) � Y (i; �);we see that the improvement operator e preserves this preferene struture.Proof. The statement will be proved by bakward indution over i. The indution basei = k is obvious. Suppose the statement is proved for some 1 � i+ 1 � k.We �rst note that by Remark 3.10,1fe�(i)=ig (Y (i; e�N )� Y (i; e� ))� � (Y (i; e�N )� Z(i))� = 0: (29)We next show that the statement is true on the set fe�M (i) = i for in�nitely many Mg.For this we need the following preliminary onsideration. By Jensen's inequality and thedominated onvergene theorem, for all p � i it holds,�EFi [Y (p; �N )℄�EFi [Y (p; �)℄�� � EFi �(Y (p; �N )� Y (p; �))��! 0:Thus, limN!1�bY (i; �N )� bY (i; �)�� = 0 P � a:s:; (30)sine the max-operator is ontinuous with respet to the metri generated by the negativepart. On fe�M (i) = i for in�nitely many Mg we have for in�nitely many M ,bY (i; �M ) � Z(i):Sine �Z(i)� bY (i; �)�� � �Z(i)� bY (i; �M )�� + �bY (i; �M )� bY (i; �)�� ;we may onlude from (30), thatZ(i) � bY (i; �) on fe�M (i) = i for in�nitely many Mg:Hene, fe�M (i) = i for in�nitely many Mg � fe�(i) = ig:On the latter set the statement was proved in (29).It remains to verify the statement onE(i) = fe�M (i) = i for only �nitely many Mg \ fe�(i) > ig:De�ne N0(i) = 1E(i)maxfN ; e�N (i) = ig+ 1;20



and note that the proess N0(i) is Fi-adapted. Sinee�N (i) > i on fN � N0(i)g \E(i);it follows from the indution hypothesis, Jensen's inequality, and the dominated onver-gene theorem, that1fN�N0(i)g\E(i) (Y (i; e�N )� Y (i; e� ))�= 1fN�N0(i)g\E(i) �EFi [Y (i+ 1; e�N )℄�EFi [Y (i+ 1; e� )℄��� EFi �(Y (i+ 1; e�N )� Y (i+ 1; e� ))��! 0:For notational onveniene we state the stability result of the algorithm for two improve-ment steps (m = 2) only. It is immediate, how this extends to higher iterations. Wewill also skip all subsripts, whih are superuous in the ase of one exerise right. Forinstane, we write � (1) instead of � (1)1;1 . First note that with � = � (0),� (1)(i) = e�(i);� (2)(i) = ee�(i) = inffj : i � j � k; bY (j; e� ) � Z(j)g:Let us suppose that for (N1; N2) 2 N�N , sequenes �(N1)(i) and �(N1;N2)(i) are given suhthat for 0 � i � k, limN1!1 �(N1)(i) = 0 P � a:s:;and, for 0 � i � k and N1 2 N,limN2!1 �(N1;N2)(i) = 0 P � a:s:We then de�nee� (N1)(i) := inffj : i � j � k; bY (j; �) + �(N1)(j) � Z(j)g;ee� (N1)(i) := inffj : i � j � k; bY (j; e� (N1)) � Z(j)g;ee� (N1;N2)(i) := inffj : i � j � k; bY (j; e� (N1)) + �(N1;N2)(j) � Z(j)g:Theorem 4.4 now yields limN1!1�Y (i; e� (N1))� Y (i; e� )�� = 0 P � a:s:; (31)limN2!1�Y (i;ee� (N1;N2))� Y (i;ee� (N1))�� = 0 P � a:s: (32)In view of (31) we obtain by Proposition 4.6,limN1!1�Y (i;ee� (N1))� Y (i;ee� )�� = 0 P � a:s: (33)21



From �Y (i;ee� (N1;N2))� Y (2)(i)��� �Y (i;ee� (N1;N2))� Y (i;ee� (N1))�� +�Y (i;ee� (N1))� Y (i;ee� )�� ;we then obtain,Theorem 4.8 For all 0 � i � k,limN1!1 limN2!1�Y (i;ee� (N1;N2))� Y (2)(i)�� = 0P -almost surely and in L1(P ).The generalization of this result to m iteration steps may be put into words as follows:The shortfall of the investor's expeted gain orresponding to m perturbed steps of thealgorithm below the expeted gain orresponding to m theoretial steps onverges to zero.We emphasize again that it may happen that the perturbed algorithm performs evenbetter than the theoretial (ompare Example 4.1-(ii)).4.3 Stability under Several Exerise RightsThe stability issue beomes more involved under several exerise rights. One reason isthat we annot expet to have the inequalityYL(i; ��1; : : : ; ��L) � YL(i; e�1; : : : ; e�L);where ��1; : : : ; ��L are arbitrary improvers of �1; : : : ; �L, but only the inequalities stated inTheorem 3.14. In other words, we annot identify a worst improver as was possible in thease of one exerise right. Theorem 3.14 suggest that we must on�ne ourselves with thefollowing stability result for the one-step improvement under several rights.Theorem 4.9 Suppose �1; : : : ; �D are onsistent stopping families. De�ne for 1 � L �D, e�L(i) = inffj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1)� bYL(j;�1; : : : ; �L) + �(N)L (j)g;where for all 1 � L � D, 0 � i � k,limN!1 �(N)L (i) = 0 P � a:s:Then, there are sequenes of improver ��(N)1 ; : : : ; ��(N)D of �1; : : : ; �D suh that, for all 1 �L � D, limN!1 je�(N)L (i)� ��(N)L (i)j = 0:22



Moreover, limN!1 ���YL(i; e�(N)1 ; : : : ; e�(N)L )� YL(i; ��(N)1 ; : : : ; ��(N)L )��� = 0 P � a:s:;and limN!1�YL(i; e�(N)1 ; : : : ; e�(N)L )� YL(i;�1; : : : ; �L�1; e�L)�� = 0 P � a:s:Proof. In view of Lemma 3.12 and Theorem 3.14, the theorem follows by straightforwardredution to the ase of one exerise right.Again we demonstrate the stability of the multiple stopping algorithm only for two steps(m = 2). Suppose we are given onsistent starting families �1; : : : ; �D (with suppressedsupersript 0 in the notation of the algorithm). Reall that�(1)L (i) := e�L(i);�(2)L (i) := e�(1)L (i) = ee�L(i):We next onsider perturbed versions,e�(N1)L (i) = inffj � i; Z(j) +EFjYL�1(j + Æ;�1; : : : ; �L�1)� bYL(j;�1; : : : ; �L) + �(N1)L (j)g;ee�(N1;N2)L (i) = inffj � i; Z(j) +EFjYL�1(j + Æ; e�(N1)1 ; : : : ; e�(N1)L�1 )� bYL(j; e�(N1)1 ; : : : ; e�(N1)L ) + �(N1;N2)L (j)g;with limN1!1 �(N1)L (i) = 0 P � a:s:;limN2!1 �(N1;N2)L (i) = 0 P � a:s:In order to iterate the stability result from the previous theorem we will now additionallyassume that, for 1 � L � D, 0 � i � k � 1,��L(i) = limN1!1 e�(N1)L (i) (34)exists. Note that, by Theorem 4.9, the limit ��L an be rewritten as a limit of L-improvers.By the de�nition of an L-improver it is straightforward that ��L is an L-improver itself.We postpone a disussion of assumption (34) and ontinue to prove stability under thisassumption.We denote by ee�(N1)L the theoretial e -improvement of e�(N1)L . The additional assumption(34) now ensures that we an write (by applying Lemma 3.12),ee�(N1)L (i) = inffj � i; ZL(j; ��1; : : : ; ��L�1)� maxp�j+1EFj ZL(��L(p); ��1; : : : ; ��L�1) + e�(N1)L (i)g;23



where limN1!1e�(N1)L (i) = 0 P � a:s:We now de�ne �e�(N1)L (k) = k;and �e�(N1)L (i) = i () (ee�(M)L (i) > i for only �nitely many M)_ (ee�(M)L (i) = i for in�nitely many M and ee�(N1)L (i) = i);�e�(N1)L (i) 6= i =) �e�(N1)L (i) = �e�(N1)L (i+ 1):By Theorem 4.3, we have for all 1 � L � D,limN1!1 jee�(N1)L (i)� �e�(N1)L (i)j = 0:Thus, P -almost surely,limN1!1 ����YL(i; e�(N1)1 ; : : : ; e�(N1)L�1 ; ee�(N1)L )� YL(i; ��1(i); : : : ; ��L�1(i); �e�(N1)L )���� = 0: (35)Moreover, by Theorem 4.2, for all 1 � L � D, �e�(N1)L is an improver of ��L with respetto the ash-ow ZL(�; ��1; : : : ��L�1), and thus an L-improver with respet to (��1; : : : ; ��L�1)(Lemma 3.12). Hene, by Theorem 3.14,�YL(i; ��1(i); : : : ; ��L�1(i); �e�(N1)L )� YL(i; ��1(i); : : : ; ��L�1(i); e��L)�� = 0: (36)Here, again, e��L is the theoretiale-improvement of ��L. Finally, by Theorem 4.9, P -almostsurely, limN2!1�YL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� YL(i; e�(N1)1 ; : : : ; e�(N1)L�1 ; ee�(N1)L )�� = 0: (37)Clearly, the onvergene in (35) and (37) also holds in L1(P ). By ombining (35){(37),we obtain,limN1!1 limN2!1�YL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� YL(i; ��1; : : : ; ��L�1; e��L)�� = 0; (38)P -almost surely and in L1(P ). Reall that ��1; : : : ; ��L are some theoretial improvers of�1; : : : ; �L. Thus, e��L is a theoretial two-step improvement of �L.We now disuss the additional assumption (34). (34) an be violated for i = 0 very easily,as the following variant of Example 4.1-(i), shows.24



Example 4.10 Suppose the initial value ZL(0;�1; : : : ; �L�1) equals the real number bYL(0;�1; : : : ; �L).Note that this an always be enfored for some 1 � L � D by hanging the initial valueZ(0) of the ash-ow appropriately. Moreover, assume �(N1)L (0) = �N1=N1 for a sequene(�N1) of independent binary trials as in Example 4.1-(i). Then again,e�(N1)L (0) = �N1 ;whih does not onverge almost surely when N1 tends to in�nity. It is lear that moregeneral perturbations, whih take positive and non-positive values with positive probability,yield the same e�et.The problem indiated in this example was our main motivation to introdue the modi�edalgorithm based on yL instead of YL. Suppose for the moment, that (34) is satis�ed for1 � i � k � 1 only. Then (38) holds for 1 � i � k. By the de�nition of yL and Jensen'sinequality we obtain,�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; ��1; : : : ; ��L�1; e��L)��� EFi �YL(i+ 1; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� YL(i+ 1; ��1; : : : ; ��L�1; e��L)�� :Thus, by dominated onvergene, for all 0 � i � k,limN1!1 limN2!1�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; ��1; : : : ; ��L�1; e��L)�� = 0;P -almost surely and in L1(P ).We summarize the previous disussion in the following theorem:Theorem 4.11 Suppose that for all 1 � L � D and 1 � i � k � 1,��L(i) = limN1!1 e�(N1)L (i)exist. Then ��1; : : : ; ��D are improvers of �1; : : : ; �D up from time 1 (they are not de�nedat time 0).De�ne by e��L (1 � L � D) the theoretial e -L-improver of ��L with respet to (��1; : : : ; ��L�1).Then, for all 0 � i � k, 1 � L � D,limN1!1 limN2!1�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; ��1; : : : ; ��L�1; e��L)�� = 0P -almost surely and in L1(P ). The orresponding result for YL, i.e. (38), holds up fromtime i=1. It holds up from time i = 0, when (34) is also valid for i = 0.The previous theorem still alls for suÆieny riteria for assumption (34) for 1 � i � k�1.25



Theorem 4.12 Suppose, for all 1 � L � D, 1 � i � k � 1,P �ZL(i;�1; : : : ; �L�1) = maxp�i+1EFi [ZL(�L(p);�1; : : : ; �L�1)℄� = 0: (39)Then, (34) is satis�ed for all 1 � i � k � 1 and 1 � L � D. Moreover, for 0 � i � k � 1and 1 � L � D,limN1!1 limN2!1�yL(i; ee�(N1;N2)1 ; : : : ; ee�(N1;N2)L )� yL(i; e�1; : : : ; e�L�1; ee�L)�� = 0;P -almost surely and in L1(P ).Proof. By (21) and (22) assumption (39) guarantees that, for all 1 � L � D and1 � i � k, e�L(i) = b�L(i) P � a:s:This implies that the sequene ��(N)L (i) of Theorem 4.9 oinides with e�L(i) for all N 2 N.In partiular, Theorem 4.9 yields that for all 1 � L � D and 1 � i � k,limN1!1 e�(N1)L (i) = e�L(i):The theorem now follows by appliation of Theorem 4.11.The proedure desribed in this setion an be iterated straightforwardly. For instane,under the additional (to (34)) assumption that���L(i) = limN1!1 limN2!1 ee�(N1;N2)L (i) (40)for 1 � L � D and 1 � i � k � 1 exists, we obtain for m = 3 (with obvious notations),�yL(i; eee�(N1;N2;N3)1 ; : : : ; eee�(N1;N2;N3)L )� yL(i; ���1(i); : : : ; ���L�1(i); e���L)�� ! 0 (41)P -almost surely and in L1(P ), when N3; N2; and N1 tend to in�nity. Here, one anverify that the limit ���L improves upon ��L de�ned in (34) up from time i = 1. Thus, ���L,1 � L � D, is a two-step improvement of �L (up from time i = 1) and e���L , 1 � L � D, isa three-step improvement of �L (up from time i = 1).If, in addition to (39), we haveP �ZL(i; e�1; : : : ; e�L�1) = maxp�i+1EFi [ZL(e�L(p); e�1; : : : ; e�L�1)℄� = 0; (42)for 1 � L � D; 1 � i � k� 1, then (34) and (40) are satis�ed and the limit in (40) equalsee�L(i). Thus, (41) yields an analogue of Theorem 4.12 for three iterations.Remark 4.13 In view of Theorem 4.8 the assumptions of this setion an be slightlyrelaxed. Indeed, for the improvement of the �rst stopping family �1 we may apply Theo-rem 4.8 diretly. Therefore, it suÆes to assume all additional properties for 2 � L � Dinstead of 1 � L � D. Then, of ourse, ��1, ���1 must be replaed by e�1, ee�1.26



Disussion of stability resultsUnder one exerise right we were able to prove that the shortfall of the perturbed algo-rithm under the theoretial (non-perturbed) algorithm onverges to zero (Theorem 4.8).Compared to this the stability results under several rights are less satisfatory in two re-spets. We will now explain, why the obtained results are suÆient to all the algorithmstable, and why we think that better results are unlikely to hold.The �rst shortoming is that the stability results under several rights, (even for one step),do not allow to ompare the theoretial and the perturbed improvement diretly. Tooverome this, one ould employ the improvement strategy of Remark 3.4. But, as weexplained there, this would ause muh higher simulation osts, when implementation thealgorithm. As one of the key issues of the paper is to provide an algorithm with few nest-ings of onditional expetations, we deided not to go along this way. When iterating theone-step improvement, the fat that we make use of the proedure in (7) auses the fol-lowing e�et: After m iterations we an only guarantee that the shortfall of the perturbedalgorithm below some theoretial (m � 1)-step improvement, not below some theoretialm-step improvement, onverges to zero (atually a little more, see Theorem 4.11). Hene,(m + 1) nestings of onditional expetations are needed to ompare with some m-stepimprovement. This is still muh less than the nestings required to alulate m steps ofthe improvement type introdued in Remark 3.4. We also note that the omparison withsome m-step improvement instead of the theoretial algorithm does not make too muhof a di�erene due to Remark 3.15. Moreover, Theorem 4.12 allows to ompare (m + 1)perturbed steps of the yL-algorithm with m theoretial steps of this algorithm.The seond drawbak, ompared to stability under one exerise right, is that we had toimpose additional onditions in order to iterate the one-step stability. Under one exeriseright the monotoniity result in Proposition 4.6 allows to irumvent these assumptions.We believe a multi-exerise version of proposition 4.6 is unlikely to hold for the followingreason: Suppose �1; : : : ; �L and �01; : : : ; �0L are onsistent stopping families with respe-tive improvers e�1; : : : ; e�L and e�01; : : : ; e�0L. Then, e�L and e�0L may be viewed as improversunder one exerise right with respet to the di�erent ash-ows ZL(i;�1; : : : ; �L�1) andZL(i;�01; : : : ; �0L�1). But omparisons of the quality of improvements with respet to dif-ferent ash-ows even fail, when one ash-ow dominates the other. We �nally note, thatan assumption similar to (39) has been made in Cl�ement et al. (2002) in order to provestability of the Longsta�-Shwartz algorithm for the optimal stopping problem under asingle exerise right.5 ConlusionMotivated by the priing problem of �nanial instruments with multiple early exeriseopportunities we presented a new algorithm for the multiple stopping problem in disrete27



time and proved stability results for this algorithm. From a numerial point of view, themain feature of the algorithm is that it allows to alulate an inreasing and onvergentfamily of approximations of the Snell envelope with the order of nested onditional ex-petations for the mth approximation independent of the number of exerise rights. Thealgorithm is therefore tailor-made for a plain Monte-Carlo implementation and is thus ex-peted to be partiularly powerful when the ash-ow is a funtion of a high-dimensionalMarkov proess. Under a single exerise right the strength of the algorithm is demon-strated by the simulation results in Kolodko and Shoenmakers (2004). Simulations underseveral exerise rights will be disussed in a forthoming paper.ReferenesAndersen, L. (1999) A Simple Approah to the Priing of Bermudan Swaptions in aMultifator LIBOR Market Model. Journal of Computational Finane, 3, 5-32.Bensoussan, A., Lions, J. (1982) Appliations of Variational Inequalities in StohastiControl. North Holland: Amsterdam.Broadie, M., Glasserman, P., Ha, Z. (2000) Priing Amerian Options by Simulations Us-ing a Stohasti Mesh with Optimized Weights. Probabilisti Constrained Optimization:Methodology and Appliations, S. Uryasev (ed.), Kluwer: Norwell, Mass., 32-50.Carmona, R. and Dayanik, S. (2004) Optimal Multiple-Stopping of Linear Di�usions andSwing Options. Preprint.Carmona, R., Touzi, N. (2003) Optimal Multiple-Stopping and Valuation of Swing Op-tions. Preprint.Cl�ement, E., Lamberton, D., Protter. P. (2002) An Analysis of a Least Square RegressionMethod for Amerian Option Priing. Finane Stohast., 6, 449-471.Cox, J., Ross, S., Rubinstein, M. (1979) Option Priing: A Simpli�ed Approah. J. Fi-nanial Eonomis, 7, 229-263.Eglo�, D. (2004) Monte Carlo Algorithms for Optimal Stopping and Statistial Learning.Ann. Appl. Probab., forthoming.Haugh, M. B., Kogan, L. (2004) Priing Amerian Options: A Duality Approah. Opera-tions Researh, 52, 258-270.Ib�a~nez, A. (2004) Valuation by Simulation of Contingent Claims with Multiple EarlyExerise Opportunities. Math. Finane, 14, 223-248.Ib�a~nez, A., Zapatero, F. (2004) Valuation of Amerian Options through Computation ofthe Optimal Exerise Frontier. J. Finanial Quant. Anal., 39, 2, 253-276.28



Jaillet, P., Ronn, E. I., Tompaidis, S. (2004) Valuation of Commodity Based Swing Op-tions. Management Siene, 50, 909-921.Jamshidian, F. (2003) Minimax Optimality of Amerian and Bermudan Claims and theirMonte Carlo Valuation. Working Paper.Kolodko, A. and Shoenmakers, J. (2003) An EÆient Dual Monte Carlo Upper Boundfor Bermudan Style Derivative. Preprint No. 877, Weierstrass Institute Berlin.Kolodko, A., Shoenmakers, J. (2004) Iterative Constrution of the Optimal BermudanStopping Time. Preprint No. 877, Weierstrass Institute Berlin, Pro. 2nd IASTED Fin.Eng. Appl. Cambridge MA, 230-238.Longsta�, F. A., Shwartz, R. S. (2001) Valuing Amerian Options by Simulation: ASimple Least-Square Approah. Review of Finanial Studies, 14, 113-147.Meinshausen, N., Hambly, B. M. (2004) Monte Carlo Methods for the Valuation ofMultiple-Exerise Options. Math. Finane, 14, 557-583.Milstein, G.N., Rei�, O. and Shoenmakers, J. (2004) A New Monte Carlo Method forAmerian Options. Int. J. of Theoretial and Applied Finane, 7, 5, 591-614.Neveu, J. (1975) Disrete Parameter Martingales. North-Holland: Amsterdam.Rogers, L. C. G. (2002) Monte Carlo Valuation of Amerian Options. Math. Finane, 12,271-286.Van Moerbeke, P. L. J. (1976) On Optimal Stopping and Free Boundary Problems.Arhive Rat. Meh. Anal., 60, 101-148.

29


