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Abstract. We generalize an alternating direction implicit method and the Smith method for
large-scale projected generalized Lyapunov equations. Such equations arise in model reduction for
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1. Introduction. Consider a linear time-invariant descriptor system

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(1.1)

where E, A ∈ R
n,n, B ∈ R

n,m, C ∈ R
p,n, x(t) ∈ R

n is the state vector, u(t) ∈ R
m

is the control input and y(t) ∈ R
p is the output. The matrix E may be singular,

but the pencil λE − A is assumed to be regular, i.e., det(λE − A) 6≡ 0. Descriptor
systems arise in many different applications including electrical circuit simulation,
multibody dynamics and spatial discretization of partial differential equations, e.g.
[7, 8, 9]. Stability analysis and some control problems for (1.1) are strongly related to
the projected generalized continuous-time algebraic Lyapunov equations (GCALEs)

EXAT + AXET = −PlBBTPT
l , PrXPT

r = X, (1.2)

ET XA + ATXE = −PT
r CTCPr, PT

l XPl = X (1.3)

and the projected generalized discrete-time algebraic Lyapunov equations (GDALEs)

AXAT − EXET = (I − Pl)BBT(I − Pl)
T , PrXPT

r = 0, (1.4)

AT XA − ET XE = (I − Pr)
T CTC(I − Pr), PT

l XPl = 0, (1.5)

where Pl and Pr are the spectral projections onto the left and right deflating subspaces
corresponding to the finite eigenvalues of the pencil λE − A. It has been shown in
[34] that if the pencil λE − A is stable, i.e., all its finite eigenvalues have negative
real part, then the projected GCALEs (1.2) and (1.3) have the unique symmetric,
positive semidefinite solutions which define the proper controllability and observability
Gramians of the descriptor system (1.1). Furthermore, the projected GDALEs (1.4)
and (1.5) have the unique symmetric, positive semidefinite solutions which are the
improper controllability and observability Gramians of (1.1). The Gramians play
a central role in analysis and control design problems for descriptor systems, such as
the characterization of controllability and observability properties, computing the H2
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or Hankel norm, the minimal and balanced realizations as well as balanced truncation
model order reduction [5, 34, 35, 36].

The numerical solution of standard Lyapunov equations with E = I has been
the topic of numerous publications [3, 4, 12, 13, 14, 15, 19, 20, 24, 26, 30]. A variety
of direct and iterative methods has been proposed there for computing the solutions
of such equations, their Cholesky factors or low rank approximations. The case of
nonsingular E has been considered in [6, 10, 16, 17, 23]. Until now, only direct
methods have been extended to projected Lyapunov equations [33]. The solutions
of (1.2) – (1.5) can be computed by the generalized Schur–Bartels–Stewart or the
generalized Schur–Hammarling methods that are based on the preliminary reduction
of the pencil λE−A to the generalized Schur form, solution of the generalized Sylvester
and Lyapunov equations and back transformation. Since these methods cost O(n3)
operations and require O(n2) memory location, they can be used only for problems
of small or medium size.

Due to the practical importance of the numerical solution of large-scale projected
generalized Lyapunov equations that occur in balanced truncation model reduction
for descriptor systems [36], the development of iterative methods for such equations
is a challenging problem. In this paper we generalize an alternating direction implicit
(ADI) method [19, 20, 24] and a Smith method [24, 30] to the projected generalized
Lyapunov equations (1.2) and (1.4) with large sparse matrix coefficients. The dual
equations (1.3) and (1.5) can be solved in a similar way. Low rank versions of the
ADI and Smith methods are also presented that can be used to compute low rank
approximations to the solutions of (1.2) and (1.4) with a low rank right-hand side.
Such a problem arises, e.g., in model reduction. Note that the number m of columns
of the matrix B in (1.2) and (1.4) relates to the number of inputs of the underlying
descriptor system (1.1) and is usually very small compared to order n of the problem.

A major difficulty in the numerical solution of projected Lyapunov equations is
that we need to compute the spectral projections Pl and Pr onto the left and right
deflating subspaces of the pencil λE − A corresponding to the finite eigenvalues.
Fortunately, in many applications such as computational fluid dynamics, electrical
circuit simulation and constrained structural mechanics, the matrices E and A have
some special block structure. As the following examples show, this structure can be
used to construct the projections Pl and Pr in explicit form.

Example 1.1. Consider the descriptor system (1.1), where E and A have the form

E =

[

E11 0
0 0

]

, A =

[

A11 A12

A21 0

]

. (1.6)

Such systems arise, for instance, in spatial discretization of the instationary incom-
pressible Stokes equation [7, 8], and the convection equation [21]. If E11 is nonsingular
and the matrices A12 and A21 have full rank, then the pencil λE −A as in (1.6) is of
index 2, see, e.g., [8] for the definition of index. In this case the spectral projections
Pl and Pr have the following form

Pl =

[

Πl −ΠlA11E
−1
11 A12(A21E

−1
11 A12)

−1

0 0

]

,

Pr =

[

Πr 0
−(A21E

−1
11 A12)

−1A21E
−1
11 A11Πr 0

]

,

where Πl = I − A12(A21E
−1
11 A12)

−1A21E
−1
11 is a projection onto the nullspace of

A21E
−1
11 along the image of A12 and Πr = I−E−1

11 A12(A21E
−1
11 A12)

−1A21 = E−1
11 ΠlE11.
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Example 1.2. The motion of multibody systems with holonomic constraints can
be described by nonlinear differential-algebraic equations of the first order [9, 29].
Linearization of these equations around an equilibrium state leads to the descriptor
system (1.1) with

E =





I 0 0
0 M 0
0 0 0



 , A =





0 I 0
K D −GT

G 0 0



 . (1.7)

Here M is the symmetric, positive definite mass matrix, K is the stiffness matrix, D
is the damping matrix and G is the matrix of constraints. If the matrix G is of full
row rank, then the pencil λE −A is of index 3 and the spectral projections Pl and Pr

can be computed as

Pl =





Π 0 −ΠM−1DG1

−ΠT D(I − Π) ΠT −ΠT (K + DΠM−1D)G1

0 0 0



 ,

Pr =





Π 0 0
−ΠM−1D(I − Π) Π 0

GT
1 (KΠ − DΠM−1D(I − Π)) GT

1 DΠ 0



 ,

where G1 = M−1GT (GM−1GT )−1 and Π = I−M−1GT (GM−1GT )−1G = I−G1G is
a projection onto the nullspace of G along the image of M−1GT , see [29] for details.

In the following we will assume that the projections Pl and Pr are given. Clearly,
we do not compute these projections explicitly. Instead, we use matrix-vector mul-
tiplication and linear system solvers. In Section 2 we present a generalization of the
ADI method and its low rank version for the projected GCALE (1.2). In Section 3 we
discuss the numerical solution of the projected Lyapunov equations (1.2) and (1.4) via
the (cyclic) Smith method. Section 4 contains some results of numerical experiments.

Throughout the paper the complex plane is denoted by C and the open left half-
plane is denoted by C

−. We will denote by R
n,m and C

n,m the spaces of n×m real and
complex matrices, respectively. The real part of a complex number z is denoted by
Re(z). The matrix AT stands for the transpose of A ∈ R

n,m, A∗ denotes the complex
conjugate and transpose of A ∈ C

n,m, and A−T = (A−1)T . An identity matrix of
order n is denoted by In or simply I.

2. Alternating direction implicit method. The ADI method was originally
proposed for linear systems [22] and then used in [18, 19, 20, 24, 38] to solve standard
continuous-time Lyapunov equations. The case of nonsingular E has been considered
in [17]. In this section we present a generalization of the ADI method for the projected
GCALE (1.2).

For any parameter τ ∈ C, the first equation in (1.2) can be rewritten as

(E + τA)XAT + AX(E − τA)T = −PlBBT PT
l . (2.1)

Then the generalized ADI iteration for the projected GCALE (1.2) is given by

(E + τkA)Xk−1/2A
T = −PlBBT PT

l − AXk−1(E − τkA)T ,

(E + τkA)XT
k AT = −PlBBT PT

l − AXT
k−1/2(E − τkA)T

(2.2)

with an initial matrix X0 = 0 and the shift parameters τ1, . . . , τk ∈ C
−. If the pencil

λE − A is stable, then the matrices A and E + τkA are nonsingular. In this case the
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matrices (E + τkA)−1A and A−1(E − τkA) commute. From (2.2) we find that

Xk = (E + τkA)−1(E − τkA)Xk−1(E − τkA)T (E + τkA)−T

−2Re(τk)(E + τkA)−1PlBBT PT
l (E + τkA)−T .

(2.3)

Moreover, it follows from

Pr(E + τkA)−1 = (E + τkA)−1Pl, Pl(E − τkA) = (E − τkA)Pr

that Xk = PrXkPT
r , i.e., the second equation in (1.2) is satisfied exactly.

Let X be a solution of the projected GCALE (1.2). Then the error matrices
X − Xk can be computed from (2.1) and (2.3) recursively as X − Xk = AkXA∗

k,
where

Ak = Pr(E + τkA)−1(E − τkA) · . . . · (E + τ1A)−1(E − τ1A). (2.4)

If the pencil λE − A is stable, then all the eigenvalues of Ak lie inside the unite
circle, and, hence, Xk converges to the solution of the projected GCALE (1.2). The
rate of convergence is determined by the spectral radius of the matrix Ak which
depends strongly on the choice of the shift parameters. The minimization of this
spectral radius with respect to the parameters τ1, . . . , τk leads to the generalized ADI
minimax problem

{τ1, . . . , τk} = arg min
{τ1,...,τk}∈C−

max
t∈Spf (E,A)

|(1 − τ1t) · . . . · (1 − τkt)|
|(1 + τ1t) · . . . · (1 + τkt)| , (2.5)

where Spf (E,A) denotes the set of finite eigenvalues of the pencil λE − A. The
computation of the optimal shift parameters is a difficult problem, since the finite
eigenvalues of the pencil λE−A (in particular, if it is large and sparse) are in general
unknown and expensive to compute. This problem is solved for standard equations
with E = I and symmetric A, e.g., [39], while the case of complex eigenvalues is still
not completely understood, see [20, 32, 39] for some contributions. To compute the
suboptimal ADI shift parameters for the standard problem a heuristic algorithm has
been proposed in [24]. This algorithm is based on Arnoldi iterations [27] applied to
the matrices A and A−1. It can also be extended to the generalized problem (2.5).
Due to the nonsingularity of A this problem is rewritten as

{τ1, . . . , τk} = arg min
{τ1,...,τk}∈C−

max
t∈Sp(EA−1)\{0}

|(t − τ1) · . . . · (t − τk)|
|(t + τ1) · . . . · (t + τk)| , (2.6)

where Sp (EA−1) denotes the spectrum of the matrix EA−1. Thus, the suboptimal
ADI shift parameters τ1, . . . , τk can be determined by the heuristic procedure [24,
Algorithm 5.1] from a set of largest and smallest (in modulus) nonzero approximate
eigenvalues of EA−1 computed by an Arnoldi process.

The computational cost of the generalized ADI method is, in general, O(n3) and
the memory complexity is O(n2). In many cases the storage requirement rather than
the computational cost is a limiting factor for feasibility of numerical methods for
large-scale problems.

2.1. Low rank version of the generalized ADI method. Recently, an effi-
cient modification of the ADI method has been proposed to compute low rank appro-
ximations to the solutions of standard Lyapunov equations with large-scale matrix
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coefficients [18, 19, 24]. This is the low rank alternating direction implicit (LR-ADI)
method. It was observed that the eigenvalues of the symmetric solutions of Lyapunov
equations with low rank right-hand side generally decay very rapidly, and such solu-
tions may be well approximated by low rank matrices [2, 11, 25, 31]. A similar result
holds for projected generalized Lyapunov equations. In other words, it is possible to
find a matrix Z with a small number of columns such that ZZT is an approximate
solution of the projected GCALE (1.2). The matrix Z is referred to as the low rank

Cholesky factor of the solution X of (1.2).
A low rank version of the generalized ADI iteration (2.2) can be derived analo-

gously to the standard case [18, 19, 24]. First of all note that the matrix Xk in (2.3)
is Hermitian, positive semidefinite and the Cholesky factor Zk of Xk = ZkZ∗

k has the
form

Zk = [
√

−2Re(τk)(E + τkA)−1PlB, (E + τkA)−1(E − τkA)Zk−1 ]

= [αkSkPlB, αk−1SkRkSk−1PlB, . . . , α1SkRk · · ·R2S1PlB ],

where αj =
√

−2Re(τj), Sj = (E + τjA)−1 and Rj = E − τ jA. Taking into account
that

SkASj = SjASk, RkA−1Rj = RjA
−1Rk, SkRj = A−1RjSkA

for all k, j = 1, 2, . . ., the matrix Zk can be rewritten as

Zk = [B0, Fk−1B0, Fk−2Fk−1B0, . . . , F1F2 · · ·Fk−1B0 ],

where B0 =
√

−2Re(τk)(E + τkA)−1PlB =
√

−2Re(τk)Pr(E + τkA)−1B and

Fj =

√

−Re(τj)
√

−Re(τj+1)
SjRj+1 =

√

−Re(τj)
√

−Re(τj+1)

(

I − (τj + τ j+1)(E + τjA)−1A
)

.

If we reenumerate the shift parameters in reverse order, then we obtain the following
algorithm to compute the low rank Cholesky factor of the solution of (1.2).

Algorithm 2.1. The generalized LR-ADI method for the projected GCALE.

Input: E, A, Pl ∈ R
n,n, B ∈ R

n,m, shift parameters τ1, . . . , τkmax
∈ C

−.

Output: A low rank Cholesky factor Zk of the solution X ≈ ZkZ∗
k of (1.2).

1. Z(1) =
√

−2Re(τ1) (E + τ1A)−1PlB, Z1 = Z(1);

2. FOR k = 2, 3, . . .

a. Z(k) =

√

−Re(τk)
√

−Re(τk−1)

(

I − (τk−1 + τk)(E + τkA)−1A
)

Z(k−1), (2.7)

b. Zk = [Zk−1, Z(k) ].

END FOR

Note that if at least one of the shift parameters is complex, then the low rank
Cholesky factors Zk may be complex although the solution X of (1.2) is real. As
in the standard case [19, 24], this problem can be avoided if we take the complex
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shift parameters in complex conjugate pairs {τj , τj+1} with τj+1 = τ j and compute
the iterate Zk = [Zk−1, Z(k) ] only if τk is real. If τk is complex and τk+1 = τk,
then we do not form Zk, but compute Z(k+1) = (I − 2τk+1(E + τk+1A)−1A)Z(k) and

Zk+1 = [Zk−1, Z
(k)
1 , Z

(k)
2 ], where

Z
(k)
1 =

√
2 |τk|(E + τk+1A)−1AZ(k), Z

(k)
2 =

√
2 (E + τk+1A)−1EZ(k)

and Z(k) is as in (2.7). In this case one can show that all the matrices Zk are real.
Therefore, in the following we will assume without loss of generality that the computed
low rank Cholesky factors Zk are real.

The ADI iteration can be stopped as soon as a normalized residual norm given by

η(Zk) =
‖EZkZT

k AT + AZkZT
k ET + PlBBTPT

l ‖F

‖PlBBTPT
l ‖F

(2.8)

satisfies the condition η(Zk) ≤ tol with a user-defined tolerance tol or a stagnation of
normalized residual norms is observed. If the number of shift parameters is smaller
than the number of iterations required to attain a prescribed tolerance, then we reuse
these parameters in a cyclic manner. Note that computing the normalized residuals
η(Zk) even via the efficient method proposed in [24] can still be quite expensive for
large-scale problems. It should also be noted that for ill-conditioned problems, the
small residual norm does not imply that the error in the computed solution is also
small, see [33].

If the iterates Xk = ZkZT
k converge to the solution of (1.2), then

lim
k→∞

Z(k)(Z(k))T = lim
k→∞

(Xk − Xk−1) = 0.

Therefore, as the stopping criterion in Algorithm 2.1 one can also use the condition
‖Z(k)‖ ≤ tol or ‖Z(k)‖/‖Zk‖ ≤ tol with some matrix norm ‖ · ‖.

Note that the matrices (E +τkA)−1 in Algorithm 2.1 do not have to be computed
explicitly. Instead, we solve linear systems of the form (E + τkA)x = Plb either by
computing (sparse) LU factorizations and forward/backward substitutions or by using
iterative Krylov subspace methods [28]. In the latter case the generalized LR-ADI
method has the memory complexity O(kADImn) and costs O(klskADImn) flops, where
kADI is the number of outer ADI iterations and kls is the number of inner linear solver
iterations. This method becomes efficient for large-scale sparse Lyapunov equations
only if klskADIm is much smaller than n.

Remark 2.1. In exact arithmetic the matrices Zk satisfy Zk = PrZk and, hence,
the second equation in (1.2) is fulfilled for the low rank approximation ZkZT

k . How-
ever, in finite precision arithmetic a drift-off effect may occur. In this case we need
to project Z(k) onto the image of Pr by pre-multiplication with Pr. In order to limit
the additional computation cost we can do this, for example, at every second or third
iteration step.

Observe that if E is nonsingular, but ill-conditioned with respect to inversion,
then Algorithm 2.1 may provide a better result than the classical LR-ADI method
[17, 19, 24] applied to the matrices E−1A and E−1B.

3. Smith method. For any parameter τ ∈ C
−, the projected GCALE (1.2) is

equivalent to the projected discrete-time algebraic Lyapunov equation (DALE)

AXA∗ − X = −Pr BB∗PT
r , PrXPT

r = X, (3.1)
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where A = (E + τA)−1(E − τA) and B =
√

−2Re(τ) (E + τA)−1B. Note that if the
pencil λE−A is stable, then Pr is the spectral projection onto the invariant subspace
of the matrix A corresponding to the eigenvalues inside the unit circle. In this case
the Smith iteration

X0 = Pr BB∗PT
r , Xk = Pr BB∗PT

r + AXk−1A∗

converges linearly to the solution X of (3.1), see [30]. The quadratic convergence can
be achieved by using the squared Smith method [30] based on the iteration

X0 = Pr BB∗PT
r , Xk = A2k−1

Xk−1

(

A2k−1
)∗

.

The number of iterations required for a desired accuracy in the approximate solution
Xk of the projected DALE (3.1) depends on the parameter τ . Note that the Smith
method is, in fact, the generalized ADI iteration with a single parameter. Therefore,
an optimal value τ = τ1 = . . . = τk from (2.5) can be used to increase the convergence.

The Smith method costs O(n3) flops and has the memory complexity O(n2), since
the solution X is computed explicitly and it is dense even if the matrices E and A
are sparse.

A modification of the Smith method has been proposed in [1, 24] to compute a low
rank Cholesky factor of the solution of standard Lyapunov equations with a low rank
right-hand side. This version of the Smith method is based on the LR-ADI iteration
with ` shift parameters applied in a cyclic manner and referred to as the low rank

cyclic Smith (LR-Smith(`)) method. It consists of two stages: first one computes the
`-th iterate of the LR-ADI method with the shift parameters τ1, . . . , τ` and then solve
the discrete-time Lyapunov equation

A`XA∗
` − X = −Z`Z

∗
` ,

where A` is as in (2.4) with k = `. We have the following algorithm to compute the
low rank Cholesky factor of the solution of the projected GCALE (1.2).

Algorithm 3.1. The generalized LR-Smith(`) method for the projected GCALE.

Input: E, A, Pl, Pr ∈ R
n,n, B ∈ R

n,m, shift parameters τ1, . . . , τ` ∈ C
−.

Output: A low rank Cholesky factor Zk` of the solution X ≈ Zk`Z
∗
k` of (1.2).

1. Compute Z` using Algorithm 2.1 and Z(`) = Z`;

2. FOR k = 2, 3, . . .

a. Z(k`) = A`Z
((k−1)`) with A` = Pr

∏̀

k=1

(E + τkA)−1(E − τkA), (3.2)

b. Zk` = [Z(k−1)`, Z(k`) ]. (3.3)

END FOR

It follows from (2.3), (3.2) and (3.3) that the generalized LR-Smith(l) method
is mathematically equivalent to the generalized LR-ADI iteration with the cyclically
repeated shift parameters τ1,. . . ,τ`. If Z` is real and the complex shift parameters
appear in complex conjugate pairs, then the matrices Zk` are also real.
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Remark 3.1. Note that at every iteration step in Algorithms 2.1 and 3.1 the
number of columns of the approximate solution factors Zk and Zk` is increased by
m and `m, respectively. To keep the low rank structure in the Cholesky factors in
case of large m and slow convergence, we should replace the iterate by its low rank
approximation computed via the updated singular value decomposition, see [1] for
details.

Consider now the projected GDALE (1.4). If the pencil λE − A is stable, then
the matrix A is nonsingular and equation (1.4) is equivalent to the projected DALE

X − EXET = (I − Pr)B̂B̂T (I − Pr)
T , PrXPT

r = 0, (3.4)

where E = A−1E and B̂ = A−1(I − Pl)B = (I − Pr)A
−1B. Note that I − Pr is the

spectral projection onto the invariant subspace of the matrix E corresponding to the
zero eigenvalues. In this case (I − Pr)E = E(I − Pr) is nilpotent with the index of
nilpotency ν that is equal to the index of the pencil λE − A. The unique solution of
the projected DALE (3.4) is given by

X =

∞
∑

k=0

E kB̂B̂T (ET )k =

ν−1
∑

k=0

((I − Pr)E )kB̂B̂T (ET (I − Pr)
T )k.

Thus, the Cholesky factor Y of the solution X = Y Y T of (3.4) and also of the
projected GDALE (1.4) has the form

Y = [ B̂, EB̂, . . . , Eν−1B̂ ].

It can be computed by the following algorithm that is a generalization of the Smith
method for the projected GDALE (1.4).

Algorithm 3.2. The generalized Smith method for the projected GDALE.

Input: E, A, Pr ∈ R
n,n and B ∈ R

n,m.

Output: A Cholesky factor Yν of the solution X = YνY T
ν of (1.4).

1. Y (1) = (I − Pr)A
−1B, Y1 = Y (1);

2. FOR k = 2, 3, . . . , ν
Y (k) = A−1EY (k−1), Yk = [Yk−1, Y (k) ].

END FOR

Note that if the index ν of the pencil λE − A is unknown, then the iteration in
Algorithm 3.2 can be stopped as soon as ‖Y (k)‖ ≤ tol or ‖Y (k)‖/‖Yk‖ ≤ tol with
some matrix norm ‖ · ‖ and a tolerance tol. If we want to compute the solution of
(1.4) as accurate as possible, we should set tol to the machine precision. To avoid the
drift-off of the columns of Y (k) from the image of I − Pr, the matrix Y (k) should be
pre-multiplied with I − Pr after some iteration steps.

It has been shown in [40] that the solution of the projected GDALE (1.4) also
satisfies the projected DALE

X − FEXEFT = FBBT FT , PrXPT
r = 0 (3.5)

with F = (EPr −A(I − Pr))
−1Pr = Pl(PlE − (I − Pl)A)−1. Therefore, the Cholesky

factor Yν of the solution X = YνY T
ν of (1.4) can also be computed by applying the
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generalized Smith method to equation (3.5). Similar to the projections Pr and Pl,
the matrix F can be constructed in explicit form using the special structure of the
matrix coefficients E and A.

4. Numerical examples. In this section we present some results of numerical
experiments. Computations were done on IBM RS 6000 44P Modell 270 with machine
precision ε ≈ 2.22 × 10−16 using MATLAB 6.5.

Example 4.1. Consider the 2D instationary Stokes equation that describes the
flow of an incompressible fluid in a domain. The spatial discretization of this equation
by the finite difference method on a uniform staggered grid leads to the descriptor
system (1.1) with the matrices E and A as in (1.6), where E11 = I, A11 = AT

11 and
A21 = AT

12. In our experiments the order of the problem is n = 7700 and the matrix
B ∈ R

n,1 is chosen at random. Note that E and A are symmetric and E is positive
semidefinite. In this case the finite eigenvalues of λE − A are real and we use only
real ADI shift parameters.
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Fig. 4.1. Example 4.1: convergence history for the generalized LR-ADI method.

In Fig. 4.1 we present the normalized residual norm η(Zk) as in (2.8) and the ratio
ζ(Zk) = ‖Z(k)‖F /‖Zk‖F for the generalized LR-ADI method with ` = 10 real ADI
shift parameters. One can see that the generalized LR-ADI method converges fast and
the solution of the projected GCALE (1.2) of order 7700 can be approximated quite
accurately by a matrix of rank 30. The normalized residual norm η(Zk) stagnates on
a relatively small level, which is caused by round-off errors. Note that ζ(Zk) does not
decrease monotonically and more iteration steps are required to achieve ζ(Zk) ≤ tol
than η(Zk) ≤ tol.

Figure 4.2 shows the convergence history of the normalized residual norm for the
generalized LR-ADI method and the generalized LR-Smith(10) method versus the
number of columns of Zk. One can see that both methods give similar results.

Furthermore, we computed the full rank Cholesky factor Y2 ∈ R
n,2 of the solution

X =Y2Y
T
2 of the projected GDALE (1.4) using Algorithm 3.2. The Frobenius norms of

the update matrices are ‖Y (1)‖F = 1.13824×105, ‖Y (2)‖F = 60.6731 and ‖Y (3)‖F ≤ε.
This is not surprising because the pencil λE − A is of index 2.

Example 4.2. Consider the descriptor system (1.1) arising from the finite element
discretization of a convection problem with a boundary control, see [21] for details.
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Fig. 4.2. Example 4.1: normalized residual norms for the generalized LR-ADI and LR-
Smith(10) methods.

The matrices E and A as in (1.6) are non-symmetric. The problem is of order n = 2909
and the matrix B = [ 0, BT

2 ]T ∈ R
n,1 results from the boundary control.
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Fig. 4.3. Example 4.2: relative updates for the generalized LR-ADI and LR-Smith(20) methods.

In Fig. 4.3 we present the convergence history in terms of the relative updates
ζ(Zk) = ‖Z(k)‖F /‖Zk‖F for the generalized LR-ADI method and the generalized
LR-Smith(20) method. One can see that the solution of the projected GCALE (1.2)
can be approximated by a matrix of rank 70.

The solution of the the projected GDALE (1.4) has been computed in factored
form X =Y2Y

T
2 with the full rank Cholesky factor Y2 ∈ R

n,2. The Frobenius norms of
the update matrices are ‖Y (1)‖F = 2.397, ‖Y (2)‖F = 1.357×10−3 and ‖Y (3)‖F ≤ ε.

Example 4.3. Consider a damped mass-spring system with g masses, see [37,
Section 3.9]. The ith mass is connected to the (i+1)st mass by a spring and a damper
and also to the ground by another spring and damper. Additionally, we assume that
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Fig. 4.4. Example 4.3: convergence history for the generalized LR-ADI method.

the first mass is connected to the last one by a rigid bar and it can be influenced by a
control. The vibration of this system is described by a descriptor system (1.1) with the
matrices E and A as in (1.7). For g = 5000, we obtain a problem of order n = 10001
with B ∈ R

n,1. Figure 4.4 shows the normalized residual norms η(Zk) and the relative
updates ζ(Zk) for the generalized LR-ADI method with ` = 10 complex ADI shift
parameters. We see that the low rank Cholesky factor Zk of the solution of the
projected GCALE (1.2) computed with the stopping criterion ζ(Zk) ≤ tol has about
twice more columns than those computed with the stopping criterion η(Zk) ≤ tol.

5. Conclusion. In this paper we have discussed the numerical solution of large-
scale projected generalized Lyapunov equations that arise, for example, in model
reduction for descriptor systems. We have presented the generalized low rank alter-
nating direction implicit method and the generalized low rank cyclic Smith method for
computing low rank approximations to the solutions of these equations. The efficiency
of these methods has been demonstrated by numerical experiments.

Besides the ADI and Smith methods, there are several alternative approaches for
solving large-scale standard Lyapunov equations. These are Krylov subspace methods
[14, 15, 26], the sign function method [6, 16] and hierarchical matrix arithmetic based
methods [4, 12]. The extension of these methods to projected generalized Lyapunov
equations is a topic for future work.
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