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Abstract

In a database of about 2000 approved drugs, represented by 105 struc-
tural conformers, we have performed 2D comparisons (Tanimoto coef-
ficients) and 3D superpositions. For one class of drugs the correlation
between structural resemblance and similar action was analysed in detail.
In general Tanimoto coefficients and 3D scores give similar results, but we
find that 2D similarity measures neglect important structural/funtional
features. Examples for both over– and underestimation of similarity by
2D metrics are discussed. The required additional effort for 3D superpo-
sitions is assessed by implementation of a fast algorithm with a processing
time below 0.01 seconds and a more sophisticated approach (0.5 seconds
per superposition). According to the improvement of similarity detection
compared to 2D screening and the pleasant rapidity on a desktop PC,
full–atom 3D superposition will be an upcoming method of choice for
library prioritization or similarity screening approaches.

Keywords: similarity screening, superposition, drug database

Introduction

The accessibility of large compound databases has changed from exclusive in-
house databases of large pharmaceutical companies to inexpensive publicly avail-
able sources [1]. At this time about two million different compounds can be
purchased from different vendors [2]. In this context established methods like
2D similarity searching are increasingly applied to identify active compounds
for experimental assays. It was generally accepted that similar compounds hav-
ing Tanimoto coefficients larger than 0.85 will exhibit similar biological activity
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[3]. This assumption could be reaffirmed at a lower level of 80% similar activity
[4]. In different assays the fraction of active 0.85 similars declined to 60%−40%
[5]. In a recent analysis considering more than a hundred different assays the
estimation of the chance that a compound that is > 0.85 Tanimoto similar to
an active is itself active was further reduced to 30% [6]. The resulting risk
of missing attractive compounds gives rise to a number of analyses compar-
ing different molecular descriptors and similarity metrics for different purposes
[7, 8]. But nevertheless even the accuracy of the prediction of one of six drug
classes remains at 66% [9]. Descriptors representing 3D information [10, 11]
and pharmacophore based approaches [12, 13] are opportunities to overcome
the weaknesses of 2D descriptors. However a lot of experience and intuition
has to be invested to achieve reasonable results [14]. The superposition of 3D

structures is a time–consuming task.
For an extensive review on methods for structural alignment see [15] and the

references therein.
Structural flexibility has to be taken into account. The latter problem can be

approached either during comparison [16] or prior to comparison [17]. Different
approaches for the generation of conformers exhibit strengths and weaknesses.
Knowledge based procedures explore configuration data from crystallographic
databases [18], others emphasize the distinct features of bound ligand confor-
mations especially for the muscarinic acetyl–choline receptor [19]. Simulated
annealing for difference minimisation [20] or clustering procedures [21] for bet-
ter coverage of the low–energy conformational space [22] are applied.

The selection of the right features for the prediction of bioactivity requires
compound class specific techniques to obtain reasonable performance [23]. It was
shown that the inclusion of 3D information via 3D field descriptors generates
further biologically relevant hits [24].

Typical 3D QSAR studies in this field are restricted to a limited set of
compounds matching the pharmacophore model [25, 26]. To complement this
technique shape–based approaches are implemented [27] and successfully applied
to similar problems as considered in the analysis of this paper [28].

The similarity is in the eye of the beholder, as Kubinyi illustrated [29, 30].
The scoring of the 3D similarity remains difficult because the balance between
geometrical and physicochemical [31] terms may influence the results towards
scaffold hoppers [32] or R–group similarities [33]. For this analysis we selected
the drug class of the neuroleptics because these compounds are known to have
a number of potential side effects like extrapyrimidal adverse events. The ther-
apeutic action of neuroleptics is mediated by their interaction with transmitter
receptors in particular with the sub–types of the dopamine–receptor. Here we
focus on side effects that can be explained by the affinity to further recep-
tors: histamine–, serotonin–, adrenergic, and muscarinic receptor [34]. This
can roughly be estimated by the similarity with compounds from indication
classes directly addressing these receptors like antipsychotics, psychoanaleptics
or antihistamines. The drug classification scheme according to the WHO rec-
ommendation [35] was utilised to this end.

In this analysis we examine
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• the correlation between 2D and 3D similarity,

• the fitness of Tanimoto coefficients for the drug class recognition

• whether a simple geometric score will be useful as 3D similarity measure

• whether 3D superposition will be useful to detect similar actives in a drug
database.

Methods

Drug classification

Recently, the recommendations of the WHO Expert Committee responsible for
updating the WHO Model List of Essential Medicines were published [35]. For
the first time, a list of all items on the Model List sorted according to their
5–level Anatomical Therapeutic Chemical (ATC) classification codes was given.
As the therapeutic subgroup is determined by the second level and the chemical
component describes the lower level(s) of classification it is useful for this type
of analysis, correlating structural similarity with similar therapeutic action.

The pharmalogical action of neuroleptics is mediated by their interaction
with transmitter receptors in particular with the sub-types of the dopamine-
receptor. Therefore (particular) neuroleptics are known to have a number of
side effects and are dubbed ”dirty drugs” [36]. Here we focus on effects that
can be explained by the affinity to further receptors: histamine-receptor (H1),
serotonin-receptors (5-HT2A/B,5-HT3), adrenergic receptor (alpha 1) and mus-
carinic acetyl-choline receptor (M) [34]. This can roughly be estimated by the
similarity with compounds from indication classes directly addressing these re-
ceptors: N05A (antipsychotics), N06 (psychoanaleptics), D04 / R06 (antihis-
tamines, systemics / dermatologicals).

Data

All comparisons are performed on a database of 2086 3D–structures of drugs
extracted from our inhouse data base. This complies with the number of ap-
proved drugs included in the ChemIDplus database [37], which contains a total of
177000 chemical structures. To improve the conditions for the 3D-comparisons
85800 conformers were computed with Catalyst [38] according to the algorithm
of Smellie [39]. The Anatomical Therapeutic Chemical (ATC) Classification
System is used for the classification of drugs. It is controlled by the WHO Col-
laborating Centre for Drug Statistics Methodology [40], and was first published
in 1976. The data base covers 218 ATC–major classes (like N05A). 185 ATC-
major classes are represented by at least 3 structures, this meets 98 per cent
of all such classes containing at least 3 different actual low molecular weight
compounds – without e.g. combinations, bandages or proteins. Table 1 shows
the 13 members of the ATC–class N05A (antipsychotics) that were used for the
data base search.

3



chlorpromazine clopentixol flupenthixol
N05AA01 N05AF05 N05AF01

fluphenazine methotrimeprazine perazine
N05AB02 N05AA02 N05AB10

perphenazine promazine prothipendyl
N05AB03 N05AA03 N05AX07

risperidone sulpiride thioridazine
N05AX08 N05AL01 N05AC02

tiapride
N05AL03

Table 1: Antipsychotics used for the data base search: name, ATC code and
chemical structure

2D-Comparison

The 2D–comparison of the molecules was carried out using the Tanimoto coef-
ficients [41] computed by the corresponding procedure of Accord from Accelrys
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[38]. For this reason the fingerprints of the structures are calculated using the
Daylight algorithm [42] and compared by the Tanimoto similarity measure for
bit strings. Fingerprints are Boolean arrays of a given length. To evaluate the
fingerprint each pattern of the molecule is generated. Such patterns are

• atoms of a special type

• bonds (single, double,. . . ) between atoms of special types

• paths of different lengths (2 to 7) between atoms of the same type and
same order of the bonds, e.g. C=CN, CC=N for path of length 2, or
O=CC=N for path of length 3.

Because of the limited length of the fingerprint it is not possible to assign a
special bit for only one pattern. Instead of this each pattern is assigned a small
number of positions (say 4 or 5) along the fingerprint which are set to 1. There-
fore the fingerprints of two molecules can be the same while the molecules are
different. Additionally, the positions corresponding to a special pattern account
for the occurrence of the pattern. Multiple appearances of the same pattern
give the same fingerprint. Therefore featureless molecules (such as C20H22
or C30H32) give the same fingerprint. Nevertheless the fingerprints indicate
whether a compound can be a substructure of another molecule. The Tanimoto
coefficient between two fingerprints is the proportion of the bits in common and
the bits in at least one fingerprint:

TC =
BC

B1 + B2−BC
,

where BC is the number of bits which are 1 in both fingerprints, whereas B1
and B2 are the number of bits which are 1 in the first or the second fingerprint,
respectively.

3D score

The 3D–superposition–algorithms investigated here are designed to find spatial
similarity between molecules. We follow the paradigm that a necessary condition
for functional similarity is similar geometry. For this reason the scoring function
is built to measure spatial similarity only. By this it is possible to find superpo-
sitions which we would not have found by simultaneously trying to incorporate
physicochemical features. So it may happen that few of the geometrically found
hits turn out to be biologically irrelevant, but we considerably lower the risk
of losing most interesting and relevant hits that come from different chemical
structures.

Similarity of molecules is measured by superposition. In general the super-
position problem may be decomposed into two subproblems: First, we have to
find an assignment (or matching) of the atoms of one molecule to the atoms of
the other molecule, that tells us which atom on one side has to be superimposed
with which atom on the other side (or not superimposed at all). Second, a rigid
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motion is computed to optimally perform this action. There are two competing
objectives:

1. The more atoms are actually superimposed the better the superposition
should be scored.

2. The distances of the matched atoms should be as small as possible.

A way to balance these two goals is the following scoring function: Consider two
molecules A and B with m and n atoms resp. (m ≤ n). Given an assignment
M that maps the atoms aM

i of A, i = 1, . . . , k, k ≤ m, to the atoms bM
j ,

j = 1, . . . , k. The resulting superposition has then score

score(A, B, M) =
k

m
e(−rmsd(M)).

The first term, k
m

, measures the proportion of actually superimposed atoms
of the smaller molecule, the second term, the root mean square distance of these
atoms,

rmsd(M) =

√

√

√

√

1

k

k
∑

i=1

dist(aM
i , bM

i )2,

controls the distance of matched atoms.
By this definition we try to find a superposition with many atoms super-

imposed with small distance. The first term increases with the number of su-
perimposed atoms, but in the majority of cases this will make the second term
decrease since more assigned atoms will result in higher rmsd.

Observe that the value of the scoring function is always between 0 and 1,
where larger values mean higher similarity.

The scoring function is not restricted to molecules of the same size. It is also
possible to compare molecules of quite different size, since the first term of our
scoring function allows us to find smaller molecules inside larger ones.

3D Comparison

Since no polynomial time algorithm is known to solve the superposition problem
as described above to optimality, we have to use heuristic methods to get good
solutions in reasonable time. We have implemented two different approaches, a
fast one and a more sophisticated one.

In general the superposition problem may be decomposed into two subprob-
lems: First, find the assignment for the two atom sets, i.e., which atom in one
molecule should be superimposed with which atom in the other molecule. Sec-
ond, find the rigid motion that gives the optimal superposition of the atom sets,
given the assignment. Our two approaches mainly differ in the effort made to
solve the first subproblem.

One good news is that the second subproblem is known to be solvable in
polynomial time [43]. A way to solve the superposition problem is to enumerate
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all possible assigments and to compute the rigid motion for each of them. But
here the bad news is that the number of possible assignments grows highly
exponential in the number of atoms. With this naive approach only instances
with very few atoms (less than 10) may be handled.

With the help of a branch–and–bound approach, a widely used technique in
optimization, we are able the reduce the number of assignments to be tested
dramatically. Doing this we are able to solve the superposition problem up to
optimality quite fast (10 atoms: few seconds, 16 atoms: 1–2 minutes).

Since drug–like molecules are often larger and since the above mentioned
running times are still far too slow we have to find ways to overcome these
difficulties. We can no longer hope to solve the problem exactly, i.e., the solution
of the algorithm described next will not be guaranteed to be best possible, but
we will get it very quickly without losing much quality. In what follows we
describe the two algorithms in more detail.

Fast 3D–superposition

The algorithm presented here can roughly be sketchted by the following steps:

1. superposition of the centers of mass

2. orientation according principal moments of inertia

3. atom pair assignment

4. improvement

The first orientation (in step 2) is of course independent of transformations
of the coordinate system, and quite stable for small alterations of the atomic
positions. The normalisation of the atomic sets is unique except for possible
rotations (original arrangement and rotations of 180◦ around x–, y– or z–axis).
This means that the degree of freedom is strongly reduced and the assignment
of pairs of atoms is relatively straightforward for identical and slightly modified
atomic sets because only four possible normalisations have to be checked to
identify related atoms: imagine determining the correct orientation of a credit
card (magnetic strip: top surface, right; top surface, left; bottom surface right;
bottom surface, left). In a first step the centres of mass of the two atomic sets
are determined. All the coordinates of the atoms included are transformed to
superimpose the centres of mass. To determine the least and largest (orthogonal)
expansion, the plane and the straight line of minimal quadratic distance to
all atoms have to be computed. The normal line of the plane gives the least
expansion and the straight line of minimal quadratic distance points at the
largest expansion. Using these directions one atomic set is rotated such that
the major directions coincide. There are four possible normalisations for an
atomic set that coincide with the exception of 180◦ rotations around x– y– or
z–axes. In a further step all four normalisations are used to determine the
pairs of atoms between the two atomic sets. This normalisation procedure is
stable even if additional atoms are included in one of the sets. Therefore, the
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normalisation of the atomic set can be used to identify pairs of corresponding
atoms. Two atoms form a pair if they are mutually the nearest atoms, and
their distance is lower than a given cut-off value. Different cut-off values were
tested showing that a cut-off of 2.5 Å performed best for sets of densely packed
atoms. For all four normalisations the number of atom pairs is chosen and the
root mean square distance (rmsd) calculated for the related atomic pairs. The
normalisations are weighted on the basis of these values. The best normalisation
(largest number of pairs) is used in a further step to improve the alignment. For
the given set of pairs the optimal superposition is estimated, followed by a new
search of related pairs until the assignment of the atoms does not change.

Sophisticated 3D–superposition

The second algorithm proceeds in three phases:

1. Reduce the given instance to a smaller new instance that is in a certain
sense similar to the original one.

2. Solve this new instance optimally with the above mentioned branch–and–
bound technique.

3. Lift the solution of the smaller, artificial instance to a solution for the
original problem.

Next we describe the three phases in more detail:
Phase 1: Reduction to a smaller artificial instance

The running time of the exact algorithm mainly depends on the number of atoms
of the two molecules; so the aim of this phase is to construct, starting with the
original molecules, new, artificial pseudo–molecules with fewer pseudo–atoms,
that are still spatially similar to the original molecules. This is done iteratively
in the following way, sometimes called hierarchical clustering :

• Start with the original molecule, call every atom a pseudo–atom.

• While the number of pseudo–atoms is larger than a predefined number r

– look for those two pseudo–atoms with the smallest distance, merge
them to a new pseudo–atom. The coordinates of this new pseudo–
atom are given by the weighted center of gravity of the two merged
ones, which are then deleted.

So in every such step the number of pseudo–atoms is decreased by one. As a
remark we should say that we take into account how many original atoms are
represented by a pseudo–atoms by attaching weights to them. The idea is that
the new instance constructed in this way still carries the spatial information of
the original molecule to a certain extent.

Phase 2: Exact solution of artificial instance

Now we solve our artifical instance with the exact algorithm. The solution of
this step is the starting point of phase 3.
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Phase 3: Lift of intermediate solution to the original instance

The rigid motion which led to the solution in phase 2 may also be applied to
the original instance. The idea of our approach is now that, since the smaller
artificial instance is spatially similar to the original one, the position of the
original atoms after this rigid motion is not far from a very good solution. We
only have to refine the assignment to these atoms. This is done as follows: The
distance of atoms that will be assigned to each other should now be already
quite small, so a natural approach is the following:

• step 0 Declare all atoms to be not fixed.

• step 1 Sort those atoms of the first molecule that have not yet been
assigned (fixed) increasingly by their distance to the nearest neighbour in
the other molecule, that is still available. Take the first s of them (s is a
small predefined number).

• step 2 Enumerate all possible assignments of these s atoms to their nearest
neighbours (including the possibility that an atom is assigned to have no
matching partner), carry out the appropriate rigid motion and pick the
one with the best score value (on this partial instance of already fixed
atoms and these s new atoms).

• step 2 Fix the assignment on these s atoms, perform the implied rigid
motion to all atoms. Goto step 1 while there are atoms that are not yet
fixed.

We conclude this section with some implementation details. Since the solution
of Phase 1, the artificial pseudo–molecule, may look quite different for different
numbers r, we perform this step for several different values of r. The optimal
solution of Phase 2 may not be exactly what we want, since we observed in
numerous tests of the exact algorithm that there are instances that have quite a
number of solutions with very similar score values but very different assignments.
To overcome this we store not only the best solution but the best n of them (seen
during the branch–and–bound process). Phase 3 also depends on the predefined
number s, so again as in Phase 1 we perform this phase for all several different
values of s. As one would expect, the quality of the solution increases with
the size of the r– and s–intervals and with n, but so does the running time.
(Running time grows nearly proportional with n and the number of different
s–values and superproportional in the number of different r-values, since larger
r-values get more and more expensive.)

Our standard parameters for drug–like molecules are r ∈ {3, 4, 5}, s ∈ {3, 4}, n =
40. We determined them as a result of numerous test trying to find an optimal
tradeoff between quality and running time.

Although we cannot prove the optimality for our algorithms, we wanted to
see how far away we are in the relevant cases. As a test we computed 3D-scores
for quite a number of instances which were known to have large 3D-scores (>
0.70) up to optimality with the branch-and-bound algorithm mentioned above.
(As a remark we should say that this is possible in these cases - with still very
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large running times - since branch-and-bound algorithms tend to find very good
results - if they exist - quite ”fast”.) The results showed that in all cases the
sophisticated approach was within five percent of the optimal solution.

Results

To compare the two 3D-superposition algorithms with the 2D-approach we
selected 13 antipsychotics (ATC code N05A) and computed both Tanimoto
coefficients and 3D-scores (fast and sophisticated) for each of them with all
drugs in the database (with more than 14 non hydrogen atoms).

To compute the 3D-score of two conformers of molecules of average size
(25 atoms) we need about 0.01 sec. (fast) and 0.5 sec. (sophisticated) (on
a 2GHz PC), resulting in a total running time of 25 sec. (fast) and 21 min.
(sophisticated) to fully compare two molecules, both given by 50 structural
conformers.

ATC code
Algorithm N05A,N06,R06,D04 others

∑

Tanimoto > 0.85 113 51 164
3D–soph. > 0.75 157 43 200
3D–fast > 0.75 131 25 156

Table 2: Number of hits

Unfortunately we can not compare the values of Tanimoto coefficients and
3D–scores one–to–one. As mentioned in the introduction it is generally accepted
that Tanimoto coefficients larger than 0.85 start to indicate similar activity. To
find a corresponding value for the 3D-score we counted the number of hits with
Tanimoto coefficient larger than 0.85 and found that a 3D-score of about 0.75
gives approximately the same number of hits.

We found 164 hits with Tanimoto coefficient larger than 0.85. The 3D-
superposition algorithms returned 200 (sophisticated) and 156 (fast) hits with
3D-score larger than 0.75 (see Table 2).

Since we want to show that the 3D-approach is appropriate to find molecules
that have similar activity we first looked at the ATC codes of the hits with score
value larger 0.75 and found that 78, 5% (157 out of 200) (sophisticated) and 84%
(131 out of 156) (fast) of these can be found in drug subclasses that are known
to have similar activity or similar adverse reaction. (ATC codes N05A, N06,
R06, D04) The proportion of hits in these classes for Tanimoto coefficients larger
than 0.85 is 69% (113 out of 164) (see Table 2).

To compare the results of the 2D- and 3D-approaches we have to look at
three different sets of seemingly similar pairs of molecules:

a. Large Tanimoto coefficient ( > 0.85), small 3D-score ( < 0.75).

b. Small Tanimoto coefficient ( < 0.85), large 3D-score ( > 0.75).
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c. Large Tanimoto coefficient ( > 0.85), large 3D-score ( > 0.75).

Algorithm ATC code
3D–soph. Tanimoto N05A,N06,R06,D04 others

∑

> 0.75 > 0.85 74 11 85
> 0.75 < 0.85 83 32 115
< 0.75 > 0.85 39 40 79

Table 3: Number of hits: Tanimoto vs. soph. 3D

Algorithm ATC code
3D–fast Tanimoto N05A,N06,R06,D04 others

∑

> 0.75 > 0.85 66 10 76
> 0.75 < 0.85 65 15 80
< 0.75 > 0.85 47 41 88

Table 4: Number of hits: Tanimoto vs. fast 3D

Ad a. For this set of hits, comparing Tanimoto coefficients to both sophisti-
cated and fast 3D–superposition gives a similar picture (see Table 3 and Table
4 for the exact numbers). Approximately one half of this set of hits lies in the
above mentioned relevant drug classes. A closer inspection for this subset (i.e.
3. column) shows that in most of the cases the 3D-score for these hits is larger
than 0.65. Looking at these hits, that are clearly relevant from a biological point
of view, we can infer that already 3D-score above 0.65 are worth while to look
at. (See Fig. 1 a) for an example).

The second subset of hits (i.e. 4. column) with large Tanimoto coefficents
and small 3D-scores consists to a large proportion of those hits for which the
Tanimoto coefficient highly overestimates the structural/functional similarity of
the molecules. An examples can be seen in Fig. 1 b).

Ad b. For this set of hits the situation changes. The number of hits with
large 3D–score that are found by the sophisticated algorithm are significantly
larger than those found by the fast algorithm, for both the relevant drug classes
and the others. (see Table 3 and Table 4 for the exact numbers).

Since the 3D-superposition algorithms are not designed to incorporate chem-
ical features there are some hits that are clearly geometrically relevant, but per-
haps their prediction about similar activity is quite limited. These hits can be
found in the second subset (i.e. 4. column).

What we are really aiming for is the first subset (i.e. 3. column). Here
we find hits that are both geometrically similar and relevant concerning predic-
tion of similar activity and function. One reason why in these cases Tanimoto
coefficients do not indicate similarity are slight changes in chemical structure.
Furthermore there are hits with two molecules of somewhat different size. It
is known (see [44]) that for these instances Tanimoto coefficients are more and
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(a) (b)

Figure 1: Comparisons with 2D similarity above threshold and 3D similarity
below threshold.
(a) Superposition of flupentixol (bottom, ATC code: N05AF01) with thi-
ethylperazine (top, ATC code: R06AD03) - with a 3D score of 0.63 and a
Tanimoto coefficient of 0.89. The similarity is underestimated by the 3D score
because the distortions in the tricyclic ring are not properly represented by the
conformers.
(b) Superposition of tiapride (top, ATC code: N05AL03) and probenecid (bot-
tom, ATC code: M04AB01) with a 3D score of 0.58 and a Tanimoto coefficient
of 0.85. The resemblance to probenecid, an antigout drug, is overstimated by
the Tanimoto coefficient because of the identical chemical subgroups (phenyl,
sulfonyl).
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more inefficient, while our 3D-score is designed to also find these hits. (see some
examples for both cases in Fig. 2).

For this type of hits the sophisticated approach is clearly superior to the
fast algorithm. Comparing the numbers in Table 5 with those in Table 3 and
Table 4 shows that most of the hits for which the two 3D–approaches differ can
be found in the class discussed here. The main reason for this is that the fast
approach is not able to find hits for two molecules that have different overall
geometry, in particular small molecules that are substructures of larger ones are
not found (see Fig. 3).

Algorithm ATC code
3D–soph. 3D–fast N05A,N06,R06,D04 others

∑

> 0.75 > 0.75 130 22 152
> 0.75 < 0.75 27 21 48
< 0.75 > 0.75 1 3 4

Table 5: Number of hits: fast 3D vs. soph. 3D

Ad c. In this set we find those hits, that are quite similar in both chemical
structure and size. They are reported as relevant by both approaches. For this
type of hits both strategies are most similar. Here again, as in case a., the fast
and the sophisticated 3D–algorithm perform comparably.

From our point of view we have therefore seen several strong arguments in
favour of the 3D-superposition algorithms. It can be clearly seen that the 3D-
approach is able to detect similar activity and similar adverse reaction, even
with this seemingly simple, purely geometry-based scoring function.

For large data sets a fast 3D-superposition algorithm combined with Tani-
moto coefficients helps to increase the set of relevant hits.

If one aims to really find all, at least geometrically relevant hits – this may
be important for smaller and more specific sets of molecules – it is worth while
to follow the sophisticated 3D-approach (with a somewhat smaller threshold for
relevance). We were able to find really relevant hits that can not be found by
simple 2D-methods or by the fast 3D-algorithm.

Discussion

In agreement with our results it is shown in [27] and [28] that 3D similarity
searches retrieve compounds with more diverse topology while 2D similarity
works best when the query molecule contains relatively rare and distinct topo-
logical features that are responsible for the biological activity. 2D similarity
works poorly when common functional groups as in peptides are considered.
A similar fragment– or topomer–based steric shape screening was shown to be
more selective than 2D similarity [13], especially advantageous ”lead–hopping”
was observed. A reasonable speed for the in silico screening of large compound
libraries can be achieved by full–atom superposition procedures as presented in
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(a) (b)

Figure 2: Comparisons with low Tanimoto coefficients and 3D scores above
threshold.
(a) Superposition of fluphenazine (bottom, ATC code: N05AB02) with isoth-
ipendyl (top, ATC codes: D04AA22, R06AD09) with a 3D score of 0.81 and a
Tanimoto coefficient of 0.69. The resemblance to isothipendyl, an antihistaminic
agent, is neglected by the 2D similarity measure because of missing chemical
groups (trifluoromethyl, piperazin) and quite different sizes of the molecules.
(b) Superposition of prothipendyl (bottom, ATC code: N05AX07) and
opipramol (top, ATC code: N06AA05) with a 3D score of 0.76 and a Tanimoto
coefficient of 0.72. The similarity to opipramol, an antidepressant, is missed
by 2D comparison because the middle ring is seven membered in opipramol
(dibenzazepine derivative) and six membered in prothipendyl (azaphenothiazine
derivative).
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(a) (b)

Figure 3: Differences between fast and sophisticated superpositions.
(a) Superposition of perazine (top, ATC code: N05AD10) with triflupromazine
(bottom, ATC code: N05AA05) with a 3D score of 0.77 (sophisticated), 0.50
(fast) and a Tanimoto coefficient of 0.84. The resemblance between the two
neuroleptics is neglected by the fast superposition algorithm because the centers
of gravity do not fit.
(b) Superposition of tryptophan (top, ATC code: N06AX02) and risperidone
(bottom, ATC code: N05AX08) with a 3D score of 0.77 (sophisticated), 0.50
(fast) and a Tanimoto coefficient of 0.44. The similarity to tryptophan, an
antidepressant, is missed by the fast superposition algorithm because of the
very different overall geometry of the molecules.
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this analysis.
With receptor structures available ligand-docking programs have been shown

to enrich hit lists of in silico screening approaches [45] but in the case of psy-
choleptics a number of structurally unknown receptors are engaged. Most of
the processes involved in ADME are driven by rather unspecific interactions be-
tween drugs and macromolecules but drug transporters and cytochromes gained
increased interest in early ADME profiling via similarity based structure activ-
ity relation (SIBAR) [46]. The increased predictive power of the 3D- vs. 2D-
similarity for side effects demonstrated in this analysis gives rise to the hope
that improvements in ADME and toxicity profiling will be possible.

Limitations of the fast 3D superposition approach are spherical compounds
for which it might fail to find proper assignments. The known size bias and size
limitation of 2D similarity measures [44] also may cause problems for the fast
algorithm.

The conformer generation is a general problem because the 3D similarity
between two structural ensembles depends critically on the original structures,
the conformer generation [22] and clustering [47] algorithm, the parameters like
energy threshold, and the number of conformers per compound. In particular
the number of rotatable bonds will restrict the 3D similarity approach or will
require new algorithms [48].
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