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1 Introduction

Numerical methods for solving optimal control problems governed by ODEs
fall into two categories, the indirect methods [2, 3, 4, 6, 14, 15, 30] relying
on Pontryagin’s maximum principle, and the direct methods [7, 17, 20, 29, 36]
based on the Karush-Kuhn-Tucker necessary conditions. Direct methods can
be characterized by several features. Among them are

• position of discretization: Discretize-then-optimize approaches use an a
priori parameterization of the control and possibly the state variables to
reduce the optimal control problem to a finite dimensional nonlinear pro-
gram. These large nonlinear programs can then be solved by standard
NLP solvers. Adaptive mesh refinement can be performed after the finite
dimensional optimum has been reached. On the other hand, optimize-
then-discretize approaches formulate the optimization algorithms directly
in the infinite dimensional function space, employing discretization only
for solving linear operator equations. Adaptive mesh refinement is used
to meet the accuracy requirements imposed on the solution of the linear
equations by the optimization algorithm.

Somewhere in between are function space SQP methods where linear-
quadratic programs are discretized.

• type of optimization algorithm: Among the most popular algorithms em-
ployed for solving the optimization problems arising in optimal control
are sequential quadratic programming (SQP) and interior point methods
(IPM). A recent alternative are semismooth Newton methods [5, 33].

Discretize-then-optimize methods are covered by a vast amount of published
literature using almost any available algorithm for solving the finite dimensional
NLPs. Solutions on consecutive mesh refinement levels or in consecutive SQP
steps often exhibit pronounced similarities. These redundancy can be directly
exploited by active set type methods. In contrast, IPMs are considered to
benefit less from this redundancy [19, 39]. Nevertheless, IPMs are reported to
be very efficient for solving optimal control problems — a fact which is not well
explained by straightforward application of finite dimensional IP convergence
theory to the discretized problems. The best currently known convergence rates
of 1 − const /

√
n would instead predict a pronounced mesh dependence of the

convergence.
Among the optimize-then-discretize approaches, the SQP methods dominate

the published material [1, 17, 21, 22, 26, 31, 32]. Here, Robinson’s theory of
generalized equations [28] can be used to analyze the function space methods,
which leaves, however, the question of how to solve the infinite dimensional
linear-quadratic programs. This is implicitly addressed by infinite dimensional
interior point methods, which have nevertheless attracted less attention [34, 35,
23].

The present paper presents an infinite dimensional interior point method
directly applied to optimal control problems in function space in Section 2. Ex-
istence and convergence of the central path are analyzed in Section 3. Finally,
linear convergence of a theoretical short-step pathfollowing algorithm with clas-
sical predictor is shown in Section 4. In particular, the rate of convergence does
not depend on the size of any discretization.
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Notation. The Lebesgue spaces and Sobolev spaces of functions with values
in Rn are denoted by Ln

p and (Wm
p )n, respectively. S(x, ρ) is the open ball

around x with radius ρ.
Some variables and operators are constructed such that they have a natural

block partitioning corresponding to the components u and y of x. The individual
blocks are denoted by the corresponding component as a superscript, e.g.

g(x) =
[
gu(u)
gy(y)

]
and Ψ(g(x), η) =

[
Ψu(gu(u), ηu)
Ψy(gy(y), ηy)

]
.

2 Problem Setting

On the time interval Ω = [0, 1] we consider the optimal control problem

min J(x) subject to c(x) = 0 a.e.
r(x) = 0
g(x) ≥ 0 a.e.

(1)

with a partitioning of the variable x = (u, y) ∈ X = Lnu
∞ (Ω)× (W 1

∞)ny (Ω) into
controls and states, a Lagrange type cost functional

J(x) =
∫ 1

0

f̃(u(t), y(t)) dt ,

ordinary differential equations with boundary conditions

c(x) =
[

c̄(x)
y(0)− y0

]
, c̄(x)(t) = c̃(x(t))− ẏ(t) , (2)

r(x) = r̃(y(1)) (3)

as equality constraints, and pointwise state and control constraints

g(x)(t) =
[
g̃u(u(t))
g̃y(y(t))

]
.

For the whole paper we will restrict the discussion to the fixed time interval
Ω and hence simplify the notation by omitting it from the function spaces.
We assume all the functions f̃ : Rnu × Rny → R, c̃ : Rnu × Rny → Rny ,
r̃ : Rny → Rnr , g̃u : Rnu → Rnηu , and g̃y : Rny → Rnηy to be twice Lipschitz
continuously differentiable.

For convenience, we give here a theorem on Nemyckii operators in L∞, the
straightforward proof of which can be found in [37].

Theorem 2.1. If f : Rn → Rm is k times differentiable and its k-th derivative
satisfies the Lipschitz condition

|f (k)(x)− f (k)(y)| ≤ κ|x− y| , (4)

the corresponding Nemyckii operator f defined by f(u)(t) = f(u(t)) maps Ln
∞

into Lm
∞ and is k times Fréchet differentiable. For 1 ≤ p ≤ ∞ its k-th derivative
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can be continuously extended to an operator f (k)(u) : (
∏k

j=1 L
n
pk) → Lm

p that
inherits boundedness and Lipschitz continuity from f (k):∥∥∥f (k)(u)

∥∥∥
(
Qk

j=1 Ln
pk)→Lm

p

≤ sup
|x|≤‖u‖Ln

∞

|f (k)(x)| (5)∥∥∥f (k)(u+ δu)− f (k)(u)
∥∥∥

(
Qk

j=1 Ln
pk)→Lm

p

≤ κ ‖δu‖Ln
∞

(6)

If in addition f is k + 1 times differentiable and its k + 1-st derivative satisfies
the Lipschitz condition

|f (k+1)(x)− f (k+1)(y)| ≤ κ|x− y| ,

then f maps (W 1
∞)n into (W 1

∞)m and is k times differentiable. For p ≥ 1 its k-th
derivative can be continuously extended to an operator f (k)(u) : (

∏k
j=1(W

1
pk)n)→

(W 1
p )m that inherits boundedness and Lipschitz continuity from f (k) and f (k+1):∥∥∥f (k)(u)

∥∥∥
(
Qk

j=1(W
1
pk)n)→(W 1

p )m
≤ sup
|x|≤‖u‖Ln

∞

(k + 1)|f (k)(x)|+ |f (k+1)(x)| (7)∥∥∥f (k)(u+ δu)− f (k)(u)
∥∥∥

(
Qk

j=1(W
1
pk)n)→(W 1

p )m
≤ (k + 2)κ ‖δu‖(W 1

∞)n

If the derivatives of f : Rn → Rn and g : Rn → Rn commute, then so do the
derivatives of the corresponding Nemyckii operators f ′ and g′.

With Theorem 2.1 above we conclude that

J :Lnu
∞ × (W 1

∞)ny → R ,

c :Lnu
∞ × (W 1

∞)ny → Lny
∞ , and

g :Lnu
∞ × (W 1

∞)ny → L
nηu∞ × Lnηy

∞

are twice Lipschitz-continuously differentiable operators.
The aim of the interior point method discussed here is to approximate Kuhn-

Tucker points x∗. These are feasible points characterized by the existence of La-
grange multipliers λc ∈ Rny × (Lny

∞ )∗, λr ∈ Rnr , and η ∈ (Lnηu∞ )∗× ((W 1
∞)nηy )∗,

such that the following conditions are satisfied:

J ′(x∗)− c′(x∗)∗λc − r′(x∗)∗λr − g′(x∗)∗η = 0
c(x∗) = 0 , r(x∗) = 0

g(x∗) ≥ 0 , η ≥ 0 , 〈η, g(x∗)〉 = 0 (8)

Under certain assumptions (see e.g. [25, 27]) these conditions are necessary
for x∗ to be a local solution of (1). Thus, Kuhn-Tucker points are promising
candidates for solutions.

Unfortunately, the unwieldy complementarity condition (8) is difficult to
handle numerically. The idea of primal-dual interior point methods is to relax
the complementarity condition by

η · g(x) = µ , η ≥ 0 , g(x) ≥ 0 (9)
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and to consider the homotopy µ→ 0. Alternatively, complementarity functions
ψ(a, b;µ) : R2 × R → R can be used to construct Nemyckii operators Ψ, such
that

Ψ(g(x), η;µ) = 0

is more or less equivalent to the classical interior point relaxation (9).
These relaxations, however, are only well defined if η ∈ L1, and continuously

differentiable only in case η ∈ L∞. Note that this is only required to hold during
the homotopy for µ > 0, not at the Kuhn-Tucker point itself. We will prove in
Theorem 3.4 that the homotopy can indeed be performed in the more regular
setting of η ∈ Lnηu∞ × Lnηy

∞ ⊂ (Lnηu∞ )∗ × ((W 1
∞)nηy )∗ for µ > 0.

Define the Lagrangian

L(x, λc, λr, η) = J(x)− 〈λc, c(x)〉 − 〈λr, r(x)〉 − 〈η, g(x)〉.

Let

F (x, λc, λr, η;µ) =


∂xL(x, λc, λr, η)

−c(x)
−r(x)

Ψ(η, g(x);µ)

 . (10)

As will be shown in Theorem 3.2 below, F maps

V × R+ = (Lnu
∞ × (W 1

∞)ny )× (Rny × Lny
∞ )× Rnr × (Lnηu∞ × Lnηy

∞ )× R+ (11)

into
Z = (Lnu

∞ × (W 1
1 )ny∗)× (Rny × Lny

∞ )× Rnr × (Lnηu∞ × Lnηy
∞ ) .

3 The central path

The main object of analytical interest is the central path defined by the homo-
topy (9) in µ. First we consider its actual existence in the regular setting given
by (11) before discussing convergence.

Throughout the paper, we will use the Fischer-Burmeister function [18]

ψ(a, b;µ) = a+ b−
√
a2 + b2 + 2µ (12)

as an example from a large class of different complementarity functions (see [11,
12, 13, 24]).

3.1 Existence

We begin with establishing some bounds on derivatives of the complementarity
function and their inverses.

Lemma 3.1. The complementarity function Ψ defined via (12) maps Ln
∞ ×

Ln
∞ ×R continuously into Ln

∞. Its derivative ∂gΨ(g, η;µ) is symmetric positive
semidefinite, bounded by

‖∂gΨ‖L∞→L∞
≤ 2 , (13)∥∥(∂gΨ)−1

∥∥
L∞→L∞

≤ max
(

3,
2
µ
‖g‖2L∞

)
, (14)

and Lipschitz continuous with a Lipschitz constant of µ−1/2. The corresponding
holds for ∂ηΨ(g, η;µ). Furthermore, the derivatives commute.
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Proof. The claimed properties of the Nemyckii opterator Ψ are directly inherited
from ψ due to Theorem 2.1. From (1 + φ)−1/2 ≤ max(1 − φ/4, 2/3) for φ > 0
we infer

min
(
µ

2a2
,
1
3

)
= 1−max

(
1− µ

2a2
,
2
3

)
≤ 1− 1√

1 + 2µ
a2

≤ 1− 1√
1 + b2

a2 + 2µ
a2

= 1− |a|√
a2 + b2 + 2µ

(15)

≤ ∂aψ(a, b;µ)

≤ 1 +
|a|√

a2 + b2 + 2µ
≤ 2 .

Thus, ∂aψ is uniformly positive definite. Due to Theorem 2.1, the derivative
∂gΨ(g, η;µ) of the Nemyckii operator Ψ is bounded by (13) and has an inverse
which is bounded by (14).

As for the Lipschitz continuity, we estimate

|∂2
aψ| =

∣∣∣∣∣∣∣
√
a2 + b2 + 2µ− a2√

a2+b2+2µ

a2 + b2 + 2µ

∣∣∣∣∣∣∣ ≤
1− a2

a2+b2+2µ√
a2 + b2 + 2µ

≤ 1√
2µ

and

|∂abψ| =
∣∣∣∣ ab

(a2 + b2 + 2µ)3/2

∣∣∣∣ ≤ |ab|
(2|ab|+ 2µ)3/2

≤ 2
3
√

6µ
,

such that ‖ψ′′‖ ≤ µ−1/2. This Lipschitz constant for ∂aψ is inherited by ∂gΨ.
Because of symmetry, the same holds for ∂ηΨ, which commutes with ∂gΨ.

Theorem 3.2. The complementarity formulation (10) is a continuously differ-
entiable mapping from V ×R+ to Z. Moreover, for any bounded set D ⊂ V there
is a constant c(D) such that the derivative ∂vF satisfies the Lipschitz condition

‖∂vF (v + δv;µ)− ∂vF (v;µ)‖V→Z ≤ c(1 + µ−1/2) ‖δv‖V (16)

on D.

Proof. The image spaces and differentiability of the second to fourth component
of F have already been established in Section 2 and Lemma 3.1. Only the adjoint
expression

J ′(x)− c′(x)∗λc − r′(x)∗λr − g′(x)∗η

remains to be discussed. We consider the terms separately.
First we write J(x) = 〈1, f̃(x)〉 with f̃ ′(x) ∈ L(Lnu

1 × (W 1
1 )ny , L1) due to

Theorem 2.1 and thus obtain

J ′(x) = f̃ ′(x)∗1 ∈
(
Lnu

1 × (W 1
1 )ny

)∗
. (17)

With δ0 denoting the point evaluation of the y component at t = 0 we have

c′(x) =
[
c̄′(x)− ∂t

δ0

]
∈ L

(
Lnu

1 × (W 1
1 )ny → L

ny

1 × Rnr
)
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again by Theorem 2.1, such that

c′(x)∗λc ∈
(
Lnu

1 × (W 1
1 )ny

)∗
. (18)

Similarly we obtain

r′(x)∗λr ∈
(
Lnu

1 × (W 1
1 )ny

)∗
and g′(x)∗η ∈

(
Lnu

1 × (W 1
1 )ny

)∗
. (19)

Collecting (17)–(19), F (v;µ) ∈ Z is verified. Continuous differentiability is
inherited from J , c, g, and ψ.

As for the Lipschitz continuity of the derivative, we have to estimate differ-
ences of

∂vF (v;µ) =


∂2

xL(v) −c′(x)∗ −r′(x)∗ −g′(x)∗
−c′(x)
−r′(x)

∂gΨ(g(x), η;µ)g′(x) ∂ηΨ(g(x), η;µ)


for arguments v1 and v2. We cover the the blocks separately. First we see that

c′(x1)− c′(x2) = c̃′(x1)− c̃′(x2).

Since x1 and x2 are bounded in terms of D, the derivative of the Nemyckii
operator c̃ inherits the Lipschitz constant κc(D) of c̃′ due to (6) of Theorem 2.1
with p =∞. Thus we conclude

‖c′(x1)− c′(x2)‖X→L
ny
∞ ×Rny ≤ κc(D)‖x1 − x2‖X .

Analogously, we obtain

‖g′(x1)− g′(x2)‖X→L
nη
∞
≤ κg(D)‖x1 − x2‖X .

Concerning the dual operators c′(x)∗ and g′(x)∗, we apply Theorem 2.1 with
p = 1 in (6) and obtain

‖c′(x1)∗ − c′(x2)∗‖Lny
∞ ×Rny→Lnu

∞ ×((W 1
1 )ny )∗ ≤ κc(D)‖x1 − x2‖X

and
‖g′(x1)∗ − g′(x2)∗‖Lnη

∞ →Lnu
∞ ×((W 1

1 )ny )∗ ≤ κg(D)‖x1 − x2‖X .

Similar estimates for r′(x) and r′(x)∗ are straightforward. As for ∂2
xL(v), we

estimate

‖J ′′(x1)− J ′′(x2)‖X→Lnu
∞ ×((W 1

1 )ny )∗ ≤ κf (D)‖x1 − x2‖X
‖c′′(x1)∗ − c′′(x2)∗‖X×L

ny
∞ ×Rny→Lnu

∞ ×((W 1
1 )ny )∗ ≤ κc(D)‖x1 − x2‖X

‖g′′(x1)∗ − g′′(x2)∗‖X×L
nη
∞ →Lnu

∞ ×((W 1
1 )ny )∗ ≤ κg(D)‖x1 − x2‖X

as before. In view of

c′′(x1)∗λc1 − c′′(x2)∗λc2 = c′′(x1)∗(λc1 − λc2) + (c′′(x1)∗ − c′′(x2)∗)λc2

and the boundedness of c′′(x1)∗ due to (5) of Theorem 2.1, we derive a constant
κ(D) for

‖c′′(x1)∗λc1 − c′′(x2)∗λc2‖X→Lnu
∞ ×((W 1

1 )ny )∗ ≤ κ̄c(D)‖v1 − v2‖X .
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Treating r′′(x)∗λr and g′′(x)∗η similarly, we obtain the desired estimate

‖∂2
xL(v1)− ∂2

xL(v2)‖X→Lnu
∞ ×((W 1

1 )ny )∗ ≤ κL(D)‖v1 − v2‖X .

Up to now, the Lipschitz constants have been completely independent of µ.
For the blocks ∂gΨ(v)g′(x) and ∂ηΨ(v) we obtain a Lipschitz constant of κΨ ≤
const (1 + µ−1/2). Combining the Lipschitz constants of the individual blocks
finally verifies (16).

In order to prove the existence of the central path via an implicit function
theorem, we first have to establish bounds on the inverse of ∂vF .

Theorem 3.3. Suppose there are an open bounded set D ⊂ V and constants
β > 0 and α > 0, such that the following conditions hold uniformly for all v ∈ D
and µ > 0.

1. The state equation satisfies the following inf-sup-condition:

inf
ξ∈Rnr

sup
δu∈Lnu

2

ξT∂yr(x)∂yc(x)−1∂uc(x)δu
|ξ| ‖δu‖Lnu

2

≥ β

(The linearized state equation is controllable.)

2. A strengthened Legendre-Clebsch type condition holds:

ξTMu(t)ξ ≥ α|ξ|2

for all ξ ∈ Rnu and almost all t ∈ Ω. Here,

Mu(t) := ∂2
uf̃(x(t))− ∂2

uc̃(x(t))
Tλc(t)− (g̃u)′′(u(t))T ηu(t)

+(g̃u)′(u(t))T∂ηψ(g̃u(u(t)), ηu(t);µ)−1∂gψ(g̃u(u(t)), ηu(t);µ)(g̃u)′(u(t)) .

3. The augmented second derivative of the Lagrangian is positive definite on
the nullspace of the state equation:

〈ξ, (∂2
xL(v)+g′(x)∗∂ηΨ(g(x), η)−1∂gΨ(g(x), η)g′(x))ξ〉 ≥ α‖ξ‖2Lnu

2 ×(W 1
2 )ny

for all ξ ∈ ker c′(x).

Then ∂vF (v;µ) has an inverse which is bounded by∥∥∂vF (v;µ)−1
∥∥

Z→V
≤ const (1 + µ−3) (20)

uniformly for v ∈ D.

Proof. We show that there is a unique solution of ∂vF (v;µ)∆v = z with ‖∆v‖V ≤
const (1 + µ−3) ‖z‖Z .

In order to simplify the notation, let C = −c′(x), Cu = −∂uc(x), Cy =
−∂yc(x), and analogously G,Gu, Gy, R, and Ry. Define Ψη = ∂ηΨ(g(x), η),
Ψg = ∂gΨ(g(x), η), and Ψu

η = ∂ηuΨu(gu(u), ηu), Ψu
g = ∂guΨu(gu(u), ηu), and

analogously Ψy
η and Ψy

g . Moreover, let Mu = ∂2
uL(v) + G∗u(Ψu

η)−1Ψu
gGu, and

analogously My. Finally, let Muy = ∂uyL(v) and Myu = ∂yuL(v).
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The state derivative Cy represents the linearization of the initial value prob-
lem (2) and has a bounded solution for any right hand side. Thus, Cy has a
bounded inverse. More precisely, for any p ≥ 1,

C−1
y : Lny

p → (W 1
p )ny is bounded uniformly for v ∈ D. (21)

Therefore we can define the solution operator S = C−1
y Cu.

In the following, we will refrain from writing the number of components of
the function spaces, which should be clear from context.

In a first step, we reduce the system

∂vF (v;µ)(∆x,∆λc,∆λr,∆η)T = [za, zc, zr, zp]T ,

to a simple saddle point problem. Elimination of the inequality constraints’
multipliers ∆η = Ψ−1

η (zp−ΨgG∆x) by Lemma 3.1 yields the equivalent system
Mu Muy C∗u
Myu My C∗y R∗y
Cu Cy

Ry




∆u
∆y
∆λc

∆λr

 =


z̄u
a

z̄y
a

zc

zr

 ,

where (z̄u
a , z̄

y
a)T = z̄a = za −G∗Ψ−1

η zp. Then, ∆y = C−1
y zc − S∆u and ∆λc =

C−∗y (z̄y
a−MyC

−1
y zc−(Myu−MyS)∆u−R∗y∆λr) can be eliminated, which yields[

Mu + S∗MyS − (MuyS + S∗Myu) −S∗R∗y
−RyS

] [
∆u
∆λr

]
=

[
ẑu
a

ẑr

]
. (22)

Here we set ẑu
a = z̄u

a −MuyC
−1
y zc−S∗(z̄y

a −MyC
−1
y zc) and ẑr = zr −RyC

−1
y zc.

In the second step, we establish the existence of a bounded solution of (22),
first in Lnu

2 × Rnr and then in Lnu
∞ × Rnr . Due to Theorem 2.1 and the obser-

vation (21), Mu, S∗MyS, MuyS, and S∗Myu can all be continuously extended
to L2. Then, Mu +S∗MyS − (MuyS +S∗Myu) : Lnu

2 → Lnu
2 is positive definite

due to assumption 3. Moreover, RyS satisfies the inf-sup-condition of assump-
tion 1. Therefore, Brezzi’s splitting theorem [10, 8] guarantees the existence of
a solution (∆u,∆λr) ∈ Lnu

2 × Rnr of (22) with

‖∆u‖L2 ≤ const
(
‖ẑu

a‖L2 + κ|ẑr|
)

and

|∆λr| ≤ const
(
κ‖ẑu

a‖L2 + κ2|ẑr|
)
, (23)

where
κ = 1 + ‖Mu + S∗MyS − (MuyS + S∗Myu)‖L2→L2 ,

and the constants depend on α and β. Using Lemma 3.1 and, again, the ex-
tension of Nemyckii operators to L2 provided by Theorem 2.1, we obtain the
following dependencies on µ:

‖Mu‖L2→L2 = ‖∂2
uL‖L2→L2 + ‖G∗u(Ψu

η)−1Ψu
gGu‖L2→L2

≤ const + ‖G∗u‖L2→L2‖(Ψu
η)−1Ψu

g‖L2→L2‖Gu‖L2→L2

≤ const (1 + ‖((Ψu
η)−1Ψu

g‖L2→L2)

≤ const (1 + µ−1)
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‖My‖W 1
2→(W 1

2 )∗ = ‖∂2
yL‖W 1

2→(W 1
2 )∗ + ‖G∗y(Ψy

η)−1Ψy
gGy‖W 1

2→(W 1
2 )∗

≤ const + ‖G∗y‖L2→(W 1
2 )∗‖Ψ(y

η)−1Ψy
g‖L2→L2‖Gy‖W 1

2→L2

≤ const (1 + ‖(Ψy
η)−1Ψy

g‖L2→L2)

≤ const (1 + µ−1) (24)

κ ≤ 1 + ‖Mu‖L2→L2 + const ‖My‖W 1
2→(W 1

2 )∗ + const

≤ const (1 + µ−1)

As for ∆u and ∆λr, we first observe

‖z̄u
a‖L2 ≤ ‖za‖L2 + ‖G∗u(Ψu

η)−1zu
p ‖L2 ≤ const (1 + µ−1)‖z‖Z ,

‖S∗MyC
−1
y zc‖L2 ≤ ‖S∗‖(W 1

2 )∗→L2
‖My‖W 1

2→(W 1
2 )∗‖C−1

y zc‖W 1
2

≤ const (1 + µ−1)‖zc‖L2 ≤ const (1 + µ−1)‖z‖Z ,

and hence
‖ẑu

a‖L2 ≤ const (1 + µ−1)‖z‖Z . (25)

From this we conclude that

‖∆u‖L2 ≤ const (1 + µ−1)‖z‖Z and |∆λr| ≤ const (1 + µ−2).

Moreover, |ẑr| ≤ const ‖z‖Z is evident from (21). Observing that S : Lnu
2 →

(W 1
2 )ny and S∗ : (W 1

1 )ny∗ → Lnu
∞ due to (21), and additionally R∗y : Rnr →

(W 1
1 )ny∗, we infer

(S∗MyS −MuyS − S∗Myu) : Lnu
2 → Lnu

∞ and S∗R∗y : Rnr → Lnu
∞ ,

such that (22) implies

Mu∆u = ẑu
a − (S∗MyS −MuyS − S∗Myu)∆u+ S∗R∗y∆λr ∈ Lnu

∞ .

Using assumption 2, the desired regularity ∆u ∈ Lnu
∞ is readily established:

‖∆u‖L∞ ≤ const ‖ẑu
a − (S∗MyS −MuyS − S∗Myu)∆u+ S∗R∗y∆λr‖L∞ . (26)

In order to estimate the right hand side of (26), we first note that since ẏ appears
linearly in c, My is a Nemyckii operator. We thus infer

‖My‖L∞→L∞ ≤ ‖∂2
yL‖L∞→L∞ + ‖G∗y‖L∞→L∞‖(Ψy

η)−1Ψy
g‖L∞→L∞‖Gy‖L∞→L∞

≤ const (1 + µ−1) ,

where we used Theorem 2.1 to obtain Gy ∈ L(L1, L1), which implies G∗y ∈
L(L∞, L∞). Then we derive upper bounds for the individual terms in (26) as
follows:

‖S∗MyS −MuyS − S∗Myu‖L2→L∞‖∆u‖L2

≤ ‖S∗‖L∞→L∞‖My‖L∞→L∞‖S‖L2→L∞const (1 + µ−1)‖z‖Z
≤ const (1 + µ−2)‖z‖Z ,
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‖S∗R∗y‖Rnr→L∞ |∆λr| ≤ const (1 + µ−2)‖z‖ ,

and ‖ẑu
a‖L∞ ≤ const (1 + µ−1) analogously to (25). Thus we conclude

‖∆u‖L∞ ≤ const (1 + µ−2)‖z‖Z . (27)

In the final step of the proof, we will now trace back the elimination chain
from the beginning. First we get

‖∆λc‖Rnr×L∞ = ‖C−∗y (z̄y
a −MyC

−1
y zc − (Myu −MyS)∆u−R∗y∆λr)‖Rnr×L∞

≤ const ‖z̄y
a −MyC

−1
y zc − (Myu −MyS)∆u−R∗y∆λr‖(W 1

1 )∗

≤ const
(
‖z̄y

a‖(W 1
1 )∗ + ‖My‖L∞→L∞‖C−1

y zc‖W 1
1

+ ‖Myu −MyS‖L∞→L∞‖∆u‖L∞
+ ‖R∗y‖Rnr→(W 1

1 )∗ |∆λr|
)

≤ const
(
‖zy

a −G∗y(Ψy
η)−1(zy

p −Ψy
wz

y
s )‖(W 1

1 )∗ + (1 + µ−1)‖z‖Z
+ (1 + µ−1)‖∆u‖L∞ + |∆λr|

)
≤ const

(
‖z‖Z + ‖G∗y‖L∞→(W 1

1 )∗‖(Ψy
η)−1‖L∞→L∞‖zy

p −Ψy
wz

y
s‖L∞

+ (1 + µ−3)‖z‖Z
)

≤ const (1 + µ−3)‖z‖Z . (28)

The state ∆y is bounded by

‖∆y‖W 1
∞
≤ ‖C−1

y zc‖W 1
∞

+ ‖S‖L∞→W 1
∞
‖∆u‖L∞ ≤ const (1 + µ−2)‖z‖Z . (29)

Finally, we obtain for the Lagrange multiplier ∆η the estimate

‖∆η‖L∞ ≤ ‖Ψ−1
η ‖L∞→L∞

(
‖zp‖L∞ + ‖ΨgG∆x‖L∞

)
≤ const (1 + µ−3)‖z‖Z . (30)

Collecting equations (23) and (27)–(30) we obtain the claim (20).

Now we are ready to prove that the central path exists locally, and that it
can be continued up to µ = 0 unless it leaves its bounded set of definition.

Corollary 3.4. Suppose the assumptions of Theorem 3.3 are satisfied. If there
are v0 ∈ D and µ0 > 0 with F (v0;µ0) = 0, then there exists a maximal open
interval I ⊂ R+ around µ0 and a continuously differentiable central path v :
Iµ → D with the following properties:

1. v(µ0) = v0

2. F (v(µ);µ) = 0 for all µ ∈ Iµ

3. Either dist(v(Iµ), ∂D) = 0 or inf Iµ = 0 holds.

Proof. Due to Theorems 3.2 and 3.3 there is an open neighborhood of (v0, µ0)
on which F and ∂vF are continuous and ∂vF is bijective. The implicit func-
tion theorem (cf. [40, Theorem 4.B]) guarantees the existence of a continuously
differentiable central path v(µ) with F (v(µ), µ) = 0 on an open interval around
µ0. A closer inspection of the proof of the implicit function theorem and us-
ing the bounds derived in Theorems 3.2 and 3.3 shows that there is a constant

11



ε = ε(dist(v0, D)) independent of µ such that v(µ) exists on the open interval
]µ0 − εµ−4, µ0 + εµ−4[.

Let Iµ ⊂ R+ be a maximal open interval around µ0, such that property 2
holds. Now assume that property 3 does not hold, i.e. dist(v(Iµ), ∂D) ≥ ε > 0
and δ = inf Iµ > 0. We consider µ = δ + εδ−4/2 with ε = ε(ε). Again, due to
the implicit function theorem, there is an open interval Jµ =]µ−εµ−4, µ+εµ−4[
such that property 2 holds on Jµ and hence on Jµ∪ Iµ. Since µ− εµ−4 < δ, this
consequence contradicts the maximality of Iµ, and property 3 must be true.

3.2 Convergence

Corollary 3.4 does not guarantee the existence of the central path for all µ > 0,
since the path may reach the boundary of D for some µlim > 0. Moreover,
the upper bound for ‖∂vF (v;µ)−1‖ which has been established in Theorem 3.3
is useless for proving convergence of the path towards a Kuhn-Tucker limit
point. The two reasons are the possible occurence of Dirac parts in the state
constraints’ multipliers at the beginning or end of constrained arcs, and the
naive block elimination of the multipliers ∆η in the proof of Corollary 3.4.

Under more restrictive assumptions, in particular the restriction to purely
control constrained problems, a splitting into nearly active and nearly inactive
constraints can be used to show both, boundedness of the central path and
independence of ‖∂vF (v;µ)−1‖ with respect to µ.

Definition 3.5. For some ρ > 0 and functions u ∈ Lnu
∞ and η ∈ Lnu

η
∞ (Ω), define

the characteristic function χA = χA(t;u, η, µ) of the nearly active set vector ΩA

componentwise as

χA
i (t) =

{
1, g̃u

i (ui(t)) ≤ ρηu
i (t)

0, otherwise.

The corresponding characteristic function χI of the nearly inactive set vector
ΩI is defined as 1− χA, where 1 ∈ Lnu

η
∞ is the constant function with value 1.

Note that pointwise multiplication with χA defines an orthogonal projector
onto the corresponding L∞ space over the nearly active set vector ΩA.

First we address the issue of the central path leaving a bounded domain of
definition. Assuming a suitable constraint qualification for nearly active con-
straints of points on the central path, we establish a priori bounds for the central
path.

Theorem 3.6. Suppose ny
η = 0, i.e. there are no state constraints. Assume

that the following conditions are satisfied.

(i) The feasible region Du := {u ∈ Lnu
∞ : g(u) ≥ 0} is bounded.

(ii) The state contribution function in the state equation is linearly bounded:

|c̃(u, y)| ≤ const (1 + |y|) for all y ∈ Rny and u ∈ Du

Then there is a bounded set Dy ⊂ (W 1
∞)ny such that for all µ > 0 every solution

v of F (v;µ) = 0 satisfies u ∈ Du and y ∈ Dy.

12



If, in addition, there is a constant β > 0 such that the equality constraints
and nearly active control constraints satisfy the inf-sup-condition

inf
h∈Rnr ,ξ∈L

nu
η
∞

sup
δu∈Lnu

1

hT∂yr(x)∂yc(x)−1∂uc(x)δu+ 〈χAξ, ∂ug
′(u)δu〉

(|h|+ ‖χAξ‖
L

nu
η
∞

) ‖δu‖Lnu
1

≥ β (31)

uniformly for central path solutions v with x ∈ Du×Dy, then there is a bounded
set D0 ⊂ V such that v ∈ D0.

Proof. Suppose v = (u, y, λc, λr, η) is a central path solution of F (v;µ) = 0
for some µ > 0. Since Ψ(g(u), η) = 0 implies g(u) ≥ 0, we have u ∈ Du by
assumption (i). Assumption (ii) then guarantees the existence of a constant
γy <∞ such that y ∈ S(0, γy) =: Dy.

Now consider the state part of the adjoint equation

∂yJ(x)− ∂yc(x)∗λc − ∂yr(y)∗λr = 0 .

Due to the formulation of c as initial value problem, the inverse of ∂yc(x) :
(W 1

1 ) → L1 × Rny is uniformly bounded on Du × Dy. Thus we can conclude
that

‖λc‖L∞×Rny ≤ ‖∂yc(x)−∗‖(W 1
∞)∗→L∞×Rny ‖∂yJ(x)− ∂yr(y)∗λr‖(W 1

∞)∗

≤ const ‖∂yJ(x)− ∂yr(y)∗λr‖(W 1
∞)∗ .

Since ∂y f̃(x) is uniformly bounded in Lny
∞ for x ∈ Du×Dy, so is ‖∂yJ(x)‖(W 1

∞)∗ ,
and we obtain

‖λc‖L∞×Rny ≤ const (1 + |λr|). (32)

Inserting λc = ∂yc(x)−∗(∂yJ(x)−∂yr(y)∗λr) into the control part of the adjoint
equation,

∂uJ(x)− ∂uc(x)∗λc − g′(u)∗η = 0,

and splitting the Lagrange multiplier η into nearly active and nearly inactive
parts yields

∂uJ(x)− ∂uc(x)∗∂yc(x)−∗∂yJ(x)− g′(u)∗χIη

= (∂yr(y)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη .

Then the inf-sup-condition of assumption (31) provides the estimate

β(|λr|+ ‖χAη‖L∞) ≤ sup
u∈L1

〈(∂yr(x)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη, u〉
‖u‖L1

≤ ‖(∂yr(x)∂yc(x)−1∂uc(x))∗λr + g′(u)∗χAη‖L∞
= ‖∂uJ(x)− ∂uc(x)∗∂yc(x)−∗∂yJ(x) + g′(u)χIη‖L∞ .

Note that ‖χIη‖L∞ is bounded by ρ−1‖g(u)‖L∞ and ‖∂yc(x)−∗∂yJ(x)‖L∞×Rny

is bounded as shown above. Similarly, ‖∂uJ(x)‖L∞ is bounded. ‖g′(u)‖L∞→L∞

and ‖∂uc(x)‖L1→L1×Rny are bounded by Theorem 2.1. Thus we conclude that

|λr|+ ‖χAη‖L∞ ≤ constβ−1.

Combining this with x ∈ Du ×Dy verifies the boundedness of v.
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The splitting of the domain into nearly active and inactive regions leads also
to improved estimates for the dependency of the complementarity function on
the homotopy parameter µ.

The reason for the dependence of ‖∂vF (v;µ)−1‖ on µ in Theorem 3.3 is
the increase of ‖∂ηΨ−1‖ as µ → 0. This can be overcome by more sophisti-
cated elimination of variables in the proof. As a preparation, we first prove a
refinement of Lemma 3.1.

Lemma 3.7. The Fischer-Burmeister complementarity function satisfies the
following estimates:

‖χA∂gΨ(g(u), η)−1‖L∞→L∞ ≤
(

1− ρ√
1 + ρ2

)−1

(33)

‖χI∂ηΨ(g(u), η)−1‖L∞→L∞ ≤
(

1− 1√
1 + ρ2

)−1

(34)

In particular, both bounds are independent of µ.

Proof. In the relevant inequality (15) we now assume that a ≤ ρb. This leads
to

∂aψ(a, b;µ) ≥ 1− 1√
1 + b2

a2 + 2µ
a2

≥ 1− 1√
1 + 1

ρ2 + 2µ
a2

≥ 1− 1√
1 + 1

ρ2

.

On the nearly active region, this assumption holds, such that due to the projec-
tion onto the nearly active region the estimate transfers to χA∂gΨ(g(u), η)−1.
Thus, (33) is verified. By symmetry, (34) is verified using the complementary
assumption a > ρb.

Theorem 3.8. Assume ny
η = 0, i.e. only control constraints are present. Sup-

pose there are a bounded set D ⊂ V and constants β > 0 and α > 0, such that the
following conditions hold uniformly for all central path solutions v = v(µ) ∈ D
with F (v(µ);µ) = 0 and µ > 0.

1. State equation and nearly inactive control constraints satisfy the inf-sup-
condition

inf
h∈Rnr ,ξ∈L

nu
η

p

sup
δu∈Lnu

q

hT∂yr(x)∂yc(x)−1∂uc(x)δu+ 〈χAξ, g′(u)δu〉
(|h|+ ‖χAξ‖

L
nu

η
p

) ‖δu‖Lnu
q

≥ β

for both (p, q) = (∞, 1) and (p, q) = (2, 2).

2. A strengthened Legendre-Clebsch type condition holds for almost all t ∈ Ω:

Mu(t) := ∂2
uf̃(x(t))− ∂2

uc̃(x(t))
Tλc(t)− g̃′′(u(t))T η(t)

+ g̃′(u(t))T∂ηψ(g̃(u(t)), η(t);µ)−1χI∂gψ(g̃(u(t)), η(t);µ)g̃′(u(t))

satisfies

ξTMu(t)ξ ≥ α|ξ|2 for ξ ∈ kerχA(t)g̃′(u(t))

ξTMu(t)ξ ≥ 0 otherwise.
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3. The augmented second derivative of the Lagrangian,

M = ∂2
xL(v) + g′(x)∗∂ηΨ(g(x), η)−1∂gΨ(g(x), η)g′(x) ,

is positive definite on the nullspace of the state equation:

〈ξ,Mξ〉 ≥ α‖ξ‖2Lnu
2 ×(W 1

2 )ny for ξ ∈ ker c′(x) ∩ kerχAg′(u)

〈ξ,Mξ〉 ≥ 0 otherwise

Then ∂vF (v;µ) has an inverse which is bounded uniformly for (v, µ) ∈ D×R+.

Proof. The structure and line of argument is similar to the proof of Theo-
rem 3.3. We therefore concentrate on the differences and extensions. Define
C,Cu, Cy, R,Ry,Muy,Myu, and S as before. Let G = −g′(u). Define Ψg =
∂gΨ(g(u), η) and analogously Ψη. Finally, let Mu = ∂2

uL(v) + G∗χIΨ−1
η ΨgG

and My = ∂2
yL(v).

As before, the first step consists of eliminating the Lagrange multiplier,
but here only the nearly inactive part χIη = χIΨ−1

η (zp −ΨgG∆u). In order to
symmetrize the remaining system, the nearly active part of the complementarity
equation is multiplied by Ψ−1

g :
Mu Muy C∗u G∗χA

Myu My C∗y R∗y
Cu Cy

Ry

χAG −χAΨ−1
g Ψη




∆u
∆y
∆λc

∆λr

χA∆η

 =


z̄u
a

zy
a

zc

zr

χAΨ−1
g zp


with z̄u

a = zu
a −G∗χIΨ−1

η zp. Note that χA, Ψ−1
g , and Ψη commute. Continuing

with the elimination of ∆y and λc as in the proof of Theorem 3.3 we end up
with  T −(RyS)∗ G∗χA

−RyS
χAG −χAΨ−1

g Ψη

 ∆u
∆λr

χA∆η

 =

 ẑu
a

ẑr

χAΨ−1
g zp

 ,

where T = Mu + S∗MyS − (MuyS + S∗Myu), ẑu
a = z̄u

a −MuyC
−1
y zc − S∗(z̄y

a −
MyC

−1
y zc), and ẑr = zr − RyC

−1
y zc. Due to assumption 3, Mu + S∗MyS −

(MuyS + S∗Myu) is positive definite on the nullspace of χAG and positive
semidefinite on the whole space. Assumption 1 provides the inf-sup condition
for the combined operator [

−RyS
χAG

]
,

and χAΨ−1
g Ψη is positive semidefinite. In this situation, the application of

Brezzi’s splitting theorem is substituted by a theorem of Braess and Blö-
mer [9] on saddle point problems with penalty term. This guarantees the exis-
tence of a solution (∆u,∆λr, χ

A∆η) ∈ Lnu
∞ × Rnr × L∞(ΩA) with

‖∆u‖L2 + |∆λr|+ ‖∆ηA‖L2 ≤ constκ(‖ẑu
a‖L2 + |ẑr|+ ‖χAΨ−1

g zp‖L2) ,

where κ = ‖T‖ + ‖RyS‖ + ‖GA‖ + ‖χAΨ−1
g Ψη‖ + α + β. Note that due to

Lemma 3.7 the operators χAΨ−1
g Ψη and χIΨ−1

η Ψg are bounded independently
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of µ. This property is inherited by κ and ‖χAΨ−1
g zp‖, such that ‖∆u‖L2 , |∆λr|,

and ‖χA∆η‖L2 are bounded independently of µ.
Subsequently, the L∞-regularity of ∆u and χA∆η is established. As in the

proof of Theorem 3.3, we have

(S∗MyS −MuyS − S∗Myu)∆u+ S∗R∗y∆λr ∈ Lnu
∞ ,

such that for almost all t ∈ Ω the finite dimensional linear equation system[
Mu(t) g̃′(u(t)TχA(t)

χA(t)g̃′(u(t)) −B

] [
∆u(t)
χA∆η(t)

]
=

[
a

χA(t)b

]
holds, width B = χA(t)∂gψ(g(u(t)), η(t))−1∂ηψ(g(u(t)), η(t)). Here, a and b de-
note generic right hand side vectors the norm of which is bounded by a constant
independent of µ. By assumption 2, Mu(t) is positive definite on the nullspace
of g̃′(u(t)), such that we can again apply the Lemma by Braess and Blömer.
This yields

|∆u(t)|+ |χA∆η(t)| ≤ const (‖Mu(t)‖+‖g̃′(u(t))‖+‖B‖+α+β)(|a|+ |b|) (35)

for almost all t ∈ Ω, and hence

‖∆u‖L∞ ≤ const (36)

‖χA∆ηA‖L∞ ≤ const , (37)

independently of µ. Finally, tracing back the elimination stack as in Theorem 3.3
verifies the claim.

As in Corollary 3.4, local existence of the central path can be shown. More-
over, the a-priori bound of the solution given by Theorem 3.6 eliminates the
possibility of premature termination of the path. Finally, the fact that the in-
verse of ∂vF can be bounded independently of µ limits the length of the path
and thus ensures convergence.

Theorem 3.9. Assume Theorem 3.6 holds, providing a bounded set D0 ⊂ V
containing the central path. Define D =

⋃
v∈D0

S(v, ε) for some ε > 0. Suppose
the assumptions of Theorem 3.8 hold on D.

If there are v0 ∈ D0 and µ0 > 0 with F (v0;µ0) = 0, then the central path
v(µ) exists for all 0 < µ ≤ µ0 and converges to a Kuhn-Tucker point v(0):

‖v(µ)− v(0)‖V ≤ const
√
µ

Proof. First we notice that due to Theorem 3.2, there is some ε > 0 such that
∂vF (v;µ)−1 is uniformly bounded on the neighborhood

U =
⋃

(v;µ) with F (v;µ)=0

S((v, µ), ε)

of the central path solutions v(µ). As in the proof of Theorem 3.4, the central
path exists on a maximal interval Iµ containing µ0. Since due to Theorem 3.6
this central path is bounded away from ∂D, we have inf Iµ = 0. Thus, the
central path exists for all 0 < µ ≤ µ0.
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Next we estimate ∂µF (v(µ);µ). Since only the complementarity function Ψ
depends on µ, this is given by ∂µΨ(g(u), η;µ) = −(g(u)2 + η2 + 2µ)−1/2. On
the central path we have g(u) · η = µ a.e. and thus

‖∂µΨ(g(u), η;µ)‖L∞ ≤ (4µ)−1/2.

Now the derivative of the central path is given by

v′(µ) = ∂vF (v(µ);µ)−1∂µF (v(µ);µ).

Theorem 3.8 yields

‖v′(µ)‖V ≤ ‖∂vF (v(µ);µ)−1‖Z→V ‖∂µF (v(µ);µ)‖Z ≤ constµ−1/2. (38)

Therefore the central path is uniformly continuous and converges to some limit
point v(0) ∈ D at a rate of

‖v(µ)− v(0)‖V ≤
∫ µ

0

‖v′(s)‖V ds ≤ const
∫ µ

0

s−1/2 ds = const
√
µ.

The continuity of F on D × [0,∞[ implies that F (v(0); 0) = 0, such that v(0)
satisfies the first order necessary conditions (8).

In [38], the assumptions of the preceeding theorems have been verified for a
class of simple optimal control problems, and numerical results are given.

4 A short-step pathfollowing method

With the refined estimates from Section 3.2, we can show linear convergence
of a short step path-following method. Note that this is a purely theoretical
algorithm, since it relies on the exact solution of operator equations in function
space and on knowledge of global Lipschitz constants. For an implementable
approximation via inexact Newton corrector and inexact tangential predictor
we refer to [38].

We consider the following simple algorithm.

Algorithm 4.1.
initialize v0, µ0 such that F (v0;µ0) = 0
choose σ < 1 sufficiently large
while µk > 0

advance µk+1 ← σµk

compute one corrector step ∂vF (vk;µk+1)δvk = −∂µF (vk;µk+1)
advance vk+1 ← vk + δvk, k ← k + 1

The sequence vk of iterates converges to the Kuhn-Tucker point v(0).
First we recall the essentials of an affine covariant Newton-Mysovskikh the-

orem from [16].

Theorem 4.2. Assume F : X → Y is a differentiable mapping with F (x∗) = 0.
Assume the derivative F ′(x) is invertible on D = S(x∗, δ) and satisfies

‖F ′(x)−1(F ′(y)− F ′(x))‖ ≤ ω‖y − x‖ (39)

17



for x, y ∈ D. Let the ordinary Newton sequence xk starting at x0 ∈ D be defined
by xk+1 = xk − F ′(xk)−1F (xk). Then xk converges to x∗ at a rate of

‖xk+1 − x∗‖ ≤ ω

2
‖xk − x∗‖2.

Theorem 4.3. Suppose that F satisfies the assumptions of Theorem 3.9, pro-
viding a bounded set D. Let v0 ∈ D and µ0 > 0 be given such that F (v0;µ0) = 0.
Then there is a constant σ < 1 such that the sequence vk of iterates generated
by Algorithm 4.1 converges linearly to the limit point v(0) of the central path.

Proof. To begin with, we verify the assumptions of Theorem 4.2. By Theo-
rems 3.2 and 3.8 there are constants γ1 and γ2 independent of µ ≤ µ0, such that
‖∂vF (v;µ) − ∂vF (v(µ);µ)‖V→Z ≤ γ1µ

−1/2 and ‖∂vF (v(µ);µ)−1‖Z→V ≤ γ2.
Omitting the argument µ from F we use the Banach perturbation lemma to
derive

‖∂vF (v)−1‖Z→V

≤ ‖∂vF (v(µ))−1‖Z→V ‖(I − (∂vF (v(µ))− ∂vF (v))∂vF (v(µ))−1)−1‖Z→Z

≤ γ2

1− γ1µ−1/2‖v − v(µ)‖V γ2
≤ 2γ2

for v ∈ D = S
(
v(µ),

√
µ/(2γ2γ1)

)
. For v1, v2 ∈ D we thus obtain

‖∂vF (v1)−1(∂vF (v2)− ∂vF (v2))‖V→V

≤ ‖∂vF (v1)−1‖Z→V ‖(∂vF (v2)− ∂vF (v1))‖V→Z

≤ 2γ2γ1µ
−1/2‖v2 − v1‖V ,

which establishes the Lipschitz condition (39) with

ω(µ) ≤ 2γ2γ1√
µ
.

As in (38) in the proof of Theorem 3.9, we obtain a bound on the derivative of
the central path in the form of

‖v′(µ)‖V ≤
β
√
µ

with β <∞ independent of µ. Define

δ = (2γ2γ1)−1 and σ ≥
(

1− δ

2(δ + β)

)2

. (40)

Let us assume by induction that ‖vk − v(µk)‖V ≤ δ
√
µk/2. Then we have

‖vk − v(σµk)‖V ≤ ‖vk − v(µk)‖V + (1− σ)µk sup
µ∈[σµk,µk]

‖v′(µ)‖V

≤
δ
√
µk

2
+ (1− σ)µkβ(σµk)−1/2

=
√
µk

(
δ

2
+

β√
σ

+ β
√
σ

)
.

18



With σ given by (40), some tedious calculation verifies

δ

2
+

β√
σ

+ β
√
σ ≤ δ

√
σ

and hence
‖vk − v(σµk)‖V ≤ δ

√
µkσ.

Now the corrector step, which is a Newton step for the problem F (v;σµk) = 0,
leads to

‖vk+1 − v(µk+1)‖V ≤
ω(µ)

2
‖vk − v(µk+1)‖2V ≤

ω(µ)
2

δ2µk+1

≤ δ

2
√
µk+1,

which completes the induction. As for the convergence of the iterates, we observe
that by Theorem 3.9

‖vk − v(0)‖V ≤ ‖vk − v(µk)‖V + ‖v(µk)− v(0)‖V

≤ δ

2
√
µk + const

√
µk

≤ constσk/2√µ0,

which proves linear convergence of vk → v(0).
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