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Abstract

We describe a polynomial time algorithm for covering graphs with cliques, prove
its asymptotic optimality in a random intersection graph model and present exper-
imental results on complex real–world networks.

1 Introduction

The construction of stochastical models for complex real–world networks of
huge dimensions has attracted an enormous amount of attention during the
last five years. These efforts are motivated by several aspects, namely the
prediction of network structure as well as the design, benchmarking and the-
oretical verification of algorithms.

As graphs are the canonical model for networks, random graphs seem to be
appropriate candidates for the stochastic models. The classical random graph
model was introduced by Erdős and Rényi in the early 1960s. It is denoted by
Gn,p and considers a fixed set of n vertices and edges that exist with a certain
probability p = p(n), independently from each other. However, it lacks many
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of the commonly observed properties of real–world networks (e.g. scale free
degree distribution and clustering). One of the underlying reasons that are
responsible for this mismatch is precisely the independence of the edges, in
other words the missing transitivity. In a real–world network, relations between
vertices x and y on the one hand and between vertices y and z on the other
hand suggest a connection of some sort between vertices x and z.

To take better care of this fact, we will investigate random intersection graphs.
An intersection graph is a graph G = (V, E) together with a so–called universal
feature set W . Every vertex x ∈ V has an assigned feature set Wx ⊆ W ,
and the characteristic property of an intersection graph is that two vertices
x, y ∈ V are connected by an edge in E if and only if their feature sets have
non-empty intersection:

{x, y} ∈ E ⇔ Wx ∩ Wy 6= ∅.

We call the elements of W features. If the feature w ∈ W is contained in
Wx and Wy and thus forces the edge {x, y}, we say that {x, y} is induced by
w. Furthermore the set of vertices Vw holding a specified feature w (which
obviously forms a clique) is called a feature clique. Trivially

v ∈ Vw ⇔ w ∈ Wv,

in which case we say that v and w see each other.

Examples for intersection graphs are interval graphs (see e.g. [1]), where the
feature sets consist of intervals on the real line. In this paper however we will
only consider finite sets.

A random intersection graph on n vertices with a universal feature set of size
m is a probability model where each vertex chooses each feature independently
with probability p. A sample of this probability space is denoted by Gn,m,p.

A few simple observations. Obviously Gn,m,p does exhibit some kind of transi-
tivity: if the edges {x, y} and {y, z} are induced by the same feature w, then
this will also induce the edge {y, z}. The smaller m is, the ‘simpler’ will be
Gn,m,p, because relatively few cliques will dominate its structure. In the fol-
lowing we will consider the case m := nα. It was shown in [2] that for α > 6
the random intersection graph Gn,m,p behaves in many ways like the classical
random graph Gn,p′ with p′ = 1−(1−p2)m. We will focus in this paper mainly
on the case where 0 < α < 1.

It is sometimes convenient to view the random intersection graph as a random
bipartite graph with bipartition (V, W ) and random edges between the V and
W occurring independently with probability p. A sample from this space will
be denoted by Bn,m,p. Given the bipartite graph, say B, the intersection graph
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is obtained as G = B2[V ], where we write B2 for the so–called square of B
(where two vertices are connected if their distance is at most 2 in B). B is
called a generator of G.

The model of a random intersection graph Gn,m,p has been studied with respect
to subgraph appearance by Karoński, Scheinerman and Singer-Cohen in [3]
and with respect to equivalence to Gn,p by Fill, Scheinerman, Singer-Cohen in
[2] (see also [4]). Stark has investigated the vertex degree distribution in [5].
The evolution of the largest component, for growing p and fixed α has been
studied by the first author in [6]. Extensions to the model have been proposed
by Godehardt and Jaworski in [7], who modify the distribution of the sizes of
the feature cliques. The practical relevance of the model has been discussed
by Newman, Strogatz and Watts in [8] and by Guillaume and Latapy in [9].

The main aim of this paper is to develop and analyze simple algorithms which,
given an intersection graph, quickly reproduce the underlying feature cliques.
As the features of a network are likely to reflect important properties of the
data, they represent important meta-information that will help in clustering,
storing and searching it efficiently. An immediate example for such feature
cliques are common topics in a network containing documents as vertices and
edges between similar documents.

Since every graph can be seen as an intersection graph with the universal
feature set being large enough, we want to (re)produce a universal feature
set that is as small as possible. This is equivalent to the NP-hard problem
of constructing an (edge) clique cover with a minimum number of cliques
for the graph [10], and hence we cannot expect to find an efficient algorithm
which always finds an optimal solution. Instead, we present a simple greedy
heuristic that constructs the generator of a given graph. Our main contribution
is to prove that this algorithm performs a.a.s. optimally (this means with
probability tending to one as n tends to infinity), when the input graph is
chosen at random from our model Gn,m,p for certain ranges of p. More precisely,
we will prove the following two theorems.

Theorem 1 Let a positive constant α < 1, n, m := nα and ln2 n
n

≤ p = O( 1
m

)
be given and let G := Gn,m,p = (V, E) be a random intersection graph. Then
there exists an algorithm which a.a.s. finds in O(n3) a bipartite graph B =
(V ∪ W, A) with |W | ≤ m and B2[V ] = G (a generator of G).

Theorem 2 Let a positive constant α < 1, n, m := nα and ln2 n
n

≤ p <

min{1
5
m− 2

3 , n
8m2 } be given and let G := Gn,m,p = (V, E) be a random inter-

section graph. Then there exists an algorithm which a.a.s. finds in polynomial
time a bipartite graph B = (V ∪ W, A) with |W | ≤ m and B2[V ] = G (a
generator of G).
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Fig. 1. Ranges for p and m for which we prove the a.a.s. optimality of Algorithm 1

Notice that Theorem 2 covers a greater range of p at the expense of a larger
(but still polynomial) running time of the algorithm. Observe that in particular
graphs with constant expected degree (which seems appropriate for many real–
world networks) are already covered by Theorem 1 and can thus be analyzed
very efficiently. Figure 1 illustrates the range of m and p for which our theorems
hold.

Following Guillaume and Latapy [9], who compared real complex networks
with random intersection graphs, we ran our algorithm on the same or similar
real–world networks to obtain a clique cover. The simulation results show that
even very large graphs can be covered quite well with a reasonable number of
cliques and a good running time. More importantly, these experiments suggest
values for m (and thus, via the edge density, also values for p), and enabled
us to compare the degree distribution in individual real-world networks with
those in the random intersection graph Gn,m,p with the “correct” parameters
m and p.

This paper is organized as follows. Section 2 contains the algorithm that gives
rise to the theorems. Section 3 presents some basic lemmas concerning the
random intersection graph model. In Section 4 we prove Theorem 1 which is
just a warmup for the proof of Theorem 2 in Section 5. We close with some
experimental results and a comparison of some properties in real networks and
our random graph model.

2 The algorithm

The following algorithm finds cliques in a graph by testing the common neigh-
borhood of vertex subsets of fixed size k for completeness. From the cliques
found in this way it takes the largest ones in order to cover the graph.
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We shall use the following (slightly non–standard) notation: For the set A∪{x}
we write A + x. Denote by Γ(v) the set of vertices having edges to v and by
N(v) := Γ(v)+ v the same set including v itself. For a vertex set U we denote
by Z(U) the common neighborhood of the vertices in U (Z(U) :=

⋂k
i=1 N(vi)).

Algorithm 1

Input: Graph G on n vertices, k ∈ N

Output: (partial) edge clique cover M of G
FeatureFind(G, k)
(1) L := ∅;
(2) foreach Uk = {v1, . . . , vk} ⊆ V
(3) Z = Z(Uk) :=

⋂k
i=1 N(vi)

(4) if G[Z] complete
(5) L := L + Z;
(6) Y := ∅;
(7) foreach Z ∈ L in decreasing cardinality |Z|
(8) if E(G[Z]) 6⊆ Y
(9) Y := Y ∪ E(G[Z]);
(10) M := M + Z;

We will use this algorithm with k = 1 to prove Theorem 1 and with larger k
to prove Theorem 2. The set M found by the algorithm contains the vertex
sets seen by the individual features and can thus be considered as a subset of
the feature set W of a possible generator of G.

The running time of the algorithm is clearly dominated by checking the clique
property for the neighborhood of all k-subsets of V which leads to a total of
O
((

n
k

)

n2
)

. The following proposition gives rise to an algorithm which needs
much less time in practice.

Proposition 3 Let G = (V, E) be a graph and let U ⊆ V be such that C :=
Z(U) =

⋂

u∈U N(u) is a clique in G. Furthermore let U ′ be an arbitrary subset
of C. If Z(U ′) is a clique then Z(U ′) = C.

PROOF. Since C is a clique it is immediate that for every subset U ′ ⊆ C all
vertices of C are adjacent to all vertices of U ′, hence C ⊆ Z(U ′). Now assume
that Z(U ′) is a clique and that there is a vertex v in Z(U ′) which is not in
C. Since C ⊆ Z(U ′) all vertices in C (and especially in U) are adjacent to v
but this means v ∈ Z(U) = C which contradicts the assumption that v 6∈ C.
Thus v cannot exist and the statement is proven. 2

This proposition implies that every set Uk which is a subset of a clique that
has been found in an earlier stage of the algorithm does not have to be checked
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anymore, which in practice reduces the number of sets to be checked dramat-
ically.

Furthermore note that for k = 1 (and in fact even for k = 2) sorting the
cliques (starting at line 7) and taking only the largest ones is not necessary
because the way in which we find them already ensures that a clique in L
contains at least one vertex (resp. edge for k = 2) which is in no other clique
in L. Thus M and L are equal.

3 Auxiliary Lemmas

The following estimates are used without proof:

(

a

b

)

≤
(

ea

b

)b

(1)

(

a

b

)

≤ ab (2)

1 − ab ≤ (1 − a)b ≤ 1 − ab

2
for 0 ≤ a ≤ 1, ab < 1 (3)

e−2a ≤ 1 − a ≤ e−a for 0 ≤ a ≤ 1

2
(4)

Let X be a non-negative random variable with expectation µ = E [X]. As a
special case of Markov’s inequality the first moment method states that

P [X ≥ 1] ≤ µ. (5)

If X is binomially distributed random variable (n trials, each with probability
p), then µ = np and we shall use the following variants of Chernoff’s inequality
(see Section 2 in [11]):

P [X ≥ µ + t] ≤ exp

(

− t2

2(µ + t/3)

)

for t ≥ 0, (6)

P [X ≤ µ − t] ≤ exp

(

− t2

2µ

)

for t ≥ 0, (7)

P [X ≥ t] ≤ exp (−t) for t ≥ 7µ. (8)

Let Gn,m,p be a random intersection graph. We first show that the probability
that there is a feature clique which deviates much from its expected size is
exponentially small.

Lemma 4 Let Xw := |Vw| be the random variable counting the number of
vertices of a fixed feature w in a random intersection graph Gn,m,p with m := nα
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and α < 1. Then

P

[

∃w ∈ W : |Xw − pn| >
pn

2

]

≤ 2me−
pn
10 .

PROOF. The number of vertices seen by a feature is a binomially distributed
random variable with expected value np. For a fixed feature w we have

P

[

Xw > pn +
pn

2

] (6)

≤ exp

(

− (pn)2

8(pn + pn
6

)

)

≤ e−
pn
10

P

[

Xw < pn − pn

2

] (7)

≤ exp

(

−(pn)2

8pn

)

≤ e−
pn
10 .

Using linearity of expectation (summing over all features w) and the first
moment method we obtain that

P

[

∃w ∈ W : |Xw − pn| > (pn)
3

4

]

≤ 2me−
pn
10 .

2

Similar results hold for the size of the feature sets.

Lemma 5 Let Xv := |Wv| be the random variable counting the number of
features for a fixed vertex v in a random intersection graph Gn,m,p with m := nα

and α < 1. Then

P [∃v ∈ V : Xv > 2pm] ≤ ne−
3pm

8 ,

and for pm ≤ 3 lnn

P [∃v ∈ V : Xv > 21 lnn] ≤ 1

n20
.

PROOF. Very similarly to the previous lemma, we have for a fixed vertex v

P [Xv > pm + pm]
(6)

≤ exp

(

− (pm)2

2(pm + pm/3)

)

= e−
3pm

8

and for pm ≤ 3 lnn

P [Xv > 21 lnn]
(8)

≤ exp(−21 ln n) =
1

n21
.

Again summing over all vertices v yields the statement of the lemma. 2
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Denote by B the event that none of the events in Lemmas 4 and 5 occur. In
other words, for no w ∈ W : |Xw − pn| > pn

2
and for no v ∈ V : Xv > 2pm or

Xv > 21 lnn. The above lemmas show that (under certain conditions on n, m

and p) we have P

[

B̄
]

→ 0. In the following we will often observe that these
conditions are indeed satisfied, and then attempt to compute the probability
for some other event A. As

P [A] = P [A|B]P [B] + P

[

A|B̄
]

P

[

B̄
]

≤ P [A|B] + P

[

B̄
]

,

we can then restrict our attention to proving that P [A|B] → 0.

4 The case k = 1

We first show that almost surely every feature clique contains a vertex with
only one feature.

Lemma 6 Let Gn,m,p with m := nα, α < 1 and ln2 n
n

≤ p = O( 1
m

) be a random
intersection graph. Then a.a.s. every feature clique Vw contains a vertex for
which w is the only feature:

∀w ∈ W ∃v ∈ Vw : Wv = {w}.

PROOF. For p ≥ ln2 n
n

we know from Lemma 4 that we can condition on the
event that there is a.a.s. no feature clique with less than pn

2
vertices. Now fix a

single feature w, let it choose its clique Vw and determine the probability that
all the vertices inside Vw choose another feature. Summing over all features
we can then bound the probability for the existence of such a w by

P [∃w ∈ W, ∀v ∈ Vw : |Wv| > 1] ≤ m
(

1 − (1 − p)m−1
)

pn
2

(4)

≤ m
(

1 − e−2pm
)

pn
2

≤ m
(

1 − e−O(1)
)

pn
2

≤ m
(

1 − e−O(1)
)

ln
2 n
2 .

This tends to 0 because for n large enough ln(1 − e−O(1)) lnn < −α. 2

Theorem 1 now follows immediately from this lemma because Algorithm 1
only needs to “find” the vertex from Lemma 6 which it will surely achieve
running with k = 1.
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Proof of Theorem 1 We run Algorithm 1 with k = 1 and claim that a.a.s.
the produced list L will contain exactly the feature cliques. By Lemma 6 we
can assume that every feature clique Vw contains a vertex uw for which w is the
only feature (Wu = {w}). Observe that for such a vertex uw the neighborhood
N(uw) is a feature clique. This already implies that all feature cliques will be
contained in L.

Now assume that there is a vertex v with more than one feature (e.g. x, y ∈
Wv). Since ux and uy must lie in N(v) (because v shares one feature with each
of them) and since there is no edge between ux and uy (they have only one
feature) N(v) cannot be a clique. Thus if N(v) is a clique, then this implies
that v = uw for some feature w, and therefore L contains exactly the feature
cliques.

The running time is bounded from above by the time needed to check the
clique property for at most n sets which can surely be done in O(n3). 2

Theorem 1 covers already a significant portion of interesting intersection graphs,
in particular graphs with expected constant degrees (linear number of edges)
and with a giant component. Both properties occur when p = c/

√
mn (see [6]

for details).

5 The case k > 1

The proof of Theorem 2 needs some more lemmas because the a.a.s. existence
of a vertex with only one feature cannot be guaranteed for larger p. We will use
two other asymptotic properties of the feature cliques instead. First we prove
that feature cliques are maximal with respect to inclusion (Lemma 7) and
from this deduce that in fact there are no larger cliques in the graph (Lemma
9). Together with the a.a.s. existence of at least one set Uk whose common
neighborhood Z(Uk) is complete (Lemma 8) this will prove the theorem.

Lemma 7 Consider m := nα, α < 1, a positive constant k and a random
intersection graph Gn,m,p with k

m
≤ p < 1√

m ln n
. Then a.a.s. every feature

clique is inclusion maximal:

∀w ∈ W ∀v ∈ V : Vw 6⊆ Γ(v).

PROOF. First observe that the statement of the formula is trivial for v ∈ Vw

since no vertex can be part of its own neighborhood. Now assume that we
have the bounds on the sizes of the feature cliques and sets from Lemma 4
and Lemma 5. Suppose that for some vertex w there exists a vertex v 6∈ Vw
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with Vw ⊆ Γ(v). We will show that the probability of this event vanishes. First
consider the case where pm > 3 lnn:

P [∃w ∈ W, v ∈ V : Vw ⊆ Γ(v)] ≤ mn
2pm
∑

i=1

(

m

i

)

pi
(

1 − (1 − p)i
)

pn
2

(1)(3)

≤ mn
2pm
∑

i=1

(

emp

i

)i

(pi)
pn
2

≤ mn
2pm
∑

i=1

(

emp

i

)
pn
2

(pi)
pn
2 with i < emp <

pn

2

≤ mn2pm(emp2)
pn
2

≤ mn2pm

(

e

ln2 n

)
pn
2

,

which tends to 0 because e
ln2 n

→ 0 and pn ≥ n1−α.

Now for the case where pm ≤ 3 lnn:

P [∃w ∈ W, v ∈ V : Vw ⊆ Γ(v)] ≤ mn
21 ln n
∑

i=1

(

m

i

)

pi
(

1 − (1 − p)i
)

pn
2

(2)(3)

≤ mn
21 ln n
∑

i=1

(mp)i(pi)
pn
2

≤ mn
21 ln n
∑

i=1

(p2mi)
pn
2

≤ 21mn lnn(21p2m ln n)
pn
2

≤ 21mn lnn

(

21

ln n

)
pn
2

,

which tends to 0 because 21
ln n

→ 0 and pn ≥ n1−α. 2

Now we prove that we can indeed find the feature cliques with our algorithm.

Lemma 8 Let ε > 0 be fixed and consider m := nα, α < 1, an integer
k > α+1

2αε
and a random intersection graph Gn,m,p with k

m
≤ p < m− 1

2
−ε. Then

a.a.s. every feature clique has a subset Uk of size k such that Vw = Z(Uk)
(with Z being defined in the algorithm).

PROOF. Fix a feature w and let Uk be a fixed k-clique with Uk ⊆ Vw

(remember that all subsets of Vw are cliques). Furthermore let v ∈ Vw be
an arbitrary vertex. As Vw is a clique, Uk ⊆ N(v) which is equivalent to
v ∈ ⋂k

i=1 N(ui) = Z(Uk). Thus v ∈ Vw and, because v was chosen arbitrarily,
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Vw ⊆ Z(Uk). If Z(Uk) is complete we know from Lemma 7 that Z(Uk) = Vw

and we are done.

So assume the opposite, e.g. there are x, y ∈ Z(Uk) which are not adjacent.
Since Vw is a clique, x or y has to be outside of Vw. Let us assume it is x, then
the event of Z(Uk) being not complete implies the event that there exists an
x ∈ Z(Uk) \ Vw. This means there is an x that is in the neighborhood of all
vertices in Uk but does not see feature w.

We bound the probability for this event by summing over all possible sets of
(at most k) features which connect x and Uk.

P [∃x ∈ V \ Vw∀u ∈ Uk : x ∈ Γ(u)] ≤ n
k
∑

i=1

(

m

i

)

pi(1 − (1 − p)i)k

(1)(3)

≤ n
k
∑

i=1

(

epm

i

)i

(pi)k

≤ n
k
∑

i=1

(ep2m)k with i ≤ k ≤ pm

= nk(ep2m)k.

If this tends to 0, a subset Uk will a.a.s. have Z(Uk) = Vw for our fixed w. In
order to have this for all w, we need

mnk(ep2m)k → 0,

which happens indeed for k > α+1
2αε

. 2

Finally we state that the sorting step at the end of the algorithm will indeed
list the feature cliques first. In order to do so, we prove that a.a.s. all large
cliques are feature cliques.

Lemma 9 Consider a random intersection graph Gn,m,p with m := nα and
k
m

≤ p < min{1
5
m− 2

3 , n
8m2 } for some constant k. Then a.a.s. every clique of

size at least pn
2

is a feature clique:

∀S ⊆ V with |S| >
pn

2
and G[S] is complete : ∃w ∈ W such that S ⊆ Vw.

PROOF. Assume that the statement of the lemma is wrong. Thus there
exists a clique S of size pn

2
+ 1 which is no feature clique. Let s ∈ S be an

arbitrary vertex in S. Again, we first consider the case where pm > 3 ln n. From
Lemma 5 we know that a.a.s. no vertex in V has more than 2pm features, so
this applies to s, too. But since s has pn

2
neighbors, there has to exist a subset
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X ⊆ N(s) of size pn
4pm

= n
4m

which shares a common feature w (by the pigeon

hole principle). Furthermore there has to exist a vertex v ∈ S with v 6∈ Vw,
otherwise S would be inside a feature clique. We now bound the probability
of the existence of such an X and v with X ⊆ Γ(v) (remember that S is a
clique). Here we use that by Lemma 4 the size of Vw is a.a.s. at most 2pn and
by Lemma 5 |Wv| ≤ 2pm.

P

[

∃w ∈ W, v ∈ V, X ⊆ Vw : |X| =
n

4m
∧ X ⊆ Γ(v)

]

≤ mn

(

2pn

|X|

) 2pm
∑

i=1

(

m

i

)

pi
(

1 − (1 − p)i
)|X|

(1)

≤ mn

(

2pn
n

4m

) 2pm
∑

i=1

(

emp

i

)i
(

1 − (1 − p)i
)

n
4m

(1)(3)

≤ mn(8epm)
n

4m

2pm
∑

i=1

(

emp

i

)i

(pi)
n

4m

≤ mn(8epm)
n

4m

2pm
∑

i=1

(

emp

i

)
n

4m

(pi)
n

4m with i < 2pm <
n

4m

= mn(8epm)
n

4m 2pm(ep2m)
n

4m

= 2pm2n(8e2p3m2)
n

4m

≤ 2pm2n

(

72

125

)
n

4m

,

which tends to 0.

For the case where pm ≤ 3 lnn Lemma 5 only gives a bound of 21 lnn on the
size of the feature set. With the same considerations as above this leads to a
set X of size pn

42 lnn
and hence:

P

[

∃w ∈ W, v ∈ V, X ⊆ Vw : |X| =
pn

42 lnn
∧ X ⊆ Γ(v)

]

≤ mn

(

2pn
pn

42 lnn

)

21 lnn
∑

i=1

(

emp

i

)i
(

1 − (1 − p)i
)

pn
42 ln n

(1)(3)

≤ mn(84e ln n)
pn

42 lnn

21 lnn
∑

i=1

(mp)i(pi)
pn

42 ln n

≤ mn(84e ln n)
pn

42 ln n

21 lnn
∑

i=1

(p2mi)
pn

42 lnn

≤ mn(84e ln n)
pn

42 ln n 21 lnn(21p2m ln n)
pn

42 lnn

= 21mn lnn(1764ep2m ln2 n)
pn

42 ln n

≤ 21mn ln n(80em−1/3 ln2 n)
pn

42 lnn ,

which tends to 0. 2
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The proof of Theorem 2 now merely requires collecting the statements of the
lemmas.

Proof of Theorem 2 We make a case distinction over p. For ln2 n
n

≤ p =
O( 1

m
) we already know from Theorem 1 that the statement is true.

Now let k := 6/α and consider k
m

< p < 1
5
m− 2

3 . Set ε = 1/6 and apply Lemma
8: a.a.s. for each feature w ∈ W there exists a set Uk(w) with Z(Uk(w)) = Vw.
Hence all feature cliques will be listed in L after running the algorithm with
k chosen as above.

Since we know from Lemma 4 that there is a.a.s. no feature clique with less
than pn

2
vertices and from Lemma 9 that all cliques with more than pn

2
vertices

are feature cliques we can conclude that sorting the list of cliques by their size
and taking the elements until the graph is covered will a.a.s. succeed in recon-
structing a bipartite graph which generates our input graph as intersection
graph.

Again the running time of our algorithm is bounded by the time needed to
check the clique property for the joint neighborhood of all subsets of size k,
and thus O

((

n
k

)

n2
)

. 2

6 Simulation

We tested our algorithm with seven real–world networks from different ap-
plication areas. The “Mercator” graph is a graph of the internet at router
level taken from [12]. The next four graphs are the same as in [9]. “Internet”
describes part of the internet computer network, “Web” is the link graph of
a complex website, “Authors” denotes a coauthoring graph and “Proteins” is
an interaction graph of proteins. For details see [9] and [13]. Moreover “DIP”
stands for “Dictionary of Interfaces in Proteins” and is a similarity graph of
protein parts (vertices are protein interfaces that are adjacent if they are sim-
ilar) studied in [14]. “Drugs” is the result of a search for ”relatives” of 13
substances in a database of 2000 drugs where we put an edge for each pair of
drugs which are relatives to the same test substance. The importance of this
search is described in detail in [15].

To test the algorithm we started it on each graph with different values of k.
In two cases we knew in advance the number of features that generated our
graph (namely for “Authors” where the publications are the features, and for
“Drugs” where the test substances are the features) which should be an upper
bound of the number of cliques the algorithm needs to cover the graph.
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Mercator Internet Web Authors Proteins DIP Drugs

n 284805 75885 325729 16400 2113 5119 2000

|E| 449246 357317 1090108 29552 2203 14434 163969

min – – – 19885 – – 13

|M| 366135 246725 425058 11710 1937 3307 11

α 1.0200 1.1049 1.0210 0.9653 0.9886 0.9488 0.3713

coverage 96.1% 93.0% 90.5% 99.6% 100.0% 80.4% 99.9%

p · 106 5.500 22.428 6.953 137.00 714.11 577.39 88035.9

Table 1
Statistics on the performance of the algorithm on seven real–world networks

Table 1 gives statistics on the algorithm performance on each graph measured
in the number of cliques (|M|) that were needed to cover almost the whole
graph (the “coverage” fraction of the edges is given, too) and the values of p
and α resulting from this coverage.

The algorithm was run in all cases with k = 2, which produced a considerably
better coverage than k = 1 while larger k > 2 gave only small improvements.
The only exception was the “DIP” graph for which we obtained a coverage of
89.5% with 3232 features for k = 3.

As one can see, it is possible to cover a large portion of the graph with a
number of cliques that is considerably smaller than the number of edges and
also smaller than the number of cliques needed by the algorithm in [9] (which
covered the whole graph).

In order to give further evidence for the adequacy of our model we compared
the degree distribution for small degrees of the original real–world networks
and our theoretical prediction based on the degree distribution of random
intersection graphs calculated in [6]. The results are shown in Figure 2.

Especially for smaller graphs and smaller degrees the approximation is quite
good. Of course it is not quite as good as that in [9], but this is due to the
fact that there the whole degree distribution was used as an input, whereas
we only have the two parameters p and m to adjust the model.

For the “Drugs” database the theoretical predicted degrees are smaller than
the experimental ones. This is due to the so–called “bipartite clustering” (as
described in [9]) which in our case means that the features are not completely
independent but somewhat transitive, as there are “similar” features. This
results in a larger overlap between some feature cliques than is theoretically
predicted and thus leads to larger degrees of the vertices involved.
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Fig. 2. Degree distributions for real–world networks: experimental results and the-
oretical predictions

7 Conclusion and acknowledgment

Our analysis yields a rigorous proof for the asymptotic optimality of our sim-
ple greedy algorithm in the random intersection graph model Gn,m,p for a
certain range of m and p. Experimental results indicate that even outside
this range the algorithm performs well, for example when α > 1. It is clear
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that the reconstruction of feature cliques becomes impossible once they are
no longer maximal, which seems to happen when p is of order m−1/2. It would
be interesting to prove that this (or a different) algorithm succeeds up to this
point.

Finally we would like to thank the authors of [14,15,9] for generous access to
their databases.
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