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delay systems, extensively studied in many di�erent areas. The non-localtime evolution caused by the feedback creates - in combination with thenonlinearity of the laser - new dynamical regimes. Phenomena like low-and high-frequency oscillations, coherence collapse [1], excitability [2, 3] andother e�ects have recently been predicted and experimentally observed. Po-tential applications are high-speed data transmission [4], cryptography [5],etc. However, practical devices require proper control of the complexity and,associated with this, a systematic understanding of the various nonlinear dy-namical scenarios. The subject of this paper is a novel laser structure, wherethe feedback is ampli�ed by using an active medium in the external cavity.We will demonstrate that this active feedback laser (AFL) exhibits variousadvantages as it allows to tune the feedback level and, in this way, to adjustthe system close to a desired bifurcation point.Optical feedback is usually achieved by combining the laser with an ex-ternal mirror. The characteristic parameters are (i) the delay time � throughthe round trip in the external cavity, (ii) the intensity fraction K2 that re-enters the laser and (iii) the phase � of the feedback �eld. The solitary laseris supposed to run in a single-mode continuous-wave (cw) regime. The be-havior in presence of feedback crucially depends on the number of modesthat are of relevance in the compound device. This number grows whenthe feedback strength K increases. A second factor arises through the time-scales involved. Photon life-times in typical semiconductor lasers are �p �1-10 ps, while the period of the relaxation oscillations �R ranges between0.1 and 1 ns. In the long-cavity limit, addressed in most previous stud-ies, � is much longer than �R. The solitary mode is hence transformed ina quasi-continuous spectrum of external cavity modes, even for modest K.The consequence is an irregular dynamical response with stochastic powerdropouts. A recent study on shorter cavities (�/�R � 1) has yielded quali-tatively di�erent behavior [6, 7]. Here, the feedback phase begins to inuencethe �eld-inversion dynamics in the laser. Regular pulse packages have beenobserved that originate from a global trajectory along a limited number ofmodes in the phase-inversion space.Distributed feedback (DFB) structures, where laser and external cavityare monolithically integrated in a single device, enable one to access the limitof very short cavities. Here, the length of both laser and feedback section is inthe 100-�m range resulting in �/�R � 0.01. In this situation, distinct beatingphenomena, associated with mode{anti-mode pairs, are expected [8]. How-ever, their occurrence requires suÆciently strong feedback. In external-mirrorarrangements K is restricted to levels of about 0.1. In order to overcome thislimitation, we have developed a new device [9] schematically depicted in Fig.1. It combines a DFB laser with an active feedback cavity (AFC). For sep-2



arate control of feedback phase and amplitude, the AFC comprises a phasetuning as well as an ampli�er section, both independently biased. Currentinjection in the phase tuning section with larger band gap modi�es the re-fractive index by free-carrier transitions. The ampli�er section is similarlydesigned as the laser, omitting however the DFB grating and leaving the endfacet uncoated for mirror action. With the AFC, the feedback strength Kcan be tuned in a range between 10�2 and nearly 1.The paper is organized as follows. In the �rst part, we present a theoret-ical analysis of the AFL. After introduction of the traveling wave equationsand the relevant device parameters, the optical mode spectrum at di�erentfeedback levels is investigated. A subsequent full numerical solution revealsthe characteristic dynamical regimes of the AFL. Based on the fact that onlyone or two modes contribute essentially to the dynamics, a systematic bi-furcation analysis is �nally performed. In the second, experimental part, wefocus mainly on the regions of non-stationary device output. Our �ndingsare in very good qualitative and quantitative agreement with the theoreticalpredictions. We observe single-mode pulsations at low feedback as well asmode-beating (MB) pulsations in the high-feedback range. The highly non-linear behavior of the AFL is demonstrated by the occurrence of torus-typeoscillations and hysteresis for proper choice of the feedback parameters.Figure 1: Schematics of the AFLused in this study. The combina-tion of separate phase and ampli�ersections allows for an independentphase and amplitude control of thefeedback. AR: anti-reection coated,R: facet power reectivity.2 Theoretical AnalysisFor a number of reasons, the frequently used Lang-Kobayashi mean-�eldequations [10] do not provide an appropriate description of the AFL. First,feedback cavity and laser section have comparable length extensions. Second,representing the focus of our study, the feedback is not weak and, hence, cannot be considered as a small perturbation. Third, not only the carriers inthe laser but also those in the ampli�er interact with the optical �eld. Thisproduces non-linearities and memory e�ects in the feedback so that the delaycannot be characterized by a single time constant. All these factors give riseto a complex spatio-temporal structure across the compound device that3



have to be properly addressed. This is achieved by using traveling waveequations, which have been developed for studying multi-section DFB lasers(see, e.g. [4, 11, 12]). Though their degree of complexity is high, systematicinvestigations for a variety of di�erent devices over the last years enable todaya reliable handling, both regarding the relevant physical processes as well asthe relatively large parameter set.2.1 Traveling Wave EquationsThe slowly varying envelopes E�(t; z) of the forward and backward travelingwaves obey the equations � ivg @@t � i @@z + � � i�2!E� + �E� = 0; (1)where vg is the group velocity, � the absorption coeÆcient for parasitic losses,and � the coupling coeÆcient of the DFB gratings. Boundary conditionsare E+(t; 0) = 0 at the anti-reection coated DFB facet and E�(t; L) =pRE+(t; L) at the cleaved facet of the feedback cavity. The waveguide prop-agation parameter � is a constant in the passive phase tuning section. For alength lP , it is given by � = � �P2lP ; (2)where the phase shift �P represents one of the externally controllable bifur-cation parameters of the AFL dynamics.In the active sections, � is a function of t and z and contains the followingcontributions � = Æ + (i + �H)g2 � iD: (3)Here, Æ is the background wave number measured relative to the Bragg res-onance and �H denotes the linewidth enhancement factor. The peak gain gis a function of the carrier density Ng = g0(N �Ntr)1 + "S ; S = jE+j2 + jE�j2; (4)with g0 as di�erential gain, including the transverse con�nement factor, Ntr astransparency concentration, and " accounting for nonlinear gain saturation.The optical �eld is normalized so that S represents the local photon den-sity. Dispersive contributions are taken into consideration by the operator Dreading as DE� = �g2(E� � p�): (5)4



For the polarization p�, a single-oscillator model is used�i @@tp� = �i�(E� � p�) + �!p�; (6)where �! is the resonance frequency taken relative to the central frequency2�c=�0 , g � �g the o�-resonance gain, and � measures the gain bandwidth[12].The carrier densities N(t; z) in the DFB and ampli�er section are solu-tions of the rate equation@@tN = J � r(N)� vg X�=�=m [E�2�E�] : (7)The terms on the right-hand side are the injection rate J , the spontaneousrecombination r(N) = AN +BN2+CN3 as well as the stimulated emission.Note that neither carrier di�usion nor forward-backward wave interferences(e.g. � E+�E�) appear. The spatial period of the latter is shorter by morethan an order of magnitude compared to the di�usion length and thus nottransferred to the carrier density. On the other hand, after having droppedthese mixed terms, the stimulated recombination varies on a scale muchlonger than the di�usion length, with the consequence that di�usion canbe dropped, too. Longitudinal spatial hole burning (LSHB) associated withlong-scale modulations of the stimulated emission rate is essential for DFBlasers. However, LSHB is counteracted by current redistribution [13], whichwe describe by an inhomogeneous injection rateJ(t; z) = Ie�l � U 0Fe�lRs (N � hNi) (z 2 active section); (8)where all quantities (I: injection current, l: section length, �: cross sectionof active zone, U 0F : di�erential Fermi level separation, Rs: series resistivity,hNi: average carrier density over one section) have to be speci�ed for laserand ampli�er section.Apart from resonant contributions, current injection modi�es also thebackground parameters � and Æ. In this work, we restrict ourself to a �xedbias in the laser section so that these parameters are not subject to change.Previous investigations [14] have shown that the loss in the phase section(�P ) is in good approximation a linear function of the phase shift �P . Forthe present AFL device, a proper choice is �P = 20 cm�1 + 5 cm�1��P=2�. Inthe ampli�er section, the direct carrier-induced change of the gain coeÆcientis by far dominant so that we can ignore a modi�cation of the background5



explanation values unitDFB P A� index coupling coe�. 130 0 0 cm�1l section length 200 350 250 �m� cross-section of AZ 0.45 0.45 �m2g0 e�ective di�. gain 9 9 10�17 cm2�H Henry factor -5 -5� internal absorption 25 [20,40] 25 cm�1Æ static detuning 402.7 [0,160] cm�1I current injection 70 [0,100] mANtr transp. carrier density 1 1 1018 cm�3A recombination coe�. 0.3 0.3 109 s�1B recombination coe�. 1 1 10�10 cm3 s�1C recombination coe�. 1 1 10�28 cm6 s�1" nonl. gain comp. 3 3 10�18 cm3U 0F di�. Fermi level sep. 1 1 10�19V/cm3Rs series resistivity 5 5 
�g Lorentzian height 200 0 200 cm�1� Lorentzian half width 23.84 23.84 rad/ps�! Lorentzian central f. 2.384 2.384 rad/ps�0 central wavelength 1540 nmR power reectivity 0.3vg group velocity c/3.8Table 1: Parameter values used for the DFB, phase tuning (P), and ampli�er(A) sections.losses. However, current heating alters signi�cantly the background detuning.Following Ref. [14], we take this into account by assuming ÆA = �thIA=lAwith the thermal detuning coeÆcient �th = 40A�1. Table 1 collects thevalues of device parameters used throughout this paper. The use of di�erentvalues will be noted in the text.A reasonable de�nition of the feedback strength in the AFL isK = pR exp(��PLP + (gA � �A)LA); (9)where gA is taken at the average density hNAi. The upper limit for K is setby the onset of gain saturation.2.2 Optical ModesMode analysis is a key for understanding the e�ects of feedback on the dy-namics of a laser. The optical modes of the hot compound cavity are de�nedas the set of solutions of an eigenvalue equation following from Eqs. (1) and(6) when substituting the time derivatives �i@=@t by the complex algebraic6



factor 
. For comparing di�erent feedback levels, we tune hNAi and by thisthe gain in the ampli�er section like an external parameter, while the den-sity in the DFB section is kept �xed at the solitary laser level. Real andimaginary parts of the eigenvalues 
 de�ne wavelength and damping of themodes, respectively. Full solution of the steady-state carrier density equationis possible but less instructive.
Figure 2: Spectrum of optical modesof an AFL. a) overview. b) envi-ronment of the lasing mode. Bullets:solitary laser (K=0). Full symbols:K = 0:02; 0:04; 0:14; and 0:88, calcu-lated under the following " = 0, noLSHB, feedback phase �xed. Lines:locations of modes for all possiblefeedback phases �. Arrows: directionof increasing �. After one phase pe-riod, each mode replaces its formerlynext neighbor on the same line.Figure 2a illustrates the change of the mode spectrum under feedbackand the role of ampli�cation. Most dramatic in comparison with the soli-tary DFB laser is the appearance of a comb of nearly equidistant compoundcavity modes. The 0.4 nm average spacing of these new modes is consistentwith the 800 �m total cavity length and almost independent of the ampli�ergain. Apparently, a Fabry-Perot(FP)-like cavity is formed by the reectingampli�er facet on one side and the DFB grating on the other side. In con-trast to their spacing, the damping of the FP-type modes depends stronglyon the feedback strength. For K = 0:02, corresponding to IA � 0, the decaytimes are shorter than 5 ps and, therefore, these modes are not essential forthe device dynamics. However, the mode damping is strongly reduced withincreasing ampli�cation. Negative values, as occurring for the largest feed-back in Fig. 2a, are an artefact caused by the constraint of �xed N in theDFB section. If this constraint is relaxed, N will adjust until the dampingof the mode with lowest loss reaches the minimum value of zero.Besides creating additional FP-like modes, the feedback also inuences7



the lasing mode as shown in Fig. 2b. For low feedback, this inuence isweak. When tuning the feedback phase by one period, the lasing modemoves around an ellipse in the damping { wavelength plane. In parallel, theFP-type modes of much higher damping move along a separate non-closedline, replacing the formerly next neighbor after one period. Single-modedynamics is expected in this regime. With increasing feedback, the ellipseblows up until it touches the FP-like branch and merges with it. Beyondthis ampli�cation, all modes are located on a single open line, exhibiting adeep valley close to the wavelength of the solitary laser. When increasingthe feedback phase, the modes move from right to left through this valleyand take over lasing as long as they are the one of lowest damping. Thisrepeats with a period of 2�, always with a new mode. As the new modemoves down, its predecessor climbs up on the opposite side of the valley. Ina certain phase range, both modes have comparable damping and contributeto the laser dynamics. Stronger ampli�cation makes the valley less distinctso that even more than two modes come into play. An important featureof active feedback is therefore the ability to adjust the number of modesinvolved in the laser dynamics.2.3 Full numerical solutionAfter having gained qualitative insight in the mode spectrum, a full numeri-cal solution of the traveling wave equations is performed for the AFL deviceexperimentally studied below. External bifurcation parameters are the am-pli�er current IA and the phase shift �P (Eq. 2) adjusted via the currentIP on the passive section. When changing these parameters, the laser out-put undergoes various transitions, from steady-state to self-pulsations, orbetween self-pulsations of di�erent frequencies. The numerical results aresummarized in Fig. 3 by a contour plot in the (�P ,IA)-plane, where the greyscale represents the frequency of the self-pulsations. All calculations wereperformed for increasing phase direction, i.e. only bifurcations occurring inthis direction are accounted for. The behavior is not fully periodic whentuning �P over several 2�-cycles. Islands of given pulsation frequency f shiftslightly upwards, as the losses in the phase section linearly increase with �P(c.f. Section A). The tilt of the islands manifests the ampli�er contributionto the feedback phase. It is negative for low IA, because the growing inver-sion reduces the refractive index. At about 50 mA, the inversion saturatesand the remaining thermal e�ects cause a small opposite tilt.At least four di�erent dynamical regimes can be recognized. At low cur-rents (IA up to � 10 mA), small islands of low-frequency self-pulsations ap-pear (regime I). Above a small gap, regime II starts, characterized by narrow8
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Figure 3: Calculated areas of self-pulsations in the plane spanned bythe two parameters �P and IA. TheDFB injection level was �xed toIDFB = 70 mA, the damping in thephase section is increased by 5/cmper 2�. White areas correspond tocw output. Di�erent levels of greyindicate non-stationary output withfrequencies f (main peak of powerspectrum) in the following ranges:f < 15 GHz (light), 15 GHz <f < 30 GHz (dark), and f > 30GHz (black). Dotted lines repre-sent curves of constant K (averagedover one pulsation period in the self-pulsation areas).stripes of self-pulsations with distinctly higher frequencies. For even largerIA, the frequencies increase and the stripes widen. In regime III, establishedbetween about 30 and 80 mA, self-pulsations with frequencies above 30 GHz�ll nearly the whole phase period. The di�erent periods are separated by nar-row stripes with lower frequencies. At highest ampli�cation levels (regimeIV), low-frequency pulsations dominate again.The four regimes are closely related to the evolution of the optical modespectrum sketched in Fig. 2. We have analyzed this correlation by decom-posing the numerically calculated �elds E�(z; t) into instantaneous modes ofthe hot compound cavity. In regime I, only one mode essentially contributesto the pulsating states. A jump to the next FP-type mode appears in ev-ery period at the right-hand edge of the pulsation islands. The old modeand the new mode coexist in the beating-type pulsations of regime II and inthe high-frequency pulsations of regime III. Each island belongs to a de�nitepair of such master modes. Di�erent islands correspond to di�erent pairs.More than two modes participate in the irregular low-frequency pulsationsof regime IV as well as in the narrow stripes of regime III. Accordingly, thepulsations here are irregular in most points of operation.The regimes also di�er with respect to the feedback strength. K is mainlydetermined by the ampli�er current only in the single-mode regions of cwstates or type-I pulsations, where the lines of constant K in Fig. 3 are nearlyhorizontal. The lower and upper boundaries of the single-mode pulsationsare roughly given by K = 0:04 and K = 0:1, respectively. In contrast, the9



lines of constant K are almost vertical in the MB pulsation regimes II andIII, i.e., K is determined by �P and no longer controlled by the ampli�ercurrent. This behavior is a natural consequence of the coexistence of twomodes. Keeping both modes simultaneously at threshold requires particularvalues for the carrier densities in both DFB and ampli�er section. Thus,both carrier densities are clamped in the two-mode regime. As a result, thecontribution of the ampli�er section to the feedback strength K becomesindependent of the injection level [15]. Of course, the carrier densities arenot constant but oscillate also with the beating frequency. However, themagnitude of the uctuations around the threshold values is small and itmakes sense to consider the average of K over one pulsation period. Thesituation changes in regime IV with irregular multimode pulsations. Theslow components of these pulsations are accompanied with large variations ofthe carrier densities and, in turn, of K, making an average feedback strengthmeaningless here.The numerical solution demonstrates that the AFL is capable of severaldynamical regimes. However, a systematic understanding requires knowledgeof the bifurcation diagram that underlies these results.2.4 Bifurcation AnalysisA very eÆcient method for constructing comprehensive bifurcation diagramsis path-following [16]. Well developed path-following tools are available forordinary di�erential equations [17] and, recently, also for delayed di�erentialequations [18], but not for the traveling wave partial di�erential equations.Our subsequent approach is based on expanding the optical �elds in termsof hot cavity modes [19, 20]. Only the two master modes dominating thedynamics in a given island of self-pulsations are taken into account, as sug-gested by the numerical results of the previous section. In addition, weignore here LSHB (N = hNi), gain dispersion (�g = 0) as well as non-lineargain saturation (� = 0) in the active sections. While yielding a less accu-rate description of the total mode spectrum, these simpli�cations reproducethe relations between the two closely spaced master modes suÆciently welland, thus, have only marginal inuence on the dynamics of this subsystem[21, 20]. As a result, the traveling wave equations (1{7) transform into a �ve-dimensional system of ordinary di�erential equations for two carrier densitiesand two complex mode amplitudes minus one irrelevant phase of the totaloptical �eld. These equations are now amenable for standard path-followingmethods [17].Figure 4 depicts in the (�P ,IA) parameter plane all bifurcations obtainedfor cw states and the most physically relevant bifurcations of self-pulsations.10
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Frequency (GHz)
10 20

time (ns)

in
te

n
si
ty

(
a
rb

.
u
n
it
s)

10

(a)

(b)

(c)

NDFB (arb. units)

Figure 5: Dynamics in the pointslabeled (a) to (c) of the bifurca-tion diagram in Fig. 4. (a) typi-cal low-frequency self-pulsation, (b)MB self-pulsation, (c) beyond thetorus-bifurcation. Left column: out-put power versus time, middle col-umn: projection of the phase spacetrajectory onto the plane of outputpower versus DFB carrier density,right column: power spectrum.are three cw states - two nodes and one saddle - between the two branchesand only one cw state outside (cf. schematic inset of Fig. 4). The left branchof the curve and the right branch up to HSN involve at least one stable cwstate. Hence, these branches represent boundaries of hysteresis regions. Thenumerical simulations of paragraph 2.3 were performed for increasing �p, sothat only the right branch of the saddle-node bifurcation was recognized asa mode jump.The solid line represents a Hopf bifurcation of a cw state. A self-pulsationof small amplitude is born there. This self-pulsation is stable for the super-critical Hopf bifurcation above the upper Generalized Hopf (GH) point andbelow HSN, and unstable for the subcritical Hopf bifurcation between the twoGH points. In the experiment, a supercritical Hopf bifurcation will not showup as a sharp transition but as a slow rise of a peak at the Hopf frequencyin the power spectrum. Opposed to this, a subcritical Hopf bifurcation isdisplayed by a discontinuity and could be the boundary of a hysteresis loop.The physical mechanism destabilizing the laser mode at the Hopf bound-ary of the lower pulsation island is due to DQS, mediated by the gain-indexcoupling (�H 6= 0). Any uctuation of the DFB inversion is accompanied bya wavelength change which in turn changes the quality factor of the feedbackcavity. DQS has �rst been discussed and exploited in devices with a highlydispersive Bragg reector in the feedback cavity [22, 23]. It has also beenpredicted mathematically for lasers with a simple passive feedback [24]. Ourpresent results con�rm the conclusion that the intrinsic dispersion of an ex-tended feedback cavity can be suÆcient to cause DQS self-pulsations withoutan additional dispersive element.The Hopf curve and the saddle-node curve touch each other in the pointHSN. Above HSN, the cw state undergoing the bifurcations (both Hopf orsaddle-node) is unstable. Consequently, the bifurcation is not experimentally12



observable. The corresponding curves are shown in grey to indicate that theyare of less interest.Another boundary of the DQS self-pulsation area is due to homoclinicbifurcations represented by the triple-dot-dashed curve in Fig. 4. Here, theself-pulsation touches a cw saddle state and disappears. When moving acrossthis curve, the frequency of the self-pulsation becomes smaller until the laserswitches suddenly to a stable cw state. This switching occurs without hys-teresis if the homoclinic connection in the phase space is actually towards asaddle-node, i.e., if the curve of homoclinic bifurcations coincides with thecurve of saddle-nodes between points A and B. In this case, the stable cwstate is excitable. Beyond B, the curve of homoclinics approaches the pointHSN in a wiggling manner.Apart from Hopf and homoclinic bifurcations, saddle-nodes of limit cycles(single-dot-dashed line) and period-doubling bifurcations (dashed line) formthe boundary of the DQS island. Period doubling is only the �rst step in arapidly accumulating sequence leading to chaos within the region enclosed bythe period doublings. The saddle-node limit cycle shrinks to zero at the upperGH point changing the Hopf bifurcation from subcritical to supercritical forincreasing �P .There is not much hysteresis with respect to parameter variation evenat the subcritical Hopf bifurcation boundary of the DQS island between thetwo GH points. The reason is the proximity of the Hopf curve to the curvesof period doubling and saddle-nodes of limit cycles.Our analysis also yields bifurcations that are not physically relevant. Thephase-space trajectories related to some bifurcations leave the range of va-lidity of the mode approximation. Other bifurcations involve unstable cwstates or self-pulsations and, hence, are not experimentally observable. Weshow those parts in Fig. 4 in grey.The MB pulsations are born on the Hopf bifurcation curve at higherampli�er current. A second mode reaches threshold here, whereas the relax-ation oscillations remain strongly damped. Within the MB island, the poweris distributed between the two modes such that they both keep at threshold.Further boundaries of this island are saddle-nodes of limit cycles betweenthe GH and PSN as well as period doubling bifurcations between PSN and1:2, and torus bifurcations represented by the double-dot-dashed line emerg-ing from 1:2. Along most parts, the torus bifurcation is supercritical, i.e.,a stable torus is born above this curve. This has been validated by severalnumerical tests. An example is drawn in the third row of Fig. 5. Both thefast MB oscillator and the slow relaxation oscillation are undamped here,giving rise to a modulated pulse train and a complex phase space picture. Astable torus bifurcation does not manifest itself by a sharp transition in the13



experiments, but as a smooth rise of secondary peaks in the power spectrumbelow and above the main frequency peak. Close to the strong resonances(1:2, 1:3, 1:4), the secondary peaks are of low rational order and should beparticularly pronounced.For lasers with passive feedback [25, 24], the island of MB pulsationsforms only a narrow stripe in the parameter space, where the two modeshave comparable threshold. Apparently, the region of stable MB pulsationswidens substantially with active feedback. Since the saddle-node bifurcationcurve crosses this region, hysteretic behavior is expected in a large parameterrange.Concluding so far, two basic types of self-sustained intensity pulsationsappear in active feedback lasers: slow relaxation oscillations undamped byDQS and fast MB pulsations due to the interplay of two compound cavitymodes, reaching simultaneously the laser threshold.3 Experiment3.1 DeviceThe AFL, sketched in Fig. 1, is realized as an index-coupled multi-sectionlaser. It is designed for the 1550 nm window in �ber optical communi-cation. The InGaAsP-InP bulk hetero-structure is grown by low-pressuremetal-organic vapor phase epitaxy. A 1550 nm InGaAsP-layer as active zoneis embedded in an asymmetric 1180 nm/1300 nm InGaAsP optical waveguide.Polarisation independence of the optical gain is achieved by a suitable ad-justment of the thickness of the layers and the strain in the active zone. TheDFB grating is fabricated by e-beam lithography and reactive ion-etching [4].By adjusting properly the etching depth, a coupling coeÆcient of 130 cm�1is achieved. The passive section is implemented as a 1300 nm structure byremoving the 1550 nm active layer. Figure 6: ASE measured at the am-pli�er facet with the DFB sectionpumped at transparency. The cav-ity between end-facet and DFB grat-ing allows for a veri�cation of thephase shift in the passive section.The excess loss by free carrier injec-tion causes the damping of the ASEmodulation with increasing current.14



Figure 6 demonstrates how the phase shift can be tuned by changing thebias on the passive section. The dark lines are the resonances of the ampli-�ed spontaneous emission (ASE) detected at the ampli�er facet, while �xingthe DFB current to transparency level (8.6 mA) and pumping the ampli�ersection with 45 mA. This data is used below to translate the applied phasecurrent Ip into the actual phase shift �P . The observed ASE resonances cor-respond to the damped FP-type modes found in the mode analysis of section2.2. The 0.42 nm average spacing compares very well with the calculations.At the stop-band edges, the spacing is reduced due to stronger dispersion ofthe grating reectivity. Apart from the refractive index, also the free-carrierabsorption is changed by current injection into the passive section. An eval-uation of the ASE modulation depth gives an excess loss of about 4 cm�1per phase period in the current range investigated.3.2 Regions of non-stationary emissionOptical and power spectra of the AFL output were recorded at the ampli-�er facet. An optical spectrum analyzer Advantest Q8384A and an electri-cal spectrum analyzer HP8565E were used. A fast u2t photo-diode, post-ampli�ed by a HP83050A electrical ampli�er (50 GHz bandwidth) served asopto-electronic converter. To reduce the parameter space, the DFB currentwas �xed to 70 mA (about two times the threshold current of the solitaryDFB) at a device temperature of 20Æ C. Phase current and ampli�er currentwere varied from 0 to 50 mA and from 0 to 100 mA, respectively.
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non-stationary output, the power spectra exhibit peaks at non-zero frequen-cies with intensities exceeding the noise level by more than 10 dB. The verygood agreement between theory and experiment is evident. Deviations aremainly caused by uncertainties concerning the translation of experimentalcurrents into more fundamental parameters such as feedback strength. Theshift of the whole plot to higher ampli�er currents is mainly attributed tohigher losses in the feedback cavity than used in the numerical solution.In what follows, we focus more closely on the role of the active feedbackby keeping the phase current �xed (8 mA). The vertical cross-sections markedin Fig. 7 proceed through regions of low- and high-frequency self-pulsationsand contain spectral features that are representative for the whole parameterplane.3.3 Undamped DQS relaxation oscillationsFigure 8 depicts spectra typical for the regions of low-frequency self-pulsations.The power spectrum with a main frequency of 9 GHz and a distinct secondharmonic at 18 GHz compares well with the theoretical spectrum in Fig. 5a.The optical spectrum shows a splitting of the emission line into several sub-components with a spacing corresponding to the 9 GHz pulsation frequency.These features are characteristic for DQS-type self-pulsations derived theo-retically above.
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According to the calculated bifurcation diagram (Fig. 4), the main bound-16



aries of the DQS-pulsation regions are either Hopf or homoclinic bifurcations.In order to verify this prediction, the ampli�er current was tuned across theisland region. The inset in Fig. 8 shows the evolution of height and positionof the primary peak of the power spectrum. The steep but continuous in-crease of the peak height at about IA=9 mA is consistent with a supercriticalHopf bifurcation of the relaxation oscillations, which are driven by sponta-neous emission noise. When approaching this bifurcation, the damping of theoscillations goes to zero, while the peak increases exponentially. During thebifurcation, the frequency changes continuously, too. After a slight increase,a distinct slowing-down is observed, which is accompanied by a further in-crease of the peak height. Both observations indicate an expansion of theperiodic orbit of the pulsation in the plane of carrier vs. photon density. Incontrast to the smooth onset the pulsations abruptly disappear at the upperisland boundary by a sudden jump to a longer wavelength mode. Such be-havior is consistent with a homoclinic bifurcation above A in Fig. 4. Due tothe exponentially small region of the homoclinic, only a moderate slow-downof the pulsation frequency towards this bifurcation occurs. Fluctuations, un-avoidable in the experiment, prevent a suÆciently smooth approach to thehomoclinic, disabling the observation of f ! 0 .3.4 Mode beating pulsationsFigure 9 shows the evolution of spectra at higher ampli�er currents. Be-low IA =47 mA, the power spectrum consists of a single line at about 30 GHzin good agreement with the theoretical prediction of stable MB pulsations.Possible higher harmonics are beyond the bandwidth of the spectrum ana-lyzer. The frequency remains nearly unchanged in the range of pure MB.This is consistent with the independence of the feedback strength K on theampli�er current within the respective MB islands (see Fig. 3).A typical optical spectrum of a MB pulsation is drawn for IA=40 mAin Fig. 9. Two central peaks of comparable height are accompanied by oneor more pairs of satellites. The central peaks represent the coexisting pairof optical modes. Their separation of 0.25 nm corresponds to the beatingfrequency of 30 GHz and it is considerably reduced relative to the 0.4 nmFP-separation. This reduction is due to the mode pulling e�ect at the DFBresonances already discussed above. The satellites, separated from the mainpeaks by the same spacing, are due to non-degenerate four-wave mixing ofthe two coexisting modes. The presence of such intense mixing productssigni�es a good spatial overlap of the two modes within the device and highphase stability of the MB pulsations.In accordance with a supercritical Hopf bifurcation the onset of the MB17



Figure 9: Characteristicspectra at high ampli�ercurrents (IDFB=70 mA,IP=8 mA). Panel a: powerspectrum for IA from 37to 51 mA. The logarithmicgrey scale codes the spectralintensity as denoted on theright-hand side. Panel b:log-scale optical spectra atselected points of panel a.Pure MB pulsation appearsbelow IA=47 mA, whereasthe more complex spectralfeatures above this ampli-�er current are due to theinteraction between the re-laxation oscillations and MBpulsations.pulsations is a continuous transition, smoothened by the presence of noise.The optical spectrum at IA=36 mA shows already the second mode beingclose to threshold. It is only weakly damped here and can collect a mea-surable amount of spontaneous emission. With increasing ampli�er current,this peak rises quickly and approaches the height of the �rst one at aboutIA=38 mA.3.5 Torus of mode-beating and relaxation oscillationsThe scenario at the upper boundary of the MB pulsation region is morecomplex. A new low-frequency component emerges at about IA=47 mAin the power spectrum (Fig. 9a) and coexists with the MB component. Ithas noticeable higher harmonics and causes mirror satellites of the MB lineindicating a non-linear interaction between both components. These phe-nomena are characteristic attributes of the torus bifurcation predicted bytheory. Again, the transition is continuous indicating supercritical charac-ter. Weak shoulders of the main features, already present in the optical18



spectra at IA=44 mA, are precursors of this bifurcation. The shoulders be-come increasingly prominent and dissolve in individual sub-lines in the torusregion, starting at about IA=48 mA. The frequency of the emerging newcomponent in the power spectrum is slightly below 10 GHz. This points atrelaxation oscillation as physical origin of the torus. However, contrary to thestandard case, where a cw state is approached, this relaxation leads towardsa periodic orbit formed by the two coexisting dominant modes. Below thetorus bifurcation, such oscillations are excited by internal or external noise,perturbing the power distribution between the two modes, at which they areboth at threshold. Above the torus bifurcation, these distribution oscillationsbecome undamped and create a cyclic variation of the modulation depth asdepicted in the lower left panel of Fig. 5.The details of the power spectra in the torus region between IA=47 and50 mA uncover a sequence of further bifurcations, which were not obtainedby the mathematical analysis of section 2.4. Just above IA=49 mA, thetwo frequency components synchronize to each other at a 1:6 ratio within a300 �A current range. For other phase currents, we could observe similarsynchronized states with di�erent integer frequency ratios. However, a de-tailed description and analysis of these phenomena is beyond the scope ofthis paper. Above the locking region, an additional broad background bandappears. This band is related to a chaotic component in the AFL dynamics,probably due to participation of a third mode. It dominates the spectrumuntil the laser jumps suddenly to a beating state of the next pair of modeswith higher pulsation frequency than in the previous island. This observa-tion is also consistent with the predictions of Fig. 3. Note that the feedbackstrength switches to a higher level when moving vertically from one islandto the next one.3.6 HysteresisSome of the bifurcations elaborated in section 2.4 are associated with hys-teresis behavior. Figure 10 compares optical spectra in the DQS and MBregime for increasing and decreasing ampli�er current, respectively. Indeed,both data sets clearly exhibit hysteresis.In the DQS case, the onset of pulsation in backward direction is shiftedwith respect to increasing current by about 1 mA. The presence of hysteresisprovides strong evidence that the AFL operates above point A in Fig. 4,so that the di�erent locations of the saddle-node bifurcation and homoclinicproduce this behavior. Note that the switching in forward and backwarddirection occurs at the same feedback strength.The MB regime di�ers from these observations mainly in the width of the19
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