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Abstract

We investigate the numerical solution of large-scale Lyapunov equa-
tions with the sign function method. Replacing the usual matrix inver-
sion, addition, and multiplication by formatted arithmetic for hierarchical
matrices, we obtain an implementation that has linear-polylogarithmic
complexity and memory requirements. The method is well suited for Lya-
punov operators arising from FEM and BEM approximations to elliptic
differential operators. With the sign function method it is possible to
obtain a low-rank approximation to a full-rank factor of the solution di-
rectly. The task of computing such a factored solution arises, e.g., in
model reduction based on balanced truncation. The basis of our method
is a partitioned Newton iteration for computing the sign function of a
suitable matrix, where one part of the iteration uses formatted arithmetic
while the other part directly yields approximations to the full-rank factor
of the solution. We discuss some variations of our method and its appli-
cation to generalized Lyapunov equations. Numerical experiments show
that the method can be applied to problems of order up to O(105) on
desktop computers.

1 Introduction

This paper is concerned with the numerical solution of Lyapunov equations of
the form

AX + XAT + BBT = 0 (1)

with the coefficient matrices A ∈ Rn×n, B ∈ Rn×m, and the solution matrix
X ∈ Rn×n.

Many of the applications of Lyapunov equations arise from analysis and
control design problems for linear time-invariant systems of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (2)
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where u(t) ∈ Rm is the vector of input variables, and x(t) ∈ Rn denotes the
vector of state variables, see, e.g., [1, 15, 16, 39, 46]. Usually, the definition of a
linear dynamical system includes an additional output equation. This equation
leads to a dual Lyapunov equation, which can be addressed by analog Lyapunov
solvers and is therefore neglected for the purpose of this paper.

Often, in practice, e.g., in the control of partial differential equations (PDEs),
the system matrix A comes from the discretization of some partial differential
operator. In this case, n, the dimension of the state space, is typically large
(often n ≥ O(104)) and the system matrices are sparse. On the other hand,
boundary element discretizations of integral equations lead to large-scale dense
systems that often have a data-sparse representation [25]. Usually, the number
of inputs in practical applications is small compared to the number of states,
so that it is reasonable to assume m � n for the rest of this paper. Moreover,
when A represents the approximation of an elliptic differential operator, it is
often a (Hurwitz) stable matrix, that is, all its eigenvalues, denoted by Λ (A),
are contained in the open left half plane C−. For instance, when (2) comes from
the spatial semi-discretization of the instationary linear heat equation, A is

– (a scalar multiple of) the discrete Laplacian if finite differences are used;

– (formally) equal to −M−1K, where M and K are mass and stiffness ma-
trices, if a finite element discretization is used.

Apart from situations leading to singularity of A, in both cases, A is (similar
to) a negative definite matrix and hence has real negative eigenvalues. In the
following, we will therefore always assume stable A matrices.

The stability assumption on A together with the positive semi-definiteness
of the “right-hand side term” BBT implies that the Lyapunov equation (1) has
a unique, symmetric nonnegative definite solution X [35]. Hence, it can be
factored as X = Y Y T . Possibilities for Y are

– the Cholesky factor of X , i.e., Y ∈ Rn×n is a square lower triangular
matrix,

– a full-rank factor of X , i.e., Y ∈ R
n×rank(X) is a rectangular matrix.

The latter option is of particular interest for large-scale computations if X has
low rank, nX := rank (X) � n, as (1) represents a linear system of equations
with n(n + 1)/2 unknowns (exploiting symmetry). In such a situation, the
memory requirements for storing X can be considerably reduced by working
with Y instead of X . Interpreting “rank (X)” as numerical rank [18] (or ε-
rank), it is often the case that this numerical rank is very low even though
theoretically, X may be nonsingular. In that case, using a spectral (or singular
value) decomposition of X , it is easy to see that Y can be approximated by a
“tall” matrix Ŷ ∈ Rn×nY , nY � n, so that

‖X − Ŷ Ŷ T ‖2
‖X‖2

≤ ε

with the tolerance threshold ε determining the numerical rank. In many large-
scale applications it can be observed that the eigenvalues of X decay rapidly, so
that a low-rank approximation in the form described above exists; see [2, 20, 43].
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This observation has led to various approaches for solving Lyapunov equations
by methods based on an approximate low-rank factorization of the solution
[8, 37, 43] and is also the basis of several multigrid methods for solving (1)
[22, 40, 45].

In [10, 36, 42], low-rank (approximate) factors are used for model reduction
based on balanced truncation. Model reduction aims at approximating a large-
scale system of the form (2) by a system of much smaller dimension r � n.
Balanced truncation [38] is one of the most commonly used model reduction
methods for linear time-invariant systems [1, 39], and requires the solution of
the two dual Lyapunov equations corresponding to the linear system (1) as a
first computational step. The common characteristic of the methods developed
in [10, 36, 42] is that using the low-rank solution factors, all further compu-
tational steps of balanced truncation only require only O(n2

Y n) floating-point
operations (flops) rather than the O(n3) flops needed in standard implemen-
tations as contained, e.g., in SLICOT [7, 49]. Thus, for an efficient balanced
truncation implementation for large-scale systems, it is crucial to have Lyapunov
solvers that are able to compute Ŷ directly without ever forming X .

The standard direct method for solving Lyapunov equations is the Bartels-
Stewart method [5] and the direct computation of Cholesky factors of the so-
lution via this approach is suggested by Hammarling in [28]. But since this
method requires O(n3) flops and O(n2) memory, it is only practicable for prob-
lems of relatively small size. Apart from direct methods, there are several
iterative methods, for example the Smith method [47], the alternating direc-
tion implicit iteration (ADI) method [50], and the Smith(l) method [42]. These
methods can be modified to compute Ŷ , see [37, 24, 43] and are therefore vi-
able approaches to be used in large-scale applications, see also [3]. There are
also several approaches to solve large-scale Lyapunov equations using Krylov
subspace methods [31, 32, 33, 34], but in general they are inferior to ADI and
Smith-type methods, see [41].

In this paper, we will propose a new method based on the sign function
method, published first in 1971 by Roberts [44], incorporating the idea of com-
puting low-rank factors of the solution as suggested in [8]. Despite the low
memory requirements for Ŷ , this method still needs O(n2) storage and is there-
fore of limited use for really large-scale problems, though it parallelizes well [6].
In [23], Grasedyck, Hackbusch and Khoromskij combine the hierarchical matrix
(H-matrix) format with the sign function method for solving algebraic Riccati
equations (AREs) to avoid this limitation. The H-matrix format is described,
e.g., in [19, 21, 26, 27]; it allows data-sparse approximation for a wide, prac-
tically relevant class of matrices, which, e.g., arise from boundary element or
finite element methods. The matrices during the sign function iteration and
the solution itself are approximated in H-matrix format. Using an appropriate,
formatted arithmetic leads to a variant of Roberts’ method that has linear-
polylogarithmic complexity. As the Lyapunov equation is a special (simplified)
version of an ARE, in principal this method could be applied directly to (1),
but it does not provide the factor Ŷ needed, e.g., in the balanced truncation
implementations mentioned above.

To obtain an (approximate) full-rank factor of X we consider the sign func-
tion iteration in partitioned form, as proposed in [8]. During the sign function
iteration we have to take care of the following fact. If we consider matrices
resulting from finite element discretizations of elliptic partial differential oper-
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ators, we are dealing with matrices in sparse form. Applying the sign function
iteration to these matrices, we have to compute the inverse of A, which de-
stroys the assumed sparsity of A. To avoid this, the matrix A and its inverse
are approximated in the H-matrix format and the corresponding approximate
arithmetic is used for driving the iteration.

This paper is organized as follows: in Section 2, we describe the sign func-
tion iteration for the solution of Lyapunov equations. Some basic facts of the
H-matrix format and the corresponding formatted arithmetic are given in Sec-
tion 3. Two variants of a H-sign function method for Lyapunov equations and
numerical experiments demonstrating the performance of the new algorithm are
described in 4. In Section 5, we extend the derived results to the generalized Lya-
punov equation, which is of interest in control theory, when the control problem
is governed, e.g., by second-order (instead of first-order) ordinary differential
equations [8].

2 Lyapunov equation and sign function iteration

One of the numerical methods to address the Lyapunov equation (1) is based
on the sign function method [44].

To describe this method, consider a matrix Z ∈ Rn×n with no eigenvalues
on the imaginary axis. By the real version of the Jordan canonical form there
exists a nonsingular matrix S ∈ Rn×n s.t.

Z = S−1

[

J+
l 0
0 J−

n−l

]

S,

where Λ (J+
l ) ⊂ C+, Λ (J−

n−l) ⊂ C−. Then the matrix sign function for Z is
defined by

sign(Z) := S−1

[

Il 0
0 −In−l

]

S.

To compute the matrix sign function, we use the Newton iteration applied to
(sign(Z))2 = In:

Z0 ← Z, Zk+1 ←
1

2
(Zk + Z−1

k ).

This so called sign function iteration converges globally quadratically to the sign
of Z and is well-behaved in finite-precision arithmetic [13].

In order to solve the Lyapunov equation (1), we apply this iteration to the
particular matrix:

Z =

[

A BBT

0 −AT

]

(3)

and obtain the following iteration scheme:

Z0 ← Z,

Zk+1 ← 1

2
(Zk + Z−1

k )

=

[

1
2 (Ak + A−1

k ) 1
2 (BkBT

k + A−1
k BkBT

k A−T
k )

0 − 1
2 (Ak + A−1

k )T

]

.
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The solution X of (1) can then be derived by

sign(Z) = lim
k→∞

Zk =

[

−In 2X
0 In

]

as described in [44].
To accelerate the initial convergence, some of the iterates can be scaled in

the following way:

Zk+1 ←
1

2
(ckZk +

1

ck

Z−1
k ),

where ck > 0 are suitable chosen parameters. Several choices for such parame-
ters can be found in, e.g., [4, 12].

In certain applications, such as model reduction by balanced truncation, we
are more interested in computing a full-rank factor Y , s.t. X = Y Y T . To obtain
the factorized solution, we partition the iteration into two parts:

A0 ← A, B0 ← B,

Ak+1 ← 1

2
(Ak + A−1

k ),

Bk+1 ← 1√
2

[

Bk A−1
k Bk

]

, k = 1, 2, . . . .

see [8] for details. The matrix Y = 1√
2

limk→∞ Bk is a factor of the solution

X = Y Y T =
1

2
lim

k→∞
BkBT

k .

Since the size of the matrix Bk+1 in (4) is doubled in each iteration step, it
is proposed in [8] to apply a rank-revealing QR factorization (RRQR) [18] to
BT

k+1 in order to limit the exponentially growing number of columns:

BT
k+1 = Qk+1Rk+1Pk+1 = Qk+1

[

R11
k+1 R12

k+1

0 R22
k+1

]

Pk+1. (4)

Here Pk+1 is a permutation matrix, Qk+1 is orthogonal, R11
k+1 is a Rrk+1×rk+1

matrix (rk+1 denotes the numerical rank of BT
k+1), while R22

k+1 is of small norm.
Only the entries in the upper triangular part of Rk+1 have to be stored for
obtaining an approximate solution Ŷ = 1√

2
limk→∞ B̂k, with

B̂T
k+1 :=

[

R11
k+1 R12

k+1

]

Pk+1.

3 H-matrix arithmetic

In [23], the sign function method for solving the more general algebraic Riccati
equation was combined with a data-sparse matrix representation and a cor-
responding approximate arithmetic. As our approach also makes use of this
H-matrix format, we will introduce some of its basic facts in the following.

The H-matrix format is a data-sparse representation for a special class of
matrices, which often arise in applications. Matrices that belong to this class
result, for instance, from the discretization or linearization of partial differential
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or integral equations. Exploiting the special structure of these matrices in com-
putational methods yields decreased time and memory requirements. A detailed
description of the H-matrix format can be found, e.g. in [19, 21, 26, 27].

The basic idea of the H-matrix format is to partition a given matrix re-
cursively into submatrices that admit low-rank approximations. To determine
such a partitioning, we consider a product index set I × I , I = {1, . . . , n}. This
product index set is hierarchically partitioned into blocks r × s, which form a
so called H-tree TI×I . Each leaf of TI×I represents a low-rank approximation
of the corresponding submatrix. A matrix M is said to be approximable in
H-matrix format (M ∈ MH,k(TI×I)), if the rank of M restricted to a leaf can
be bounded by k. The storage requirements for a matrix M ∈ MH,k(TI×I) are

NMH,kSt = O(n log(n)k)

instead of O(n2) for the original matrix.
Note that it is also possible to choose the rank adaptively for each matrix

block instead of using a fixed rank k. Depending on a given approximation error
ε, the approximate matrix operations are exact up to ε in each block.

The approximate arithmetic is a means to close the set of matrices in M ∈
MH,k(TI×I) under addition, multiplication and inversion. The operations con-
sist of the exact arithmetic combined with some projection onto MH,k(TI×I).
This truncation operator, denoted by Tk, can be achieved by truncated sin-
gular value decompositions and results in the best Frobenius norm approx-
imation on MH,k(TI×I), see, e.g., [21] for more details. For two matrices
A, B ∈ MH,k(TI×I) and a vector v ∈ Rn we obtain the following formatted
arithmetic operations, which all have linear-polylogarithmic complexity:

v 7→ Av : O(n log(n)k),
A⊕B = Tk(A + B) : O(n log(n)k2),

A�B = Tk(AB) : O(n log2(n)k2),

InvH(A) = Tk(Ã−1) : O(n log2(n)k2).

Here, Ã−1 denotes the approximate inverse of A which is obtained by performing
block Gauss elimination on A with formatted addition and multiplication.

We will use the H-matrix structure to compute the solution factor of the
Lyapunov equation, which reduces the complexity and the storage requirements
of the sign function iteration.

4 H-matrix arithmetic based sign function iter-

ation

4.1 Algorithms

We consider the sign function iteration in the partitioned form (4), in contrast
to [23], to compute a full-rank factor Y of the solution X of (1). In one part of
the iteration the hierarchical matrix arithmetic is integrated to reduce memory
requirements and computational costs (compare with Section 3). In this part,
even if the system matrix A is sparse, a larger amount of memory is required
by the fill-in during the matrix inversion. The other part of the iteration is
stored in the usual ”full” format and uses arithmetic operations from standard
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linear algebra packages like LAPACK and BLAS. This part converges to Y =
1√
2

limk→∞ Bk, which is an approximate full-rank factor of X . The increasing

number of columns of Bk+1 again is limited by applying the rank-revealing
QR factorization as in Section 2. Since limk→∞ Ak = −In, as it was seen in
Section 2, it is advised to choose

‖Ak + In‖ ≤ tol

as stopping criterion for the iteration, which is easy to check. With two addi-
tional iteration steps and an appropriate choice of norm and relaxed tolerance,
the required accuracy is reached in general due to the quadratic convergence, see
[8] for details. We introduce scaling to accelerate the initial convergence. Due

Algorithm 1 Calculate full-rank factor Y of X for AX + XAT + BBT = 0

INPUT: A ∈ Rn×n, B ∈ Rn×m, tol, ε
OUTPUT: Approximation to a full-rank factor of the solution X .

A0 ← (A)H
B0 ← B
k = 0
while ‖Ak + In‖ > tol do

Ak+1 ← 1
2 (Ak ⊕ InvH(Ak))

Bk+1 ← 1√
2

[

Bk InvH(Ak)Bk

]

Compress columns of Bk+1 (see (4)) using a RRQR with threshold ε
k = k + 1

end while

Y ← 1√
2
Bk+1

to error amplification during the sign function iteration with formatted arith-
metic, scaling is used only in the first iteration step as in [19]. In the partitioned
iteration scheme 1 scaling is integrated in the following way:

A0 ← (A)H, B0 ← B,

A1 ← 1

2
(c0A0 ⊕

1

c0
InvH(A0)),

B1 ← 1√
2
c0

[

B0 InvH(A0)B0

]

with scaling parameter c0 as proposed in [19].
An alternative algorithm replaces the formatted inversion by computing a

LU decomposition of the matrix Ak. The lower and upper parts are stored in
H-format and with an H-based forward substitution we obtain an approximate
inverse of Ak.
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Algorithm 2 Calculate full-rank factor Y of X for AX + XAT + BBT = 0

INPUT: A ∈ Rn×n, B ∈ Rn×m, tol, ε
OUTPUT: Approximation to a full-rank factor of the solution X .

A0 ← (A)H
B0 ← B
k = 0
while ‖Ak + In‖ > tol do

[L, U ]← LUH(Ak)
Solve LW = (In)H by H-forward substitution
Solve UV = W by H-back substitution
Ak+1 ← 1

2 (Ak ⊕ V )
Bk+1 ← 1√

2

[

Bk V Bk

]

Compress columns of Bk+1 (see (4)) using a RRQR with threshold ε
k = k + 1

end while

Y ← 1√
2
Bk+1

4.2 Numerical experiments

We consider the two-dimensional heat equation in an unit square with constant
heat source in some subdomain Ωu as described in [23]:

∂x

∂t
(t, ξ) =

λ

c · ρ ∆x(t, ξ) + b(ξ)u(t), ξ ∈ (0, 1)2, t ∈ (0,∞)

b(ξ) =

{

1 ξ ∈ Ωu

0 otherwise
.

We impose homogeneous Dirichlet boundary conditions

x(t, ξ) = 0 ξ ∈ [0, 1]2\(0, 1)2

and discretize with linear finite elements and n inner grid points. In the weak
form of the partial differential equation we use a classical Galerkin approach
with bilinear finite ansatz functions ϕi: x(t, ξ) =

∑n

i=1 xi(t)ϕi(ξ). For the n
unknowns xi we obtain a system of linear differential equations

Eẋ(t) = Ax(t) + Bu(t)

with the matrices

Eij =

∫

(0,1)2
ϕi(ξ)ϕj(ξ) dξ

Aij = −
∫

(0,1)2
λ∇ϕi(ξ) · ∇ϕj(ξ) dξ

Bi1 =

∫

(0,1)2
b(ξ)ϕi(ξ) dξ, i, j = 1, . . . , n.

To obtain a system in the standard form (2) we have to invert the mass matrix
E, what is done with the formatted inversion, and apply algorithm 1 or 2 to the
matrices

A = InvH(E)A, B = InvH(E)B.

8



256 1024 4096 16384
10

−9

10
−8

10
−7

10
−6

10
−5

n

R
el

at
iv

e 
re

si
du

um

H−matrix based sign function
Full sign function

Figure 1: Relative residual in logarithmic scale for the H-matrix based sign
function and the usual full sign function

In the first iteration step, we use scaling as proposed in [29, 19] with

c0 =

√

‖InvH(A0)‖2
‖A0‖2

.

The employed stopping criterion for the Newton iteration is:

‖Ak + I‖2 ≤ tol, tol = 10−4.

We choose ε = 10−4 as threshold for the numerical rank decision in the rank-
revealing QR factorization.

For theH-matrix approximation we use HLib 1.2 by Börm, Grasedyck, Hack-
busch [11]. We use the adaptive rank choice (see [19]) instead of a given rank
k. The truncation operator is then changed in the following way:

Tε(A) = argmin{rank(R)| ‖R−M‖2
‖M‖2

≤ ε},

where the parameter ε is given by ε = 10−4 and determines the desired accuracy
in each matrix block.

These results are obtained by use of Algorithm 1. The sign function without
H-matrix implementation can be used only up to a problem size of n = 4096 due
to memory requirements, larger problems can only be solved with the H-matrix
based sign function. In Figure 4.2 we observe, that the relative residual, which
could be considered as the backward error for the solution of the Lyapunov
equations [30], seems to be bounded above for increasing problem size. The
storage requirements as well as the computational time for Algorithm 1 exhibit
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Figure 2: CPU time in logarithmic scale for the H-matrix based sign function
and the usual full sign function

an almost linear complexity as can be seen in Figure 4.2 and in Table 1. We want
to point out, that the largest Lyapunov equations solved, one with n = 262, 144,
is equivalent to a linear system of equations with about 34 billion unknowns.
For this problem size we get an approximate full-rank factor Y ∈ Rn×21 and
therefore need 5 MB memory to store the solution instead of 64 GB for the
explicit solution X .

n r time[sec] memory (MB) rel. res. rel. error
full 256 11 0.18 0.5 3.096e-08
H 11 0.53 0.48 8.362e-08 6.424e-07

full 1024 13 9.12 8.00 1.361e-08
H 13 12.17 4.21 4.407e-06 6.302e-05

full 4096 14 624.21 128.00 7.035e-09
H 14 132.19 29.47 5.310e-06 1.612e-04

H 16384 15 1129.94 192.86 4.831e-06 -

H 65536 17 10002.09 1019.65 - -

H 262144 21 72910.44 4431.62 - -

Table 1: The table presents the accuracy and the rank r of the computed solution
factor for different problem sizes. Also the different memory requirements for
storing A in H-format or in full-format can be compared for the last iteration
step.
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5 Extension to generalized Lyapunov equations

In this section, we show how the derived results can be extended to generalized
Lyapunov equations of the form

AXET + EXAT + BBT = 0, (5)

where A, E ∈ Rn×n and B ∈ Rn×m. Such matrix equations are associated with
linear, time-invariant descriptor systems of the form

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0,

see [14]. Note that (5) reduces to a standard Lyapunov equation if E = In.
Generalized Lyapunov equations with E 6= In play an important role in various
tasks related to descriptor systems [14], such as minimal realization or balanced
truncation model reduction [48].

In the following, we assume that A as well as E are nonsingular and that
A − λE is a stable matrix pencil, i.e., all eigenvalues of A − λE are in the
open left half plane. Gardiner and Laub [17] proposed an extension of the sign
function iteration for the solution of (5). Instead of the single matrix Z in (3),
the matrix pencil

Z − λY =

[

A BBT

0 −AT

]

− λ

[

E 0
0 ET

]

(6)

is considered. Theoretically, the solution of (5) can be obtained from the (2, 1)
block of (Y −1Z). Applying the standard sign function iteration directly to
Y −1Z, however, has the disadvantage that the possibly ill-conditioned matrix
E has to be inverted for starting the iteration. An approach which avoids this
drawback consists of using the iteration

Z0 ← Z, Zk+1 ←
1

2
(Zk + Y Z−1

k Y ). (7)

It can be easily seen that if Z̃k denotes the kth iterate of the standard sign
function iteration applied to Y −1Z then Zk = Y Z̃k. This implies that the
iteration (7) converges under the given assumptions to

lim
k→∞

Zk = Y · (Y −1Z).

In [8] it was shown that the iteration (7) significantly simplifies when applied
to a matrix pencil of the form (6):

Z0 ← Z,

Zk+1 ← 1

2
(Zk + Y Z−1

k Y )

=

[

1
2 (Ak + EA−1

k E) 1
2 (BkBT

k + EA−1
k BkBT

k A−T
k ET )

0 − 1
2 (AT

k + ET A−T
k ET )

]

.

The solution X of (5) is then obtained by

lim
k→∞

Zk =

[

−E 2EXET

0 ET

]

.
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Since we are interested in a full-rank factor Y of the solution X , such that
X = Y Y T , we consider the iteration in factorized form as introduced in [8] for
E 6= In. In this iteration scheme we introduce the hierarchical matrix format
and the approximate arithmetic (compare with Section 4.1 for E = In). As
natural stopping criterion (limk→∞ Ak = −E) we suggest

‖Ak + E‖ ≤ tol‖E‖

.

Algorithm 3 Calculate full-rank factor Y of X for AXET +EXAT +BBT = 0

INPUT: A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×n, tol, ε
OUTPUT: Approximation to a full-rank factor of the solution X .

A0 ← (A)H
B0 ← B
k = 0
while ‖Ak + E‖ > tol‖E‖ do

Ak+1 ← 1
2 (Ak ⊕ (E)H � InvH(Ak)� (E)H)

Bk+1 ← 1√
2

[

Bk (E)HInvH(Ak)Bk

]

Compress columns of Bk+1 (see (4)) using a RRQR with threshold ε
k = k + 1

end while

Y ← 1√
2
E−1Bk+1

So we get Y = 1√
2
E−1 limk→∞ Bk as a factor of the approximate solution

X = Y Y T of (5). In order to accelerate convergence, we choose

c =

√

‖EInvH(A0)E‖2
‖A0‖2

for the first iteration step. This is inspired by the motivation for the scaling in
the standard case, numerical results in [9] confirm its ability to accelerate the
convergence significantly.

6 Conclusions

In this paper we have developed algorithms for the factorized solution of large
Lyapunov equations arising from FEM/BEM discretizations of elliptic partial
differential operators. With our H-based sign function approach we can solve
significantly larger problems than with the standard dense sign function imple-
mentations so that the sign function method becomes competitive with other
methods for large-scale problems like ADI and Smith-type methods. This is
demonstrated by numerical examples evolving from a 2D heat control problem.

Future work will include to use the developed Lyapunov solvers as building
blocks for an implementation of a model reduction method based on balanced
truncation for large-scale systems arising from control problems for parabolic
PDEs. Variants of our approach for solving Sylvester equations are also under
current investigation.
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