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1. INTRODUCTION

This article describes Fortran 77 subroutines for computing eigenvalues and invari-
ant subspaces of a Hamiltonian matrix

H =

[

A G
Q −AT

]

, G = GT , Q = QT (1)
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where A, G, Q ∈ Rn×n. Our subroutines are based on a backward stable, structure-
exploiting method developed by Benner, Mehrmann and Xu [1998; 1997]. We
have also included recently developed balancing and block algorithms [Benner 2000;
Kressner 2003a], which can improve the accuracy and efficiency of this method.
The Hamiltonian eigenvalue problem has a number of applications in systems and
control theory, see e.g. [Benner et al. 2000; Benner et al. 2003].

Additionally provided are subroutines for computing eigenvalues and invariant
subspaces of a skew-Hamiltonian matrix

W =

[

A G
Q AT

]

, G = −GT , Q = −QT , (2)

where again A, G, Q ∈ Rn×n. They can be used to address complex Hamiltonian
eigenvalue problems, see [Benner et al. 1999] and Section 2.4, and might be as well of
independent interest, e.g., for solving certain matrix Riccati equations [Stefanovski
and Trenčevski 1998] and quadratic eigenvalue problems [Mehrmann and Watkins
2000; Tisseur and Meerbergen 2001].

A Hamiltonian matrix H is equivalently defined by the property HJ = (HJ)T ,
where

J =

[

0 In

−In 0

]

. (3)

Likewise, a matrix W is skew-Hamiltonian if and only if WJ = −(WJ)T . These
matrix structures induce particular spectral properties for H and W . Notably,
the eigenvalues of H are symmetric with respect to the imaginary axis, and the
eigenvalues of W have even algebraic and geometric multiplicities.

In principle, the eigenvalues of H and W could be obtained by any general-
purpose method for computing eigenvalues of general matrices, e.g., the QR algo-
rithm [Golub and Van Loan 1996, Sect. 7.5]. As such a method, however, does not
exploit the structures of H and W it cannot be expected to preserve the spectral
properties induced by the structure in finite precision arithmetic.

(Skew-)Hamiltonian structures are preserved if symplectic similarity transfor-
mations are used. A matrix S ∈ R2n×2n is called symplectic if ST JS = J . In the
interest of numerical stability the employed similarity transformations should be or-
thogonal as well. An algorithm solely based on orthogonal and symplectic similarity
transformations is strongly backward stable [Bunch 1987], i.e., the computed eigen-
values are the exact eigenvalues of a slightly perturbed (skew-)Hamiltonian matrix.
Such an algorithm is known for computing the eigenvalues of a skew-Hamiltonian
matrix but so far no completely satisfactory algorithm has been found for addressing
the Hamiltonian eigenvalue problem. A detailed exposition of (skew-)Hamiltonian
eigenvalue problems can be found in the survey [Benner et al. 2004].

This paper should be understood as a sequel to [Benner et al. 2000], where the
implementation of an implicit version of the square-reduced method [Van Loan
1984] has been described. This method (implicitly) squares a Hamiltonian matrix
and applies a strongly backward stable algorithm to the resulting skew-Hamiltonian
matrix. The main disadvantage of the square-reduced method is the squaring part,
leading to numerical instabilities which particularly affect eigenvalues of small mag-
nitude. Moreover, computing invariant subspaces via this method is a rather subtle
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issue [Xu and Lu 1995; Hwang et al. 2003], which is not addressed in [Benner et al.
2000]. The method, on which our implementation is based, uses a similar idea but
completely avoids the squaring part leading to numerically backward stably com-
puted eigenvalues. Also, the computed eigenvalues are symmetric with respect to
the imaginary axis. It should be said, however, that the computation of invariant
subspaces may still suffer from numerical instabilities. Note that the balancing and
block algorithms implemented in this paper can be used to improve the performance
of the routines implemented in [Benner et al. 2000] as well.

This paper is organized as follows. In the next section we review basic algorithms
for solving Hamiltonian and skew-Hamiltonian eigenvalue problems. Several impor-
tant algorithmic details, such as balancing techniques, block algorithms and variants
of the periodic QR algorithm, are summarized in Section 3. The major issues con-
cerning the implementation of the described algorithms are detailed in Section 4.
Finally, Section 5 contains some numerical examples illustrating the accuracy of
our implementation compared to others.

2. ALGORITHMS

The algorithms implemented here are based on transformations involving orthogo-
nal symplectic matrices. It is easy to see that any matrix belonging to this matrix
group can be partitioned as

U =

[

U1 U2

−U2 U1

]

, U1, U2 ∈ R
n×n. (4)

Two types of elementary orthogonal matrices have this form. These are 2n × 2n
Givens rotation matrices of the type

Gj(θ) =













Ij−1

cos θ sin θ
In−1

− sin θ cos θ
In−j













, 1 ≤ j ≤ n,

for some angle θ ∈ [−π/2, π/2), and the direct sum of two identical n × n House-
holder matrices

(Hj ⊕Hj)(v, β) =

[

In − βvvT

In − βvvT

]

,

where v is a vector of length n with its first j − 1 elements equal to zero.
A simple combination of these transformations, see Algorithm 1, can be used to

map an arbitrary vector x ∈ R
2n into the linear space

Ej = span{e1, . . . , ej , en+1, . . . , en+j−1},

where ei is the ith unit vector of length 2n. Note that the elements 1, . . . , j−1 and
n + 1, . . . , n + j − 1 of x remain unaffected in Algorithm 1.

Orthogonal symplectic matrices of the form

Ej(x) ≡ Ej(v, w, β, γ, θ) := (Hj ⊕Hj)(v, β) ·Gj(θ) · (Hj ⊕Hj)(w, γ), (5)
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as computed by this algorithm, will be called elementary. Let F =
[

0
In

In

0

]

, then

we obtain the following variant of elementary orthogonal symplectic matrices:

[F · Ej(Fx) · F ]T x ∈ span{e1, . . . , ej−1, en+1, . . . , en+j}.

For the sake of brevity we set En+j(x) := F · Ej(Fx) · F , whenever 1 ≤ j ≤ n.

2.1 Eigenvalues of Hamiltonian matrices

The structure-exploiting method for computing eigenvalues of a Hamiltonian matrix
H proposed in [Benner et al. 1998] is based on the following idea. First, orthogonal
symplectic matrices U and V are computed to reduce H to a so called symplectic
URV form:

UT HV =

[

R11 R12

R21 R22

]

=







@

@@






, (6)

i.e., the matrix R21 ∈ Rn×n is zero, R11 ∈ Rn×n is upper triangular and R22 ∈ Rn×n

is lower Hessenberg. A simple calculation reveals

UT H2U =

[

−R11R
T
22 R11R

T
12 −R12R

T
11

0 −R22R
T
11

]

,

showing that the eigenvalues of H are the square roots of the eigenvalues of the up-
per Hessenberg matrix −R11R

T
22. In a second step, the periodic QR algorithm [Bo-

janczyk et al. 1992; Hench and Laub 1994; Van Loan 1975] is applied to compute
the eigenvalues of this matrix product in a numerically backward stable manner.

Algorithm 2 can be used to compute a symplectic URV decomposition (6). This
algorithm is implemented in the subroutine DGESUV, which requires 80

3 n3 + O(n2)
floating point operations (flops) to reduce H . The subroutine DOSGSU can be used to
generate the orthogonal symplectic factors U and V , which requires an additional
amount of 16

3 n3 + O(n2) flops for each factor. Note that Algorithm 2 does not
require H to be a Hamiltonian matrix, but even if H is Hamiltonian, this structure
will be destroyed making it necessary to provide all elements of H explicitely in a
2n× 2n array.

Algorithm 1

Input: A vector x ∈ R2n and an index j ≤ n.
Output: Vectors v, w ∈ R

n and β, γ, θ ∈ R so that

[(Hj ⊕Hj)(v, β) ·Gj(θ) · (Hj ⊕Hj)(w, γ)]T x ∈ Ej .

(1) Determine v ∈ Rn and β ∈ R such that the last n − j elements of x ←
(Hj ⊕Hj)(v, β)x are zero, see [Golub and Van Loan 1996, p.209].

(2) Determine θ ∈ [−π/2, π/2) such that the (n + j)th element of x ← Gj(θ)x is
zero, see [Golub and Van Loan 1996, p.215].

(3) Determine w ∈ Rn and γ ∈ R such that the (j + 1)th to the nth elements of
x← (Hj ⊕Hj)(w, γ)x are zero.
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Algorithm 2 Symplectic URV decomposition

Input: A matrix H ∈ R2n×2n.
Output: Orthogonal symplectic matrices U, V ∈ R2n×2n; H is overwritten

with UT HV having the form (6).

U ← I2n, V ← I2n.
for j ← 1, 2, . . . , n do

Set x← Hej .
Apply Algorithm 1 to compute Ej(x).
Update H ← Ej(x)T H, U ← UEj(x).
if j < n then

Set y ← HT en+j .
Apply Algorithm 1 to compute Ej+1(y).
Update H ← HEn+j+1(y), V ← V En+j+1(y).

end if

end for

In the following, we give a brief description of the periodic QR algorithm for
the product of a Hessenberg matrix A and an upper triangular matrix B. This
algorithm is an iterative procedure aiming at computing orthogonal matrices Q
and Z so that S = QT AZ is in real Schur form, see [Golub and Van Loan 1996],
while T = ZT BQ remains upper triangular. The eigenvalues of AB equal those of
ST and can be easily computed from the diagonal blocks of S and T . Algorithm 3
performs one iteration of the periodic QR algorithm. It can be considered as an
implicit application of the standard QR iteration to AB without actually forming
this product.

After a few iterations of Algorithm 3 have been applied, one or more subdiagonal
elements of A can be expected to become small. We decide on the negligibility of
a subdiagonal element using the deflation criteria of the LAPACK [Anderson et al.
1999] subroutines DHSEQR and DLAHQR. Basically, a subdiagonal element ak+1,k is
set to zero if it satisfies

|ak+1,k| ≤ ε · (|akk |+ |ak+1,k+1|), (7)

where ε denotes the machine precision. After such a deflation has been found, we
can partition

AB =

[

A11 A12

0 A22

] [

B11 B12

0 B22

]

and apply Algorithm 3 to the matrix products A11B11 and A22B22 separately. This
procedure is repeated until the matrix A is reduced to block diagonal form with one-
by-one and two-by-two blocks on the diagonal. Two-by-two blocks corresponding
to real eigenvalues of AB are further reduced by applying a single shift version of
Algorithm 3.

If one of the diagonal elements of B happens to be small then a “zero chasing”
algorithm described in [Bojanczyk et al. 1992] can be used to deflate one zero
eigenvalue and two smaller eigenvalue problems. We based the decision whether a
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Algorithm 3 Periodic QR iteration

Input: A Hessenberg matrix A ∈ Rn×n; an upper triangular matrix B ∈
Rn×n; n > 2.

Output: Orthogonal matrices Q, Z ∈ Rn×n; A and B are overwritten with
the Hessenberg matrix QT AZ and the upper triangular matrix
ZT BQ, respectively. This algorithm applies one iteration of the
periodic QR algorithm to AB.

Q← In, Z ← In.
Compute shifts σ1 and σ2 as the eigenvalues of the 2× 2 bottom right submatrix
of AB.
Set x← (AB − σ1In)(AB − σ2In)e1.
Update A← H1(x)A, B ← BH1(x), Q← QH1(x).
Set y ← Be1.
Update A← AH1(y), B ← H1(y)B, Z ← ZH1(y).
for j ← 2, 3, . . . , n− 1 do

Set x← Aej−1.
Update A← Hj(x)A, B ← BHj(x), Q← QHj(x).
Set y ← Bej .
Update A← AHj(y), B ← Hj(y)B, Z ← ZHj(y).

end for

diagonal element bkk is negligible on a criterion similar to (7):

|bkk | ≤ ε · (|bk−1,k|+ |bk,k+1|).

Algorithm 3 together with the described deflation strategies constitute the peri-
odic QR algorithm, which is implemented in the subroutine DLAPQR. Assuming that
it takes an average of about two periodic QR iterations to deflate an eigenvalue,
this subroutine requires 22n3 + O(n2) flops for computing the Schur form of AB.
If only the eigenvalues are requested some computational work can be saved by not
updating converged parts of the matrices A and B leading to 44

3 n3 +O(n2) flops.
Another 11n3 +O(n2) flops are needed to compute each of the orthogonal factors
Q and Z.

The subroutine DHAESU is a combination of the subroutines DGESUV and DLAPQR;
it computes a symplectic URV decomposition (6) – with RT

22 in real Schur form –
as well as the eigenvalues of a Hamiltonian matrix H .

2.2 Stable invariant subspaces of Hamiltonian matrices

Note that the approach presented in the previous section only provides the eigenval-
ues of a Hamiltonian matrix. Invariant subspaces can be obtained by employing the
following relationship between the eigenvalues and invariant subspaces of a matrix
and an appropriate extension.

Theorem 2.1 [Benner et al. 1997]. Let A ∈ R
n×n and define B =

[

0
A

A
0

]

.

Then λ(B) = λ(A) ∪ (−λ(A)), where λ(·) denotes the set of all eigenvalues of a
matrix. Further, let λ(A) ∩ ıR = ∅. If the columns of the matrix [QT

1 , QT
2 ]T span a

B-invariant subspace associated with eigenvalues in the open right half plane, then
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the columns of Q1 − Q2 span an A-invariant subspace belonging to eigenvalues in
the open left half plane.

An orthogonal basis for the subspace spanned by the columns of U1 −U2 can be
obtained, e.g., from a rank-revealing QR decomposition [Golub and Van Loan 1996]
of U1−U2. For general matrices it is of course not advisable to use the above result
in order to compute invariant subspaces of the matrix A as it would unnecessarily
double the dimension of the problem. But if A is a Hamiltonian matrix then the
results from the previous section can be used to compute invariant subspaces of the
extended matrix B which in turn yield invariant subspaces of A.

To see this, let H ∈ R2n×2n be Hamiltonian with λ(H)∩ ıR = ∅. Then we apply
Algorithms 2 and 3 to H . From this we obtain orthogonal symplectic matrices

U =
[

U11

−U12

U12

U22

]

and V =
[

V11

−V12

V12

V22

]

such that

R := UT HV =

[

R11 R12

0 R22

]

where R11 is upper triangular and RT
22 is quasi upper triangular.

Then

B :=

[

UT 0
0 V T

] [

0 H
H 0

] [

U 0
0 V

]

=

[

0 R
(JRJ)T 0

]

=









0 0 R11 R12

0 0 0 R22

−RT
22 RT

12 0 0
0 −RT

11 0 0









.

Swapping the middle block rows/columns of B corresponds to P T BP , where P is
the appropriate permutation matrix, and transforms B to block upper triangular
form.

Now let W =
[

W11

W21

W12

W22

]

be orthogonal such that

W T

[

0 R11

−RT
22 0

]

W =

[

T11 T12

0 T22

]

=: T (8)

is quasi upper triangular with all eigenvalues of T11 ∈ Rn×n and −T22 ∈ Rn×n

located in the open right half plane. Note that this is possible as the eigenvalues of
[

0
−RT

22

R11

0

]

are exactly those of H , and λ(H) ∩ ıR = ∅. Hence,

B̃ :=

[

W T 0
0 W T

]

P T BP

[

W 0
0 W

]

=









T11 T12 C11 C12

0 T22 CT
12 C22

0 0 −T T
11 0

0 0 −T T
12 −T T

22









. (9)

This implies that the first n columns of
[

U
0

0
V

]

P
[

W
0

0
W

]

span an invariant subspace

of
[

0
H

H
0

]

belonging to the eigenvalues of T11. Thus, as a corollary of Theorem 2.1

we obtain that the columns of

Q =

[

U11W11 − V11W21

−U12W11 + V12W21

]

(10)

span the invariant subspace of H associated with all stable eigenvalues, i.e., the
n eigenvalues in the open left half plane. Computing the matrix W in (8) can be
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implemented efficiently using the underlying structure; for details see [Benner et al.
1997]. The number of flops needed by the overall algorithm is approximately 60%
of the number of flops the standard QR algorithm would require to compute the
invariant subspace under consideration [Benner et al. 1997]. The subroutine DHASUB
is based on the described algorithm and computes invariant subspaces of H from
the output of the subroutine DHAESU. It should be emphasized that this algorithm
might encounter numerical difficulties if H has eigenvalues close to the imaginary
axis, i.e., it is not guaranteed to be backward stable for such cases.

The described procedure admits several extensions, also implemented in DHASUB.
First, assume that not the invariant subspace belonging to all stable eigenvalues
but the invariant subspace belonging to k < n selected stable eigenvalues is to be
computed. This can be achieved by reordering the corresponding eigenvalues in the
quasi-upper triangular matrix product R11R

T
22 to the top left corner, see [Kress-

ner 2004], and restricting all computations to the first k columns of the matrix Q
in (10). By setting k = 1 eigenvectors for specified real eigenvalues can be com-
puted. Complex eigenvectors can not be computed directly, but with k = 2 and
choosing a pair of conjugate complex eigenvalues, eigenvectors can be obtained from
the 2-dimensional basis of the provided invariant subspace. Second, invariant sub-
spaces of H belonging to eigenvalues in the open right half plane can be computed
by a variant of Theorem 2.1 saying that the columns of Q1 + Q2 span such an in-
variant subspace. Finally, if the Hamiltonian matrix H has eigenvalues on or close
to the imaginary axis then the numerical rank of the matrix Q in (10) is likely to
be less than n. In this case, it is preferable to reorder the eigenvalues of the 4n×4n
matrix B̃ in (9) such that all eigenvalues in the upper 2n×2n block are in the open
right half plane. This can be achieved, e.g., by symplectic reordering algorithms,
see [Byers 1983; Benner et al. 2004]; the subroutine DHAORD is an implementation of
the reordering algorithm described in [Benner et al. 2004]. With these algorithms
it is possible to determine an orthogonal symplectic matrix Z such that

ZT B̃Z =









T11 T̃12 C11 C̃12

0 T̃22 C̃T
12 C̃22

0 0 −T T
11 0

0 0 −T̃ T
12 −T̃ T

22









,

where B̃ is the matrix defined in (9) and all the eigenvalues of T̃22 lie in the open
right half plane. Now define

Q̃ :=

[

Q̃11 Q̃12

Q̃21 Q̃22

]

:=

[

U 0
0 V

]

P

[

W 0
0 W

]

Z, (11)

then by construction the columns of the matrix [Q̃T
11, Q̃

T
21]

T span the invariant

subspace for
[

0
H

H
0

]

associated with all eigenvalues in the open right half plane.

Again by an application of Theorem 2.1, we obtain the invariant subspace of H
associated with all stable eigenvalues using a rank-revealing QR decomposition of
Q̃11 − Q̃21.
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2.3 Enforcing isotropy via the symplectic QR decomposition

Any invariant subspace X ⊆ R2n belonging to a set of stable eigenvalues of a
Hamiltonian matrix is isotropic, i.e., X is perpendicular to JX . This implies that
any matrix X with X = span(X) satisfies XT JX = 0. Enforcing this property
in finite-precision arithmetic is sometimes important in applications. For example,
it is the isotropy of the invariant subspace belonging to all stable eigenvalues of a
Hamiltonian matrix which implies that the stabilizing solution of the corresponding
algebraic Riccati equation is symmetric [Lancaster and Rodman 1995].

Unfortunately, the methods described in Section 2.2 are not capable to guarantee
the isotropy of a computed invariant subspace. Nevertheless, a basis for a nearby
isotropic subspace can be constructed via the symplectic QR decomposition, which
is defined as follows. Let X ∈ R2n×k with n ≥ k, then there exists an orthogonal
symplectic matrix Q so that X = QR and

R =

[

R11

R21

]

, R11 =

[

@
0

]

, R21 =

[

...


@

0

]

, (12)

i.e., the matrix R11 ∈ Rm×n is upper triangular and R21 ∈ Rm×n is strictly upper
triangular [Bunse-Gerstner 1986]. Then the first k columns of Q span an isotropic
subspace that will be close to X under the assumption that X admits a nearby
isotropic subspace, see e.g. [Benner et al. 2004].

Algorithm 4, which is implemented in the subroutines DGESQR and DOSGSQ, pro-
vides a straightforward way to compute a symplectic QR decomposition (12). It
requires 8(k2n − k3/3) + O(k2) flops for computing the reduced matrix R, and
additionally 16kn2 − 16k2n + 16

3 k3 +O(k2) flops for accumulating the orthogonal
symplectic factor Q in reversed order.

Algorithm 4 Symplectic QR decomposition

Input: A general matrix X ∈ R
2n×k with n ≥ k.

Output: An orthogonal symplectic matrix Q ∈ R2n×2n; X is over-
written with R = QT X having the form (12).

Q← I2n.
for j ← 1, . . . , k do

Set x← Xej .
Apply Algorithm 1 to compute Ej(x).
Update X ← Ej(x)T X , Q← QEj(x).

end for

Note that the symplectic QR decomposition has a number of other applica-
tions, such as the symplectic integration of Hamiltonian systems [Leimkuhler and
Van Vleck 1997].

2.4 Eigenvalues of skew-Hamiltonian matrices

Computing the eigenvalues of a skew-Hamiltonian matrix W as proposed by Van
Loan [1984] is considerably simple. First, an orthogonal symplectic matrix U is
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computed to reduce W to a so called Paige/Van Loan (PVL) form:

UT WU =

[

R11 R12

R12 RT
11

]

=







@@

@@






, (13)

i.e., the matrix R21 ∈ Rn×n is zero and R11 ∈ Rn×n is upper Hessenberg. Second,
the standard QR algorithm is applied to compute the eigenvalues of R11, which are
the eigenvalues of W with halved multiplicities.

Algorithm 5 PVL decomposition

Input: A skew-Hamiltonian matrix W ∈ R2n×2n.
Output: An orthogonal symplectic matrix U ∈ R

2n×2n; W is overwritten
with UT WU having the form (13).

U ← I2n.
for j ← 1, 2, . . . , n− 1 do

Set x←Wej .
Apply Algorithm 1 to compute Ej+1(x).
Update W ← Ej+1(x)T WEj+1(x), U ← UEj+1(x).

end for

Algorithm 5 computes a PVL decomposition of the form (13). The subroutine
DSHPVL is based on this algorithm and requires 40

3 n3 + O(n2) flops for reducing
W . The generation of the orthogonal symplectic factor U is implemented in the
subroutine DOSGPV, which requires an additional amount of 16

3 n3 +O(n2) flops.
Subsequent to Algorithm 5, the standard QR algorithm is applied to the matrix

R11, producing an orthogonal matrix Q so that

ŨT WŨ =

[

R̃11 R̃12

0 R̃T
11

]

(14)

where Ũ = U
[

Q
0

0
Q

]

and R̃11 has real Schur form. A decomposition of the form (14)

is called a skew-Hamiltonian Schur decomposition of W . It is produced by the
subroutine DSHES, which requires only approximately 21% the number of flops the
standard QR algorithm would require to compute the unstructured, real Schur
decomposition of W , see e.g. [Kressner 2004].

2.5 Invariant subspaces of skew-Hamiltonian matrices

Having computed a real Schur decomposition of the form (14), the first k ≤ n
columns of Ũ span an isotropic invariant subspace of the skew-Hamiltonian matrix
W if the (k + 1, k) entry of R̃11 is zero. Other isotropic invariant subspaces can
be obtained by swapping the diagonal blocks of R̃11 as described, e.g., in [Bai and
Demmel 1993]. This is implemented in the subroutine DHAORD, which can also be
used to swap diagonal blocks between R̃11 and R̃T

11.
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2.6 Eigenvalues of complex Hamiltonian matrices

A complex Hamiltonian matrix H ∈ C2n×2n can be defined by the property (JH)? =
JH , with the matrix J as in (3). As in the real case, the eigenvalues of H come in
pairs {λ,−λ}. Algorithm 5 can be used to compute these eigenvalues in a structure-
preserving manner.

To see this, let us decompose H = HR + ıHI such that HR, HI ∈ R2n×2n. Then
the relationship (JH)? = JH implies that the two matrices HR and HI have the
following structure:

HR =

[

AR GR

QR −AT
R

]

, HI =

[

AI GI

QI AT
I

]

,

where GR = GT
R, QR = QT

R, GI = −GT
I , QI = −QT

I , i.e., the matrix HR is Hamil-
tonian and the matrix HI is skew-Hamiltonian. Note that the 4n × 4n skew-
Hamiltonian matrix

W =









AI AR GI GR

−AR AI −GR GI

QI QR AT
I −AT

R

−QR QI AT
R AT

I









(15)

is permutationally similar to the matrix
[

HI

−HR

HR

HI

]

. This implies that λ is an

eigenvalue of H if and only if {−ıλ, ıλ̄} is an eigenvalue pair of W .
Now, if we compute a PVL decomposition (13) of W , then it is sufficient to con-

sider the 2n eigenvalues of W belonging to the real matrix R11. These eigenvalues
come in pairs {µ, µ̄}, each of which corresponds to an eigenvalue pair {ıµ,−ıµ̄}
of H . For a non-real eigenvalue µ of W , the pair {µ, µ̄} can be easily detected
as a two-by-two block in the real Schur form of R11. A real eigenvalue µ, which
corresponds to a purely imaginary eigenvalue of H , has multiplicity two. However,
this property will be lost in finite-precision arithmetic. Thus, we are faced with
the decision which of the computed real eigenvalues of R11 are actually duplicates
and can be neglected. In lack of more sophisticated decision criteria, we propose
to sort the real eigenvalues of W in descending order and neglect every other real
eigenvalue.

Note that an embedding of the form (15) can also be used to obtain invariant
subspaces of complex Hamiltonian matrices, see [Benner et al. 1999].

3. ALGORITHMIC DETAILS

This section summarizes various algorithmic details such as balancing and block al-
gorithms. These techniques aim at improving the algorithms described in Section 2,
making them competitive to the general-purpose eigenvalue solvers implemented in
LAPACK.

3.1 Symplectic Balancing

Balancing is a beneficial pre-processing step for computing eigenvalues of matri-
ces and has been studied, e.g., in [Osborne 1960; Parlett and Reinsch 1969]. A
special-purpose balancing algorithm that is based on symplectic equivalence trans-
formations and consequently preserves Hamiltonian structures has been proposed
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in [Benner 2000]. It consists of two stages, which are described in the following two
subsections.

3.1.1 Isolating Eigenvalues. The first stage consists of permuting a Hamiltonian
matrix H in order to isolate as many of its eigenvalues as possible. Although it
is tempting to require the facilitated permutations to be symplectic, it has turned
out that such a requirement leads to rather complicated reduced forms [Benner
2000]. Instead, it was proposed in [Benner 2000; Kressner 2004] to broaden the
range of similarity transformations to P̃ T HP̃ , where P̃ = DP is symplectic, D =
diag{±1, . . . ,±1} and P is a permutation matrix. These symplectic generalized
permutation matrices clearly form a group, which can be generated by the following
two classes of elementary matrices:

P
(d)
ij = Pij ⊕ Pij , (16)

where 1 ≤ i < j ≤ n, Pij = I − eie
T
i − eje

T
j + eie

T
j + eje

T
i , and

P
(s)
i = I2n −

[

ei ei+n

]

[

eT
i

eT
i+n

]

+
[

ei −ei+n

]

[

eT
i+n

eT
i

]

, (17)

where 1 ≤ i < n. If H is post-multiplied by P
(d)
ij then columns i↔ j and columns

(n + i)↔ (n + j) of H are swapped. A post-multiplication by P
(s)
i swaps columns

i ↔ (n + i) and scales the ith column by −1. Analogous statements hold for the

rows of H if this matrix is pre-multiplied by P
(d)
ij or P

(s)
i .

Combinations of these matrices can be used to compute a symplectic generalized
permutation matrix P̃ so that

P̃ T HP̃ =









A11 A21 G11 G12

0 A22 GT
12 G22

0 0 −AT
11 0

0 Q22 −AT
21 −AT

22









=



















@
0

0 0 @ 0

0



















, (18)

where A11 ∈ Ril×il is an upper triangular matrix. The unreduced Hamiltonian

submatrix
[

A22

Q22

G22

AT
22

]

is characterized by the property that all columns have at least

one nonzero off-diagonal element. An algorithm that produces the block triangular
form (18) can be developed along the lines of algorithms for isolating eigenvalues
of general matrices, see [Kressner 2004] for more details.

3.1.2 Scaling. The second stage of symplectic balancing consists of finding a
diagonal matrix D so that

(D ⊕D−1)−1

[

A22 G22

Q22 −AT
22

]

(D ⊕D−1) =

[

D−1A22D D−1G22D
−1

DQ22D −(D−1A22D)T

]

is nearly balanced in 1-norm, i.e., the rows and columns of this matrix are nearly
equal in 1-norm.

An iterative procedure achieving this aim has been developed in [Benner 2000],
in the spirit of the Parlett-Reinsch algorithm for equilibrating the row and column
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norms of a general matrix [Parlett and Reinsch 1969]. It converges if there is no re-

striction on the diagonal entries of D and under the assumption that
[

A22

Q22

G22

AT
22

]

is ir-

reducible. Note that, strictly speaking, this assumption is not satisfied by submatri-
ces of the block triangular form (18). A structure-preserving block triangular form
yielding irreducible Hamiltonian submatrices has been presented in [Benner and
Kressner 2003]. The construction of this form, however, requires graph-theoretic
tools that are more suitable for large and sparse matrices.

Algorithm 6 is basically our implementation of the symplectic scaling procedure
described in [Benner 2000]. To avoid any roundoff errors in this algorithm, the
scaling factor β should be a power of the machine base (usually 2). By exploiting

Algorithm 6 Symplectic Scaling

Input: A Hamiltonian matrix H =
[

A
Q

G
−AT

]

∈ R2n×2n having the block

triangular form (18) for an integer il. A scaling factor β ∈ R.

Output: A symplectic diagonal matrix D̃ = Iil−1 ⊕D⊕ Iil−1 ⊕D−1, with
diagonal entries that are powers of β, so that D−1HD is nearly
balanced in 1-norm. The matrix H is overwritten by D̃−1HD̃.

D̃ ← In

converged← 0
while converged = 0 do

converged← 1
for j ← il, . . . , n do

c←
n
∑

i=il
i6=j

(|aij |+ |qij |), r ←
n
∑

k=il
k 6=j

(|ajk |+ |gjk|), δq ← |qjj |, δg ← |gjj |

s← c + r, scal← 1
while ((r + δg/β)/β) ≥ ((c + δq · β) · β) do

c← c · β, r ← r/β, δq ← δq · β2, δg ← δg/β2

scal← scal · β
end while

while ((r + δg · β) · β) ≤ ((c + δq/β)/β) do

c← c/β, r ← r · β, δq ← δq/β2, δg ← δg · β2

scal← scal/β
end while

% Balance if necessary.
if scal 6= 1 then

converged← 0, d̃jj ← scal · d̃jj , d̃n+j,n+j ← 1/scal · d̃n+j,n+j

A(:, j)← scal ·A(:, j), A(j, :)← 1/scal ·A(j, :)
G(:, j)← 1/scal ·G(:, j), G(j, :)← 1/scal ·G(j, :)
Q(:, j)← scal ·Q(:, j), Q(j, :)← scal ·Q(j, :)

end if

end for

end while

the fact that the 1-norm of the ith column {row} of H is equal to the 1-norm of
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the (n + i)th row {column} for 1 ≤ i ≤ n, Algorithm 6 only needs to balance the
first n rows and columns of H . It can thus be concluded that it requires about half
the number of operations required by the Parlett-Reinsch algorithm applied to H .

Both ingredients of symplectic balancing, the construction of the block triangu-
lar form (18) and Algorithm 6, are implemented in the subroutine DHABAL. The
information contained in the generalized symplectic permutation matrix P̃ and the
symplectic scaling matrix D̃ is stored in a vector “scal” of length n as follows. If

j ∈ [1, il − 1], then the permutation P
(d)
j,scal(j) (if scal(j) ≤ n) or the symplectic

generalized permutation P
(d)
scal(j)−n,j

P
(s)
scal(j) (if scal(j) > n) has been applied in the

course of constructing the block triangular form (18). Otherwise, scal(j) contains
d̃jj , the jth diagonal entry of the diagonal matrix D̃ returned by Algorithm 6.

The backward transformation, i.e., multiplication with (P D̃)−1, is implemented
in the subroutine DHABAK. Slight modifications of the described algorithms can be
used for balancing skew-Hamiltonian matrices, see [Benner 2000]. These modified
algorithms are implemented in the subroutine DSHBAL.

Symplectic balancing a (skew-)Hamiltonian matrix has essentially the same pos-
itive effects that are attributed to balancing a general matrix. First, the norm of
the matrix H is often decreased which equally decreases the norm of the backward
error caused by the subsequent orthogonal transformations. Second, eigenvalues
isolated by the block triangular form (18) are read off without any roundoff errors.
Finally, balancing can have a positive impact on the computational time needed by
subsequent methods for computing eigenvalues. Numerical experiments confirming
these statements can be found in [Benner 2000; Kressner 2004] and Section 5.

3.2 Block algorithms

The LAPACK subroutines for computing QR, Hessenberg, bidiagonal and similar
decompositions attain high efficiency by (implicitly) employing compact WY rep-
resentations [Bischof and Van Loan 1987; Schreiber and Van Loan 1989] of the
involved orthogonal transformations. The following theorem describes a variant
of this representation, suitable for elementary orthogonal symplectic matrices as
defined in (5).

Theorem 3.1. [Kressner 2003a] Let k ≤ n and Q = Ej1(x1)·Ej2 (x2) · · ·Ejk
(xk),

where the elementary matrices Eji
(xi) are defined as in (5) with ji ∈ [1, n] and

xi ∈ R2n. Then there exist matrices R ∈ R3k×k , S ∈ Rk×3k, T ∈ R3k×3k and
W ∈ Rn×3k so that

Q =

[

In + WTW T WRSW T

−WRSW T In + WTW T

]

. (19)

Furthermore, these matrices can be partitioned as

R =





R1

R2

R3



 , S =
[

S1 S2 S3

]

, T =





T11 T12 T13

T21 T22 T23

T31 T32 T33



 ,

where all matrices Ri, Sl, Til ∈ Rk×k are upper triangular, and

W =
[

W1 W2 W3

]

,
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where W1, W2, W3 ∈ Rn×k and W2 contains in its ith column eji
, the jith column

of the n× n identity matrix.

The subroutine DLAEST can be used to construct WY-like representations of the
form (19) and requires (4k− 2)kn + 19

3 k3 +O(k2) flops. Taking care of the generic
structures present in R, S, T and W , the subroutine DLAESB applies the WY-like
representation (19) to a 2n × q matrix, which requires 16k(n− k)q + O(kq) flops.
This subroutine attains high efficiency by making exclusive use of calls to level 3
BLAS [Dongarra et al. 1990].

Similar to the development of block algorithms for orthogonal decompositions,
see [Dongarra et al. 1989], the WY-like representation (19) can be used to de-
rive block variants of Algorithms 2, 4 and 5 for computing symplectic URV, QR
and PVL decompositions. These block algorithms are implemented in subroutines
DGESQB, DGESUB, and DHAPVB, respectively. For further details, the reader is referred
to [Kressner 2003a].

3.3 Multi-shift variants of the periodic QR algorithm

The LAPACK implementation of the QR algorithm is capable of employing an
arbitrary number of shifts simultaneously in each QR iteration [Bai and Demmel
1989]. Larger shift numbers lead to larger Householder matrices during the QR
iteration and enable the more effective use of level 2 BLAS, which in turn improves
the performance of the QR algorithm. Note, however, that this approach must be
carefully considered; it has been shown that the convergence of such a multi-shift
QR algorithm is severely affected by roundoff-errors if the number of simultaneous
shifts is too large [Dubrulle 1991; Watkins 1995]. The LAPACK subroutine DHSEQR
therefore uses a limited number of shifts (by default six).

Similarly, multi-shift variants of the periodic QR algorithm can be developed by
admitting more than two shifts in the definition of the vector x in Algorithm 3,
see [Kressner 2003b] for more details. Such a variant has been implemented in the
subroutine DHGPQR.

4. IMPLEMENTATION

All subroutines have been implemented in Fortran 77 in accordance with the SLI-
COT [Benner et al. 1999] implementation and documentation standards [1996].
This implies that the header of each subroutine contains an elaborate documen-
tation describing inputs, outputs and functionality. In this section, our focus will
therefore only be on the most important implementation issues.

A list of all driver, computational and auxiliary subroutines can be found in
Appendix A.

4.1 Naming convention

Similar to LAPACK [Anderson et al. 1999] the name of each subroutine has the
form XYYZZZ. Here, the letter X specifies the data type of the matrices to be
processed. Since we only support double real precision data, this letter is D for all
subroutines discussed in this paper. The letters YY indicate the type and struc-
ture of the involved matrices. As an extension of the LAPACK naming scheme and
similar to [Benner et al. 2000], we use HA, OS, SH and SK to denote Hamiltonian, or-
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thogonal symplectic, skew-Hamiltonian and skew-symmetric matrices, respectively.
The last three letters ZZZ are used to designate the computation to be performed.

4.2 Storage layout

A 2n × 2n Hamiltonian matrix H =
[

A
Q

G
−AT

]

can be represented by 2n2 + n

parameters. To avoid redundancy in the data representation of H we use the
packed storage layout proposed in [Benner et al. 2000]. While the submatrix A is
stored in a conventional n × n array A, the symmetric submatrices G and Q are
stored in an n × (n + 1) array QG as illustrated in Figure 1. The skew-symmetric
parts of a skew-Hamiltonian matrix are similarly stored, with the notable difference
that the parts containing the diagonal and the first superdiagonal of the array QG

are not referenced.

Hamiltonian skew-Hamiltonian

QG =

2

6

6

6

4

q11 g11 g12 g13 · · ·

q21 q22 g22 g23 · · ·

q31 q32 q33 g33 · · ·

..

.
..
.

..

.
..
.

. . .

3

7

7

7

5

QG =

2

6

6

6

4

? ? g12 g13 · · ·

q21 ? ? g23 · · ·

q31 q32 ? ? · · ·

..

.
..
.

..

.
..
.

. . .

3

7

7

7

5

Fig. 1. Storage layout for the (skew-)symmetric submatrices G and Q of a (skew-)Hamiltonian
matrix.

An orthogonal symplectic matrix U =
[

U1

−U2

U2

U1

]

is stored in two n×n arrays U1

and U2 containing the submatrices U1 and U2, respectively.

4.3 Examples and testing

Following the style of the SLICOT library, each of the driver and main compu-
tational subroutines is accompanied by an example program with a set of corre-
sponding input and output data. The purpose of these example programs is to give
users a demonstration of the straightforward application of the subroutine to solve
a simple problem. If the name of the subroutine is XYYZZZ then the example
program can be found in the file TXYYZZZ.f while the input and output data can
be found in XYYZZZ.dat and XYYZZZ.res, respectively. In order to validate
the functionality of a compiled subroutine, users can compare the delivered output
with the output contained in the corresponding .res file.

4.4 Matlab interfaces

To enhance user-friendliness, Matlab [The MathWorks, Inc. 2002] mex interfaces
provide the main functionality of the discussed subroutines in a convenient way to
Matlab users. These interfaces, described in more detail in [Kressner 2004], are
available at http://www.tu-chemnitz.de/mathematik/hapack/matlab/.
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5. NUMERICAL EXAMPLES

In this section, we provide some numerical examples to illustrate the accuracy of the
presented subroutines in comparison with the standard QR algorithm implemented
in LAPACK [Anderson et al. 1999] and the square-reduced method implemented
in [Benner et al. 2000]. For experiments comparing the execution times, we refer
to [Benner et al. 2003; Kressner 2003a; 2004]. Summarizing these experiments,
it can be said that the observed execution times essentially confirm the expecta-
tions raised by the flop counts. Furthermore, the block algorithms described in
Section 3.2 make the performance of our subroutines competitive with the corre-
sponding LAPACK subroutines. For example, when the eigenvalues of a Hamil-
tonian matrix are to be computed, the subroutine DHAESU requires approximately
60% of the time needed by LAPACK while being only slightly slower than the
square-reduced method.

5.1 Accuracy of eigenvalues

The algorithms implemented in this paper preserve the eigenvalue symmetries of a
Hamiltonian matrix. This symmetry is of particular importance if small perturba-
tions, caused by roundoff errors, could move eigenvalues across the imaginary axis.
Applications like designing (sub-)optimal H∞ controllers [Benner et al. 2004; Zhou
et al. 1996], computing H∞ norms, stability radii and pseudospectra [Byers 1988;
Boyd et al. 1989; Burke et al. 2003] require a safe decision whether an eigenvalue is
on or close to the imaginary axis. Moreover, a false decision can make it impossible
to find the stable invariant subspace.

Let us consider the following Hamiltonian matrix, see [Arnold, III and Laub 1984,
Example 2] and [Abels and Benner 1999, Example 2.8]:

H =

[

A eeT

eeT −AT

]

, A =









−10−6 1 0 0
−1 −10−6 0 0
0 0 10−6 1
0 0 −1 10−6









,

where e is the vector of all ones. The Hamiltonian matrix H has a quadruple of
eigenvalues very close to the imaginary axis:

λ = ±0.500000000000375 · 10−12 ± 0.999999999999500ı.

When applying the QR algorithm to this matrix then the real parts of these eigen-
values are perturbed by a relative error of up to 5.77 × 10−4. This compares to
7.81 × 10−6 for the subroutine DHAESU and 1.36 × 10−4 for the square-reduced
method. Hence, for this example, our routines gain two digits of accuracy in the
imaginary parts of the critical eigenvalues.

Table I gives an account on the eigenvalue accuracy of the QR algorithm with
balancing (QR), the square-reduced method with balancing as proposed in [Benner
et al. 2000] (SQRED) and with symplectic balancing (SQBAL), as well as the subroutine
DHAESU for all Hamiltonian matrices from the benchmark collection [Abels and
Benner 1999]. The following quantities are displayed:

fwd = max
i

|λ̂i − λi|

‖H‖2
, bwd = max

i

σmin(H − λ̂iI2n)

‖H‖2
,
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Ex QR SQRED SQBAL DHAESU

1.1 2.8·10−16(1.0·10−08) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
1.2 7.4·10−17(6.9·10−18) 7.4·10−17(6.9·10−18) 7.4·10−17(6.9·10−18) 7.1·10−17(1.0·10−16)
1.3 6.6·10−16(1.3·10−15) 6.3·10−17(1.8·10−16) 8.8·10−17(1.9·10−16) 2.5·10−16(4.2·10−16)
1.4 1.1·10−15(1.1·10−15) 3.3·10−16(2.3·10−16) 3.3·10−16(2.3·10−16) 1.5·10−15(1.4·10−15)
1.5 2.1·10−16(2.5·10−15) 1.6·10−15(4.5·10−15) 6.3·10−16(1.8·10−15) 6.7·10−17(8.0·10−16)
1.6 4.1·10−20(9.6·10−20) 1.0·10−17(2.9·10−16) 2.1·10−20(2.9·10−19) 3.3·10−20(6.8·10−21)
2.1 1.0·10−16(1.5·10−17) 1.0·10−16(1.5·10−17) 1.0·10−16(1.5·10−17) 1.1·10−16(6.0·10−17)
2.2 2.4·10−18(1.3·10−17) 9.5·10−16(9.6·10−14) 9.5·10−16(9.6·10−14) 2.4·10−18(5.9·10−18)
2.3 4.5·10−19(9.8·10−19) 1.6·10−19(8.4·10−20) 1.6·10−19(6.5·10−20) 2.3·10−19(8.0·10−20)
2.4 7.2·10−16(3.3·10−11) 1.9·10−16(6.4·10−10) 1.9·10−16(6.4·10−10) 2.1·10−16(2.0·10−16)
2.5 7.8·10−17(2.4·10−09) 2.5·10−17(1.6·10−09) 2.5·10−17(1.6·10−09) 7.8·10−17(1.9·10−09)
2.6 7.2·10−16(8.7·10−16) 1.3·10−16(5.4·10−17) 1.3·10−16(5.4·10−17) 3.2·10−16(2.2·10−16)

2.7 1.4·10−22(7.0·10−22) 1.0·10−22(3.9·10−22) 3.7·10−21(2.7·10−20) 1.4·10−22(9.4·10−22)
2.8 3.4·10−16(5.2·10−16) 3.4·10−16(3.3·10−16) 3.4·10−16(3.3·10−16) 9.2·10−17(6.3·10−17)
2.9 9.1·10−23(1.8·10−23) 6.0·10−20(4.4·10−14) 5.6·10−23(1.3·10−20) 2.8·10−23(5.4·10−23)
3.1 3.0·10−16(7.4·10−16) 1.3·10−16(8.4·10−16) 1.3·10−16(8.4·10−16) 1.5·10−16(6.1·10−16)
3.2 2.4·10−15(2.4·10−15) 2.7·10−15(2.7·10−15) 2.7·10−15(2.7·10−15) 3.4·10−15(3.4·10−15)
4.1 2.3·10−15(2.4·10−15) 8.6·10−16(9.2·10−16) 8.6·10−16(9.2·10−16) 1.2·10−15(1.3·10−15)
4.2 9.5·10−15 3.1·10−15 3.1·10−15 4.9·10−15

4.3 1.2·10−15(8.4·10−15) 9.3·10−16(7.6·10−15) 9.3·10−16(7.6·10−15) 9.1·10−16(1.7·10−15)
4.4 4.5·10−20 2.9·10−13 3.4·10−16 6.2·10−20

(20) 5.9·10−16(1.3·10−16) 1.1·10−09(1.1·10−09) 1.1·10−09(1.1·10−09) 1.6·10−16(1.3·10−16)

Table I. Backward (and forward) errors of the eigenvalues computed by the QR algorithm, the

square-reduced method, and the subroutine DHAESU.

where λ̂i denotes the computed approximation to the exact eigenvalue λi of H and
σmin is the smallest singular value of a matrix. The quantity fwd can be considered
as the maximal forward error while bwd represents the maximal backward error of
the computed eigenvalues. All computations have been performed in Matlab 6.1
using the mex interfaces mentioned in Section 4.4. The “exact” eigenvalues λi have
been computed in variable precision arithmetic (64 decimal digits) as provided by
the Symbolic Math Toolbox in Matlab. Note, however, that this toolbox failed
to deliver “exact” eigenvalues for Examples 4.2 and 4.4, where it returned with an
error message.

In general, the perturbation analysis predicts that structure preservation will
not lead to a higher accuracy in the real and imaginary parts together, see [Benner
et al. 2004]. Though not explained by this analysis, Example 1.1 and Example 2.4
of Table I show that the structure-preserving algorithms may return significantly
more accurate eigenvalues. The known possible loss of accuracy of the square-
reduced method can be observed in Examples 1.6, 2.2, 2.9, and 4.4. In Examples
1.6 and 2.9, preliminary symplectic balancing cures this problem. It is remarkable
that the square-reduced method displays its numerical backward instability only for
Example 4.4, where the measured backward error 2.9 · 10−13 is significantly larger
than the machine precision. A simple matrix leading to an even larger backward
error can be constructed by setting

H = UT

[

A 0
0 −AT

]

U, A = diag(1, 10−2, 10−4, 10−6, 10−8), (20)
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Ex 1.1 Ex 1.2 Ex 1.3 Ex 1.4 Ex 1.5 Ex 1.6 Ex 2.1

1.8·10−16 9.3·10−17 3.8·10−15 1.7·10−15 2.8·10−16 2.5·10−16 1.4·10−16

3.2·10−16 3.7·10−16 3.0·10−16 4.4·10−16 4.7·10−16 5.8·10−16 2.9·10−16

Ex 2.2 Ex 2.3 Ex 2.4 Ex 2.5 Ex 2.6 Ex 2.7 Ex 2.8

1.1·10−16 6.1·10−17 4.5·10−02 6.7·10−17 1.6·10−04 1.8·10−17 5.1·10−16

6.6·10−16 2.4·10−16 6.5·10−16 2.5·10−16 5.4·10−16 7.3·10−16 2.9·10−16

Ex 2.9 Ex 3.1 Ex 3.2 Ex 4.1 Ex 4.2 Ex 4.3 Ex 4.4

1.1·10−10 5.0·10−16 4.2·10−15 1.5·10−15 7.8·10−16 4.8·10−15 8.9·10−14

1.0·10−15 7.2·10−16 1.1·10−15 6.1·10−16 9.8·10−16 9.1·10−16 –

Table II. Relative residuals of invariant subspaces computed by DHASUB with METH = ’S’ (upper
row) and METH = ’L’ (lower row).

where U is a random orthogonal symplectic matrix obtained from the symplectic
QR decomposition of a random matrix, see also [Benner et al. 2000]. The errors
obtained for this matrix are displayed in the last row of Table I.

5.2 Accuracy of invariant subspaces

To test the accuracy of the stable invariant subspaces computed by DHASUB, we re-
peated the experiment from the previous section with this subroutine and measured
the relative residual

res = ‖HX̂ − X̂(X̂T HX̂)‖F /‖H‖F ,

where the columns of X̂ form the computed orthonormal basis for the stable invari-
ant subspace. The parameter METH in DHASUB can be used to control the choice of
method for computing the stable invariant subspace. If METH = ’S’, an orthonor-
mal basis for this subspace is obtained by applying a QR decomposition to the ma-
trix Q in (10). If METH = ’L’, this basis is obtained by applying a rank-revealing
QR decomposition to the matrix Q̃11 − Q̃21 from (10). The results in Table II
suggest that METH = ’S’ often behaves like a numerically backward stable method,
except for Examples 2.4, 2.6, and 2.9, while the computationally more expensive
choice METH = ’L’ seems to be numerically backward stable in general. Note that
Example 4.4 represents a highly unbalanced Hamiltonian matrix, for which the
QR algorithm fails to converge [Benner and Kressner 2003]. Also, DHASUB encoun-
ters convergence problems, which could only be avoided when symplectic balancing
(BALANC = ’B’) was combined with METH = ’S’. For all other examples, symplec-
tic balancing had no significant positive effect on the numerical behavior of DHASUB.

To demonstrate the accuracy of the subroutines DSHES and DHAORD for comput-
ing isotropic invariant subspaces of skew-Hamiltonian matrices, let us consider the
following simple matrix:

W = UT

[

A 0
0 AT

]

U, A = diag

(

1,
1

25
,

1

35
, . . . ,

1

1005

)

,

where, as above, U is obtained from the symplectic QR decomposition of a random
200 × 200 matrix. Let X̂ = [x̂1, . . . , x̂100], where x̂k is a normalized eigenvector
belonging to the eigenvalue 1/k5, as computed by the QR algorithm. As W is a
symmetric, skew-Hamiltonian matrix, the columns of X̂ theoretically form an or-
thonormal basis spanning an isotropic invariant subspace. While the orthonormal-
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ity is well preserved in finite-precision arithmetic, the isotropy is severely violated:

‖X̂T X − I‖F = 2.3 · 10−14, ‖X̂T JX‖F = 8.1 · 10−6.

On the other hand, if the subroutines DSHES and DHAORD are used to compute X̂ ,
both properties are well preserved in finite-precision arithmetic:

‖X̂T X − I‖F = 4.4 · 10−14, ‖X̂T JX‖F = 8.9 · 10−15.

6. CONCLUSIONS

We have presented a comprehensive library for solving Hamiltonian and skew-
Hamiltonian eigenvalue problems as well as for computing several related orthog-
onal symplectic decompositions. The described subroutines form the basis of the
HAPACK project, which can be found under

http://www.tu-chemnitz.de/mathematik/hapack/.

Future work will be directed towards generalized eigenvalue problems involving
skew-Hamiltonian/Hamiltonian matrix pencils.
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A. LIST OF AVAILABLE SUBROUTINES

A.1 Driver subroutines

DHAESU Computes the eigenvalues and the symplectic URV/periodic Schur de-
composition of a Hamiltonian matrix.

DHASUB Computes stable and unstable invariant subspaces of a Hamiltonian
matrix from the output of DHAESU.

DSHES Computes the skew-Hamiltonian Schur decomposition of a skew-
Hamiltonian matrix.

A.2 Computational subroutines

DGESQB Symplectic QR decomposition of a general matrix. Blocked version.

DGESQR Symplectic QR decomposition of a general matrix. Unblocked version.

DGESUB Symplectic URV decomposition of a general matrix. Blocked version.

DGESUV Symplectic URV decomposition of a general matrix. Unblocked version.

DHABAK Applies the inverse of a balancing transformation, computed by the
routines DHABAL or DSHBAL.

DHABAL Symplectic balancing of a Hamiltonian matrix.

DHAORD Reorders the (skew-)Hamiltonian Schur decomposition of a (skew-)
Hamiltonian matrix.

DHAPVB PVL decomposition of a Hamiltonian matrix. Blocked version.
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DHAPVL PVL decomposition of a Hamiltonian matrix. Unblocked version.

DHGPQR Periodic Schur decomposition of a product of two matrices.

DOSGPV Generates the orthogonal symplectic matrix U from a PVL decompo-
sition determined by DHAPVL or DSHPVL.

DOSGSB Generates all or part of the orthogonal symplectic matrix Q from a sym-
plectic QR decomposition determined by DGESQB or DGESQR. Blocked
version.

DOSGSQ Generates all or part of the orthogonal symplectic matrix Q from a
symplectic QR decomposition determined by DGEQRB or DGEQRS. Un-
blocked version.

DOSGSU Generates the orthogonal symplectic matrices U and V from a sym-
plectic URV decomposition determined by DGESUB or DGESUV.

DOSMPV Applies the orthogonal symplectic matrix U from a PVL decomposition
determined by DHAPVL or DSHPVL to a general matrix.

DOSMSB Applies all or part of the orthogonal symplectic matrix Q from a sym-
plectic QR decomposition determined by DGESQB or DGESQR to a general
matrix. Blocked version.

DOSMSQ Applies all or part of the orthogonal symplectic matrix Q from a sym-
plectic QR decomposition determined by DGESQB or DGESQR to a general
matrix. Unblocked version.

DSHBAL Symplectic balancing of a skew-Hamiltonian matrix.

DSHEVC Eigenvectors of a skew-Hamiltonian matrix in skew-Hamiltonian Schur
form.

DSHPVB PVL reduction of a skew-Hamiltonian matrix. Blocked version.

DSHPVL PVL reduction of a skew-Hamiltonian matrix. Unblocked version.

DSHSNA Computes reciprocal condition numbers for the eigenvalues and some
eigenvectors of a skew-Hamiltonian matrix in skew-Hamiltonian Schur
form.

A.3 Auxiliary subroutines

DCROOT Computes the square root of a complex number in real arithmetic.

DHAEX2 Swaps adjacent diagonal blocks in a (skew-)Hamiltonian Schur
decomposition.

DLABMX Auxiliary subroutine for DHASUB.

DLAESB Applies the WY representation for a product of elementary orthogonal
symplectic transformation.

DLAEST Constructs the WY representation for a product of elementary orthog-
onal symplectic transformation.

DLANHA Norm of a (skew-)Hamiltonian matrix.

DLAPQR Periodic Schur decomposition of a product of two small matrices.

DLAPV2 Periodic Schur decomposition of a product of two 2-by-2 matrices.
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DLAPVB Panel reduction for PVL decomposition.

DLASUB Panel reduction for symplectic URV decomposition.

DSKMV Skew-symmetric matrix-vector product.

DSKR2 Skew-symmetric rank-2 update.

DSKR2K Skew-symmetric rank-2k update.

DSKRKB Computes αC + βABAT for skew-symmetric matrices B and C.

DSKUPD Computes ZAZT for a skew-symmetric matrix A.

DTGPX2 Swaps adjacent diagonal blocks in a periodic Schur decomposition.

DTGPY2 Solution of a small periodic Sylvester equation.

DTRQML Computes matrix-matrix products involving a quasi-triangular matrix.

ILAHAP Problem-dependent parameters for the local environment.
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